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Abstract—Jamming attacks have been shown to disrupt secret
key generation (SKG) in systems that exploit the reciprocity of
the wireless medium to generate symmetric keys at two remote
locations through public discussion. In this study, the use of
frequency hopping/spreading in Rayleigh block fading additive
white Gaussian noise (BF-AWGN) channels is investigated as a
means to counteract such attacks. The competitive interaction
between a pair of legitimate users and a jammer is formulated
as a zero-sum game and the corresponding Nash equilibria (NE)
are characterized analytically and in closed form. It is found that
the jammer’s optimal strategy is to spread its power across the
entire spectrum. On the contrary, the pair of legitimate users
should use frequency spreading only in favorable transmission
conditions, and frequency hopping otherwise (e.g., low signal to
jamming power ratio). Numerical results show that frequency
hopping/spreading in BF-AWGN channels is an effective tech-
nique for combating jamming attacks in SKG systems; a modest
increase of the system bandwidth can substantially increase the
SKG rates.

Index Terms—Secret key generation, jamming, zero-sum
games, Nash equilibrium, frequency hopping/spreading

I. INTRODUCTION

Direct sequence spread spectrum (DSSS) and spread spec-
trum frequency hopping (SSFH) are the principal counter-
jamming approaches typically used in wireless systems [1]. In
essence, these systems require a pre-shared secret to establish
the spreading sequence or the hopping pattern between two
legitimate nodes; as such, they are not directly applicable
to secret key generation (SKG) systems that on the contrary
seek to establish a secret key [2]–[5]. Attempting to resolve
this contradiction and reconcile DSSS and SSFH with SKG,
uncoordinated frequency hopping/spreading techniques have
recently been investigated in [6], [7]. The main idea behind the
proposed approaches was the randomization of the selection
of the hopping/spreading sequences.

Such techniques typically employ long pseudo-random se-
quences and consequently often require a considerable ex-
pansion of the system bandwidth. On the other hand, fourth
(4G) and fifth generation (5G) systems have strict bandwidth
specifications; it is therefore timely to investigate alternative
counter-jamming approaches for systems with limited spectral
resources. Furthermore, their compatibility with orthogonal
frequency division multiplexing (OFDM) modulation systems

This research was supported in part by ENSEA, Cergy-Pontoise, France.

used in 4G would also be desirable. Motivated by the above,
in the present work we extend the studies in [8], [9] to SKG
systems and investigate frequency hopping/spreading counter-
jamming policies in Rayleigh block fading additive white
Gaussian noise (BF-AWGN) channels.

The strategic interaction between a pair of SKG nodes and
a malicious jammer is modeled as a zero-sum non-cooperative
game in which the SKG capacity serves as the utility function.
By construction, this game has at least one Nash equilibrium
(NE); the set of all pure and mixed NE are characterized
in closed form. We show that optimally the jammer spreads
its power. On the other hand, if the transmission conditions
are poor (e.g., low transmit power or high jamming power),
then the legitimate users should use frequency hopping, while
when the transmission conditions are favorable they should
use frequency spreading. Employing the NE as opposed to
a fixed strategy can result in high gains in terms of SKG
rates for the legitimate nodes. As an example, our numerical
results demonstrate that more than 80% in relative utility can
be gained at the NE compared to a fixed frequency hopping
strategy. Importantly, it is shown that a mere doubling of the
spectral resources allows for a substantial increase in SKG
rates (relative gain > 40%), while this gain rises considerably
when quadrupling the system bandwidth (relative utility gain
> 60%). Thus, efficient counter-jamming approaches for SKG
systems can be built even when spectral resources are limited.

The paper is organized as follows. In Section II the SKG
system model is introduced. In Section III the zero-sum game
is formulated and the NE are completely characterized in
closed form. Numerical illustrations and a detailed discussion
of the possible counter-jamming strategies are presented in
Section IV, while the conclusions of this work are included
in Section V.

II. SYSTEM MODEL

SKG processes have been extensively studied and are con-
sidered a mature topic of physical layer security. They typi-
cally consists of three phases: a shared randomness distillation
phase, in which the legitimate nodes – commonly referred
to as Alice and Bob – observe dependent random variables
denoted in the following by YA, YB while an eavesdropper,
referred to as Eve observes YE . In the next two phases,
known as information reconciliation and privacy amplification,



side information is exchanged between Alice and Bob and
a common secret key is established with the aid of Slepian
Wolf decoders. An upper bound on the SKG rate is given by
min [I(YA;YB), I(YA;YB |YE)] [2], [3].

