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Abstract. The natural join and the inner union operations combine
relations of a database. Tropashko and Spight realized that these two
operations are the meet and join operations in a class of lattices, known
by now as the relational lattices. They proposed then lattice theory as an
algebraic approach to the theory of databases alternative to the relational
algebra. Litak et al. proposed an axiomatization of relational lattices over
the signature that extends the pure lattice signature with a constant and
argued that the quasiequational theory of relational lattices over this
extended signature is undecidable.

We prove in this paper that embeddability is undecidable for relational
lattices. More precisely, it is undecidable whether a finite subdirectly-
irreducible lattice can be embedded into a relational lattice. Our proof
is a reduction from the coverability problem of a multimodal frame by a
universal product frame and, indirectly, from the representability prob-
lem for relation algebras.

As corollaries we obtain the following results: the quasiequational theory
of relational lattices over the pure lattice signature is undecidable and
has no finite base; there is a quasiequation over the pure lattice signature
which holds in all the finite relational lattices but fails in an infinite
relational lattice.

1 Introduction

The natural join and the inner union operations combine relations (i.e. tables)
of a database. Most of today’s web programs query their databases making
repeated use of the natural join and of the union, of which the inner union is
a mathematically well behaved variant. Tropashko and Spight realized [23,22]
that these two operations are the meet and join operations in a class of lattices,
known by now as the class of relational lattices. They proposed then lattice
theory as an algebraic approach, alternative to Codd’s relational algebra [3], to
the theory of databases.

An important first attempt to axiomatize these lattices is due to Litak,
Mikulás, and Hidders [13]. These authors propose an axiomatization, compris-
ing equations and quasiequations, in a signature that extends the pure lattice

⋆ Extended abstract, see [21] for a full version of this paper.



signature with a constant, the header constant. A main result of that paper is
that the quasiequational theory of relational lattices is undecidable in this ex-
tended signature. Their proof mimics Maddux’s proof that the equational theory
of cylindric algebras of dimension n ≥ 3 is undecidable [14].

We have investigated in [20] equational axiomatizations for relational lattices
using as tool the duality theory for finite lattices developed in [19]. A conceptual
contribution from [20] is to make explicit the similarity between the developing
theory of relational lattices and the well established theory of combination of
modal logics, see e.g. [11]. This was achieved on the syntactic side, but also on
the semantic side, by identifying some key properties of the structures dual to
the finite atomistic lattices in the variety generated by the relational lattices,
see [20, Theorem 7]. These properties make the dual structures into frames for
commutator multimodal logics in a natural way.

In this paper we exploit this similarity to transfer results from the theory
of multidimensional modal logics to lattice theory. Our main result is that it is
undecidable whether a finite subdirectly irreducible lattice can be embedded into
a relational lattice. We prove this statement by reducing to it the coverability
problem of a frame by a universal S53-product frame, a problem shown to be
undecidable in [10]. As stated there, the coverability problem is—in light of
standard duality theory—a direct reformulation of the representability problem
of finite simple relation algebras, problem shown to be undecidable by Hirsch
and Hodkinson [9].

Our main result and its proof allow us to derive further consequences. Firstly,
we refine the undecidability theorem of [13] and prove that the quasiequational
theory of relational lattices in the pure lattice signature is undecidable as well and
has no finite base. Then we argue that there is a quasiequation that holds in all
the finite relational lattices, but fails in an infinite one. For the latter result, we
rely on the work by Hirsch, Hodkinson, and Kurucz [10] who constructed a finite
3-multimodal frame which has no finite p-morphism from a finite universal S53-
product frame, but has a p-morphism from an infinite one. On the methodological
side, we wish to point out our use of generalized ultrametric spaces to tackle
these problems. A key idea in the proof of the main result is the characterization
of universal S5A-product frames as pairwise complete generalized ultrametric
spaces with distance valued in the Boolean algebra P (A), a characterization
that holds when A is finite.

The paper is structured as follows. We recall in Section 2 some definitions
and facts on frames and lattices. Relational lattices are introduced in Section 3.
In Section 4 we outline the proof of our main result—embeddability of a finite
subdirectly-irreducible lattice into a relational lattice is undecidable—and derive
then the other results. In Section 5 we show how to construct a lattice from a
frame and use functoriality of this construction to argue that such lattice embeds
into a relational lattice whenever the frame is a p-morphic image of a universal
product frame. The proof of the converse statement is carried out in Section 7.
Among the technical tools needed to prove the converse, the theory of general-
ized ultrametric spaces over a powerset Boolean algebra and the aforementioned
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characterization of universal S5A-product frames as pairwise complete spaces
over P (A) are developed in Section 6.

Due to the lack of space, we omit most of the technical proofs on lattices and
ultrametric spaces; these proofs are accessible via the preprint [21].

2 Frames and lattices

Frames. Let A be a set of actions. An A-multimodal frame (briefly, an A-frame
or a frame) is a structure F = 〈XF, {Ra | a ∈ A}〉 where, for each a ∈ A, Ra is a
binary relation on XF. We say that an A-frame is S4 if each Ra is reflexive and
transitive. If F0 and F1 are two A-frames, then a p-morphism from F0 to F1 is a
function ψ : XF0 −−→ XF1 such that, for each a ∈ A,

– if xRay, then ψ(x)Raψ(y),
– if ψ(x)Raz, then xRay for some y with ψ(y) = z.

Let us mention that A-multimodal frames and p-morphisms form a category.

