N

N

Synchronizability of Communicating Finite State
Machines is not Decidable

Alain Finkel, Etienne Lozes

» To cite this version:

Alain Finkel, Etienne Lozes. Synchronizability of Communicating Finite State Machines is not De-
cidable. 2017. hal-01474722v2

HAL Id: hal-01474722
https://hal.science/hal-01474722v2
Preprint submitted on 23 Feb 2017 (v2), last revised 7 Aug 2018 (v5)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01474722v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Synchronizability of Communicating Finite State
Machines is not Decidable

Alain Finkel®’ and Etienne Lozes!

1 LSV, ENS Cachan, CNRS, France
{finkel,lozes}@lsv.fr

—— Abstract

A system of communicating finite state machines is synchronizable [?, ?] if its send trace seman-
tics, i.e. the set of sequences of sendings it can perform, is the same when its communications
are FIFO asynchronous and when they are just rendez-vous synchronizations. This property
was claimed to be decidable in several conference and journal papers [?, 7, 7, ?]. In this paper,
we show that synchronizability is actually undecidable. We show that synchronizability is de-
cidable if the topology of communications is an oriented ring. We also show that, in this case,
synchronizability implies the absence of unspecified receptions and orphan messages, and the
channel-recognizability of the reachability set.

Keywords and phrases verification, distributed system, asynchronous communications, chore-
ographies

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Asynchronous distributed systems are error prone not only because they are difficult to
program, but also because they are difficult to execute in a reproducible way. The slack
of communications, measured by the number of messages that can be buffered in a same
communication channel, is not always under the control of the programmer, and even when
it is, it may be delicate to to choose the right size of the communication buffers.

Slack elasticity of a distributed system with asynchronous communications is the property
that the “observable behaviour” of the system is the same whatever the slack of commu-
nications is. There are actually as many notions of slack elasticity as there are notions of
observable behaviours (and of distributed systems). Slack elasticity has been studied in
various contexts: for hardware design [?], with the goal of ensuring that some code transforma-
tions are semantic-preserving, for parallel programming in MPI [?, 7], for ensuring the absence
of deadlocks and other bugs, or more recently for web services and choreographies [?, 7, 7],
for verifying various properties, among which choreography realizability [?].

This paper focuses on synchronizability [?], a special form of slack elasticity that was
defined by Basu and Bultan for analyzing choreographies. Synchronizability is the slack
elasticity of the send trace semantics of the system: a system of communicating finite state
machines is synchronizable if any asynchronous trace can be mimicked by a synchronous
one that contains the same send actions in the same order. Synchronizability was claimed
decidable [?, ?], by contrast with many other properties of systems of communicating finite
state machines (including deadlock-freedom, absence of orphan messages, boundedness, etc)
that are undecidable for systems of just two machines [?]. The proof relied on the claim that
synchronizability would be the same as 1-synchronizability, which states that any 1-bounded
trace can be mimicked by a synchronous trace.

© A. Finkel and E. Lozes;
37 licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Synchronizability of Communicating Finite State Machines is not Decidable

In this paper, we show that the two claims are actually false: 1-synchronizability does
not imply synchronizability, and synchronizability is undecidable. We also show that the
two claims hold, however, if we restrict to systems where the communication topology is
an oriented, unidirectional ring, in particular the topology of a system with two peers only.
While proving that 1-synchronizability implies synchronizability for ring topologies we also
show that 1-synchronizability implies the absence of unspecified receptions and orphan
messages, and that the reachability set is channel-recognizable.

Outline Section 2 introduces all notions of communicating finite state machines and syn-
chronizability. In Section 3, we show that synchronizability is undecidable. Section 4 shows
the decidability of synchronizability on ring topologies. Section 5 concludes with discussions
about other communication models and open problems. Due to space constraints, several
proofs are deferred to the appendix.

Related Work The analysis of systems of communicating finite state machines has always
been a very active topic of research. Systems with channel-recognizable (aka QDD [?]
representable) reachability sets are known to enjoy a decidable reachability problem [?].
Heussner et al developed a CEGAR approach based on regular model-checking [?]. Classifica-
tions of communication topologies according to the decidability of the reachability problems
are known for FIFO, FIFO+lossy, and FIFO+bag communications [?, ?]. In [?, 7], the
bounded context-switch reachability problem for communicating machines extended with
local stacks modeling recursive function calls is shown decidable under various assumptions.
Session types dialects have been introduced for systems of communicating finite state ma-
chines [?], and were shown to enforce various desirable properties. Existentially-bounded
systems are systems of communicating finite state machines that were studied in a language-
theoretic perspective: in [?], in particular, correspondences have been established among
message sequence charts languages defined on the one hand by (universally /existentially
bounded) systems of communicating machines and on the other hand by monadic second
order logic over partial orders and automata Whether a system of communicating machines
is existentially bounded, respectively existentially k-bounded for a fixed k, is undecidable
in the general case, but it is unknown whether it remains undecidable for systems that are
non-blocking.

2 Preliminaries

Messages and topologies A message set M is a tuple (X, p, src, dst) where 3j; is a finite
set of letters (more often called messages), p > 1 and src,dst are functions that associate
to every letter @ € X naturals src(a) # dst(a) € {1,...,p}. We often write a*77 for a
message a such that src(a) =i and dst(a) = j; we often identify M and ¥,; and write for
instance M = {a}* 77", a7% ...} instead of ¥p; = ..., or w € M* instead of w € X%,.
The communication topology associated to M is the graph G, with vertices {1,...,p} and
with an edge from ¢ to j if there is a message a € Xjs such that src(a) =i and dst(a) = j.

G is an oriented ring if the set of edges of Gps is {(4,5) | ¢ + 1 = j mod p}.

Traces An action A over M is either a send action !a or a receive action 7a, with a € Xj;.
The peer peer()) of action A is defined as peer(la) = src(a) and peer(?a) = dst(a). We write
Act; s for the set of actions of peer i and Actys for the set of all actions over M. A M-trace T
is a finite (possibly empty) sequence of actions. We write Act}, for the set of M-traces, € for

A. Finkel and E. Lozes

the empty M-trace, and 71 - 7o for the concatenation of two M-traces. We sometimes write !7a
for la - 7a. A M-trace 7 is a prefix of v, 7 <y v if there is 6 such that v = 7 - §. The prefix

closure | S of a set of M-traces S is the set {7 € Act}, | there is v € S such that 7 <p.f v}.