A commonly used source of shared randomness is provided
by the fading coefficients in slowly varying rich multipath
environments [4], [5], exploiting channel reciprocity during
the channel coherence time. Particularly in Rayleigh and
Rician fading channels, the decorrelation properties of the
fading coefficients over short distances (of the order of a
wavelength) can be exploited to ensure that Eve’s observation
YE is uncorrelated from YA and YB [4], [5]; in this case,
the above upper bound becomes tight and the maximum SKG
rate, referred to as the SKG capacity, is simply given by
C = I(YA;YB) (Sec. II [2]). In the following, we assume
that the decorrelation property of the observations holds.

In this context in [5], Alice and Bob were assumed to ex-
change unit probe signals over a slow fading Rayleigh channel
during its coherence time and obtain respective observations
YA and YB expressed as:

YA = H + ZA, (1)
YB = H + ZB , (2)

where H denoted the fading coefficient, modeled as a zero
mean Gaussian random variable with variance σ2

H , H ∼
N (0, σ2

H), and, ZA and ZB modeled the effect of AWGN
and denoted independent zero mean Gaussian random vari-
ables with variances NA and NB respectively, (ZA, ZB) ∼
N (0,diag (NA, NB)). Using this notation, the SKG capacity
has been expressed as [5]:

C = I(YA;YB) =
1

2
log2

(
1 +

σ2
H

NA +NB + NANB

σ2
H

)
. (3)

However, SKG systems have been shown to be vulnerable to
jamming attacks [10]. In this work, we study a generalization
of the system model in [5] when N parallel subchannels
are available for transmission in the presence of a malicious
jammer. Alice’s and Bob’s observations on the i-th subchannel
– denoted by YA,i and YB,i respectively – are expressed as

YA,i =
√
piHi +

√
γiGA,i + ZA,i, (4)

YB,i =
√
piHi +

√
γiGB,i + ZB,i, (5)

where the following notation is employed: on the i-th sub-
channel, the fading coefficient in the link between Alice
and Bob is denoted by Hi, in the link between Eve and
Alice by GA,i and in the link between Eve and Bob by
GB,i and the links are reciprocal. The fading coefficients
are modeled as independent Gaussian random variables with
Hi ∼ N

(
0, σ2

H

)
, GA,i ∼ N

(
0, σ2

A

)
, GB,i ∼ N

(
0, σ2

B

)
, for

all i. The noise terms ZA,i and ZB,i are modeled as Gaussian
random variables with zero mean and unit variances. Alice and
Bob exchange constant probe signals with power pi and Eve
transmits constant jamming signals with power γi on the i-th
subchannel such that the following average power constraints
are satisfied:

1

N

N∑
i=1

pi ≤ P,
1

N

N∑
i=1

γi ≤ Γ. (6)

Under these assumptions, an easy calculation reveals that the
SKG capacity over the i-th subchannel can be expressed as a
function of pi and γi as:

C(pi, γi) = I(YA,i;YB,i)

=
1

2
log2

�
1 +

σ2
Hpi

NA,i +NB,i +
NA,iNB,i

σ2
H
pi

�
, (7)

with NA,i = 1 + σ2
Aγi, NB,i = 1 + σ2

Bγi. (8)

By inspecting it’s first-order derivatives, we conclude that
C(pi, γi) is a strictly increasing function of pi for any fixed
γi, and a strictly decreasing function of γi for any fixed pi.
Furthermore, it is a strictly convex function with respect to
(w.r.t.) γi for any fixed pi > 0 as its second derivative w.r.t.
γi is strictly positive.

In order to evaluate the N -subchannel BF-AWGN SKG
capacity, we formalize the frequency hopping and spreading
model for the legitimate users and the adversary similarly to
[8], [9]. Frequency spreading can be simply implemented as a
wideband transmission across N parallel subchannels employ-
ing a uniform power allocation policy, i.e., pi = P,∀i ≤ N for
the legitimate users and γi = Γ ∀i ≤ N for the jammer. From
an implementation point of view, this is equivalent to a stan-
dard OFDM transmission. On the other hand, frequency hop-
ping corresponds to transmitting on a single, randomly chosen
subchannel with full power so that when the legitimate users
employ frequency hopping on subchannel i, then pi = NP
and pk = 0 for k 6= i, while when the jammer frequency hops
on subchannel i then γi = NΓ and γk = 0, k 6= i. In OFDM
systems, this could be efficiently implemented by setting all
the inputs of the inverse fast Fourier transform (IFFT) block
to zero, except for one (randomly chosen). Importantly, for
both frequency spreading or frequency hopping modes, no
coordination is assumed between transmitting and receiving
terminals; all receiving terminals blindly employ wideband
detection using standard OFDM receivers, so that the need
for a pre-shared frequency hopping or frequency spreading
sequence is alleviated.

