
HAL Id: hal-01474718
https://hal.science/hal-01474718v1

Preprint submitted on 23 Feb 2017 (v1), last revised 1 Sep 2017 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Slow to fast infinitely extended reservoirs for the
symmetric exclusion process with long jumps
Cedric Bernardin, Patricia Goncalves, Byron Oviedo Jimenez

To cite this version:
Cedric Bernardin, Patricia Goncalves, Byron Oviedo Jimenez. Slow to fast infinitely extended reser-
voirs for the symmetric exclusion process with long jumps. 2017. �hal-01474718v1�

https://hal.science/hal-01474718v1
https://hal.archives-ouvertes.fr


SLOW TO FAST INFINITELY EXTENDED RESERVOIRS FOR THE SYMMETRIC
EXCLUSION PROCESS WITH LONG JUMPS

CÉDRIC BERNARDIN, P. GONÇALVES, AND B. JIMENEZ OVIEDO

ABSTRACT. We consider an exclusion process with long jumps in the boxΛN = {1, . . . , N−
1}, for N ≥ 2, in contact with infinitely extended reservoirs on its left and on its right.
The jump rate is described by a transition probability p(·) which is symmetric, with in-
finite support but with finite variance. The reservoirs add or remove particles with rate
proportional to κN−θ , where κ > 0 and θ ∈ R. If θ > 0 (resp. θ < 0) the reservoirs
add and remove fast (resp. slowly) particles in the bulk. According to the value of θ
we prove that the time evolution of the spatial density of particles is described by some
reaction-diffusion equations with various boundary conditions.

1. INTRODUCTION

The exclusion process is an interacting particle system introduced in the mathemat-
ical literature during the seventies by Frank Spitzer [14]. Despite the simplicity of its
dynamics it captures the main features of more realistic diffusive systems driven out
of equilibrium [12], [13], [15]. It consists in a collection of continuous-time random
walks evolving on the lattice Z whose dynamics can be described as follows. A particle
at the site x waits an exponential time after which it jumps to a site x + y with prob-
ability p(y). If, however, if x + y is already occupied, the jump is suppressed and the
clock is reset.

Recently a series of work have been devoted to the study of the nearest-neighbor
exclusion process whose dynamics is perturbed by the presence of a slow bond, a slow
site or by slow boundary effects [5, 6, 1]. The behavior of the system is then strongly
affected and new boundary conditions may be derived at the macroscopic level. On
the other hand it is known that the presence of long jumps, in particular heavy tailed
long jumps, have a drastic effect on the macroscopic behavior and critical exponents of
the system [2, 7, 8]. In this work, we propose to mix these two interesting features by
considering the symmetric exclusion process with long jumps in contact with extended
reservoirs. The coupling with the reservoirs is regulated by a certain power θ of a
scaling parameter which is the inverse of the size system N →∞. This question has
been addressed in a recent paper [1] in the case of the nearest-neighbor exclusion
process for a positive power θ and with finite reservoirs, in fact one at each end point.
Here we consider the case where the jumps probability transition p(z) ∼ |z|−1−γ has
an infinite support and the power θ has an arbitrary sign, so that the boundary effects
can be very strong (fast) or very weak (slow). Observe that since we are dealing with
system with long jumps the reservoirs we use have to be infinitely extended in order
to avoid some truncation procedure to define the dynamics [16]. In this paper we will
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focus only on the case γ > 2, so that p(·) has a finite variance, postponing the study of
the case γ≤ 2 for future works.

The problem we address in this paper is to characterize the hydrodynamic behavior
of the process described above, i.e., to deduce the macroscopic behavior of the system
from the microscopic interaction among particles and to analyze the effect of slowing
down or fasting up the interaction with the reservoirs, by increasing or decreasing the
value of θ , at the level of the macroscopic profiles of the density. Usually the charac-
terization of the hydrodynamic limit is formulated in terms of a weak solution of some
partial differential equation, called the hydrodynamic equation. Depending on the in-
tensity of the coupling with the reservoirs we will observe a phase transition for profiles
which are solutions of the hydrodynamic equation which consists on reaction-diffusion
equations with different types of boundary conditions, depending on the range of the
parameter θ .

We extend the results for the nearest neighbor symmetric simple exclusion process
with slow boundaries that was studied in [1] by considering long jumps, infinitely ex-
tended reservoirs and also fast reservoirs. In the case θ ≥ 0 (slow reservoirs) we recover
a similar hydrodynamical behavior for our model since we imposed that the probability
transition rate to be symmetric and with finite variance. If one of these conditions is
violated then the macroscopic behavior of the system is different. In the case where we
drop the hypothesis that p(·) is symmetric, then there is a drift in the microscopic sys-
tem which appears at the macroscopic level as the heat equation with a transport term
and if drop the finite variance condition, then we expect to have the usual laplacian for
the case p(z) ∼ |z|−1−γ with γ = 2 and a fractional operator when γ ∈ (1, 2). We leave
this problem for a future work.

