
HAL Id: hal-01474722
https://hal.science/hal-01474722v2

Preprint submitted on 23 Feb 2017 (v2), last revised 7 Aug 2018 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Synchronizability of Communicating Finite State
Machines is not Decidable

Alain Finkel, Etienne Lozes

To cite this version:
Alain Finkel, Etienne Lozes. Synchronizability of Communicating Finite State Machines is not De-
cidable. 2017. �hal-01474722v2�

https://hal.science/hal-01474722v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Synchronizability of Communicating Finite State
Machines is not Decidable
Alain Finkel1 and Etienne Lozes1

1 LSV, ENS Cachan, CNRS, France
{finkel,lozes}@lsv.fr

Abstract
A system of communicating finite state machines is synchronizable [?, ?] if its send trace seman-
tics, i.e. the set of sequences of sendings it can perform, is the same when its communications
are FIFO asynchronous and when they are just rendez-vous synchronizations. This property
was claimed to be decidable in several conference and journal papers [?, ?, ?, ?]. In this paper,
we show that synchronizability is actually undecidable. We show that synchronizability is de-
cidable if the topology of communications is an oriented ring. We also show that, in this case,
synchronizability implies the absence of unspecified receptions and orphan messages, and the
channel-recognizability of the reachability set.

Keywords and phrases verification, distributed system, asynchronous communications, chore-
ographies

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Asynchronous distributed systems are error prone not only because they are difficult to
program, but also because they are difficult to execute in a reproducible way. The slack
of communications, measured by the number of messages that can be buffered in a same
communication channel, is not always under the control of the programmer, and even when
it is, it may be delicate to to choose the right size of the communication buffers.

Slack elasticity of a distributed system with asynchronous communications is the property
that the “observable behaviour” of the system is the same whatever the slack of commu-
nications is. There are actually as many notions of slack elasticity as there are notions of
observable behaviours (and of distributed systems). Slack elasticity has been studied in
various contexts: for hardware design [?], with the goal of ensuring that some code transforma-
tions are semantic-preserving, for parallel programming in MPI [?, ?], for ensuring the absence
of deadlocks and other bugs, or more recently for web services and choreographies [?, ?, ?],
for verifying various properties, among which choreography realizability [?].

This paper focuses on synchronizability [?], a special form of slack elasticity that was
defined by Basu and Bultan for analyzing choreographies. Synchronizability is the slack
elasticity of the send trace semantics of the system: a system of communicating finite state
machines is synchronizable if any asynchronous trace can be mimicked by a synchronous
one that contains the same send actions in the same order. Synchronizability was claimed
decidable [?, ?], by contrast with many other properties of systems of communicating finite
state machines (including deadlock-freedom, absence of orphan messages, boundedness, etc)
that are undecidable for systems of just two machines [?]. The proof relied on the claim that
synchronizability would be the same as 1-synchronizability, which states that any 1-bounded
trace can be mimicked by a synchronous trace.

© A. Finkel and E. Lozes;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


XX:2 Synchronizability of Communicating Finite State Machines is not Decidable

In this paper, we show that the two claims are actually false: 1-synchronizability does
not imply synchronizability, and synchronizability is undecidable. We also show that the
two claims hold, however, if we restrict to systems where the communication topology is
an oriented, unidirectional ring, in particular the topology of a system with two peers only.
While proving that 1-synchronizability implies synchronizability for ring topologies we also
show that 1-synchronizability implies the absence of unspecified receptions and orphan
messages, and that the reachability set is channel-recognizable.

Outline Section 2 introduces all notions of communicating finite state machines and syn-
chronizability. In Section 3, we show that synchronizability is undecidable. Section 4 shows
the decidability of synchronizability on ring topologies. Section 5 concludes with discussions
about other communication models and open problems. Due to space constraints, several
proofs are deferred to the appendix.

Related Work The analysis of systems of communicating finite state machines has always
been a very active topic of research. Systems with channel-recognizable (aka QDD [?]
representable) reachability sets are known to enjoy a decidable reachability problem [?].
Heussner et al developed a CEGAR approach based on regular model-checking [?]. Classifica-
tions of communication topologies according to the decidability of the reachability problems
are known for FIFO, FIFO+lossy, and FIFO+bag communications [?, ?]. In [?, ?], the
bounded context-switch reachability problem for communicating machines extended with
local stacks modeling recursive function calls is shown decidable under various assumptions.
Session types dialects have been introduced for systems of communicating finite state ma-
chines [?], and were shown to enforce various desirable properties. Existentially-bounded
systems are systems of communicating finite state machines that were studied in a language-
theoretic perspective: in [?], in particular, correspondences have been established among
message sequence charts languages defined on the one hand by (universally/existentially
bounded) systems of communicating machines and on the other hand by monadic second
order logic over partial orders and automata Whether a system of communicating machines
is existentially bounded, respectively existentially k-bounded for a fixed k, is undecidable
in the general case, but it is unknown whether it remains undecidable for systems that are
non-blocking.

2 Preliminaries

Messages and topologies A message set M is a tuple 〈ΣM , p, src, dst〉 where ΣM is a finite
set of letters (more often called messages), p ≥ 1 and src, dst are functions that associate
to every letter a ∈ Σ naturals src(a) 6= dst(a) ∈ {1, . . . , p}. We often write ai→j for a
message a such that src(a) = i and dst(a) = j; we often identify M and ΣM and write for
instance M = {ai1→j1

1 , ai2→j2
2 , . . . } instead of ΣM = . . . , or w ∈ M∗ instead of w ∈ Σ∗M .

The communication topology associated to M is the graph GM with vertices {1, . . . , p} and
with an edge from i to j if there is a message a ∈ ΣM such that src(a) = i and dst(a) = j.
GM is an oriented ring if the set of edges of GM is {(i, j) | i+ 1 = j mod p}.

Traces An action λ over M is either a send action !a or a receive action ?a, with a ∈ ΣM .
The peer peer(λ) of action λ is defined as peer(!a) = src(a) and peer(?a) = dst(a). We write
Acti,M for the set of actions of peer i and ActM for the set of all actions over M . A M -trace τ
is a finite (possibly empty) sequence of actions. We write Act∗M for the set of M -traces, ε for



A. Finkel and E. Lozes XX:3

the emptyM -trace, and τ1 ·τ2 for the concatenation of twoM -traces. We sometimes write !?a
for !a · ?a. A M -trace τ is a prefix of υ, τ ≤pref υ if there is θ such that υ = τ · θ. The prefix
closure ↓ S of a set of M -traces S is the set {τ ∈ Act∗M | there is υ ∈ S such that τ ≤pref υ}.
For a M -trace τ and peer ids i, j ∈ {1, . . . , p} we write

send(τ) (resp. recv(τ)) for the sequence of messages sent (resp. received) during τ , i.e.
send(!a) = a, send(?a) = ε, and send(τ1 · τ2) = send(τ1) · send(τ2) (resp. recv(!a) = ε,
recv(?a) = a, and recv(τ1 · τ2) = recv(τ1) · recv(τ2)).
onPeeri(τ) for the M -trace of actions λ in τ such that peer(λ) = i.
onChanneli→j(τ) for the M -trace of actions λ in τ such that λ ∈ {!a, ?a} for some a ∈M
with src(a) = i and dst(a) = j.
bufferi→j(τ) for the word w ∈ M∗, if it exists, such that send(onChanneli→j(τ)) =
recv(onChanneli→j(τ)) · w.