The hopping versus spreading strategies are randomly cho-
sen as follows: αi, ∀i ≤ N represents the probability of
frequency hopping on subchannel i and αN+1 the proba-
bility of spreading the available power uniformly over the
whole spectrum for the legitimate users. Similarly, we define
βi, 1 ≤ i ≤ N +1 for the jammer. Since α = [α1, . . . , αN+1]
and β = [β1, . . . , βN+1] are discrete probability distributions,
we have: αj ≥ 0, ∀j,

∑N+1
i=1 αi = 1, βj ≥ 0, ∀j,

and
∑N+1
i=1 βi = 1. These probabilities are assumed publicly

known. Given all the above, the SKG capacity over the N
parallel subchannels (measured in bits/sec/Hz) is given by:

u(α, β) =
N∑
i=1

{αi(1− βi − βN+1)C(NP, 0)

+αiβiC(NP,NΓ) + αiβN+1C(NP,Γ)



+αN+1βi[(N − 1)C(P, 0) + C(P,NΓ)]}
+αN+1βN+1NC(P,Γ). (9)

In (9), the first term corresponds to the case in which the
legitimate users hop on subchannel i and the jammer hops on
a different subchannel; the second term to the case in which
the legitimate users and the jammer both hop on subchannel
i; the third term to the case in which the legitimate users hop
on subchannel i and the jammer spreads; the fourth term to
the case in which the legitimate users spread and the jammer
hops on subchannel i. Finally, the last term corresponds to the
case in which they both spread their power.

III. ANALYSIS OF NASH EQUILIBRIA

Here, we investigate the optimality of frequency hopping
versus frequency spreading. For simplicity, in the following
Alice and Bob will be collectively referred to as player L and
Eve as player J. We model the competitive interaction between
L and J as the following zero-sum game:

G (P,Γ) = {AL,AJ , u}, (10)

where the payoff u is given in (9). The players’ objective is
to identify the optimal probability vectors α and β to maxi-
mize/minimize, respectively, the payoff u. Their corresponding
action sets, denoted by AL and AJ are defined as

AL = {α ∈ [0, 1]N+1|
N+1∑
i=1

αi = 1}, (11)

AJ = {β ∈ [0, 1]N+1|
N+1∑
i=1

βi = 1}.

From the utility expression (9), none of the players can
choose their best strategies unilaterally since they depend on
the opponent’s choice. In such interactive situations, the Nash
equilibrium (NE) is a natural solution [11]. Intuitively, a NE is
a system state (α, β) that is stable to unilateral deviations. At
the NE, none of the players can benefit by deviating knowing
that their opponent plays the NE strategy.

To derive the game’s NE we begin by studying a finite
discrete game, denoted by Gd with action sets EL ≡ EJ ,
{e1, . . . , eN , eN+1} where ei ∈ {0, 1}N+1 are the canonical
vectors containing 1 on the i-th position and 0 otherwise. The
i-th action ei represents frequency hopping on subchannel i for
all i ≤ N and eN+1 represents spreading the power across the
spectrum. Such finite discrete games always have at least one
NE in mixed strategy (α∗, β∗) [11, Sec. 1.3.1]. We observe
that our game G represents the mixed strategy extension of
Gd, which directly implies that G has at least one NE.

Corollary 1: [11, Thm. 1.1] The strategic form game G
has at least one NE.