For a M-trace T and peer ids 4,5 € {1,...,p} we write

send(7) (resp. recv(7)) for the sequence of messages sent (resp. received) during 7, i.e.
send(la) = a, send(?a) = ¢, and send(7; - 7o) = send(7y) - send(73) (resp. recv(la) = e,
recv(?a) = a, and recv(my - T2) = recv(7y) - recv(72)).

onPeer; (1) for the M-trace of actions A in 7 such that peer(\) = i.

onChannel;_,;(7) for the M-trace of actions A in 7 such that A € {la, ?a} for some a € M

with src(a) =i and dst(a) = j.

buffer,_,;(7) for the word w € M™*, if it exists, such that send(onChannel,_,;(7)) =

recv(onChannel;_,; (7)) - w.

A M-trace 7 is FIFO (resp. a k-bounded FIFO, for k > 1) if for all i,5 € {1,...,p}, for all
prefixes 7/ of 7, buffer;_,;(7') is defined (resp. defined and of length at most k). A M-trace
is synchronous if it is of the form !7ay - 7ay - - - 1?7ax for some k£ > 0 and ay,...,ar € M. In
particular, a synchronous M-trace is a 1-bounded FIFO M-trace (but the converse is false).
A M-trace 7 is stable if buffer;_,;(7) = € for all i # j € {1,...,p}.

Two M-traces 7,v are causal-equivalent T “~" v if 1. 7,v are FIFO, and 2. for all
i€ {1,...,p}, onPeer;(1) = onPeer;(v). The relation “~" is a congruence with respect to
concatenation. Intuitively, 7 “~ v if 7 is obtained from v by iteratively commuting adjacent
actions that are not from the same peer and do not form a “matching send/receive pair”.

Peers, systems, configurations A system (of communicating machines) over a message
set M is a tuple S = (P1,...,P,) where for all i € {1,...,p}, the peer P; is a finite state
automaton (Q;, qo,i, A;) over the alphabet Act ; zs and with (implicitly) @Q; as the set of
accepting states. We write L(P;) for the set of M-traces that label a path in P; starting at
the initial state go;.

Let the system S be fixed. A configuration v of S is a tuple (q1,...,¢p, W1,2,. .., Wp—1,p)
where g; is a state of P; and for all ¢ # j, w; ; € M* is the content of channel i — j. A
configuration is stable if w; ; = € for all 4,5 € {1,...,p} with ¢ # j.

Let v =(q1,- -, @ps W12, s Wp—1), ¥V = (@15 @y WY 25+ - s Wy, 1 ,) and m € M with
src(m) = ¢ and dst(m) = j. We write v s v (resp. 7 Iy ') if (qi,!m, q}) € A; (resp.
(gj,7m, q}) € Aj), w; ; = w; ;-m (vesp. w;j = m-wj ;) and for all k, £ with k # i (resp. with
k #j), ¢ = q), and w}w = wy ¢ (resp. wzk =wep). 7 =X Xy A\, we write 5 for

L>3£>3 . /\—>5 We often write — instead of —g when S is clear from the context. The
initial configuration of S is the stable configuration vo = (go,1,---,40,p, € ---,€). A M-trace

T is a trace of system S if there is v such that 79 — ~. Equivalently, 7 is a trace of S if
1. it is a FIFO trace, and 2. for all ¢ € {1,...,p}, onPeer;(7) € L(P;). For k > 1, we write
Tracesy(S) for the set of k-bounded traces of S, Tracesy(S) for the set of synchronous traces
of S, and Traces,,(S) for J,~, Tracesi(S).

» Example 1. Consider the message set M = {a'72 b'73, 372 d>71} and the system
S = (P, P2, P3) where Py, Py, P are as depicted in Fig. 1.Then

L(Py)
L(Ps)
L(Ps)

\L {!a1~>2 Agl—2. !bla?)}
\L {?ala2 a2 . 2372 , ?2¢372 . !d2al}

\L {?bl—)?) . !C3~>2}.

XX:3

XX:4

Synchronizability of Communicating Finite State Machines is not Decidable

!a1~)2 !a1%2 !bl—)?) ?a1~>2 ?C3~>2

?a1—>2

7blﬁ3 | 3—2 232 |d2ﬁl
! .C c .
P3 —(90,3 q1,3 92,3 P2 —(90,2 q4,2

Figure 1 System of Example 1 and Theorem 3.

An example of a stable trace is lat=2 . la! 72 . 120173 . 1372 . 2¢122 . 20172 . 26372, Let

7 =lat72 1a!72 . 17p173 . 12¢372 . 1d27L, Then 7 € Tracesy(S) is a 2-bounded trace of the

T 1=2,1=2 2—1
system Sa and Yo — ((J3,1aQ5,2aQQ,3,a a ,E,d 6 6 6)'

Two traces 11,79 are S-equivalent, 11 L To, if 71,72 € Traces, (S) and there is 7 such that

causal usal

Y0 = « for both i = 1,2. Tt follows from the definition of “~™ that if 7, “~" 7, and

71, T2 € Traces, (S), then 7 L To.

Synchronizability. Following [?], we define the observable behaviour of a system as its set
of send traces enriched with their final configurations when they are stable. Formally, for
any k > 0, we write Zy(S) for the set

T1(S) = {send(7) | 7 € Traces;,(S)} U {(send(7),7) | 7o = =, 7 stable, T € Traces;(S)}.
Synchronizability is then defined as the slack elasticity of this observable behaviour.
» Definition 2 (Synchronizability [?]). A system S is synchronizable if Zo(S) = Z,,(S).

» Remark. In [?, ?] the authors take another definition of behaviour that does not consider
stable configurations as observable; formally, instead of Zy(S), the definition of synchroniz-
ability is based on Ji(S) = {send(7) | 7 € Traces;(S)}. The fact that we follow [?] rather
than [?, 7] will be important in Section 4, but the undecidability result (Theorem 11) also
holds for the definition of synchronizability of [?, ?] (and the proof is actually simpler).

For convenience, we also introduce a notion of k-synchronizability: for k£ > 1, a system S
is k-synchronizable if Zo(S) = Z(S). A system is therefore synchronizable if and only if it is
k-synchronizable for all £ > 1.

» Theorem 3. There is a system S that is 1-synchronizable, but not synchronizable.