A frame F is said to be rooted (or initial, see [18]) if there is f0 ∈ XF such
that every other f ∈ XF is reachable from f0. We say that an A-frame F is
full if, for each a ∈ A, there exists f, g ∈ XF such that f 6= g and fRag. If
G = (V,D) is a directed graph, then we shall say that G is rooted if it is rooted
as a unimodal frame.

A particular class of frames we shall deal with are the universal S5A-product
frames. These are the frames U with XU =

∏
a∈AXa and xRay if and only if

xi = yi for each i 6= a, where x := 〈xi | i ∈ A〉 and y := 〈yi | i ∈ A〉.

Orders and lattices. We assume some basic knowledge of order and lattice
theory as presented in standard monographs [4,7]. Most of the tools we use in
this paper originate from the monograph [6] and have been further developed in
[19].

A lattice is a poset L such that every finite non-empty subset X ⊆ L admits
a smallest upper bound

∨
X and a greatest lower bound

∧
X . A lattice can also

be understood as a structure A for the functional signature (∨,∧), such that the
interpretations of these two binary function symbols both give A the structure
of an idempotent commutative semigroup, the two semigroup structures being
connected by the absorption laws x ∧ (y ∨ x) = x and x ∨ (y ∧ x) = x. Once
a lattice is presented as such structure, the order is recovered by stating that
x ≤ y holds if and only if x ∧ y = x.

A lattice L is complete if any subset X ⊆ L admits a smallest upper bound∨
X . It can be shown that this condition implies that any subset X ⊆ L admits

a greatest lower bound
∧
X . A lattice is bounded if it has a least element ⊥

and a greatest element ⊤. A complete lattice (in particular, a finite lattice) is
bounded, since

∨
∅ and

∧
∅ are, respectively, the least and greatest elements of

the lattice.
If P and Q are partially ordered sets, then a function f : P −−→ Q is order-

preserving (or monotone) if p ≤ p′ implies f(p) ≤ f(p′). If L and M are lattices,
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then a function f : L −−→ M is a lattice morphism if it preserves the lattice
operations ∨ and ∧. A lattice morphism is always order-preserving. A lattice
morphism f : L −−→ M between bounded lattices L and M is bound-preserving
if f(⊥) = ⊥ and f(⊤) = ⊤. A function g : Q −−→ P is said to be left adjoint to
an order-preserving f : P −−→ Q if g(q) ≤ p holds if and only if q ≤ f(p) holds;
such a left adjoint, when it exists, is unique. If L is finite, M is bounded, and
f : L −−→ M is a bound-preserving lattice morphism, then a left adjoint to f
always exists and preserves the constant ⊥ and the operation ∨.

A Moore family on a set U is a collection F of subsets of U which is closed
under arbitrary intersections. Given a Moore family F on U , the correspondence
sending Z ⊆ U to Z :=

⋂
{Y ∈ F | Z ⊆ Y } is a closure operator on U , that is, an

order-preserving inflationary and idempotent endofunction of P (U). The subsets
in F , called the closed sets, are exactly the fixpoints of this closure operator. We
can give to a Moore family F a lattice structure by defining

∧
X :=

⋂
X ,

∨
X :=

⋃
X . (1)

Let L be a complete lattice. An element j ∈ L is completely join-irreducible
if j =

∨
X implies j ∈ X , for each X ⊆ L; the set of completely join-irreducible

elements of L is denoted here J (L). A complete lattice is spatial if every element
is the join of the completely join-irreducible elements below it. An element j ∈
J (L) is said to be join-prime if j ≤

∨
X implies j ≤ x for some x ∈ X , for each

finite subset X of L. If x is not join-prime, then we say that x is non-join-prime.
An atom of a lattice L is an element of L such that ⊥ is the only element strictly
below it. A spatial lattice is atomistic if every element of J (L) is an atom.

For j ∈ J (L), a join-cover of j is a subset X ⊆ L such that j ≤
∨
X .

For X,Y ⊆ L, we say that X refines Y , and write X ≪ Y , if for all x ∈ X

there exists y ∈ Y such that x ≤ y. A join-cover X of j is said to be minimal
if j ≤

∨
Y and Y ≪ X implies X ⊆ Y ; we write j ⊳m X if X is a minimal

join-cover of j. In a spatial lattice, if j ⊳m X , then X ⊆ J (L). If j ⊳m X , then
we say that X is a non-trivial minimal join-cover of j if X 6= {j}. Some authors
use the word perfect for a lattice which is both spatial and dually spatial. We
need here something different:

Definition 1. We say that a complete lattice is pluperfect if it is spatial and
for each j ∈ J (L) and X ⊆ L, if j ≤

∨
X, then Y ≪ X for some Y such that

j ⊳m Y . The OD-graph of a pluperfect lattice L is the structure 〈J (L),≤,⊳m〉.

That is, in a pluperfect lattice every cover refines to a minimal one. Notice that
every finite lattice is pluperfect. If L is a pluperfect lattice, then we say that
X ⊆ J (L) is closed if it is a downset and j ⊳m C ⊆ X implies j ∈ X . Closed
subsets of J (L) form a Moore family. The interest of considering pluperfect
lattices stems from the following representation theorem stated in [16] for finite
lattices; its generalization to pluperfect lattices is straightforward.