A M -trace τ is FIFO (resp. a k-bounded FIFO, for k ≥ 1) if for all i, j ∈ {1, . . . , p}, for all
prefixes τ ′ of τ , bufferi→j(τ ′) is defined (resp. defined and of length at most k). A M -trace
is synchronous if it is of the form !?a1 · !?a2 · · · !?ak for some k ≥ 0 and a1, . . . , ak ∈M . In
particular, a synchronous M -trace is a 1-bounded FIFO M -trace (but the converse is false).
A M -trace τ is stable if bufferi→j(τ) = ε for all i 6= j ∈ {1, . . . , p}.

Two M -traces τ, υ are causal-equivalent τ causal∼ υ if 1. τ, υ are FIFO, and 2. for all
i ∈ {1, . . . , p}, onPeeri(τ) = onPeeri(υ). The relation causal∼ is a congruence with respect to
concatenation. Intuitively, τ causal∼ υ if τ is obtained from υ by iteratively commuting adjacent
actions that are not from the same peer and do not form a “matching send/receive pair”.

Peers, systems, configurations A system (of communicating machines) over a message
set M is a tuple S = 〈P1, . . . ,Pp〉 where for all i ∈ {1, . . . , p}, the peer Pi is a finite state
automaton 〈Qi, q0,i,∆i〉 over the alphabet Act

,i,M and with (implicitly) Qi as the set of
accepting states. We write L(Pi) for the set of M -traces that label a path in Pi starting at
the initial state q0,i.

Let the system S be fixed. A configuration γ of S is a tuple (q1, . . . , qp, w1,2, . . . , wp−1,p)
where qi is a state of Pi and for all i 6= j, wi,j ∈ M∗ is the content of channel i → j. A
configuration is stable if wi,j = ε for all i, j ∈ {1, . . . , p} with i 6= j.

Let γ = (q1, . . . , qp, w1,2, . . . , wp−1,p), γ′ = (q′1, . . . , q′p, w′1,2, . . . , w′p−1,p) and m ∈M with
src(m) = i and dst(m) = j. We write γ !m−−→S γ′ (resp. γ

?m−−→S γ′) if (qi, !m, q′i) ∈ ∆i (resp.
(qj , ?m, q′j) ∈ ∆j), w′i,j = wi,j ·m (resp. wi,j = m ·w′i,j) and for all k, ` with k 6= i (resp. with
k 6= j), qk = q′k and w′k,` = wk,` (resp. w′`,k = w`,k). If τ = λ1 · λ2 · · ·λn, we write τ−→S for
λ1−→S

λ2−→S . . .
λn−−→S . We often write τ−→ instead of τ−→S when S is clear from the context. The

initial configuration of S is the stable configuration γ0 = (q0,1, . . . , q0,p, ε, . . . , ε). A M -trace
τ is a trace of system S if there is γ such that γ0

τ−→ γ. Equivalently, τ is a trace of S if
1. it is a FIFO trace, and 2. for all i ∈ {1, . . . , p}, onPeeri(τ) ∈ L(Pi). For k ≥ 1, we write
Tracesk(S) for the set of k-bounded traces of S, Traces0(S) for the set of synchronous traces
of S, and Tracesω(S) for

⋃
k≥0 Tracesk(S).

I Example 1. Consider the message set M = {a1→2, b1→3, c3→2, d2→1} and the system
S = 〈P1,P2,P3〉 where P1,P2,P3 are as depicted in Fig. 1.Then

L(P1) = ↓ {!a1→2 · !a1→2 · !b1→3}
L(P2) = ↓ {?a1→2 · ?a1→2 · ?c3→2 , ?c3→2 · !d2→1}
L(P3) = ↓ {?b1→3 · !c3→2}.



XX:4 Synchronizability of Communicating Finite State Machines is not Decidable

q0,1 q1,1 q2,1 q3,1P1
!a1→2 !a1→2 !b1→3

q0,2

q1,2 q2,2 q3,2

q4,2 q5,2P2

?a1→2

?a1→2 ?c3→2

?c3→2 !d2→1
q0,3 q1,3 q2,3P3

?b1→3 !c3→2

Figure 1 System of Example 1 and Theorem 3.

An example of a stable trace is !a1→2 · !a1→2 · !?b1→3 · !c3→2 · ?a1→2 · ?a1→2 · ?c3→2. Let
τ =!a1→2 · !a1→2 · !?b1→3 · !?c3→2 · !d2→1. Then τ ∈ Traces2(S) is a 2-bounded trace of the
system S, and γ0

τ−→ (q3,1, q5,2, q2,3, a
1→2a1→2, ε, d2→1, ε, ε, ε).

Two traces τ1, τ2 are S-equivalent, τ1
S∼ τ2, if τ1, τ2 ∈ Tracesω(S) and there is γ such that

γ0
τi−→ γ for both i = 1, 2. It follows from the definition of causal∼ that if τ1

causal∼ τ2 and
τ1, τ2 ∈ Tracesω(S), then τ1

S∼ τ2.

Synchronizability. Following [?], we define the observable behaviour of a system as its set
of send traces enriched with their final configurations when they are stable. Formally, for
any k ≥ 0, we write Ik(S) for the set

Ik(S) = {send(τ) | τ ∈ Tracesk(S)} ∪ {(send(τ), γ) | γ0
τ−→ γ, γ stable, τ ∈ Tracesk(S)}.

Synchronizability is then defined as the slack elasticity of this observable behaviour.

I Definition 2 (Synchronizability [?]). A system S is synchronizable if I0(S) = Iω(S).

I Remark. In [?, ?] the authors take another definition of behaviour that does not consider
stable configurations as observable; formally, instead of Ik(S), the definition of synchroniz-
ability is based on Jk(S) = {send(τ) | τ ∈ Tracesk(S)}. The fact that we follow [?] rather
than [?, ?] will be important in Section 4, but the undecidability result (Theorem 11) also
holds for the definition of synchronizability of [?, ?] (and the proof is actually simpler).

For convenience, we also introduce a notion of k-synchronizability: for k ≥ 1, a system S
is k-synchronizable if I0(S) = Ik(S). A system is therefore synchronizable if and only if it is
k-synchronizable for all k ≥ 1.

I Theorem 3. There is a system S that is 1-synchronizable, but not synchronizable.

Proof. Consider again the system S of Example 1. Let γijk := (qi,1, qj,2, qk,3, ε, . . . , ε). Then

J0(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2}
J1(S) = J0(S)
J2(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2 · d2→1}
Ik(S) = Jk(S) ∪ Stab for all k ≥ 0

where Stab = {(ε, γ0), (a1→2, γ101), (a1→2 ·a1→2, γ202), (a1→2 ·a1→2 ·b1→3, γ312), (a1→2 ·a1→2 ·
b1→3 · c3→2, γ323)}. J

This contradicts the claim that 1-synchronizability implies synchronizability in [?], which
was the key argument for proving the decidability of synchronizability. As a remark, the
claim that J0(S) = J1(S) implies J0(S) = Jω(S), stated in [?, ?], does not hold either, due
to the same counter-example.