When θ ranges from −∞ to +∞, the model produces five different macroscopic
phases 1, depending on the value of the parameter θ . If θ ∈ (2 − γ, 1), the bound-
ary interactions are not slowed or fasted enough in order to change the macroscopic
behavior of the system so that we observe exactly the same behavior as in the case
θ = 0 ∈ (2− γ, 1). The hydrodynamic equation in this case is the heat equation with
Dirichlet boundary conditions. If θ = 1, the reservoirs are slowed enough that we ob-
tain the heat equation but with Robin boundary conditions. For θ ∈ (1,∞), the reser-
voirs are sufficiently slowed so that we get the heat equation with Neumann boundary
conditions. If θ = 2 − γ, the reservoirs are fasted enough that we obtain the heat
equation with a singular reaction term at the boundaries but with Dirichlet boundary
conditions. If θ < 2−γ, the reservoirs are so fasted that the diffusion part of the motion
disappears and that only the reaction term survives at the macroscopic level. The two
cases θ = 1 and θ = 2−γ correspond to a critical behavior connecting macroscopically
two different regimes (Dirichlet boundary conditions to Neumann boundary conditions
for θ = 1 and Reaction to Diffusion equation for θ = 2− γ). Once the form of the hy-
drodynamic equation is obtained, it is of interest to study its stationary solution which
provides the density profile in the stationary state in the thermodynamic limit. In par-
ticular for θ ≤ 2− γ the density profiles are non linear and have nice properties (see
Figure 3).

1In [1] only three phases were obtained and only the case θ ≥ 0 was studied. The two new phases
appearing here are due not only to the fact that we consider also a negative power θ but also on the fact that
the system has long jumps. Without long jumps, even with θ < 0, the two new phases would be absent for
a nearest-neighbor exclusion process.
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The paper is organized as follows. In Section 2.1 we describe precisely the model and
we state the main result. In Section 2.2 we present the hydrodynamic equations and we
claim the Hydrodynamic Limit and the main idea of its proof. In order to give an intu-
ition for getting the different boundary conditions, we present in Section 3 the heuris-
tics for obtaining the weak solutions of the corresponding partial differential equations.
This result is rigorously proved in Section 7. We prove tightness in Section 4. In Section
5, we prove the Replacement Lemma and some auxiliary results. In Section 6 we estab-
lish the energy estimates. We added the Appendix A in which we prove the uniqueness
of weak solutions of the hydrodynamics equations and the Appendix B which contains
computations involving the generator of the dynamics.

2. STATEMENT OF RESULTS

2.1. The model. For N ≥ 2 let ΛN = {1, . . . , N − 1} to which we call the bulk. The
exclusion process in contact with reservoirs is a Markov process {ηt : t ≥ 0} with state
space ΩN := {0, 1}ΛN . The configurations of the state space ΩN are denoted by η, so
that for x ∈ ΛN , η(x) = 0 means that the site x is vacant while η(x) = 1 means that
the site x is occupied. Now, we explain the dynamics of this model and we start by
describing the conditions on the jump rate. For that purpose, let p : Z → [0, 1] be a
translation invariant transition probability which is symmetric, that is, for any z ∈ Z,
p(z) = p(−z) and with finite variance, that is σ2 :=

∑

z∈Z z2p(z)<∞. Note that since
p(·) is symmetric it is mean zero, that is:

∑

z∈Z zp(z) = 0. We denote m =
∑

z≥1 zp(z).

As an example we consider p(·) given by p(0) = 0 and p(z) =
cγ
|z|γ+1

, for z 6= 0, where

cγ is a normalizing constant and γ > 2, so that p(·) has finite variance. For simplicity
of the presentation we stick to this choice of p(·) along the article, but we note that our
results are true in the more general setting where we assume p(·) to be as above.

We consider the process in contact with infinitely many stochastic reservoirs at all
the negative integer sites and at all the integer sites z ≥ N . We fix four parameters
α,β ∈ (0,1), κ > 0 and θ ∈ R, so that particles can get into (resp. exit) the bulk of the
system from any boundary site at rate ακ/Nθ p(z) (resp. (1−α)κ/Nθ p(z)), where z is
the jump size (see Figure 1).