Theorem 2. Cf. [21, Theorem 2]. Let L be a pluperfect lattice and let L(J (L),≤
,⊳m) be the lattice of closed subsets of J (L). The mapping l 7→ {j ∈ J (L) | j ≤ l}
is a lattice isomorphism from L to L(J (L),≤,⊳m).
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3 The relational lattices R(D,A)

Throughout this paper we shall use the notation Y X for the set of functions of
domain Y and codomain X , for X and Y any two sets.

Let A be a collection of attributes (or column names) and let D be a set of
cell values. A relation on A and D is a pair (α, T ) where α ⊆ A and T ⊆ Dα.
Elements of the relational lattice R(D,A) 1 are relations on A and D. Informally,
a relation (α, T ) represents a table of a relational database, with α being the
header, i.e. the collection of names of columns, while T is the collection of rows.

Before we define the natural join, the inner union operations, and the order
on R(D,A), let us recall some key operations. If α ⊆ β ⊆ A and f ∈ Dβ ,
then we shall use f↾α ∈ Dα for the restriction of f to α; if T ⊆ Dβ , then T ↾↾α
shall denote projection to α, that is, the direct image of T along restriction,
T ↾↾α:= {f↾α | f ∈ T }; if T ⊆ Dα, then iβ(T ) shall denote cylindrification to β,
that is, the inverse image of restriction, iβ(T ) := {f ∈ Dβ | f↾α ∈ T }. Recall
that iβ is right adjoint to ↾↾α. With this in mind, the natural join and the inner
union of relations are respectively described by the following formulas:

(α1, T1) ∧ (α2, T2) := (α1 ∪ α2, T )

where T = {f | f↾αi
∈ Ti, i = 1, 2}

= iα1∪α2(T1) ∩ iα1∪α2(T2) ,

(α1, T1) ∨ (α2, T2) := (α1 ∩ α2, T )

where T = {f | ∃i ∈ {1, 2}, ∃g ∈ Ti s.t. g↾α1∩α2
= f}

= T1↾↾α1∩α2 ∪T2↾↾α1∩α2 .

The order is then given by (α1, T1) ≤ (α2, T2) iff α2 ⊆ α1 and T1↾↾α2⊆ T2.
A convenient way of describing these lattices was introduced in [13, Lemma

2.1]. The authors argued that the relational lattices R(D,A) are isomorphic to
the lattices of closed subsets of A ∪DA, where Z ⊆ A ∪DA is said to be closed
if it is a fixed-point of the closure operator (− ) defined as

Z := Z ∪ {f ∈ DA | A \ Z ⊆ Eq(f, g), for some g ∈ Z} ,

where in the formula aboveEq(f, g) is the equalizer of f and g. Letting δ(f, g) :=
{x ∈ A | f(x) 6= g(x)}, the above definition of the closure operator is obviously
equivalent to the following one:

Z := α ∪ {f ∈ DA | δ(f, g) ⊆ α, for some g ∈ Z ∩DA}, with α = Z ∩ A.

From now on, we rely on this representation of relational lattices. Relational lat-
tices are atomistic pluperfect lattices. The completely join-irreducible elements
of R(D,A) are the singletons {a} and {f}, for a ∈ A and f ∈ DA, see [13]. By

1 In [13] such a lattice is called full relational lattice. The wording “class of relational
lattices” is used there for the class of lattices that have an embedding into some
lattice of the form R(D,A).
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an abuse of notation we shall write x for the singleton {x}, for x ∈ A ∪ DA.
Under this convention, we have therefore J (R(D,A)) = A∪DA. Every a ∈ A is
join-prime, while the minimal join-covers are of the form f ⊳m δ(f, g)∪{g}, for
each f, g ∈ DA, see [20]. The only non-trivial result from [20] that we use later
(for Lemma 24 and Theorem 29) is the folllowing:

Lemma 3. Let L be a finite atomistic lattice in the variety generated by the
class of relational lattices. If {j} ∪X ⊆ J (L), j ≤

∨
X, and all the elements of

X are join-prime, then j is join-prime.

The Lemma—which is an immediate consequence of Theorem 7 in [20]—asserts
that a join-cover of an element j ∈ J (L) which is not join-prime cannot be made
of join-prime elements only.

4 Overview and statement of the results

For an arbitrary frame F, we construct in Section 5 a lattice L(F); if F is rooted
and full, then L(F) is a subdirectly irreducible lattice, see Proposition 16. The
key Theorem leading to the undecidability results is the following one.

Theorem 4. Let A be a finite set and let F be an S4 finite rooted full A-frame.
There is a surjective p-morphism from a universal S5A-product frame U to F if
and only if L(F) embeds into some relational lattice R(D,B).

Proof (outline). The construction L defined in Section 5 extends to a contravari-
ant functor, so if U is a universal S5A-product frame and ψ : U −−→ F is a
surjective p-morphism, then we have an embedding L(ψ) of L(F) into L(U). We
can assume that all the components of U are equal, i.e. that the underlying set
of U is of the form

∏
a∈AX ; if this is the case, then L(U) is isomorphic to the

relational lattice R(X,A).
The converse direction, developed from Section 6 up to Section 7, is subtler.