Proof. Consider again the system S of Example 1. Let ik := (¢i1, 45,2, @k,3, €, - - -, €). Then

j0(8> = | {a1—>2 Lal72 .l 03_>2}
Ji(S) = T(S)

jQ(S) _ \L {a1—>2 Lql72 L plo3 L 32 d2—>1}
T(S) = Ji(S)UStab forall k>0

where Stab = {(6, 'YO); (a1~>27 7101)’ (a1a2 .ala27 7202)» (ala2 3 a1%2 . b1—>3’ 7312)7 (ala2 .ala2 .
bl—>3 L 32
C »’7323)} <

This contradicts the claim that 1-synchronizability implies synchronizability in [?], which
was the key argument for proving the decidability of synchronizability. As a remark, the
claim that J5(S) = J1(S) implies Jo(S) = J.(S), stated in [?, ?], does not hold either, due
to the same counter-example.

A. Finkel and E. Lozes

3 Undecidability of Synchronizability

In this section, we show the undecidability of synchronizability for systems with at least

three peers. The key idea is to reduce a decision problem on a FIFO automaton A, i.e.

an automaton that can both enqueue and dequeue messages in a unique channel, to the
synchronizability of a system S4. The reduction is quite delicate, because synchronizability
constrains a lot the way S4 can be defined (a hint for that being that S4 must involve three
peers). It is also delicate to reduce from a classical decision problem on FIFO automata
like e.g. the reachability of a control state, and we first establish the undecidability of a
well-suited decision problem on FIFO automata, roughly the reception of a message m with
some extra constraints. We can then construct a system Sja/\,m such that the synchronizability
of S;’Lm is equivalent to the non-reception of the special message m in A.

A FIFO automaton is a finite state automaton A = (@, Acts, A, go) over an alphabet
of the form Acty, for some finite set of letters ¥ with all states being accepting states. A
FIFO automaton can be thought as a system with only one peer, with the difference that,
according to our definition of systems, a peer can only send messages to peers different from
itself, whereas a FIFO automaton enqueues and dequeues letters in a unique FIFO queue,
and thus, in a sense, “communicates with itself”. All notions we introduced for systems
are obviously extended to FIFO automata. In particular, a configuration of A is a tuple
v = (g,w) € Q x ¥*, it is stable if w = ¢, and the transition relation v = 7/ is defined
exactly the same way as for systems. For technical reasons, we consider two mild restrictions
on FIFO automata:
(R1) for all 9 = (¢, w), either 7 = € or w # € (in other words, all reachable configurations

are unstable, except the initial one);
(R2) for all (go, \,q) € A, X =la for some a € ¥ (in other words, there is no receive action

labeling a transition from the initial state).

» Lemma 4. The following decision problem is undecidable.
Input o FIFO automaton A that satisfies (R1) and (R2), and a message m.
Question is there a M-trace T such that 7 - ?7m € Traces, (A) ¢

Proof. See Appendix A. <

Let us now fix a FIFO automaton A = (Q 4, Acts, A 4, qo) that satisfies (R1) and (R2).

Let M = M7 U M5 U M3 be such that all messages of 3 can be exchanged among all peers in
all directions but 2 — 1, i.e.

My = {a'%a'3 63 |a e X} SN
M2 — {a3~>2,a1~>2’a2~>3 | = E} \\ //

M; = {ala3,a3%1’a3a27a2ﬁ3 | = E}

Intuitively, we want P; to mimick A’s decisions and the channel 1 — 2 to mimick A’s queue
as follows. When 4 would enqueue a letter a , peer 1 sends a'™2 to peer 2, and when A
would dequeue a letter a, peer 1 sends to peer 2 via peer 3 the order to dequeue a, and
waits for the acknowledgement that the order has been correcly executed. Formally, let
P1 = (Q1,490.1,A1) be defined by Q1 = Qa W {gs | § € Aa} and Ay = {(q,1a’7%,¢') |
(g,'a,q") € Ax} U{(g,'a*73,45), (g5, 7a>71,¢") | 6 = (q,7a,q') € A4}. The roles of peers
2 and 3 is then rather simple: peer 3 propagates all messages it receives, and peer 2
executes all orders it receives and send back an acknowledgement when this is done. Let
Py = (Q2, 90,2, Az) and P3 = (Q3,qo,3, As) be defined as we just informally described, with

XX:5

XX:6

Synchronizability of Communicating Finite State Machines is not Decidable

P.
la 112 Im1—2 M3 9432
2m3—2 32
- Py > O 2mi—2 m Ta 2,12
A '/\/O 1 2 ,3—1 ~ 1,1—3 - ‘a
?a,m 'E;L 351 .? 13 O O
m ~ m !m2~>3 1g2—3
N\
}o{i@/@g o gpir 707 Iml”
O\@/ S 5 2%3 la2—3) 32
a3—2
1%2 7m

Figure 2 The FIFO automaton A of Example 5 and its associated systems S4 = (P1, P2, P3)

? 3—2
and 8:47@ = (P1,P3,P3). The sink state ¢, and the transitions ¢ = g1 are omitted in the

representation of P5.

a slight complication about the initial state of Py (this is motivated by technical reasons that
will become clear soon).

Q2={90.2,91,2} U{qa,1,qa2 | a € X} Q3= {903} U{0a,1,%,2,93 | a € X}
AQZ {(qO,Qa ?(13%2, Qa,l)a (q1,2a ?0’3*)27 Qa,l)a (Qa,h ?(11*)2, Qa,2>7 (Qa,Qa !a2*>35 91,2) ‘ a € E}
A3: {(q0,3a ?a1~>3, Qa,l)a (Qa,h !a3*>27 Qa,2)7 (qa,Qa ?QZ*}B’ qa,3)7 (q(l,37 !a3‘>17 CIO,3) | ac E}

» Example 5. Consider ¥ = {a,m} and the FIFO automaton A = ({qo,q1},Acts, A, qo)
with transition relation A4 = {(qo,'a, o), (90, 'm,q1), (¢1,?a, q0), (q1,?m, qo)}. Then A and
the peers P1, P2, P3 are depicted in Fig. 2.