A. Finkel and E. Lozes XX:5

3 Undecidability of Synchronizability

In this section, we show the undecidability of synchronizability for systems with at least
three peers. The key idea is to reduce a decision problem on a FIFO automaton A, i.e.
an automaton that can both enqueue and dequeue messages in a unique channel, to the
synchronizability of a system SA. The reduction is quite delicate, because synchronizability
constrains a lot the way SA can be defined (a hint for that being that SA must involve three
peers). It is also delicate to reduce from a classical decision problem on FIFO automata
like e.g. the reachability of a control state, and we first establish the undecidability of a
well-suited decision problem on FIFO automata, roughly the reception of a message m with
some extra constraints. We can then construct a system S ′′A,m such that the synchronizability
of S ′′A,m is equivalent to the non-reception of the special message m in A.

A FIFO automaton is a finite state automaton A = 〈Q,ActΣ,∆, q0〉 over an alphabet
of the form ActΣ for some finite set of letters Σ with all states being accepting states. A
FIFO automaton can be thought as a system with only one peer, with the difference that,
according to our definition of systems, a peer can only send messages to peers different from
itself, whereas a FIFO automaton enqueues and dequeues letters in a unique FIFO queue,
and thus, in a sense, “communicates with itself”. All notions we introduced for systems
are obviously extended to FIFO automata. In particular, a configuration of A is a tuple
γ = (q, w) ∈ Q × Σ∗, it is stable if w = ε, and the transition relation γ

τ−→ γ′ is defined
exactly the same way as for systems. For technical reasons, we consider two mild restrictions
on FIFO automata:
(R1) for all γ0

τ−→ (q, w), either τ = ε or w 6= ε (in other words, all reachable configurations
are unstable, except the initial one);

(R2) for all (q0, λ, q) ∈ ∆, λ =!a for some a ∈ Σ (in other words, there is no receive action
labeling a transition from the initial state).

I Lemma 4. The following decision problem is undecidable.
Input a FIFO automaton A that satisfies (R1) and (R2), and a message m.
Question is there a M -trace τ such that τ · ?m ∈ Tracesω(A)?

Proof. See Appendix A. J

Let us now fix a FIFO automaton A = 〈QA,ActΣ,∆A, q0〉 that satisfies (R1) and (R2).
Let M = M1 ∪M2 ∪M3 be such that all messages of Σ can be exchanged among all peers in
all directions but 2→ 1, i.e.

M1 = {a1→2, a1→3, a3→1 | a ∈ Σ}
M2 = {a3→2, a1→2, a2→3 | a ∈ Σ}
M3 = {a1→3, a3→1, a3→2, a2→3 | a ∈ Σ}

P1 P2

P3

Intuitively, we want P1 to mimick A’s decisions and the channel 1→ 2 to mimick A’s queue
as follows. When A would enqueue a letter a , peer 1 sends a1→2 to peer 2, and when A
would dequeue a letter a, peer 1 sends to peer 2 via peer 3 the order to dequeue a, and
waits for the acknowledgement that the order has been correcly executed. Formally, let
P1 = 〈Q1, q0,1,∆1〉 be defined by Q1 = QA ] {qδ | δ ∈ ∆A} and ∆1 = {(q, !a1→2, q′) |
(q, !a, q′) ∈ ∆A} ∪ {(q, !a1→3, qδ), (qδ, ?a3→1, q′) | δ = (q, ?a, q′) ∈ ∆A}. The roles of peers
2 and 3 is then rather simple: peer 3 propagates all messages it receives, and peer 2
executes all orders it receives and send back an acknowledgement when this is done. Let
P2 = 〈Q2, q0,2,∆2〉 and P3 = 〈Q3, q0,3,∆3〉 be defined as we just informally described, with



XX:6 Synchronizability of Communicating Finite State Machines is not Decidable

A

!a !m

?a, ?m
P1

!a1→2 !m1→2

!a1→3?a3→1

!m1→3?m3→1

P2
?a3→2

?a3→2 ?a1→2

!a2→3

?m3→2

?m3→2
?m1→2

!m2→3

P3 ?a1→3 !a3→2

?a2→3!a3→1

?m1→3!m3→2

?m2→3 !m3→1

P ′2
?a1→2, ?m1→2 ?a1→2, ?m1→2

?a3→2

?a1→2, ?m1→2

!a2→3

?a3→2

Figure 2 The FIFO automaton A of Example 5 and its associated systems SA = 〈P1,P2,P3〉

and S ′
A,m = 〈P1,P ′

2,P3〉. The sink state q⊥ and the transitions q
?m3→2

−−−−−→ q⊥ are omitted in the
representation of P ′

2.

a slight complication about the initial state of P2 (this is motivated by technical reasons that
will become clear soon).

Q2={q0,2, q1,2} ∪ {qa,1, qa,2 | a ∈ Σ} Q3= {q0,3} ∪ {qa,1, qa,2, qa,3 | a ∈ Σ}
∆2= {(q0,2, ?a3→2, qa,1), (q1,2, ?a3→2, qa,1), (qa,1, ?a1→2, qa,2), (qa,2, !a2→3, q1,2) | a ∈ Σ}
∆3= {(q0,3, ?a1→3, qa,1), (qa,1, !a3→2, qa,2), (qa,2, ?a2→3, qa,3), (qa,3, !a3→1, q0,3) | a ∈ Σ}

I Example 5. Consider Σ = {a,m} and the FIFO automaton A = 〈{q0, q1},ActΣ,∆, q0〉
with transition relation ∆A = {(q0, !a, q0), (q0, !m, q1), (q1, ?a, q0), (q1, ?m, q0)}. Then A and
the peers P1,P2,P3 are depicted in Fig. 2.

Let SA = 〈P1,P2,P3〉. There is a tight correspondence between the k-bounded traces of
A, for k ≥ 1, and the k-bounded traces of SA: every trace τ ∈ Tracesk(A) induces the trace
h(τ) ∈ Tracesk(SA) where h : Act∗Σ → ActM is the homomorphism from the traces of A to
the traces of SA defined by h(!a) =!a1→2 and h(?a) =!?a1→3 · !?a3→2 · ?a1→2 · !?a2→3 · !?a3→1.
The converse is not true: there are traces of SA that are not prefixes of a trace h(τ) for some
τ ∈ Tracesk(A). This happens when P1 sends an order to dequeue a1→3 that correspond
to a transition ?a that A cannot execute. In that case, the system blocks when P2 has to
execute the order.

I Lemma 6. For all k ≥ 0,

Tracesk(SA) = ↓ {h(τ) | τ ∈ Tracesk(A)}
∪ ↓ {h(τ) · !?a1→3 · !?a3→2 | τ ∈ Tracesk(A), (q0, ε)

τ−→ (q, w), (q, ?a, q′) ∈ ∆}.