Considering that L(F) is subdirectly-irreducible, we argue that if ψ : L(F) −−→
R(D,B) is a lattice embedding, then we can suppose it preserves bounds; in this
case ψ has a surjective left adjoint µ : R(D,B) −−→ L(F). Let us notice that there
is no general reason for ψ to be the image by L of a p-morphism. Said otherwise,
the functor L is not full and, in particular, the image of an atom by µ might
not be an atom. The following considerations, mostly developed in Section 7,
make it possible to extract a p-morphism from the left adjoint µ. Since both
L(F) and R(D,B) are generated (under possibly infinite joins) by their atoms,
each atom x ∈ L(F) has a preimage y ∈ R(D,B) which is an atom. The set F0

of non-join-prime atoms of R(D,B) such that µ(f) is a non-join-prime atom of
L(F) is endowed with a P (A)-valued distance δ. The pair (F0, δ) is shown to be
a pairwise complete ultrametric space over P (A). Section 6 recalls and develops
some observations on ultrametric spaces valued on powerset algebras. The key
ones are Theorems 18 and 19, stating that—when A is finite—pairwise complete
ultrametric spaces over P (A) and universal S5A-product frames are essentially
the same objects. The restriction of µ to F0 yields then a surjective p-morphism
from F0, considered as a universal S5A-product frame, to F. ⊓⊔
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The following problem was shown to be undecidable in [10]: given a finite 3-
frame F, does there exists a surjective p-morphism from a universal S53-product
frame U to F? In the introduction we referred to this problem as the coverability
problem of a 3-frame by a universal S53-product frame. The problem was shown
to be undecidable by means of a reduction from the representability problem
of finite simple relation algebras, shown to be undecidable in [9]. We need to
strengthen the undecidability result of [10] with some additional observations—
rootedness and fullness—as stated in the following Proposition.

Proposition 5. It is undecidable whether, given a finite set A with cardA ≥ 3
and an S4 finite rooted full A-frame F, there is a surjective p-morphism from a
universal S5A-product U to F.

Proof. Throughout this proof we assume a minimum knowledge of the theory of
relation algebras, see e.g. [15].

The Proposition actually holds if we restrict to the case when cardA = 3.
Given a finite simple relation algebra A, the authors of [10] construct a 3-
multimodal frame FA,3 such that A is representable if and only if FA,3 is a
p-morphic image of some universal S53-product frame. The frame FA,3 is S4 and
rooted [10, Claim 8]. We claim that FA,3 is also full, unless A is the two elements
Boolean algebra. To prove this claim, let us recall first that an element of FA,3

is a triple (t0, t1, t2) of atoms of A such that t⌣2 ≤ t0; t1; moreover, if t, t′ are two
such triples and i ∈ {0, 1, 2}, then tRit′ if and only if t and t′ coincide in the i-th
coordinate. If a is an atom of A, then a ≤ el; a and a ≤ a; er for two atoms el, er
below the multiplicative unit of A. Therefore, the triples t := (el, a, a

⌣) and
t′ = (a, er, a

⌣) are elements of FA,3 and tR2t
′. If, for each atom a, these triples

are equal, then every atom of A is below the multiplicative unit, which therefore
concides with the top element ⊤; since A is simple, then relation ⊤ = ⊤;x;⊤
holds for each x 6= ⊥. It follows that x = ⊤;x;⊤ = ⊤, for each x 6= ⊥, so A is
the two elements Boolean algebra. Thus, if A has more than two elements, then
t 6= t′ and tR2t

′ for some t, t′ ∈ FA,3. Using the cycle law of relation algebras,
one also gets pairs of distinct elements of FA,3, call them u, u′ and w,w′, such
that uR0u

′ and wR1w
′.

Therefore, if we could decide whether there is a p-morphism from some uni-
versal S53-frame to a given S4 finite rooted full frame F, then we could also
decide whether a finite simple relation algebra A is representable, by answering
positively if A has exactly two elements and, otherwise, by answering the exis-
tence problem of a p-morphism to FA,3. ⊓⊔

Combining Theorem 4 with Proposition 5, we derive the following undecid-
ability result.

Theorem 6. It is not decidable whether a finite subdirectly irreducible atomistic
lattice embeds into a relational lattice.

Let us remark that Theorem 6 partly answers Problem 7.1 in [13].

In [13] the authors proved that the quasiequational theory of relational lat-
tices (i.e. the set of all definite Horn sentences valid in relational lattices) in
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the signature (∧,∨, H) is undecidable. Here H is the header constant, which is
interpreted in a relational lattice R(D,A) as the closed subset A of A ∪ DA.
Problem 4.10 in [13] asks whether the quasiequational theory of relational lat-
tices in the restricted signature (∧,∨) of pure lattice theory is undecidable as
well. We positively answer this question.

Theorem 7. The quasiequational theory of relational lattices in the pure lattice
signature is undecidable.

It is a general fact that if the embeddability problem of finite subdirectly-
irreducible algebras in a class K is undecidable, then the quasiequational theory
of K is undecidable as well. We thank a colleague for pointing out to us how this
can be derived from Evans’ work [5]. We add here the proof of this fact, since
we shall need it later in the proof of Theorem 10.

Proof. Given a finite subdirectly-irreducible algebra A with least non trivial
congruence θ(â, ā), we construct a quasiequation φA with the following property:
for any other algebra (in the same signature) K, K 6|= φA if and only if A has
an embedding into K.

The construction is as follows. Let XA = {xa | a ∈ A} be a set of variables
in bijection with the elements of A. For each function symbol f in the signature
Ω, let TA,f be its table, that is the formula

TA,f =
∧

(a1,...,aar(f))∈Aar(f)

f(xa1 , . . . , xar(f)) = xf(a1,...,aar(f)).