Let S4 = (P1, P2, Ps). There is a tight correspondence between the k-bounded traces of
A, for k > 1, and the k-bounded traces of S4: every trace T € Tracesi(A) induces the trace
h(7) € Traces;(S4) where h : Acts, — Actys is the homomorphism from the traces of A to
the traces of S4 defined by h(la) =!a'~? and h(?a) =!7a'73 174372 . 24172 . 12273 . 126371,
The converse is not true: there are traces of S4 that are not prefixes of a trace h(7) for some
7 € Tracesi(A). This happens when P; sends an order to dequeue a'!™3 that correspond
to a transition 7a that A cannot execute. In that case, the system blocks when P, has to
execute the order.

» Lemma 6. For all k > 0,

Traces,(S4) = | {h(7) \ T € Traces,(A)}
U 4 {h(r) - 170173 126372 | 7 € Tracesy (A), (0, €) = (¢, w), (¢, 7a,q") € A}

Since A satisfies (R1), all stable configurations that are reachable in S 4 are reachable by
a synchronous trace, and since it satisfies (R2), the only reachable stable configuration is the
initial configuration. Moreover, J5(Sa) = 0 and J;(S4) # 0 for k > 1 (provided A sends at
least one message). As a consequence, S4 is not synchronizable.

Let us fix now a special message m € 3. We would like to turn S 4 into a system that is
synchronizable, except for the send traces that contain m?~3. Note that, by Lemma 6, Sy
has a send trace that contains m2~3 if and only if there are traces of A that contain ?m.
Roughly, we need to introduce new behaviours for the peer 2 that will “flood” the system

A. Finkel and E. Lozes

with many synchronous traces. Let S;Lm = (P, P}, P3) be the system S4 in which the peer
Py is replaced with the peer Py = (Q%, qo,2, Aj) defined as follows.

@y = {a2%2rU{dleeX,a#m, }U{q}

A {(q0,2, 70" 72,40 5), (¢,7a'72,q) | a € B, q # qo2}

{(QO,Za ?a3a2’ Qzlz,l)v (q6,27 ?a3H2a Qzlz,l)v (qc/z,lﬂ !a2ﬁgv Q6,2)7 | a€X,a# m}
{(q,7m*7%,q1) | ¢ € Q4}

C C

» Example 7. For ¥ = {a,m}, and A as in Example 5, P} is depicted in Fig. 2 (omitting
the transitions to the sink state g,).

Intuitively, P} can always receive any message from peer P;. Like Ps, it can also receive
orders to dequeue from peer P3, but instead of executing the order before sending an
acknowledgement, it ignores the order as follows. If P} receives the order to dequeue a
message a'~? # m!'~?2, P} acknowledges P3 but does not dequeue in the 1 — 2 queue. If
the order was to dequeue m, Pj blocks in the sink state ¢, . The system Sy = (P1,P3, P3)
contains many synchronous traces: any M-trace 7 € L(P;) labeling a path in automaton P

can be lifted to a synchronous trace 7/ € Traces)(S.4,m) provided !m'~? does not occur in 7.

321, Therefore,

However, if P; takes a !m!™3 transition, it gets blocked for ever waiting for m
173 occurs in a synchronous trace 7 of 8 ,,, it must be in the last four actions, and this
trace leads to a deadlock configuration in which both 1 and 3 wait for an acknowledgement

and 2 is in the sink state.

if la

Let L™(A) be the set of traces T recognized by A as a finite state automaton (over the
alphabet Acty) such that either ?m does not occur in 7, or it occurs only once and it is the

last action of 7. For instance, with 4 as in Example 5, L™(A) =] (!a* m - ?a)* Jda* - lm - Tm.

Let A’ : Acty — Act}; be the morphism defined by h/(la) =!?a'™2 for all a € ¥, h/(?7a) =
120173 1203722 126273 . 126371 for all @ # m, and b/ (?7m) =!7m! 73 - 17m372.

» Lemma 8. Tracesy(S) ,,,) =| {W'(7) | 7 € L™(A)}.

Let us now consider an arbitrary trace 7 € Traces, (S ,,). Let A" : Act), — Act}; be
such that h”(la'~2) =17a'72, h"(?a'~2) = ¢, and h”(\) = A otherwise. Then h”(r) €
Traces(S) ,,,) and 7 2 h'(r) for S = S/ ,,- Indeed, 7 and h"(7) are the same up to
insertions and deletions of receive actions ?a’ 2, and every state of P} (except the initial

one) has a self loop ?a'~2. Therefore,
» Lemma 9. S, is synchronizable.

Let us now consider the system S ,, = (P1,P2 U Py, Ps), where Py U Py = (Q2 U
Q%, qoz, Ao U A} is obtained by merging the initial state go2 of P2 and P}. Note that
Tk (Shm) = Ti(Sa) UZk(S) ,,,), because go2 has no incoming edge in Pa U P3.

» Lemma 10. Let k > 1. The following two are equivalent:

1. there is T such that T - 7m € Tracesy(A);
2. T(Sh) # To(Shm)-

Proof. Let £ > 1 be fixed.

(1) = (2) Let 7 be such that 7-?m € Tracesy(.A). By Lemma 6, there is v € Z;,(S4) such
that m273 occurs in v (take v = send(h(7 - ?m))). By Lemma 6, v & Zo(S4) = 0, and by
Lemma 8, v & Zo(S)y ,,)- Therefore v € Z(S4 ,,,) \ Zo(SA 1)

XX:7

XX:8 Synchronizability of Communicating Finite State Machines is not Decidable

(2) = (1) By contraposite. Let Traces,(A\?m) = {7 € Traces;(A) |?m does not oc-
cur in 7}, and let us assume —(1), i.e. Traces,(A\?m) = Tracesy(A). Let us show
that Zp,(S% ,,) = Zo(S4,,)- From the assumption —(1) and Lemma 6, it holds that
Traces;,(S4) = N

L{h(7) | T € Tracesi(A\?m)}
U L {h(r) - 12a'73 120372 | 7 € Tracesi (A\?m), (qo,€) — (¢, w), (¢, ?a,q’) € A}.

By send(h(7)) = send(h/(7)) and Traces,(A\?m) C L™(A), we get that
Ti(Sa) S L {send(W(7)) | T € L"™(A)}

and therefore, by Lemma 8, Zy(Sa) € Zo(S)y ,,)- Since Ty, (8% 1) = Zi(Sa) ULk (S 1)
and since by Lemma 9 Z,(S/y ,,,) = Zo(Sl4 ,,), We get that Zp,(S% ,,,) € Zo(S)a,,,), and thus
Ik (S.Zl,ﬂ) = IO(SNm)'

<

» Theorem 11. Synchronizability is undecidable.