Since A satisfies (R1), all stable configurations that are reachable in SA are reachable by
a synchronous trace, and since it satisfies (R2), the only reachable stable configuration is the
initial configuration. Moreover, J0(SA) = ∅ and Jk(SA) 6= ∅ for k ≥ 1 (provided A sends at
least one message). As a consequence, SA is not synchronizable.

Let us fix now a special message m ∈ Σ. We would like to turn SA into a system that is
synchronizable, except for the send traces that contain m2→3. Note that, by Lemma 6, SA
has a send trace that contains m2→3 if and only if there are traces of A that contain ?m.
Roughly, we need to introduce new behaviours for the peer 2 that will “flood” the system



A. Finkel and E. Lozes XX:7

with many synchronous traces. Let S ′A,m = 〈P1,P ′2,P3〉 be the system SA in which the peer
P2 is replaced with the peer P ′2 = 〈Q′2, q0,2,∆′2〉 defined as follows.

Q′2 = {q0,2, q
′
0,2} ∪ {q′a,1 | a ∈ Σ, a 6= m, } ∪ {q⊥}

∆′2 = {(q0,2, ?a1→2, q′0,2), (q, ?a1→2, q) | a ∈ Σ, q 6= q0,2}
∪ {(q0,2, ?a3→2, q′a,1), (q′0,2, ?a3→2, q′a,1), (q′a,1, !a2→3, q′0,2), | a ∈ Σ, a 6= m}
∪ {(q, ?m3→2, q⊥) | q ∈ Q′2}

I Example 7. For Σ = {a,m}, and A as in Example 5, P ′2 is depicted in Fig. 2 (omitting
the transitions to the sink state q⊥).

Intuitively, P ′2 can always receive any message from peer P1. Like P2, it can also receive
orders to dequeue from peer P3, but instead of executing the order before sending an
acknowledgement, it ignores the order as follows. If P ′2 receives the order to dequeue a
message a1→2 6= m1→2, P ′2 acknowledges P3 but does not dequeue in the 1 → 2 queue. If
the order was to dequeue m, P ′2 blocks in the sink state q⊥. The system S ′A = 〈P1,P ′2,P3〉
contains many synchronous traces: any M -trace τ ∈ L(P1) labeling a path in automaton P1
can be lifted to a synchronous trace τ ′ ∈ Traces0(SA,m) provided !m1→3 does not occur in τ .
However, if P1 takes a !m1→3 transition, it gets blocked for ever waiting for m3→1. Therefore,
if !a1→3 occurs in a synchronous trace τ of S ′A,m, it must be in the last four actions, and this
trace leads to a deadlock configuration in which both 1 and 3 wait for an acknowledgement
and 2 is in the sink state.

Let Lm(A) be the set of traces τ recognized by A as a finite state automaton (over the
alphabet ActΣ) such that either ?m does not occur in τ , or it occurs only once and it is the
last action of τ . For instance, with A as in Example 5, Lm(A) =↓

(
!a∗ · !m · ?a

)∗ · !a∗ · !m · ?m.
Let h′ : Act∗Σ → Act∗M be the morphism defined by h′(!a) =!?a1→2 for all a ∈ Σ, h′(?a) =
!?a1→3 · !?a3→2 · !?a2→3 · !?a3→1 for all a 6= m, and h′(?m) =!?m1→3 · !?m3→2.

I Lemma 8. Traces0(S ′A,m) =↓ {h′(τ) | τ ∈ Lm(A)}.

Let us now consider an arbitrary trace τ ∈ Tracesω(S ′A,m). Let h′′ : Act∗M → Act∗M be
such that h′′(!a1→2) =!?a1→2, h′′(?a1→2) = ε, and h′′(λ) = λ otherwise. Then h′′(τ) ∈
Traces0(S ′A,m) and τ

S∼ h′′(τ) for S = S ′A,m. Indeed, τ and h′′(τ) are the same up to
insertions and deletions of receive actions ?a1→2, and every state of P ′2 (except the initial
one) has a self loop ?a1→2. Therefore,

I Lemma 9. S ′A,m is synchronizable.

Let us now consider the system S ′′A,m = 〈P1,P2 ∪ P ′2,P3〉, where P2 ∪ P ′2 = 〈Q2 ∪
Q′2, q02,∆2 ∪ ∆′′2〉 is obtained by merging the initial state q0,2 of P2 and P ′2. Note that
Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m), because q0,2 has no incoming edge in P2 ∪ P ′2.

I Lemma 10. Let k ≥ 1. The following two are equivalent:

1. there is τ such that τ · ?m ∈ Tracesk(A);
2. Ik(S ′′A,m) 6= I0(S ′′A,m).

Proof. Let k ≥ 1 be fixed.
(1) =⇒ (2) Let τ be such that τ · ?m ∈ Tracesk(A). By Lemma 6, there is υ ∈ Ik(SA) such

that m2→3 occurs in υ (take υ = send(h(τ · ?m))). By Lemma 6, υ 6∈ I0(SA) = ∅, and by
Lemma 8, υ 6∈ I0(S ′A,m). Therefore υ ∈ Ik(S ′′A,m) \ I0(S ′′A,m).



XX:8 Synchronizability of Communicating Finite State Machines is not Decidable

(2) =⇒ (1) By contraposite. Let Tracesk(A\?m) = {τ ∈ Tracesk(A) |?m does not oc-
cur in τ}, and let us assume ¬(1), i.e. Tracesk(A\?m) = Tracesk(A). Let us show
that Ik(S ′′A,m) = I0(S ′′A,m). From the assumption ¬(1) and Lemma 6, it holds that
Tracesk(SA) =

↓ {h(τ) | τ ∈ Tracesk(A\?m)}
∪ ↓ {h(τ) · !?a1→3 · !?a3→2 | τ ∈ Tracesk(A\?m), (q0, ε)

τ−→ (q, w), (q, ?a, q′) ∈ ∆}.

By send(h(τ)) = send(h′(τ)) and Tracesk(A\?m) ⊆ Lm(A), we get that

Ik(SA) ⊆ ↓ {send(h′(τ)) | τ ∈ Lm(A)}

and therefore, by Lemma 8, Ik(SA) ⊆ I0(S ′A,m). Since Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m)
and since by Lemma 9 Ik(S ′A,m) = I0(S ′A,m), we get that Ik(S ′′A,m) ⊆ I0(S ′′Am), and thus
Ik(S ′′A,m) = I0(S ′′Am).

J

I Theorem 11. Synchronizability is undecidable.

Proof. Let a FIFO automaton A satisfying (R1) and (R2) and a message m be fixed. By
Lemma 10, S ′′A,m is non synchronizable iff there is a trace τ such that τ · ?m ∈ Tracesω(A).
By Lemma 4, this is an undecidable problem. J

4 The case of oriented rings

In the previous section we established the undecidability of synchronizability for systems
with (at least) three peers. In this section, we show that this result is tight, in the sense that
synchronizability is decidable if GM is an oriented ring, in particular if the system involves
two peers only. The proof bases on the fact that 1-synchronizability implies synchronizability
for such systems (Theorem 18). In order to show this result, we first establish a trace
normalization property. This property implies that 1-synchronizable systems on oriented
rings have no unspecified receptions nor orphan messages, and their reachability set is
channel-recognizable. We conclude with yet another technical proof that 1-synchronizability
implies synchronizability when GM is an oriented ring.