We let φA be the universal closure of
∧
f∈Ω TA,f ⇒ xâ = xā. We prove next that

an algebra K sastifies φA if and only if there is no embedding of A into K.
If K |= φA and ψ : A −−→ K, then v(xa) = ψ(a) is a valuation such that

K, v |=
∧
f∈Ω TA,f , so ψ(â) = v(xâ) = v(xā) = ψ(ā) and ψ is not injective.

Conversely, suppose K 6|= φA and let v be a valuation such that K, v |=∧
f∈Ω TA,f and K, v 6|= xâ = xā. Define ψ : A −−→ K as ψ(a) = v(xa), then ψ

is a morphism, since K, v |= TA,f for each f ∈ Ω. Let Kerψ = {(a, a′) | ψ(a) =
ψ(a′)} so, supposing that ψ is not injective, Kerψ is a non-trivial congruence.
Then (â, ā) ∈ θ(â, ā) ⊆ Kerψ, so v(xâ) = ψ(â) = ψ(ā) = v(xā), a contradiction.
We have therefore Kerψ = {(a, a) | a ∈ A}, which shows that ψ is injective.

Let now K be a class of algebras in the same signature. We have then

K 6|= φA iff K 6|= φA for some K ∈ K

iff there is an embedding of A into K, for some K ∈ K .

Thus, if the embeddability problem of finite subdirectly-irreducible algebras into
some algebra in K is undecidable, then the quasiequational theory of K is unde-
cidable as well. ⊓⊔

Following [10], let us add some further observations on the quasiequational
theory of relational lattices.
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Lemma 8. The class of lattices that have an embedding into a relational lattice
is closed under ultraproducts.

Proof. Let us say that a sublattice L of a lattice R(D,A) is H-closed if the
subset A belongs to L. Let R denote the closure under isomorphisms of the
class of H-closed sublattices of some R(D,A). It is proved in [13, Corollary 4.2]
that R is closed under ultraproducts. It immediately follows from this result
that the class of lattices that have an embedding into some relational lattice
is closed under ultraproducts, as follows. Let {Li −−→ R(Di, Ai) | i ∈ I} be a
family of lattice embeddings and let F be an ultrafilter over I. The ultraproduct
constructions on {Li | i ∈ I} and {R(Di, Ai) | i ∈ I} yield a lattice embedding∏

F Li −−→
∏

F R(Di, Ai). Clearly, each R(Di, Ai) belongs to R, whence the
ultraproduct

∏
F R(Di, Ai) belongs to R as well: thus

∏
F R(Di, Ai) embeds

into some R(D,A), and so does
∏

F Li. ⊓⊔

Theorem 9. The quasiequational theory of relational lattices is not finitely ax-
iomatizable.

Proof. A known result in universal algebra—see e.g. [2, Theorem 2.25]—states
that a subdirectly-irreducible algebra satisfies all the quasiequations satisfied by
a class of algebras if and only if it embeds in an ultraproduct of algebras in
this class. Lemma 8 implies that the class of lattices that have an embedding
into an ultraproduct of relational lattices and the class of lattices that have an
embedding into some relational lattices are the same. Therefore a subdirectly-
irreducible lattice L embeds in a relational lattice if and only if it satisfies all the
quasiequations satisfied by the relational lattices. If this collection of quasiequa-
tions was a logical consequence of a finite set of quasiequations, then we could
decide whether a finite subdirectly-irreducible L satisfies all these quasiequa-
tions, by verifying whether L satisfies the finite set of quasiequations. In this
way, we could also decide whether such an L embeds into some relational lat-
tice. ⊓⊔

Finally, the following Theorem, showing that the quasiequational theory of
the finite relational lattices is stronger than the quasiequational theory of all the
relational lattices, partly answers Problem 3.6 in [13].

Theorem 10. There is a quasiequation which holds in all the finite relational
lattices which, however, fails in an infinite relational lattice.

Proof. In the first appendix of [10] an S4 finite rooted full 3-frame F is con-
structed that has no surjective p-morphism from a finite universal S53-product
frame, but has such a p-morphism from an infinite one.

Since L(F) is finite whenever F is finite, we obtain by using Theorem 4 a
subdirectly-irreducible finite lattice L which embeds into an infinite relational
lattice, but has no embedding into a finite one.

Let φL be the quasiequation as in the proof of Theorem 7. We have therefore
that, for any lattice K, K |= φL if and only if L does not embed into K.

Correspondingly, any finite relational lattice satisfies φL and, on the other
hand, K 6|= φL if K is the infinite lattice into which L embeds. ⊓⊔
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5 The lattice of a multimodal frame

We assume throughout this Section that A is a finite set of actions.
Let α ⊆ A, F be an A-frame, x, y ∈ XF . We define an α-path from x to y

as a sequence x = x0Ra0x1 . . . xk−1Rak−1
xk = y with {a0, . . . , ak−1} ⊆ α. We

use the notation x
α
−→ y to mean that there is an α-path from x to y. Notice

that if F is an S4 A-frame, then x
{a}
−−→ y if and only if xRay. Given an A-frame

F = 〈XF , {Ra | a ∈ A}〉, we construct a lattice as follows. For α ⊆ A, we say
that Y ⊆ XF is α-closed if x ∈ Y , whenever there is a α-path from x to some
y ∈ Y . We say that a subset Z ⊆ A ∪XF is closed if Z ∩XF is Z ∩A-closed. It
is straightforward to verify that the collection of closed subsets of A ∪XF is a
Moore family.

Definition 11. The lattice L(F) is the lattice of closed subsets of A ∪XF .