Proof. Let a FIFO automaton A satisfying (R1) and (R2) and a message m be fixed. By

Lemma 10, 8’4 ,,, is non synchronizable iff there is a trace 7 such that 7 - ?7m € Traces,, (A).

1

By Lemma 4, this is an undecidable problem. |

4 The case of oriented rings

In the previous section we established the undecidability of synchronizability for systems
with (at least) three peers. In this section, we show that this result is tight, in the sense that
synchronizability is decidable if G, is an oriented ring, in particular if the system involves
two peers only. The proof bases on the fact that 1-synchronizability implies synchronizability
for such systems (Theorem 18). In order to show this result, we first establish a trace
normalization property. This property implies that 1-synchronizable systems on oriented
rings have no unspecified receptions nor orphan messages, and their reachability set is
channel-recognizable. We conclude with yet another technical proof that 1-synchronizability
implies synchronizability when G, is an oriented ring.
The starting point is a confluence property on arbitrary 1-synchronizable systems.

» Lemma 12. Let S be a 1-synchronizable system. Let T €

! b
Traceso(S) and a,b € M be such that y\l\

? /N ~ NP
1. 7-la € Traces;(S), ‘fa ., A, 20
s O~ 7 0a N

2. 7-1b € Traces; (S), and ¢ ol K
3. src(a) # src(b). 1 s ta 7,
If vy, v9 are any two of the four different shuffle of \a-7a with 'b-7b, T\ causal 7

S \\://
then 7 - vy € Traces,, (S), 7 ve € Traces,(S) and 7- vy ~ 7 - vUs. b ‘a

Proof. See Appendix B. <

» Remark. We identified on the diagram the squares that commute thanks to causal equiva-
lence. Not all shuffle are causally equivalent. The left square and the right square do not
commute thanks to causal equivalence, but because 1-synchronizability enforces a form of
confluence between send and receive transitions on the control flow graph of the peers at
every mixed control state that can be reached through a synchronous trace.

A. Finkel and E. Lozes

Lemma 12 generalizes to arbitrary sequences of send actions with rather technical
arguments.

» Lemma 13. Let S be a 1-synchronizable system. Let ay,...,a,,b1,...0, € M and
T € Tracesy(S) be such that

1. 7-lay---la, € Traces;(S),

2. 7-1by -1y, € Traces; (S), and

3. src(a;) # src(b;) foralli e {1,...,n} and j € {1,...,m}.

Then for any two different shuffle vi,ve of 17aq - ?as - - - 1?a,, with 17by - 17by - - - 17b,,, it holds

that T - vy € Traces,,(S) , 7 - vy € Traces, (S) and T - vy Sr. Vy.
Proof. See Appendix B. |

» Definition 14 (Normalized trace). A M-trace 7 is normalized if there is a synchronous
M-trace v and a M-trace 6 of the form !a; - --!a,, such that T =v - 6.

» Lemma 15 (Trace Normalization). Assume M is such that the communication topology
Gwm is an oriented ring. Let S = (P1,...,Pp) be a l-synchronizable system. For all

T € Traces, (S), there is a normalized trace norm(7) € Traces, (S) such that T L norm(7).

Proof. By induction on 7. Let 7 = 7/ - A, be fixed. Let us assume by induction hypothesis
that there is a normalized trace norm(7’) € Traces,, (S) such that 7/ L norm(7’). Let us reason
by case analysis on the last action A of 7. The easy case is when)\ is a send action: then,

norm(7’) - A is a normalized trace, norm(7’) - A £7A by right congruence of L. The difficult
case is when A is ?a for some a € M. Let ¢ = src(a), j = dst(a), i.e. i+ 1 =7 mod p. By the

e S
definitions of a normal trace and ~, there are 79 € Tracesg(S), a1,...,Un,b1,..., b, € M
such that
norm(7') X 7 Nag - lag, by - by,

with src(ar) =i for all k € {1,...,n}, src(by) # i for all k € {1,...,m}, and src(ay) = i.

Since Gy is an oriented ring, dst(a;) = j, therefore a3 = a. Let norm(r) = 7} -la - ?a -
by« - by, - lag - - - la, and let us show that norm(7) € Traces,, (S) and 7 L norm(7).

Since norm(7’) € Traces,(S), we have in particular that 7} - la € Traces;(S) and 7 -
1by - - -1b,, € Traces, (S). Consider the two traces

vi= 7-la-2a- by lby - by - ?by

vo = T1h-la-1by-- by - ta- by - by,

By Lemma 13, vy, v € Traces,, (S) and both lead to the same configuration, and in particular
to the same control state ¢ for peer j. The actions 7by, 7bs,...7b, are not executed by peer
j (because src(m) # i implies dst(m) # j on an oriented ring), so the two traces

! !/
vi= T5-la-?a-1b;---b,

vh= 14-la-1by--by - Ta

lead to two configurations +1, v4 with the same control state ¢ for peer j as in the configuration
reached after v; or ve. On the other hand, for all k # j, onPeery(v]) = onPeery(v}), therefore

v} 2 vh. Since 74-la-lag - - la,, € Traces, (S), and onPeer;(7}-la) = onPeer;(v}]) = onPeer;(v}),

the two traces
of = 75-la-?a- by by lag - lay,

12 /
O = 7 la by by - 20 lag - lay,

XX:9

XX:10

Synchronizability of Communicating Finite State Machines is not Decidable

belong to Traces, (S) and vf N vy. Consider first v{: this is norm(7) as defined above,

therefore norm(7) € Traces, (S), and norm(r) N vYy. Consider now vj. By definition,

4 causal causal

vl “~" norm(7’) - 7a. By hypothesis, norm(7’) L 7/, therefore norm(7’) - 7a “~" 7. To sum

/) causal causal

up, norm(7) g vl “~" norm(7') - 7a 7, therefore norm(7) L. <
As a consequence, 1-synchronizability implies several interesting properties on the reacha-
bility set for oriented rings.

» Definition 16 (Channel-recognizable reachability set [?, ?]). Let S = (Py,...,P,) with
P; = (Qi, A, qo,i). The (coding of the) reachability set of S is the language Reach(S) over the
alphabet (M UJ?_, Q;)* defined as {q1---qp - w1 ---wp | y0 L (q1y s Gy Wiy -y W), T €
Traces,, (S)}. Reach(S) is channel-recognizable (or QDD representable [?]) if it is a recognizable
(and rational) language.