The starting point is a confluence property on arbitrary 1-synchronizable systems.
I Lemma 12. Let S be a 1-synchronizable system. Let τ ∈
Traces0(S) and a, b ∈M be such that
1. τ · !a ∈ Traces1(S),
2. τ · !b ∈ Traces1(S), and
3. src(a) 6= src(b).
If υ1, υ2 are any two of the four different shuffle of !a·?a with !b·?b,
then τ · υ1 ∈ Tracesω(S), τ · υ2 ∈ Tracesω(S) and τ · υ1

S∼ τ · υ2.

causal∼

causal∼

!a !b

!b
?a

!a
?b

!b ?a ?b !a

?b ?a

Proof. See Appendix B. J

I Remark. We identified on the diagram the squares that commute thanks to causal equiva-
lence. Not all shuffle are causally equivalent. The left square and the right square do not
commute thanks to causal equivalence, but because 1-synchronizability enforces a form of
confluence between send and receive transitions on the control flow graph of the peers at
every mixed control state that can be reached through a synchronous trace.



A. Finkel and E. Lozes XX:9

Lemma 12 generalizes to arbitrary sequences of send actions with rather technical
arguments.

I Lemma 13. Let S be a 1-synchronizable system. Let a1, . . . , an, b1, . . . bm ∈ M and
τ ∈ Traces0(S) be such that
1. τ · !a1 · · · !an ∈ Traces1(S),
2. τ · !b1 · · · !bm ∈ Traces1(S), and
3. src(ai) 6= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Then for any two different shuffle υ1, υ2 of !?a1 · !?a2 · · · !?an with !?b1 · !?b2 · · · !?bm, it holds
that τ · υ1 ∈ Tracesω(S) , τ · υ2 ∈ Tracesω(S) and τ · υ1

S∼ τ · υ2.

Proof. See Appendix B. J

I Definition 14 (Normalized trace). A M -trace τ is normalized if there is a synchronous
M -trace υ and a M -trace θ of the form !a1 · · · !an such that τ = υ · θ.

I Lemma 15 (Trace Normalization). Assume M is such that the communication topology
GM is an oriented ring. Let S = 〈P1, . . . ,Pp〉 be a 1-synchronizable system. For all
τ ∈ Tracesω(S), there is a normalized trace norm(τ) ∈ Tracesω(S) such that τ S∼ norm(τ).

Proof. By induction on τ . Let τ = τ ′ · λ, be fixed. Let us assume by induction hypothesis
that there is a normalized trace norm(τ ′) ∈ Tracesω(S) such that τ ′ S∼ norm(τ ′). Let us reason
by case analysis on the last action λ of τ . The easy case is when λ is a send action: then,
norm(τ ′) ·λ is a normalized trace, norm(τ ′) ·λ S∼ τ ′ ·λ by right congruence of S∼. The difficult
case is when λ is ?a for some a ∈M . Let i = src(a), j = dst(a), i.e. i+ 1 = j mod p. By the
definitions of a normal trace and S∼, there are τ0 ∈ Traces0(S), a1, . . . , an, b1, . . . , bm ∈ M
such that

norm(τ ′) causal∼ τ ′0 · !a1 · · · !an · !b1 · · · !bm

with src(ak) = i for all k ∈ {1, . . . , n}, src(bk) 6= i for all k ∈ {1, . . . ,m}, and src(a1) = i.
Since GM is an oriented ring, dst(a1) = j, therefore a1 = a. Let norm(τ) = τ ′0 · !a · ?a ·
!b1 · · ·!bm · !a2 · · · !an and let us show that norm(τ) ∈ Tracesω(S) and τ S∼ norm(τ).

Since norm(τ ′) ∈ Tracesω(S), we have in particular that τ ′0 · !a ∈ Traces1(S) and τ ′0 ·
!b1 · · ·!bn ∈ Tracesω(S). Consider the two traces

υ1 = τ ′0 · !a · ?a · !b1 · · ·!bn · ?b1 · · ·?bn
υ2 = τ ′0 · !a · !b1 · · ·!bn · ?a · ?b1 · · ·?bn.

By Lemma 13, υ1, υ2 ∈ Tracesω(S) and both lead to the same configuration, and in particular
to the same control state q for peer j. The actions ?b1, ?b2, . . .?bn are not executed by peer
j (because src(m) 6= i implies dst(m) 6= j on an oriented ring), so the two traces

υ′1 = τ ′0 · !a · ?a · !b1 · · ·!bn
υ′2 = τ ′0 · !a · !b1 · · ·!bn · ?a

lead to two configurations γ′1, γ′2 with the same control state q for peer j as in the configuration
reached after υ1 or υ2. On the other hand, for all k 6= j, onPeerk(υ′1) = onPeerk(υ′2), therefore
υ′1
S∼ υ′2. Since τ ′0 ·!a·!a2 · · ·!an ∈ Tracesn(S), and onPeeri(τ ′0 ·!a) = onPeeri(υ′1) = onPeeri(υ′2),

the two traces
υ′′1 = τ ′0 · !a · ?a · !b1 · · ·!bn · !a2 · · ·!an
υ′′2 = τ ′0 · !a · !b1 · · ·!bn · ?a · !a2 · · ·!an



XX:10 Synchronizability of Communicating Finite State Machines is not Decidable

belong to Tracesω(S) and υ′′1
S∼ υ′′2 . Consider first υ′′1 : this is norm(τ) as defined above,

therefore norm(τ) ∈ Tracesω(S), and norm(τ) S∼ υ′′2 . Consider now υ′′2 . By definition,
υ′′2

causal∼ norm(τ ′) · ?a. By hypothesis, norm(τ ′) S∼ τ ′, therefore norm(τ ′) · ?a causal∼ τ . To sum
up, norm(τ) S∼ υ′′2

causal∼ norm(τ ′) · ?a causal∼ τ , therefore norm(τ) S∼ τ . J

As a consequence, 1-synchronizability implies several interesting properties on the reacha-
bility set for oriented rings.

I Definition 16 (Channel-recognizable reachability set [?, ?]). Let S = 〈P1, . . . ,Pp〉 with
Pi = 〈Qi,∆i, q0,i〉. The (coding of the) reachability set of S is the language Reach(S) over the
alphabet (M ∪

⋃p
i=1Qi)∗ defined as {q1 · · · qp · w1 · · ·wp | γ0

τ−→ (q1, . . . , qp, w1, . . . , wp), τ ∈
Tracesω(S)}. Reach(S) is channel-recognizable (or QDD representable [?]) if it is a recognizable
(and rational) language.

I Theorem 17. Assume S is 1-synchronizable and the communication topology GM is an
oriented ring. Then

1. the reachability set of S is channel recognizable,
2. for all τ ∈ Tracesω(S), for all γ0

τ−→ γ, there is a stable configuration γ′, n ≥ 0 and
m1, . . .mn ∈M such that γ ?m1···?mn−−−−−−−→ γ′.