The lattice operations on L(F) are defined as in the display (1). Actually,
L(−) is a contravariant functor from the category of frames to the category of
lattices. Namely, for a p-morphism ψ : F0 −−→ F1 and any Z ⊆ A ∪XF1 , define
L(ψ)(Z) := (Z ∩ A) ∪ ψ−1(Z ∩XF1).

Proposition 12. Cf. [21, Proposition 17]. L(ψ) sends closed subsets of A∪XF1

to closed subsets of A∪XF0 . Its restriction to L(F1) yields a bound-preserving lat-
tice morphism L(ψ) : L(F1) −−→ L(F0). Moreover, if ψ : F0 −−→ F1 is surjective,
then L(ψ) is injective.

We state next the main result of this Section.

Theorem 13. If there exists a surjective p-morphism from a universal S5A-
product frame U to an A-frame F, then L(F) embeds into a relational lattice.

Proof. We say that U is uniform on X if all the components of U are equal to X .
Spelled out, this means that XU =

∏
a∈AX . Let ψ : U −−→ F be a p-morphism

as in the statement of the Theorem. W.l.o.g. we can assume that U is uniform
on some set X . If this is not the case, then we choose a0 ∈ A such that Xa0

has maximum cardinality and surjective mappings pa : Xa0 −−→ Xa, for each
a ∈ A. The product frame U′ on

∏
a∈AXa0 is uniform and

∏
a∈A pa : U′ −−→ U is

a surjective p-morphism. By pre-composing ψ with this p-morphism, we obtain
a surjective p-morphism from the uniform U′ to F. Now, if U is uniform on X ,
then L(U) is equal to the relational lattice R(X,A). Then, by functoriality of L,
we have a lattice morphism L(ψ) : L(F) −−→ L(U) = R(X,A). By Proposition 12
L(ψ) is an embedding. ⊓⊔

We review next some properties of the lattices L(F).

Proposition 14. Cf. [21, Proposition 20]. The completely join-irreducible ele-
ments of L(F) are the singletons, so L(F) is an atomistic lattice.

Identifying singletons of with their elements, the previous proposition states
that J (L(F)) = A ∪ XF . To state the next Proposition, let us say that an
α-path from x ∈ XF to y ∈ XF is minimal if there is no β-path from x to y, for
each proper subset β of α.
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Proposition 15. Cf. [21, Proposition 21]. L(F) is a pluperfect lattice. Each el-
ement of A is join-prime, while the minimal join-covers of x ∈ XF are of the
form x⊳m α ∪ {y}, for a minimal α-path from x to y.

Before stating the next Proposition, let us recall from [6, Corollary 2.37] that a fi-
nite lattice L is subdirectly-irreducible if and only if the directed graph (J (L), D)
is rooted. Here D is the join-dependency relation on the join-irreducible elements
of L, which, on atomistic finite lattices, can be defined by saying that jDk holds
if j 6= k and j ≤ p ∨ k for some p ∈ L with j 6≤ p.

Proposition 16. If a finite A-frame F is rooted and full, then L(F) is a subdirectly-
irreducible lattice.

Proof. We argue that the digraph (J (L(F)), D) is rooted. Observe that x ∈
{a, y} = a∨ y whenever xRay. This implies that xDy and xDa when x, y ∈ XF ,
a ∈ A, x 6= y and xRay. The fact that of (J (L(F)), D) is rooted follows now
from F being rooted and full. ⊓⊔

6 Some theory of generalized ultrametric spaces

Generalized ultrametric spaces over a Boolean algebra P (A) turn out to be a
useful tool for relational lattices [13,20]—as well as, we claim here, for universal
product frames from multidimensional modal logic [11]. The use of metrics is well
known in graph theory, where universal product frames are known as Hamming
graphs, see e.g. [8]. Generalized ultrametric spaces over a Boolean algebra P (A)
were introduced in [17] to study equivalence relations. The main results of this
Section are Theorem 18 and Proposition 19 which together substantiate the
claim that when A is finite, universal S5A-product frames are pairwise complete
ultrametric spaces valued in the Boolean algebra P (A). It is this abstract point
of view that shall allow us to construct a universal product frame given a lattice
embedding L(F) −−→ R(D,A). We shall develop some observations that are not
strictly necessary to prove the undecidability result, which is the main result of
this paper. Nonetheless we include them since they are part of a coherent set of
results and, as far as we know, they are original.

Definition 17. An ultrametric space over P (A) (briefly, a space) is a pair
(X, δ), with δ : X ×X −−→ P (A) such that, for every f, g, h ∈ X,

δ(f, f) ⊆ ∅ , δ(f, g) ⊆ δ(f, h) ∪ δ(h, g) .

That is, we have defined an ultrametric space over P (A) as a category (with a
small set of objects) enriched over (P (A)op, ∅,∪), see [12]. We shall assume in
this paper that such a space (X, δ) is also reduced and symmetric, that is, that
the following two properties hold for every f, g ∈ X :

δ(f, g) = ∅ implies f = g, δ(f, g) = δ(g, f) .