The stochastic reservoir at the right acts in the same way as the left reservoir but
in the intensity we replace α by β . The dynamics of the process is defined as follows.
We start with the bulk dynamics. Each pair of sites of the bulk {x , y} ⊂ ΛN carries a
Poisson process of intensity one. The Poisson processes associated to different bonds
are independent. If for the configuration η, the clock associated to the bound {x , y}
rings, then we exchange the values ηx and ηy with rate p(y − x)/2. Now we explain
the dynamics at the boundary. Each pair of sites {x , y} with x ∈ Z− and y ∈ ΛN carries
a Poisson process of intensity one all being independent. If for the configuration η, the
clock associated to the bound {x , y} rings, then we change the values ηy into 1− ηy
with rate κ

Nθ p(y − x) [(1− α)ηy + α(1− ηy)]. At the right boundary the dynamics is
similar but instead of α the intensity is given by β . Observe that the reservoirs add and
remove particles on all the sites of the bulk ΛN , and not only at the boundaries, but
with rates which decrease as the distance from the corresponding reservoir increases.
We can interpret the dynamics of the reservoirs in two different ways as follows. In
the first case, we add to the bulk infinitely many reservoirs at all negative sites and at
all sites y ≥ N . Then particles can get into (resp. get out from) the bulk from the left
reservoir at rate ακ/Nθ p(z) (resp. (1− α)κ/Nθ p(z)) where z is the size of the jump.
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x y N0

Left reservoir Right reservoir

p(y − x)
α κ

Nθ p(·) (1− β) κNθ p(·)

FIGURE 1. Exclusion process with long jumps and infinitely extended reservoirs.

The right reservoir acts in the same way, except that we replace α by β in the jump
rates given above. In the second case we can consider that particles can be created
(resp. annihilated) at all the sites x in the bulk with one of the rates r−N (x/N)ακ/n

θ

or r+N (x/N)βκ/n
θ (resp. r−N (x/N)(1−α)κ/n

θ or r+N (x/N)(1− β)κ/n
θ ) where r±N are

given in (3.3).

The infinitesimal generator of the process is given by

LN = L0
N + L r

N + L`N , (2.1)

where its action on functions f : ΩN → R is

(L0
N f )(η) =

1

2

∑

x ,y∈ΛN

p(x − y)[ f (σx ,yη)− f (η)],

(L`N f )(η) =
κ

Nθ

∑

x∈ΛN
y≤0

p(x − y)cx(η;α)[ f (σxη)− f (η)],

(L r
N f )(η) =

κ

Nθ

∑

x∈ΛN
y≥N

p(x − y)cx(η;β)[ f (σxη)− f (η)],

(2.2)

and

(σx ,yη)z =







ηz , z 6= x , y,

ηy , z = x ,

ηx , z = y
, (σxη)z =

¨

ηz , z 6= x ,

1−ηx , z = x .
(2.3)

Above, for a function ϕ : [0,1]→ R, we used the notation

cx(η;ϕ(·)) :=
�

ηx

�

1−ϕ( x
N )
�

+ (1−ηx)ϕ(
x
N )
�

. (2.4)

We consider the Markov process speeded up in the time scale Θ(N) and we use the
notation ηN (t) := η(tΘ(N)), so that (ηN (t))t≥0 has infinitesimal generator Θ(N)LN .
Although ηN (t) depends on α, β and θ , we shall omit these index in order to simplify
notation.

2.2. Hydrodynamic equations. From now on up to the rest of this article we fix a finite
time horizon [0, T]. To properly state the hydrodynamic limit, we need to introduce
some notations and definitions. We denote by 〈·, ·〉µ (resp. ‖ · ‖L2(µ)) the inner product
(resp. the norm) in L2([0, 1]) with respect to the measure µ defined in [0,1] and
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when µ is the Lebesgue measure we simply write 〈·, ·〉 and ‖ · ‖L2 for the corresponding
norm. For an interval I in R and integers m and n, we denote by Cm,n([0, T] × I )
the set of functions defined on [0, T] × I that are m times differentiable on the first
variable and n times differentiable on the second variable. An index on a function will
always denote a fixed variable, not a derivative. For example, Gs(q) means G(s, q).
The derivative of G ∈ Cm,n([0, T]×I ) will be denoted by ∂sG (first variable) and ∂qG
(second variable). We shall write ∆G for ∂ 2

q G. We also consider the set Cm,n
c ([0, T]×

[0, 1]) of functions G ∈ Cm,n([0, T]×[0,1]) such that Gs has a compact support included
in (0,1) for any time s and, we denote by Cm

c (0, 1) (resp. C∞c (0,1)) the set of all m
continuously differentiable (resp. smooth) real-valued functions defined on (0, 1) with
compact support. The set C∞([0,1]) denotes the set of restrictions of smooth functions
on R to the interval [0,1]. The supremum norm is denoted by ‖ · ‖∞.