» Theorem 17. Assume S is 1-synchronizable and the communication topology Gy is an
oriented ring. Then

1. the reachability set of S is channel recognizable,
2. for all T € Traces,(S), for all vo = =, there is a stable configuration +', n > 0 and
Tmy - Tmy, ’
mi,... My € M such that v ———— +'.
In particular, S neither has orphan messages nor unspecified receptions [?].

The proof of this result follows from Lemmas 13 and 15 (see Appendix B). We can now
prove the result we announced at the beginning of this section.

» Theorem 18. Let M be a message set such that Gy is an oriented ring. For all M -system
S, S is 1- synchronizable if and only if it is synchronizable.

Proof. We only need to show that 1-synchronizability implies synchronizability. Let us
assume that S is 1-synchronizable. Let synch(7) denote the unique synchronous M-trace
such that send(synch(7)) = send(7). We prove by induction on 7 the following property
(which implies in particular that S is synchronizable):

for all 7 € Traces, (S), there are mq,...,m; € M such that .
(C1) synch(r) € Traceso(S), (C2) 7 - ?my---Tmy, € Traces,(S), N

's . synch(7)
and (C3) 7 - Mmy---Tmy ~ synch(r). Let 7 = 7 - X be T AN
fixed and assume that there are m),...,mj € M such that AN
7' tmf---?m) € Traces,(S), synch(7’) € Traceso(S), and 7’ - so=ses : 3
mh - tm), L synch(7'). Let us show that (C1), C2, and (C3) L T

hold for 7. We reason by case analysis on the last action \ of 7.

Assume A =?a. Then synch(r) = synch(7’) € Traceso(S), which proves (C1). Let
i = dst(a). Since peer i only receives on one channel, there are my, ..., mg_1 such that

' tml - tml, NN T a0 tmy - Tmg_ .
Since 7 - Tmf - Tm), 2 synch(7) by induction hypothesis, (C2) and (C3) hold.
Assume X =la. By Lemma 15, there is norm(7') = 7o - !m/ - - -Im}/ with 7y € Tracesy(S)
such that 7/ & norm(7’). Since 7/-?m] - - - 7m}, leads to a stable configuration, mf,...,m}
is a permutation of mj, ..., m} that do not swap messages of a same channel. Since Gy

A. Finkel and E. Lozes

is an oriented ring, norm(7’) R 1o Imfj ---!mj. Since 7’ - la € Traces,,(S), it holds that

7o - !my - - -lmy, - la € Traces,, (S), which implies by Lemma 13 that the two traces

vi= T0-my-dml- Py tml - la- Ta
vo= T0-!my-mpla- i tm, - Ta

belong to Traces,,(S) and verify v; L vy. Consider first v, and let vy =10 !mj--Img -
?m} ---?mj,. Since norm(7’) = 1y - Imf --Im], 27 and 7 tmy -y 2 synch(7'), it
holds that v L synch(7’). Therefore, synch(7’) - la - 7a = synch(7) belongs to Traces,(S),
which shows (C1), and synch(r) £ v1. Consider now vy, and let vy =19-!mf - Imj - la =
norm(7’) - la. Then v} L7 la= T, therefore 7 - ?7mj ---?m/}, - 7a € Traces,(S), which

shows (C2), and 7 - 7m/} ---7mj, - 7a £ vy. Since vy 2 vy & synch(7), this shows (C3).

» Theorem 19. Assume Gj; is an oriented ring. The problem of deciding whether a given
system is synchronizable is decidable.

5 Extensions

We considered the framework introduced by Basu and Bultan [?] and we showed that
synchronizability is not decidable for systems with peer-to-peer FIFO communications. In
their more recent work [?], Basu and Bultan considered the question of synchronizability
for other communication models. One variant they consider is communications with bags
instead of queues, thus allowing to reorder messages. Synchronizability is decidable for such
a model of communications: Z,(S) is the language of a Petri net, Zy(S) is an effective regular
language, and whether the language of a Petri is included in a given regular language reduces
to the coverability problem. The same argument would hold for lossy communications.
Another variant considered in [?] is a communication model based on mailboxes: instead
of having distinct queues for messages coming from distinct senders, the peers store in a
single queue all the messages they receive. The (un)decidability of synchronizability for this
communication model is unclear. At least, the argument that 1-synchronizability implies
synchronizability does not hold for this communication model either (see Appendix C for a
counter-example), but our results show that it holds for oriented rings, because there is no
difference between mailboxes and peer-to-peer queues on such topologies.

Our undecidability result suggests that synchronizability may not be the right notion for
all communication topologies, and one might want to find the largest class of communication
topologies on which 1-synchronizability implies synchronizability, or on which synchronizabil-
ity is decidable. Our intention in this work was more limited, and only aimed at explaining
why, maybe, the errors in [?, ?, ?] were missed by so many reviewers. We believe it could
be more interesting to consider other notions of slack elasticity. For instance, one might
consider the property that all traces of a system are causally equivalent to a k-bounded trace.
This class of systems ressembles the classes of existentially k-bounded systems [?], but with
something like what is called the “non-blocking” assumption in this framework. We leave it
for future work to better identify the possible connections of our results with the theory of
existentially bounded systems.

XX:11

XX:12

Synchronizability of Communicating Finite State Machines is not Decidable

A Proof of Lemma 4

Consider a tuple T = (T, to,tp, H,V) where T is a finite set of tiles to,tr € T are initial and
final tiles, and H,V C T x T are horizontal and vertical compatibility relations. Without
loss of generality, we assume that there is a “padding tile” O such that (¢,0) € HNV for all
t € T. For a natural n > 0, a n-tiling is a function f: {1,...,n} x N = T such that

1. £(0,0) = to,
2. there are (ip,jr) € {1,...,n} x N such that f(ip,jr) = tp,
3. (f(i,9), f(i,j+1)) € H for all (,5) € {1,...,n} x N, and
4. (f(i,5), fli+1,5)) €V for all (4,5) € {1,...,n—1} x N.
The problem of deciding, given a tuple T = (T to,tr, H, V), Whether there is some n > 0
for which there exists a n-tiling is undecidable. Note that, due to the presence of the padding
tile, this problem is equivalent to the more standard problem of the existence of a finite
rectangular tiling that contains ¢y at the beginning of the first row and ¢r anywhere in the
rectangle.