In particular, S neither has orphan messages nor unspecified receptions [?].

The proof of this result follows from Lemmas 13 and 15 (see Appendix B). We can now
prove the result we announced at the beginning of this section.

I Theorem 18. Let M be a message set such that GM is an oriented ring. For all M -system
S, S is 1- synchronizable if and only if it is synchronizable.

Proof. We only need to show that 1-synchronizability implies synchronizability. Let us
assume that S is 1-synchronizable. Let synch(τ) denote the unique synchronous M -trace
such that send(synch(τ)) = send(τ). We prove by induction on τ the following property
(which implies in particular that S is synchronizable):

for all τ ∈ Tracesω(S), there are m1, . . . ,mk ∈ M such that
(C1) synch(τ) ∈ Traces0(S), (C2) τ · ?m1 · · ·?mk ∈ Tracesω(S),
and (C3) τ · ?m1 · · ·?mk

S∼ synch(τ). Let τ = τ ′ · λ be
fixed and assume that there are m′1, . . . ,m

′
k ∈ M such that

τ ′ · ?m′1 · · ·?m′k ∈ Tracesω(S), synch(τ ′) ∈ Traces0(S), and τ ′ ·
?m′1 · · · ?m′k

S∼ synch(τ ′). Let us show that (C1), C2, and (C3)
hold for τ . We reason by case analysis on the last action λ of τ .

τ

?m1 · · · ?mk

synch(τ)

Assume λ =?a. Then synch(τ) = synch(τ ′) ∈ Traces0(S), which proves (C1). Let
i = dst(a). Since peer i only receives on one channel, there are m1, . . . ,mk−1 such that

τ ′ · ?m′1 · ?m′k
causal∼ τ ′ · ?a · ?m1 · ?mk−1.

Since τ ′ · ?m′1 · ?m′k
S∼ synch(τ) by induction hypothesis, (C2) and (C3) hold.

Assume λ =!a. By Lemma 15, there is norm(τ ′) = τ0 · !m′′1 · · ·!m′′k with τ0 ∈ Traces0(S)
such that τ ′ S∼ norm(τ ′). Since τ ′ ·?m′1 · · · ?m′k leads to a stable configuration, m′′1 , . . . ,m′′k
is a permutation of m′1, . . . ,m′k that do not swap messages of a same channel. Since GM



A. Finkel and E. Lozes XX:11

is an oriented ring, norm(τ ′) S∼ τ0 · !m′1 · · · !m′k. Since τ ′ · !a ∈ Tracesω(S), it holds that
τ0 · !m1 · · ·!mk · !a ∈ Tracesω(S), which implies by Lemma 13 that the two traces

υ1 = τ0 · !m′1 · · ·!m′k · · ·?m1 · · ·?m′k · !a · ?a
υ2 = τ0 · !m′1 · · ·!m′k · !a · · ·?m′1 · · ·?m′k · ?a

belong to Tracesω(S) and verify υ1
S∼ υ2. Consider first υ1, and let υ′1 = τ0 · !m′1 · · ·!m′k ·

?m′1 · · ·?m′k. Since norm(τ ′) = τ0 · !m′1 · · ·!m′k
S∼ τ ′ and τ ′ · ?m1 · · ·?mk

S∼ synch(τ ′), it
holds that υ′1

S∼ synch(τ ′). Therefore, synch(τ ′) · !a · ?a = synch(τ) belongs to Tracesω(S),
which shows (C1), and synch(τ) S∼ υ1. Consider now υ2, and let υ′2 = τ0 · !m′1 · · ·!m′k · !a =
norm(τ ′) · !a. Then υ′2

S∼ τ ′ · !a = τ , therefore τ · ?m′1 · · ·?m′k · ?a ∈ Tracesω(S), which
shows (C2), and τ · ?m′1 · · ·?m′k · ?a

S∼ υ2. Since υ2
S∼ υ1

S∼ synch(τ), this shows (C3).

J

I Theorem 19. Assume GM is an oriented ring. The problem of deciding whether a given
system is synchronizable is decidable.

5 Extensions

We considered the framework introduced by Basu and Bultan [?] and we showed that
synchronizability is not decidable for systems with peer-to-peer FIFO communications. In
their more recent work [?], Basu and Bultan considered the question of synchronizability
for other communication models. One variant they consider is communications with bags
instead of queues, thus allowing to reorder messages. Synchronizability is decidable for such
a model of communications: Iω(S) is the language of a Petri net, I0(S) is an effective regular
language, and whether the language of a Petri is included in a given regular language reduces
to the coverability problem. The same argument would hold for lossy communications.
Another variant considered in [?] is a communication model based on mailboxes: instead
of having distinct queues for messages coming from distinct senders, the peers store in a
single queue all the messages they receive. The (un)decidability of synchronizability for this
communication model is unclear. At least, the argument that 1-synchronizability implies
synchronizability does not hold for this communication model either (see Appendix C for a
counter-example), but our results show that it holds for oriented rings, because there is no
difference between mailboxes and peer-to-peer queues on such topologies.

Our undecidability result suggests that synchronizability may not be the right notion for
all communication topologies, and one might want to find the largest class of communication
topologies on which 1-synchronizability implies synchronizability, or on which synchronizabil-
ity is decidable. Our intention in this work was more limited, and only aimed at explaining
why, maybe, the errors in [?, ?, ?] were missed by so many reviewers. We believe it could
be more interesting to consider other notions of slack elasticity. For instance, one might
consider the property that all traces of a system are causally equivalent to a k-bounded trace.
This class of systems ressembles the classes of existentially k-bounded systems [?], but with
something like what is called the “non-blocking” assumption in this framework. We leave it
for future work to better identify the possible connections of our results with the theory of
existentially bounded systems.



XX:12 Synchronizability of Communicating Finite State Machines is not Decidable

A Proof of Lemma 4

Consider a tuple T = 〈T, t0, tF , H, V 〉 where T is a finite set of tiles t0, tF ∈ T are initial and
final tiles, and H,V ⊆ T × T are horizontal and vertical compatibility relations. Without
loss of generality, we assume that there is a “padding tile” � such that (t,�) ∈ H ∩ V for all
t ∈ T . For a natural n ≥ 0, a n-tiling is a function f : {1, . . . , n} × N→ T such that

1. f(0, 0) = t0,
2. there are (iF , jF ) ∈ {1, . . . , n} × N such that f(iF , jF ) = tF ,
3. (f(i, j), f(i, j + 1)) ∈ H for all (i, j) ∈ {1, . . . , n} × N, and
4. (f(i, j), f(i+ 1, j)) ∈ V for all (i, j) ∈ {1, . . . , n− 1} × N.
The problem of deciding, given a tuple T = 〈T, t0, tF , H, V 〉, Whether there is some n ≥ 0
for which there exists a n-tiling is undecidable. Note that, due to the presence of the padding
tile, this problem is equivalent to the more standard problem of the existence of a finite
rectangular tiling that contains t0 at the beginning of the first row and tF anywhere in the
rectangle.