11



Amorphism of spaces2 ψ : (X, δX) −−→ (Y, δY ) is a function ψ : X −−→ Y such
that δY (ψ(f), ψ(g)) ≤ δX(f, g), for each f, g ∈ X . If δY (ψ(f), ψ(g)) = δX(f, g),
for each f, g ∈ X , then ψ is said to be an isometry. For (X, δ) a space over
P (A), f ∈ X and α ⊆ A, the ball centered in f of radius α is defined as usual:
B(f, α) := {g ∈ X | δ(f, g) ⊆ α}. In [1] a space (X, δ) is said to be pairwise
complete if, for each f, g ∈ X and α, β ⊆ A, B(f, α ∪ β) = B(g, α ∪ β) implies
B(f, α) ∩B(g, β) 6= ∅. This property is easily seen to be equivalent to:

δ(f, g) ⊆ α ∪ β implies δ(f, h) ⊆ α and δ(h, g) ⊆ β , for some h ∈ X.

If (X, δX) is a space and Y ⊆ X , then the restriction of δX to Y induces
a space (Y, δX); we say then that (Y, δX) is a subspace of X . Notice that the
inclusion of Y into X yields an isometry of spaces.

Our main example of space over P (A) is (DA, δ), with DA the set of functions
from A to D and the distance defined by

δ(f, g) := {a ∈ A | f(a) 6= g(a)} . (2)

A second example is a slight generalization of the previous one. Given a surjective
function π : E −−→ A, let Sec(π) denote the set of all sections of π, that is the
functions f : A −−→ E such that π ◦ f = idA; the formula in (2) also defines a
distance on Sec(π). By identifying f ∈ Sec(π) with a vector 〈fa ∈ π−1(a) | a ∈
A〉, we see that

Sec(π) =
∏

a∈A

Xa , where Xa := π−1(a). (3)

That is, the underlying set of a space (Sec(π), δ) is that of a universal S5A-
product frame. Our next observations are meant to understand the role of the
universal S5A-product frame among all the spaces.

A space is spherically complete if the intersection
⋂
i∈I B(fi, αi) of every

chain {B(fi, αi) | i ∈ I} of balls is non-empty, see e.g. [1]. In this work the
injective objects in the category of spaces are characterized as the pairwise and
spherically complete spaces. The next Theorem shows that such injective objects
are, up to isomorphism, the “universal product frames”.

Theorem 18. Cf. [21, Proposition 24 and Theorem 25]. The spaces of the form
(Sec(π), δ) are pairwise and spherically complete. Moreover, every space (X, δ)
over P (A) has an isometry into some (Sec(π), δ) and if (X, δ) is pairwise and
spherically complete, then this isometry is an isomorphism.

We develop next the minimal theory needed to carry out the proof of un-
decidability. We shall assume in particular that A is a finite set. It was shown
in [17] that, when A is finite, every space over P (A) is spherically complete–so,
from now on, this property will not be of concern to us.

2 As P (A) is not totally ordered, we avoid calling a morphism “non expanding map”
as it is often done in the literature.
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Observe now that in the display (3), the transition relations of the universal
product frame

∏
aXa and the metric of the space Sec(π) are interdefinable.

Indeed, for each a ∈ A, we have fRag iff δ(f, g) ⊆ {a}. On the other hand, since
A is finite, the metric is completely determined from the transition relations
of the frame, using the notion of α-path introduced in Section 5, as follows:
δ(f, g) =

⋂
{α ⊆ A | f

α
−→ g}. We cast our observations in a Proposition:

Proposition 19. If A is finite, then there is a bijective correspondence between
spaces over P (A) of the form (Sec(π), δ) and universal S5A-product frames. Uni-
versal S5A-product frames are, up to isomorphism, the pairwise complete spaces
over P (A).

We assume in the rest of this section that (X, δ) is a fixed pairwise complete
space. We say that a function v : X −−→ P (A) is a module if v(f) ⊆ δ(f, g)∪v(g).
In enriched category theory “module” is a standard naming for an enriched
functor (here, a space morphism) from an enriched category to the base category
enriched on itself. Here a module can be seen as a space morphism from (X, δ)
to the space (P (A), ∆), where ∆ is the symmetric difference. Given a module v,
let us define Sv := {x ∈ X | v(x) = ∅}.

Lemma 20. Cf. [21, Corollary 28]. For each module v, Sv is a pairwise complete
subspace of (X, δ).

It is possible to directly define a lattice L(X, δ) for each space (X, δ). For
simplicity, we shall use L(X, δ) here to denote the lattice structure corresponding
to L(U), where U is a universal product frame correponding to (X, δ).

7 From lattice embeddings to surjective p-morphisms

We prove in this Section the converse of Theorem 13:

Theorem 21. Let A be a finite set, let F be a finite rooted full S4 A-frame.
If L(F) embeds into a relational lattice R(D,B), then there exists a universal
S5A-product frame U and a surjective p-morphism from U to F.

To prove the Theorem, we study bound-preserving embeddings of finite atomistic
lattices into lattices of the form R(D,B). Let in the following i : L −−→ R(D,B)
be a fixed bound-preserving lattice embedding, with L a finite atomistic lattice.
Since L is finite, i has a left adjoint µ : R(D,B) −−→ L. By abuse of notation,
we shall also use the same letter µ to denote the restriction of this left adjoint
to the set of completely join-irreducible elements of R(D,B) which, we recall, is
identified with B∪DB. It is a general fact—and the main ingredient of Birkhoff’s
duality for finite distributive lattices—that left adjoints to bound-preserving
lattice morphism preserve join-prime elements. Thus we have:

Lemma 22. If b ∈ B, then µ(b) is join-prime.

It is not in general true that left adjoints send join-irreducible elements to join-
irreducible elements, and this is a main difficulty towards a proof of Theorem 21.
Yet, the following statements hold:
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Lemma 23. For each x ∈ J (L) there exists y ∈ B ∪DB such that µ(y) = x.