To compute the NE, one possibility is to use the Minimax
Theorem which allows us to numerically evaluate mixed NE
of any two-player zero-sum game via linear programming;
albeit, in our game, we show that the NE can be characterized
analytically and in closed-form instead. We begin with a
definition of the NE that follows directly from Definition 1.2
in [11, Sec.1.2.1]:

Definition 1: A strategy profile (α∗, β∗) ∈ AL × AJ is a
NE of the game G if both of the following hold:

i) both players are indifferent among the pure actions that
are played with positive probability at the NE, i.e.,

u(α∗, ei) = u(α∗, ek), ∀i, k,∈ IJ ,
u(ei, β

∗) = u(ek, β
∗), ∀i, k,∈ IL,

ii) the pure actions that result in strictly smaller payoffs are
played with zero probability at the NE, i.e.,

if u(α∗, ei) < u(α∗, ek), i ∈ IJ , then k ∈ NJ ,
if u(ei, β

∗) > u(ek, β
∗), i ∈ IL, then k ∈ NL,

where the sets NL, IL ⊆ {1, . . . , N + 1} denote, respectively,
the indices of the pure actions that are never used at the NE
and those that are used at the NE by player L: NL = {i|α∗

i =
0}, IL = {1, . . . , N + 1} \ NL; similarly, the sets NJ , IJ ⊆
{1, . . . , N + 1} denote, respectively, the set of indices of the
pure actions that are never used or are used by player J at
the NE: NJ = {i|β∗

i = 0}, and IJ = {1, . . . , N + 1} \ NJ .
Definition 1 provides a method to compute the NE of the

game G by solving a system of linear equations as long as
the faces of the simplex AL × AJ on which the NE lie are
known, i.e., IL, IJ need to be known in advance for all NE.
An exhaustive search has a prohibitive complexity (the number
of faces in the simplex of dimension 2(N + 1) is of the order
of 22(N+1)). For general discrete non-cooperative games, the
problem of finding its mixed strategy NE remains a difficult
problem [12]. Nevertheless, as we will see in the following
section, the NE of our game G have a special structure which
allows us to exploit Definition 1 and fully characterize the set
of NE in a simple manner.

In the particular case of a single subchannel, N = 1, the
NE is trivial and consists in both players transmitting with
maximum power (P,Γ) or equivalently α∗ = β∗ = 1. Indeed,
since the utility function is increasing as a function of the
power of player L and decreasing as a function of player’s J
power, P and Γ are strictly dominant strategies.

Now, let us focus on the more challenging case N ≥ 2.
From Corollary 1, we know that the game G has at least one
NE. Examining the matrix structure of the discrete game Gd
given in Table I, we notice that there is a symmetry between
the frequency hopping strategies. In particular, the utility does
not depend on the particular index of the chosen subchannel
but only on whether both players hop on the same subchannel
or not. This symmetry allows us to show that the NE of the
game G have a particular structure specified in the following
propositions. The proofs of the propositions are omitted due
to space limitations.

Proposition 1: At the NE (α∗, β∗), a player uses either all
channel hopping actions with non-zero probability or none of
them: either α∗

i = 0, ∀i ≤ N or α∗
i 6= 0, ∀i ≤ N , and

similarly, either β∗
i = 0, ∀i ≤ N or β∗

i 6= 0, ∀i ≤ N .
Proposition 2: If both players employ frequency hopping

with non-zero probability at the NE, i.e., α∗
i > 0 and β∗

i >
0 ∀i ≤ N , then the players will hop uniformly across all



TABLE I
TWO PLAYER ZERO-SUM DESCRIPTION OF Gd

ei, i ≤ N ek , k ≤ N, k 6= i eN+1

ei, i ≤ N C(NP,NΓ) C(NP, 0) C(NP,Γ)

ek , k ≤ N, k 6= i C(NP, 0) C(NP,NΓ) C(NP,Γ)

eN+1 (N − 1)C(P, 0) + C(P,NΓ) (N − 1)C(P, 0) + C(P,NΓ) NC(P,Γ)

channels and the NE will have the following structure: α∗ =
(a, . . . , a, (1−Na)), β∗ = (b, . . . , b, (1−Nb)) for some 0 ≤
a ≤ 1/N , 0 ≤ b ≤ 1/N .

Notice that Propositions 1 and 2 shape the special structure
of the NE of G. This structure alongside with Definition 1
and the strict convexity of C(p, γ) w.r.t. γ, allows us to fully
characterize the set of NE in a very simple and explicit manner
as a function of the system parameters.

Theorem 1: The set of NE of the game G is characterized
as follows:

1. If C(NP,Γ) < NC(P,Γ), then the game has a unique
pure-strategy NE: both players spread their powers , i.e.,
α∗ = β∗ = eN+1.