Let T = 〈T, t0, tF , H, V 〉 be fixed. We define the FIFO automaton AT = 〈Q,Σ,∆, q0〉
with

Q = {qt,0, q↓=t, q←=t, q←=t,↓=t′ | t ∈ T, t′ ∈ T ∪ {$}} ∪ {q0, q1}
Σ = T ∪ {$}
∆ ⊆ Q× ActΣ ×Q, with

∆ = {(q0, !t0, qt0,0)} ∪ {(qt,0, !t′, qt′,0) | (t, t′) ∈ H} ∪ {(qt,0, !$, q1) | t ∈ T}
∪ {(q1, ?t, q↓=t | t ∈ T )} ∪ {(q↓=t, !t′, q←=t′) | (t, t′) ∈ V }
∪ {(q←=t, ?t′, q←=t,↓=t′ , | t ∈ T, t′ ∈ T ∪ {$}}
∪ {(q←=t,↓=t′ , !t′′, q←=t′′) | (t, t′′) ∈ H and (t′, t′′) ∈ V }
∪ {q←=t,↓=$, !$, q1) | t ∈ T}

Therefore, any execution of AT is of the form

!t1,1 · !t1,2 · · ·!t1,n · !$ · ?t1,1 · !t2,1 · ?t1,2 · !t2,2 · · ·!t2,n · ?$ · !$ · ?t2,1 · !t3,1 · · ·

where t1,1 = t0, (ti,j , ti+1,j) ∈ V and (ti,j , ti,j+1) ∈ H.
The following two are thus equivalent:

1. there is n ≥ 0 such that T admits a n-tiling
2. there is a trace τ ∈ Tracesω(A) that contains ?tF

B Omitted Proofs of Section 4

B.1 Proof of Lemma 12
Let us first show that τ · υ ∈ Traces1(S) for all shuffle υ of !a · ?a with !b · ?b. Let τ1 =
τ · !a · ?a · !b · ?b and τ2 = τ · !b · ?b · !a · ?a. Since src(a) 6= src(b), τ · !a · !b ∈ Traces1(S)
and τ · !b · !a ∈ Traces1(S), and since S is 1-synchronizable, τ1, τ2 ∈ Traces0(S). It remains
to show that for all shuffle υ of a · ?a with !b · ?b that start with two sends, τ · υ belongs
to Traces1(S). By symmetry, and considering that the receptions are executed by two
different peers and therefore can be executed in any order, it is enough to show that
τ3 := τ · !a · !b · ?a · ?b ∈ Traces1(S). This follows from τ3 being 1-bounded, and the fact that
for any peer i ∈ {1, . . . , p}, onPeeri(τ3) ∈ {onPeeri(τ1), onPeeri(τ2)} is a sequence of actions
supported by peer i.



A. Finkel and E. Lozes XX:13

So we proved that for all shuffle υ of !a · ?a with !b · ?b, τ · υ ∈ Traces1(S). It remains
to show that all these traces lead to the same configuration. Since they all lead to a stable
configuration, and since S is 1-synchronizable, the configuration a trace leads to only depends
on the order in which the send actions !a and !b are executed in υ. But since the two traces
τ · !a · !b · ?a · ?b and τ · !b · !a · ?a · ?b lead to the same configuration, they all lead to the same
configuration.

B.2 Proof of Lemma 13
I Lemma 20. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a1, · · · , an ∈M
be such that

1. τ · !a1 · · · !an ∈ Tracesn(S)
2. src(ai) = src(aj) for all i, j ∈ {1, . . . , n}.
Then τ · !?a1 · · · !?an ∈ Traces0(S).

Proof. By induction on n. Let a1, . . . , an+1 be fixed, and let τn = τ · !?a1 · · · !?an. By
induction hypothesis, τn ∈ Traces0(S). Let τ ′n+1 = τn · !an+1. Then

onPeeri(τ ′n+1) = onPeeri(τn) for all i 6= src(an+1), and τn ∈ Tracesω(S)
for i = src(an+1), onPeeri(τ ′n+1) = onPeeri(τ · !a1 · · · !an+1) and τ · !a1 · · · !an ∈ Tracesω(S)
τ ′n+1 is 1-bounded FIFO

therefore τ ′n+1 ∈ Traces1(S). By 1-synchronizability, it follows that τ ′n+1 ·?an+1 ∈ Traces0(S).
J

I Lemma 21. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a, b1, . . . , bn ∈M
be such that

1. τ · !?a ∈ Traces0(S)
2. τ · !?b1 · · · !?bn ∈ Traces0(S)
3. src(a) 6= src(bi) for all i ∈ {1, . . . , n}.
Then the following holds

τ · !?a · !?b1 · · · !?bn ∈ Traces0(S),
τ · !?b1 · · · !?bn · !?a ∈ Traces0(S), and
τ · !?a · !?b1 · · · !?bn

S∼ τ · !?b1 · · · !?bn · !?a.

Proof. By induction on n. Let a, b1 . . . , bn+1 be fixed, let τn = τ · !?b1 · · · !?bn. By induction
hypothesis, τn · !?a ∈ Traces0(S), and by hypothesis τn · !?bn+1 ∈ Traces0(S). By Lemma 12,
τn · !?a · !?bn+1 ∈ Traces0(S), τn · !?bn+1 · !?a ∈ Traces0(S), and

τn · !?a · !?bn+1
S∼ τn · !?bn+1 · !?a.

On the other hand, by induction hypothesis, τn · !?a
S∼ τ · !?a · !?b1 · · · !?bn, and by right

congruence of S∼
τn · !?a · !?bn+1

S∼ τ · !?a · !?b1 · · · !?bn+1

By transitivity of S∼, we can relate the two right members of the above identities, i.e.

τn · !?bn+1 · !?a
S∼ τ · !?a · !?b1 · · · !?bn+1

which shows the claim. J



XX:14 Synchronizability of Communicating Finite State Machines is not Decidable

I Lemma 22. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a1, . . . , an, b1, . . . , bm ∈
M be such that

1. τ · !?a1 · · · !?an ∈ Traces0(S)
2. τ · !?b1 · · · !?bm ∈ Traces0(S)
3. src(ai) 6= src(bj) for all i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}
Then for all shuffle c1 . . . cm+n of a1 · · · an with b1 · · · bm,

τ · !?c1 · · · !?cn+m ∈ Traces0(S), and
τ · !?a1 · · · !?an · !?b1 · · · !?bm

S∼ τ · !?c1 · · · !?cm.

Proof. By induction on n+m. Let a1, . . . , an, b1 . . . , bm be fixed, and let c1 · · · cn+m be a
shuffle of a1 · · · an with b1 · · · bm.