The semi inner-product 〈·, ·〉1 is defined on the set C∞([0,1]) by

〈G, H〉1 =
∫ 1

0

(∂qG)(q) (∂qH)(q) dq. (2.5)

The corresponding semi-norm is denoted by ‖ · ‖1.

Definition 2.1. The Sobolev space H 1 on [0,1] is the Hilbert space defined as the com-
pletion of C∞([0,1]) for the norm

‖ · ‖2
H 1 := ‖ · ‖2

L2 + ‖ · ‖2
1.

Its elements elements coincide a.e. with continuous functions. The completion of C∞c (0, 1)
for this norm is denoted byH 1

0 . This is a Hilbert space whose elements coincide a.e. with
continuous functions vanishing at 0 and 1. On H 1

0 , the two norms ‖ · ‖H 1 and ‖ · ‖1 are
equivalent. The space L2(0, T ;H 1) is the set of measurable functions f : [0, T] → H 1

such that
∫ T

0

‖ fs‖2
H 1 ds <∞.

The space L2(0, T ;H 1
0 ) is defined similarly.

We can now give the definition of the weak solutions of the hydrodynamic equations
that will be derived in this paper.

Definition 2.2. Let σ̂ ≥ 0 and κ̂ ≥ 0 be some parameters. Let g(·) : [0,1]→ [0,1] be
a measurable function. We say that ρ : [0, T]× [0,1]→ [0, 1] is a weak solution of the
reaction-diffusion equation with inhomogeneous Dirichlet boundary conditions











∂tρt(q) =
σ̂2

2 ∆ρt(q) + κ̂
¦

α−ρt (q)
qγ + β−ρt (q)

(1−q)γ

©

, (t, q) ∈ [0, T]× (0, 1),

ρt(0) = α, ρt(1) = β , t ∈ [0, T],
ρ0(·) = g(·),

(2.6)

if the following three conditions hold:

1. ρ ∈ L2(0, T ;H 1) if σ̂ > 0 and
∫ T

0

∫ 1

0

¦

(α−ρt (q))2

qγ + (β−ρt (q))2

(1−q)γ

©

dq d t <∞ if κ̂ > 0,
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2. ρ satisfies the weak formulation:

FRD(t,ρ, G, g) :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
� σ̂2

2
∆+ ∂s

�

Gs(q) ds dq

− κ̂
∫ t

0

∫ 1

0

Gs(q)
�

α−ρs(q)
qγ

+
β −ρs(q)
(1− q)γ

�

ds dq = 0,

(2.7)

for all t ∈ [0, T] and any function G ∈ C1,2
c ([0, T]× [0, 1]),

3. if σ̂ > 0 then ρt(0) = α, ρt(1) = β for all t ∈ [0, T].

Remark 2.3. Observe that in the case σ̂ > 0 and κ̂ = 0 we recover the heat equation
with Dirichlet inhomogeneous boundary conditions. If σ̂ = 0 the equation does not have
a diffusion part.

Definition 2.4. Let σ̂ > 0 and m̂ ≥ 0 be some parameters. Let g : [0,1]→ [0,1] be a
measurable function. We say that ρ : [0, T] × [0, 1] → [0, 1] is a weak solution of the
heat equation with Robin boundary conditions







∂tρt(q) =
σ̂2

2 ∆ρt(q), (t, q) ∈ [0, T]× (0, 1),
∂qρt(0) =

2m̂
σ̂2 (ρt(0)−α), ∂qρt(1) =

2m̂
σ̂2 (β −ρt(1)), t ∈ [0, T]

ρ0(·) = g(·),
(2.8)

if the following three conditions hold:

1. ρ ∈ L2(0, T ;H 1),
2. ρ satisfies the weak formulation:

FRob(t,ρ, G, g) :=

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

g(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
� σ̂2

2
∆+ ∂s

�

Gs(q) ds dq+
σ̂2

2

∫ t

0

{ρs(1)∂qGs(1)−ρs(0)∂qGs(0)} ds

− m̂

∫ t

0

{Gs(0)(α−ρs(0)) + Gs(1)(β −ρs(1))} ds = 0,

(2.9)

for all t ∈ [0, T], any function G ∈ C1,2([0, T]× [0,1]).

Remark 2.5. Observe that in the case m̂ = 0 the PDE above is the heat equation with
Neumann boundary conditions.