2. If C(NP,Γ) > NC(P,Γ), then player L hops and player
J spreads at the NE: α∗ = (α1, . . . , αN , 0) and β∗ =
eN+1. The NE strategies of player L are given by the
(infinite number of) solutions to the following system of
linear inequalities:¨

0 ≤ αi ≤ 1, ∀i ≤ N,
∑N
j=1 αj = 1,

αi <
C(NP,0)−C(NP,Γ)
C(NP,0)−C(NP,NΓ) , ∀i ≤ N.

In particular, the uniform probability distribution is one
of the NE solutions: α∗ = (1/N, . . . , 1/N, 0). All NEs
are equivalent in the sense that the utility is identical.

3. If C(NP,Γ) = NC(P,Γ), player L employs all
its actions and player J spreads at the NE: α∗ =
(α1, . . . , αN , αN+1) and β∗ = eN+1. The NE strategies
of player L are the (infinite number of) solutions to the
following linear system of inequalities:

0 ≤ αi ≤ 1, ∀i ≤ N,
∑N

j=1 αj = 1,
αi[C(NP,NΓ)− C(NP, 0)] + αN+1[(N − 1)C(P, 0)
+C(P,NΓ)− C(NP, 0) + C(NP,Γ)−NC(P,Γ)]
> C(NP,Γ)− C(NP, 0), ∀i ≤ N.

In this case, both players spreading (case 1) is an NE.
Also, player J spreading and player L hopping strategies
(case 2) are all NEs. All NEs are equivalent in the sense
that the utility is identical.
Proof: The proof is detailed in Appendix A.

We remark that the NE can be unique and in pure strategies
if C(NP,Γ) < NC(P,Γ) and the outcome of the game
provides a utility equal to u(α∗, β∗) = NC(P,Γ). On the
contrary, if C(NP,Γ) ≥ NC(P,Γ), there are an infinite
number of NE which are generally in mixed strategies for
player L. All these NEs are equivalent in terms of achieved
utility, which equals u(α∗, β∗) = C(NP,Γ). Since the jam-
mer’s NE strategy is always spreading, even though there may
be an infinite number of NEs, the outcome of the game can

Fig. 1. NE regions as a function of P/Γ ≥ 0 and N ≥ 2 for Γ = σ2
A =

σ2
B = σ2

H = 1.

always be predicted exactly based solely on the knowledge
of the game’s payoffs in Table I. Both players can choose
their NE strategies without the need for implementing iterative
or learning procedures, which would require some kind of
information exchange or signaling among the players.

Theorem 1 also shows that the optimal strategy of the
jammer is always spreading. Intuitively, if the jammer were
to use frequency hopping, player L would exploit this fact
and would also hop; this scenario is unfavorable for the
jammer as the probability that both players hop on the same
subchannel becomes small with increasing N . On the contrary,
for player L the best strategy can be either frequency hopping
of frequency spreading depending on the channel conditions,
which we will further investigate in the next section.

IV. NUMERICAL ILLUSTRATIONS AND DISCUSSION

The best strategy for the legitimate users at the NE is illus-
trated in numerical examples of the NE regions as functions
of the system parameters. There exist two regions delimited
by the curve C(NP,Γ) = NC(P,Γ): a region in which
the NE is unique and both players spread their powers, and
a region in which the jammer spreads and the legitimate
users employ frequency hopping. In our benchmark setting
we assume that Γ = σ2

A = σ2
B = σ2

H = 1. The NE
regions as functions of P/Γ ≥ 0 and N ∈ {2, . . . , 100}
are depicted in Fig. 1. Player L hops at the NE below the
curve, when the signal to interference ratio (SIR) P/Γ is
relatively small. This is intuitive since, in the low transmit
power regime, the legitimate users should not split their scarce
power across different subchannels but should concentrate it



Fig. 2. NE regions as a function of P/Γ ≥ 0 and N ≥ 2 for different
values of σ2

A, σ2
B , σ2

H and Γ = 1.

all on a single subchannel. Furthermore, in Fig. 2 the curve
C(NP,Γ) = NC(P,Γ) is illustrated for different channel
parameters and N ≥ 2. When σ2

H increases, the region in
which player L should employ frequency hopping at the NE
shrinks down while when σ2

A, σ
2
B increase, the region expands.