Assume that c1 = a1. Let τ ′ = τ · !?a1. By Lemma 21, τ ′ · !?b1 · · · !?bm ∈ Traces0(S), and
by hypothesis τ ′ · !?a2 · · · !?an ∈ Traces0(S), so we can use the induction hypothesis with
(a′1, . . . , a′n−1) = (a2, . . . , an). We get τ ′ · !?c2 · · · !?cn ∈ Traces0(S), and

τ ′ · !?c2 · · · !?cn
S∼ τ ′ · !?a2 · · · !?an · !?b1 · · · !?bm

which shows the claim.
Assume that c1 = b1. Then by the same arguments,

τ · !?c1 · · · !?cn
S∼ τ · !?b1 · · · !?bm · !?a1 · · · !?an

Since this holds for all shuffle c1, . . . , cn+m, this also holds for c1 = a1, . . . , cn = an, cn+1 =
b1, · · · , cn+m = bm, which shows the claim.

J

We can now generalize Lemma 20.

I Lemma 23. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and m1, · · · ,mn ∈M
be such that τ · !m1 · · · !mn ∈ Tracesn(S) Then τ · !?m1 · · · !?mn ∈ Traces0(S).

Proof. By induction on n. Let m1, . . . ,mn be fixed with n ≥ 1. There are two subsequences
a1, . . . , ar and b1, . . . , bm such that

src(a`) = src(m1) for all ` ∈ {1, . . . , r},
src(b`) 6= src(m1) for all ` ∈ {1, . . . ,m},
m1 · · ·mn is a shuffle of a1 · · · ar with b1 · · · bm

By hypothesis, τ · !a1 · · · !ar ∈ Tracesω(S) and τ · !b1 · · · !bm ∈ Tracesω(S). By Lemma 20,
τ · !?a1 · · · !?ar ∈ Traces0(S), and by induction hypothesis τ · !?b1 · · · !?bm ∈ Traces0(S), and
finally by Lemma 22 τ · !?m1 · · · !?mn ∈ Traces0(S). J

I Lemma 24. Let a1, . . . , an, b1, · · · , bm ∈ M , and let τ be a shuffle of !?a1 · · ·!?an with
!?b1 · · · !?bm. Then for all i ∈ {1, . . . , p} there is a shuffle c1 · · · cn+m of a1 · · · an with b1 · · · bm
such that onPeeri(τ) = onPeeri(!?c1 · · · !?cn+m).

Proof. Let i ∈ {1, . . . , p} be fixed. For every m ∈ M , let m∗ =!m if dst(m) 6= i, oth-
erwise m∗ =?m, and let m∗ =?m if dst(m) 6= i, otherwise m∗ =!m . Finally, let h be
the homomorphism defined by h(m∗) =!?m and h(m∗) = ε. Then for all M -traces τ ,
onPeeri(τ) = onPeeri(h(τ)). Let τ be a shuffle of !?a1 · · ·!?an with !?b1 · · · !?bm. Then there is
a shuffle υ of a∗1 · · · a∗n with b∗1 · · · b∗m such that h(υ) = h(τ). Therefore, h(τ) =!?c1 · · ·!?cn+m
for some shuffle c1 · · · cn+m of a1 · · · an with b1 · · · bm. J



A. Finkel and E. Lozes XX:15

We are now ready to do the proof of Lemma 13.

Proof. (of Lemma 13) Let τ ∈ Traces0(S) and a1, . . . , an, b1, . . . , bm, be fixed. Let υ be a
shuffle of !?a1 · · · !?an with !?b1 · · · !?bm. We want to show that τ · υ ∈ Tracesω(S). Clearly,
τ · υ ∈ Tracesω(S) is a FIFO trace. Therefore, it is enough to find for all i ∈ {1, . . . , p} a
trace τi such that

τi ∈ Tracesω(S) and onPeeri(τ · υ) = onPeeri(τi). (1)

Let i ∈ {1, . . . , p} be fixed, and let us construct τi that validates (1). By hypothesis

τ · !a1 · · · !an ∈ Tracesω(S) and τ · !b1 · · · !bn ∈ Tracesω(S)

therefore, by Lemma 23,

τ · !?a1 · · · !?an ∈ Traces0(S) and τ · !?b1 · · · !?bn ∈ Traces0(S). (2)

On the other hand, by Lemma 24, there is a shuffle c1 . . . cn+m of a1 · · · an with b1 · · · bm
such that

onPeeri(υ) = onPeeri(!?c1 · · · !?cn+m) (3)

Let τi = τ · !?c1 · · · !?cn+m. By Lemma 22 and (2), τi ∈ Traces0(S), and by (3), the second
part of (1) holds. J

B.3 Proof of Theorem 17
1. Let S be the set of stable configurations γ such that γ0

τ−→ γ for some τ ∈ Traces0(S);
S is finite and effective. By Lemma 15, Reach(S) =

⋃
{Reach!(γ) | γ ∈ S}, where

Reach!(γ) = {q1 · · · qp · w1 · · ·wp | γ
!a1···!an−−−−−→ (q1, . . . , qp, w1, . . . , wp), n ≥ 0, a1, . . . an ∈

M} is an effective rational language.
2. Assume γ0

τ−→ γ. By Lemma 15, γ0
τ0·!m1···!mr−−−−−−−−→ γ for some τ0 ∈ Traces0(S). Then

τ0 · !m1 · · · !mr
causal∼ τ0 · τ1 where τ1 :=!a1 · · · !an · b1 · · · bm for some a1, . . . , an, b1, bm

such that src(ai) 6= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. By Lemma 13,
τ0 ·τ1 ·τ1 ∈ Tracesω(S) (where τ1 =?a1 · · · ?an ·?b1 · · · ?bm), and therefore γ0

τ0·τ1−−−→ γ
τ1−→ γ′

for some stable configuration γ′.

C 1-Synchronizability Does not Implie Synchronizability for
Communications with Mailboxes

Consider the system of communicating machines depicted in Fig. 3. Assume that the
machines communicate via mailboxes, i.e. all messages that are send to peer i wait in a same
FIFO queue, and let J ∗−1

k (S) denote the k-bounded send traces of S within this model of
communications (see [?] for a precise definition).

The the following holds.

J ∗−1
0 (S) = ↓ { a1→2 · a1→2 · b1→3 · c2→3 · d3→2,

a1→2 · a1→2 · c2→3 · b1→3,

a1→2 · c2→3a1→2 · b1→3,

c2→3 · a1→2 · a1→2 · b1→3}
= J ∗−1

1 (S)
J ∗−1

2 (S) = J ∗−1
0 (S) ∪ {a1→2 · a1→2 · b1→3 · c2→3d3→2 · e2→1}

Therefore the system of Fig. 3 is 1-synchronizable but not synchronizable.



XX:16 Synchronizability of Communicating Finite State Machines is not Decidable

P1
!a1→2 !a1→2 !b1→3

P2
?a1→2

?a1→2

!c2→3

!c2→3

?a1→2

?d3→2

!c2→3

?a1→2 ?a1→2 ?d3→2 ?e2→1

P3

?c2→3

?b1→3

?b1→3

?c2→3

!d3→2

Figure 3 1-synchronizability does not imply synchronizability when processes communicate via
mailboxes.


	Introduction
	Preliminaries
	Undecidability of Synchronizability
	The case of oriented rings
	Extensions
	Proof of Lemma 4
	Omitted Proofs of Section 4
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Theorem 17

	1-Synchronizability Does not Implie Synchronizability for Communications with Mailboxes