Let T = (T,to,tr, H,V) be fixed. We define the FIFO automaton Ay = (Q, %, A, qo)
with

Q =1{a1,0,0=tG=t, =t)=v |t €T, € TU{$}} U{qo. q1}
S = TU{S})
A C Q x Acty x @, with

{(q0,%0, qt0,0)} U{(at,0. %', qv0) | (,¢)) € HY U{(qr0.'8,q1) [t €T}
{(a, 7t q=t [t € T)} U {(q1=t,"t', qe=v) | (£,') € V}
{(qeet, 7, et =, |t €T, € TU{$}}

{(ge=t,y=t/, 1", qe=¢) | (t,¢") € H and (', t") € V'}

{qe=t,1=$.1%, 1) |t € T}

A

cccci

Therefore, any execution of A7 is of the form
!t171 * !t1,2 . '!tl’n * !$ * ?t171 * !t271 * ?t1,2 N !t272 A '!t2777, N ?$ * !$ * ?t271 * !t3,1 st

where tl,l =1, (ti,jutiJrl,j) €V and (ti,j7ti,j+1) € H.
The following two are thus equivalent:

1. there is n > 0 such that 7 admits a n-tiling
2. there is a trace 7 € Traces,, (A) that contains ?¢g

B Omitted Proofs of Section 4

B.1 Proof of Lemma 12

Let us first show that 7-v € Traces;(S) for all shuffle v of la - ?7a with b ?b. Let 7 =
T-la-?a-1b-?and 7o = 7-10-?-la- ?a. Since src(a) # src(b), 7 la - b € Traces; (S)
and 7 - 1b - la € Traces; (S), and since S is 1-synchronizable, 71,72 € Traceso(S). It remains
to show that for all shuffle v of a - 7a with !b- 7b that start with two sends, 7 - v belongs
to Traces;(S). By symmetry, and considering that the receptions are executed by two
different peers and therefore can be executed in any order, it is enough to show that
73:=71-la-1b-7a-7h € Traces; (S). This follows from 73 being 1-bounded, and the fact that
for any peer i € {1,...,p}, onPeer;(73) € {onPeer;(71), onPeer;(72)} is a sequence of actions
supported by peer 1.

A. Finkel and E. Lozes

So we proved that for all shuffle v of la - ?a with 1b-7b, 7- v € Traces;(S). It remains
to show that all these traces lead to the same configuration. Since they all lead to a stable
configuration, and since S is 1-synchronizable, the configuration a trace leads to only depends
on the order in which the send actions !a and !b are executed in v. But since the two traces
7-la-1b-7a-7hand 7-!b-la-?a-7b lead to the same configuration, they all lead to the same
configuration.

B.2 Proof of Lemma 13

» Lemma 20. Let S be a 1-synchronizable system. Let T € Traceso(S) and a1,--+,a, € M
be such that

1. 7-lay---la, € Traces,(S)
2. src(a;) = src(aj) for alli,j e {1,...,n}.
Then 7 -1?ay - - -1?7a,, € Tracesy(S).

Proof. By induction on n. Let aq,...,a,4+1 be fixed, and let 7, = 7 -17a; ---7a,,. By
induction hypothesis, 7,, € Tracesy(S). Let 7, = 7, - !ap41. Then

onPeer; (7}, ;) = onPeer;(7,) for all i # src(a,41), and 7, € Traces,,(S)
for i = src(an41), onPeer;(7,, 1) = onPeer;(7-lay - - - lay41) and 7-la; - - - la, € Traces,(S)
7,41 is 1-bounded FIFO

therefore 7], | € Traces;(S). By l-synchronizability, it follows that 7, ; - ?an41 € Tracesy(S).

<

» Lemma 21. Let S be a 1-synchronizable system. Let T € Traceso(S) and a, by, ..., b, € M
be such that

1. 7-17a € Tracesy(S)

2. 7-17by - 17b, € Tracesy(S)

3. src(a) # src(b;) for allie {1,...,n}.
Then the following holds

T 1%a - 17by - - - 170, € Tracesy(S),
7120y - - 17b,, - 17a € Tracesy(S), and
712 12by -+ 12, 712y -+ 17b, - 12a.

Proof. By induction on n. Let a, by ..., b, 41 be fixed, let 7, = 7-17b1 - - - 17b,,. By induction
hypothesis, 7, - 1?7a € Tracesy(S), and by hypothesis 7, - 17b,,+1 € Tracesy(S). By Lemma 12,
Tn 174 - 170,41 € Tracesy(S), T - 1?bp41 - 17a € Tracesy(S), and

S
T 120 121 2 1 12y -

On the other hand, by induction hypothesis, 7, - !7a L£r17- 17by - - - 17b,,, and by right
congruence of L

S
Tn a1 ~7-17a - 17by -+ - 17hy 01
By transitivity of ~, we can relate the two right members of the above identities, i.e.
125 12a S 7 120 128y -+ 12D
Tn N Tbper - 1Ta~7 120176y -+ - 1744

which shows the claim. <

XX:13

XX:14 Synchronizability of Communicating Finite State Machines is not Decidable

» Lemma 22. Let S be a 1-synchronizable system. Let T € Traceso(S) and ay,...,an,b1,..., by €
M be such that

1. 7-ay---17a, € Tracesy(S)
2. 7-17by -+ - 17b,, € Traceso(S)
3. src(a;) # sre(b;) forallie {1,...,n}, je€{l,...,m}
Then for all shuffle c1 ...cmyn of a1+ - apn with by - - - by,

7 12¢q1 - 1?Cp4m € Tracesy(S), and

S
712y N2ay 12y b &7 126 e

Proof. By induction on n +m. Let aq,...,a,,b1...,b,, be fixed, and let ¢; - - - ¢4, be a
shuffle of ay - - - a,, with by ---b,,.

Assume that ¢; = ay. Let 7/ = 7-1?a;. By Lemma 21, 7/ - 1?7by - - - 1?b,,, € Tracesy(S), and
by hypothesis 7" - 1?ay - - - 17a,, € Tracesy(S), so we can use the induction hypothesis with
(al,...,a,,_1) = (az,...,ay). We get 7" - 1?7¢cq - --1?¢,, € Tracesy(S), and

S
72y Ve, R Nag - ay 17y - 170,

which shows the claim.
Assume that ¢; = b;. Then by the same arguments,

S
TNy ey ~ 71701 -+ 120y, - aq - - Tay,

Since this holds for all shuffle ¢4, ..., ¢;4m, this also holds for ¢y = a1, ...,¢p = an, Cny1 =
b1, -, Ccptm = by, which shows the claim.
A |

We can now generalize Lemma 20.