Fig. 3 illustrates the relative gain obtained by player L when
employing the NE strategy as opposed to a fixed hopping
strategy for N = 32 and different channel parameters. The
relative utility gain DH = (uNE −uHop,Spread)/uNE (where
uHop,Spread = C(NP,Γ)) is relatively large (up to 85%) in
the high SIR regime or in good transmission conditions.

Finally, in Fig. 4, the relative utility gain when using the NE
strategy over N subchannels as opposed to a single channel
(with usingle = C(NP,NΓ) for a fair comparison) is inves-
tigated as a function of P/Γ for N ∈ {2, 4, 8, 16, 32, 64}. We
observe that even a modest increase in the spectral resources
of the SKG system can lead to a substantial increase in the
relative utility. E.g., for N = 2 this gain is in the range of 40%
while for N = 4 it is in the range of 60%. Importantly, the
relative gain is even higher at low SIR P/Γ < 1. This shows
that in SKG systems, the impact of malicious jamming can be
decisively limited by even a modest increase of the bandwidth
resources.

V. CONCLUSIONS

In this work, the interaction between a pair of legitimate
users and a malicious jammer in SKG systems was investi-
gated. Frequency hopping vs. frequency spreading in Rayleigh
BF-AWGN channels was formulated as a zero-sum game for
which a complete characterization (in closed-form) of the
NE was provided. It was found that the jammer’s optimal
strategy is always to spread its available power over the entire
spectrum while the legitimate users should either spread or
hop depending on the transmission conditions. At poor SIR,
the legitimate users should concentrate all of their power on a
single subchannel, while when the transmission conditions are
favorable, they should spread. Importantly, numerical simula-
tions showed that even a modest increase in spectral resources

Fig. 3. Relative utility gain between the NE vs. always hopping: DH =
(uNE−uHop,Spread)/uNE as a function of P/Γ for N = 32 for different
values of σ2

H , σ
2
A, σ

2
B and Γ = 1.

Fig. 4. Relative utility gain between the NE vs. single channel SKG: D1 =
(uNE−usingle)/uNE as a function of P/Γ for Γ = σ2

H = σ2
A = σ2

B = 1
and N ∈ {2, 4, 8, 16, 32, 64}.

compared to single channel SKG can substantially limit the
jammer’s impact, particularly at low SIR.

APPENDIX A
PROOF OF THEOREM 1

Proof: Given the strict convexity of C(p, γ) in γ, we have
the following inequality for all p, γ1 6= γ2 and λ ∈ (0, 1):

C(p, λγ1 + (1− λ)γ2) < λC(p, γ1) + (1− λ)C(p, γ2).

By taking p = P , γ1 = 0, γ2 = NΓ, λ = N−1
N , we obtain:

NC(P,Γ) < (N − 1)C(P, 0) + C(P,NΓ). (12)

Similarly, by taking p = NP , γ1 = 0, γ2 = NΓ, λ = N−1
N ,

we obtain:

NC(NP,Γ) < (N − 1)C(NP, 0) + C(NP,NΓ). (13)

Now, given Proposition 1 and Proposition 2, the NE can only
take nine forms which are not all mutually exclusive and which
will be detailed below. Each case is studied by using Definition
1 and developing the necessary and sufficient conditions for



each of the nine cases to occur. Then, by using (12) and (13),
we show that only three of the nine cases are possible.

1) Both players spread at the NE (i.e., α∗ = β∗ = eN+1),
iff C(NP,Γ) < NC(P,Γ) and (N−1)C(P, 0)+C(P,NΓ) >
NC(P,Γ). The second condition is always true due to (12).

2) Both players use only channel hopping at the NE
(i.e., α∗ = β∗ = (1/N, . . . , 1/N, 0)), iff C(NP,NΓ) +
(N − 1)C(NP, 0) > N(N − 1)C(P, 0) + NC(P,NΓ) and
C(NP,NΓ) + (N − 1)C(NP, 0) < NC(NP,Γ). This case
is impossible because of (13).

3) The game has a strictly mixed NE, i.e., all actions
are used with non-zero probability, of the form α∗ =
(a, . . . , a, (1−Na)), β∗ = (b, . . . , b, (1−Nb)) iff there exist
0 < a < 1/N and 0 < b < 1/N such that both players are
indifferent among all their pure strategies. Let us write the
condition for (a, . . . , a, 1−Na) to be a NE and for which the
jammer is indifferent among its pure strategies by Definition
1. This yields the following linear equation:

a[NC(NP,Γ)− C(NP,NΓ)− (N − 1)C(NP, 0)] =

(1−Na)[(N − 1)C(P, 0) + C(P,NΓ)−NC(P,Γ)],

where the term on the LHS is a strictly negative value from
a > 0 and (13) and the RHS is a strictly positive value from
a < 1/N and (12). Thus, this case can never occur.