Lemma 24. Let g ∈ DB such that µ(g) is join-reducible in L. There exists
h ∈ DB such that µ(h) ∈ J (L) and µ(g) =

∨
µ(δ(g, h)) ∨ µ(h); moreover, µ(h)

is non-join-prime whenever L is not a Boolean algebra.

Let A be the set of atoms of L that are join-prime. While (DB, δ) is a space
over P (B), we need to transform DB into a space over P (A). To this end, we
define a P (A)-valued distance δA on DB by δA(f, g) := µ(δ(f, g)). Because of
Lemma 22, we have δA(f, g) ⊆ A.

Proposition 25. (DB, δA) is a pairwise complete ultrametric space over P (A).

We define next v : DB −−→ P (A) by letting v(f) := {a ∈ A | a ≤ µ(f)}.

Lemma 26. Cf. [21, Proposition 47]. The map v : DB −−→ P (A) is a module
on (DB, δA). Moreover v(f) = ∅ if and only if µ(f) ∈ J (L) \A.

Using Lemmas 20 and 26, we derive:

Corollary 27. The subspace of (DB , δA) induced by F0 := {f ∈ DB | µ(f) ∈
J (L) \A} is pairwise complete.

The following Proposition, which ends the study of bound-preserving lattice
embeddings into relational lattices, shows that modulo the shift of the codomain
to the lattice of a universal product frame, such a lattice embedding can always
be normalized, meaning that join-irreducible elements are sent to join-irreducible
elements by the left adjoint.

Proposition 28. Cf. [21, Proposition 51]. Let L be a finite atomistic lattice
and let A be the set of its join-prime elements. If L is not a Boolean algebra
and i : L −−→ R(D,B) is a bound-preserving lattice embedding, then there exists
a bound-preserving lattice embedding j : L −−→ L(F0, δA), where (F0, δA) is the
pairwise complete ultrametric space defined in Corollary 27. Moreover, the left
adjoint ν to j satisfies the following condition: for each k ∈ A ∪ F0, if k ∈ A

then ν(k) = k and, otherwise, ν(k) ∈ J (L) \A.

The following Theorem asserts that we can assume that a lattice embedding
is bound-preserving, when its domain is a finite subdirectly-irreducible lattice.
It is needed in Theorem 7 to exclude the constants ⊥ and ⊤ from the signature
of lattice theory.

Theorem 29. Cf. [21, Section 7]. If L is a finite subdirectly-irreducible atomistic
lattice which has a lattice embedding into some relational lattice R(D,A), then
there exists a bound-preserving embedding of L into some other relational lattice
R(D,B).

We conclude next the proof of the main result of this Section, Theorem 21.
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Proof (of Theorem 21). Since F is rooted and full, L(F) is a finite atomistic
subdirectly-irreducible lattice by Proposition 16. Therefore, if i : L(F) −−→
R(D,B) is a lattice embedding, then we can assume, using Theorem 29, that
i preserves the bounds. Also, if L(F) is a Boolean algebra, then it is the two ele-
ments Boolean algebra, since we are assuming that L(F) is subdirectly-irreducible.
But then, F is a singleton, and the statement of the Theorem trivially holds in
this case.

We can therefore assume that L(F) is not a Boolean algebra. Let us recall
that A is the set of join-prime elements of L(F), see Proposition 15. Let (F0, δA)
be the pairwise complete space over P (A) and let j : L(F) −−→ L(F0, δA) be
the lattice morphism with the properties stated in Proposition 28; let ν be the
left adjoint to j. We can also assume that L(F0, δA) = L(U) for some universal
S5A-product frame U.

To avoid confusions, we depart from the convention of identifying singletons
with their elements. We define ψ : XU −−→ XF by saying that ψ(x) = y when
ν({x}) = {y}. This is well defined since in L(U) (respectively L(F)) the non-
join-prime join-irreducible-elements are the singletons {x} with x ∈ XFU

(resp.
x ∈ XF); moreover, we have XU = F0 and each singleton {x} with x ∈ F0 is
sent by ν to a singleton {y} ∈ J (L(F)) \ {{a} | a ∈ A} = {{x} | x ∈ XF}.
The function ψ is surjective since every non-join-prime atom {x} in L(F) has
a preimage by ν an atom {y} and such a preimage cannot be join-prime, so
y ∈ XU.

We are left to argue that ψ is a p-morphism. To this end, let us remark that,
for each a ∈ A and x, y ∈ XF (or x, y ∈ XU), the relation xRay holds exactly
when there is an {a}-path from x to y, i.e. when {x} ⊆ {a, y} = {a} ∨ {y} (we
need here that F and U are S4 frames).

Thus, let x, y ∈ XU be such that xRay. Then {x} ⊆ {a} ∨ {y} and ν({x}) ⊆
ν({a}) ∨ ν({y}) = {a} ∨ ν({y}). We have therefore ψ(x)Raψ(y). Conversely, let
x ∈ XU and z ∈ XF be such that ψ(x)Raz. We have therefore ν({x}) ⊆ {a}∨{z},
whence, by adjointness,

{x} ⊆ j({a} ∨ {z}) = j({a}) ∨ j({z})

= {a} ∨ {y | ν({y}) = {z}}

= {a} ∪ {y | ν({y}) = {z}} .

But this means that there is some y ∈ XU with ψ(y) = z and a {a}-path from
x to y. But then, we also have xRay. ⊓⊔
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