» Lemma 23. Let S be a 1-synchronizable system. Let T € Traceso(S) and my, -+, m, € M
be such that T -lmy - --m,, € Traces,(S) Then 7-!1?my---1?7m,, € Tracesy(S).

Proof. By induction on n. Let mq,...,m, be fixed with n > 1. There are two subsequences
ai,...,a. and by,...,b,, such that

src(ag) = src(mq) for all £ € {1,...,r},

src(be) # sre(mq) for all £ € {1,...,m},

my---my, is a shuffle of ay - - - a, with by ---b,,
By hypothesis, 7 - la; ---la, € Traces,(S) and 7 - by - - - lb,, € Traces, (S). By Lemma 20,
7-1?%ay -+ -17a, € Tracesy(S), and by induction hypothesis 7 - 17b; - - - 1?b,,, € Tracesy(S), and
finally by Lemma 22 7 - 1?7m; - - - 1?m,, € Traceso(S). <

» Lemma 24. Let ay,...,apn,b1, - by € M, and let 7 be a shuffle of '7ay - --7a, with
176y - - 1?by,. Then for alli € {1,...,p} thereis a shufflecy -+ cpym of a1 -+ - ap withby -+ - by,
such that onPeer;(7) = onPeer;(17¢y - - - 1?¢ppm).

Proof. Let i € {1,...,p} be fixed. For every m € M, let m* =!m if dst(m) # i, oth-
erwise m* =?m, and let m* =?m if dst(m) # ¢, otherwise m* =!m . Finally, let h be
the homomorphism defined by h(m*) =!?m and h(*) = €. Then for all M-traces 7,
onPeer;(7) = onPeer;(h(7)). Let 7 be a shuffle of !?a; - - -!?7a,, with 1?by - - -1?b,,,. Then there is
a shuffle v of af - --a} with b7 ---b%, such that h(v) = h(7). Therefore, h(r) =I?¢c1 - 17¢pim
for some shuffle ¢y - - - ¢ of @1 - - @y, With by -+ - by, <

A. Finkel and E. Lozes

We are now ready to do the proof of Lemma 13.

Proof. (of Lemma 13) Let 7 € Traceso(S) and ay,...,an,b1,..., by, be fixed. Let v be a
shuffle of !?ay - - - 17a,, with !?b; - --1?b,,. We want to show that 7 - v € Traces, (S). Clearly,
7 - v € Traces, (S) is a FIFO trace. Therefore, it is enough to find for all ¢ € {1,...,p} a
trace 7; such that

7; € Traces, (S) and onPeer; (7 - v) = onPeer;(7;). (1)
Let i € {1,...,p} be fixed, and let us construct 7; that validates (1). By hypothesis
7-lay -+ -la, € Traces, (S) and 7 - by - - - b, € Traces,,(S)
therefore, by Lemma 23,
7-1?ay -+ 1?a,, € Traceso(S) and 7 - 1?6y - - - 17h,, € Tracesy(S). (2)

On the other hand, by Lemma 24, there is a shuffle ¢; ...cpqm of ay---a, with by ---by,
such that

onPeer;(v) = onPeer;(17¢y -+ - 17¢h1m) (3)

Let 7, =7-1%¢1 -+ - ?¢pim. By Lemma 22 and (2), 7; € Traceso(S), and by (3), the second
part of (1) holds. <

B.3 Proof of Theorem 17

1. Let S be the set of stable configurations v such that vy — ~ for some 7 € Tracesy(S);
S is finite and effective. By Lemma 15, Reach(S) = |J{Reach'(y) | v € S}, where

lay--lay

Reach'(y) = {gn-qp-wr-wp | v — (@1, Gpr W1, ..., wp),m > 0,a1,...ay €
M} is an effective rational language.

2. Assume 79 — . By Lemma 15, v, Totmydmr, ~ for some 79 € Tracesg(S). Then
10 - tmy - my N 15 - 7 where 71 :=lag---lay, - by - - - by, for some ag, ..., an, b1, bm
such that src(a;) # src(b;) for all ¢ € {1,...,n} and j € {1,...,m}. By Lemma 13,
To-T1 71 € Traces,(S) (where 77 =?ay - - - ?a, - 7by - - - 7by,), and therefore 7 RAEINF VLIV

for some stable configuration ~'.

C 1-Synchronizability Does not Implie Synchronizability for
Communications with Mailboxes

Consider the system of communicating machines depicted in Fig. 3. Assume that the
machines communicate via mailboxes, i.e. all messages that are send to peer ¢ wait in a same
FIFO queue, and let J;~!(S) denote the k-bounded send traces of S within this model of
communications (see [?] for a precise definition).

The the following holds.

‘,70*71(8) _ i { ala2 . a1~)2 . b1~>3 . 62%3 _d?)a27
CL1a2 a1~>2 A 62%3 . bl%S7
CL1a2 . 02~)3a1~>2 . b1%37
c2—>3 . a1—>2) a1—>2 A b1—>3}
= »71*71(3)
\72*71(8) _ jo*fl(S) U {a1—>2 . a1—>2 . b1—>3 _02—>3d3—>2 . eQ—)l}

Therefore the system of Fig. 3 is 1-synchronizable but not synchronizable.

XX:15

XX:16

Synchronizability of Communicating Finite State Machines is not Decidable

1,12 | 1p1—3 7p1—3
- —0O"—0O—0O P—(O——0)
702—>3 ?02—>3
?a1~>2 m ?a1%2 m ?d3%2 /\ 762%1
!C2—>3
?a1~>2 [CQ~>3 7bla3
9,12 2 73—2 : 1432
Py a <) ’d Q
1c23 70172 Q Q

Figure 3 1-synchronizability does not imply synchronizability when processes communicate via
mailboxes.

	Introduction
	Preliminaries
	Undecidability of Synchronizability
	The case of oriented rings
	Extensions
	Proof of Lemma 4
	Omitted Proofs of Section 4
	Proof of Lemma 12
	Proof of Lemma 13
	Proof of Theorem 17

	1-Synchronizability Does not Implie Synchronizability for Communications with Mailboxes