4) Player L only channel hops and player J uses both chan-
nel hopping and spreading at the NE: α∗ = (1/N, . . . , 1/N, 0)
and β∗ = (b, . . . , b, (1 − Nb)), iff C(NP,NΓ) + (N −
1)C(NP, 0) = NC(NP,Γ), 0 < b < 1/N , and
Nb[(N − 1)C(P, 0) + C(P,NΓ)] + (1 − Nb)NC(P,Γ) <
bC(NP,NΓ)+(N−1)bC(NP, 0)+(1−Nb)C(NP,Γ), where
b is chosen such that player L is indifferent among its pure
strategies. Given (13), the above equality never holds.

5) Player J only channel hops and player L uses both chan-
nel hopping and spreading at the NE (i.e., α∗ = (a, . . . , a, (1−
Na)) and β∗ = (1/N, . . . , 1/N, 0)), iff C(NP,NΓ) + (N −
1)C(NP, 0) = N(N−1)C(P, 0)+C(P,NΓ), 0 < a < 1/N ,
and MaC(NP,Γ) + (1 −Na)NC(P,Γ) > aC(NP,NΓ) +
(N − 1)aC(NP, 0) + (1−Na)[(N − 1)C(P, 0) +C(P,NΓ)]
where a is chosen such that player J is indifferent among its
pure strategies. The last inequality condition can be rewritten
as follows:

a[NC(NP,Γ)− C(NP,NΓ)− (N − 1)C(NP, 0)] >

(1−Na)[(N − 1)C(P, 0) + C(P,NΓ)−NC(P,Γ)]

where the term on the LHS is a strictly negative value from
a > 0 and (13) and the RHS is a strictly positive value from
a < 1/N and (12). Thus, this case can never occur.

6) Player L spreads and player J channel hops at the
NE (i.e., α∗ = eN+1 and β∗ = (β1, . . . , βN , 0)), iff
NC(P,Γ) > (N − 1)C(P, 0) + C(P,NΓ), NC(NP, 0) −
N(N − 1)C(P, 0)−NC(P,NΓ) < C(NP, 0)−C(NP,NΓ)
and βi meet some additional constraints. Because of (12) this
case never occurs as the first condition is never satisfied.

7) Player J spreads and player L channel hops at the NE
(i.e., β∗ = eN+1 and α∗ = (α1, . . . , αN , 0)), iff C(NP,Γ) >

NC(P,Γ) and NC(NP, 0) − NC(NP,Γ) > C(NP, 0) −
C(NP,NΓ). The NE strategies of player L are given by the
(infinite number) of solutions to the following system of linear
inequalities:¨

0 ≤ αi ≤ 0, ∀i,
∑N
i=1 αi = 1

αi <
C(NP,0)−C(NP,Γ)
C(NP,0)−C(NP,NΓ) , ∀i ≤ N.

The second condition is always true (13). From (13), the above
system of inequality always has the uniform probability over
the channels solution α∗ = (1/N, . . . , 1/N, 0).

8) Player L spreads and player J employs all its actions
at the NE (i.e., α∗ = eN+1, β∗ = (β1, . . . , βN+1)), iff (N −
1)C(P, 0) + C(P,NΓ) = NC(P,Γ) and βi,∀i meet some
additional constraints that are not detailed here. The reason is
that, given (12), the equality condition never holds and, hence,
this case is impossible.

9) Player J spreads and player L employs all its actions
at the NE (i.e., β∗ = eN+1 and α∗ = (α1, . . . , αN , αN+1)),
iff C(NP,Γ) = NC(P,Γ) and the solutions to the following
linear system of inequalities are NE strategies for player L:

0 ≤ αi ≤ 1, ∀i,
∑N

i=1 αi = 1
αi[C(NP,NΓ)− C(NP, 0)] + αN+1[(N − 1)C(P, 0)
+C(P,NΓ)− C(NP, 0) + C(NP,Γ)−NC(P,Γ)]
> C(NP,Γ)− C(NP, 0), ∀i ≤ N.

By taking αN+1 = 0, the above system of linear equations is
precisely the one in case 7.
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