2.3. Hydrodynamic Limit. Let M+ be the space of positive measures on [0,1] with
total mass bounded by 1 equipped with the weak topology. For any configuration η ∈
ΩN we define the empirical measure πN (η, dq) on [0,1] by

πN (η, dq) =
1

N − 1

∑

x∈ΛN

ηxδ x
N
(dq) , (2.10)

where δa is a Dirac mass on a ∈ [0,1], and

πN
t (η, dq) := πN (ηN (t), dq).
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Fix T > 0 and θ ∈ R. We denote by PµN
the probability measure in the Skorohod

space D([0, T],ΩN ) induced by the Markov process (ηN (t))t≥0 and the initial prob-
ability measure µN and we denote by EµN

the expectation with respect to PµN
. Let

{QN}N≥1 be the sequence of probability measures on D([0, T],M+) induced by the
Markov process {πN

t }t≥0 and by PµN
.

Let ρ0 : [0,1]→ [0, 1] be a measurable function. We say that a sequence of prob-
ability measures {µN}N≥1 in ΩN is associated to the profile ρ0(·) if for any continuous
function G : [0,1]→ R and every δ > 0

lim
N→∞

µN

 

η ∈ ΩN :

�

�

�

�

�

1
N

∑

x∈ΛN

G
�

x
N

�

ηx −
∫ 1

0

G(q)ρ0(q)dq

�

�

�

�

�

> δ

!

= 0. (2.11)

The main result of this article is summarized in the following theorem (see Figure
2).

Theorem 2.6. Let g : [0, 1] → [0,1] be a measurable function and let {µN}N≥1 be a
sequence of probability measures in ΩN associated to g(·). Then, for any 0≤ t ≤ T,

lim
N→∞
PµN

�

ηN
· ∈ D([0, T],ΩN ) :

�

�

�

�

�

1
N

∑

x∈ΛN

G
�

x
N

�

ηN
x (t)−

∫ 1

0

G(q)ρt(q)dq

�

�

�

�

�

> δ
�

= 0,

where the time scale is given by

Θ(N) =

¨

N2, if θ ≥ 2− γ,

Nγ+θ , if θ < 2− γ,
(2.12)

and ρt(·) is the unique weak solution of :
• (2.6) with σ̂ = 0 and κ̂= κcγγ

−1, if θ < 2− γ;
• (2.6) with σ̂ = σ and κ̂= κcγγ

−1, if θ = 2− γ;
• (2.6) with σ̂ = σ and κ̂= 0, if θ ∈ (2− γ, 1);
• (2.8) with σ̂ = σ and m̂= mκ, if θ = 1;
• (2.8) with σ̂ = σ and m̂= 0, if θ ∈ (1,∞).

It is not always possible to write fully explicit expressions for the solutions of these
hydrodynamic equations. The form of the corresponding stationary solutions is of in-
terest since the latter are expected to describe, in general, the mean density profile in
the non-equilibrium stationary state of the microscopic system in the thermodynamic
limit N →∞. Observe that this is not a trivial fact since it requires to exchange the
limits t →∞ with N →∞ (and for θ > 1 this is for example false, see below).

The stationary solutions of the hydrodynamic limits in the θ > 2− γ case are stan-
dard. On the other hand, the form and properties of the stationary solutions in the
θ ≤ 2 − γ case are original and more tricky to obtain in the θ = 2 − γ case. This
problem is studied in more details in [9]. Here we only present some graphs of the
stationary solutions and refer the interested reader to [9] for a complete mathematical
treatment.

For θ ∈ (2−γ, 1) (heat equation with Dirichlet boundary conditions) the stationary
solution is the linear profile connecting α at 0 to β at 1. For θ = 1 (heat equation with
Robin boundary conditions) the profile is still linear but the values at the boundaries
are different. Observe that if κ→ 0 these values converge to α+β

2 so that the profile be-
comes flat equal to α+β

2 . For θ > 1 (heat equation with Neumann boundary conditions)

the stationary solution is constant equal to
∫ 1

0 g(q)dq where g(·) is the initial condition.
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θ

γθ = 0,γ= 2

θ = 1,γ= 2

Heat eq. with reaction term
&

Dirichlet b.c.

Heat eq. with Robin b.c.

Heat eq. with Neumann b.c.

Heat eq. with Dirichlet b.c.

Reaction eq. with Dirichlet b.c.

θ = 2− γ

FIGURE 2. The five different hydrodynamic regimes in terms of γ and θ .

In fact, for θ > 1, we expect that if we compute directly the stationary profile in the
non-equilibrium stationary state of the microscopic system in the thermodynamic limit,
the stationary profile will be flat with the value (α+β)/2. This value is therefore mem-
orized in the form of the hydrodynamic limits for θ = 1, despite the fact that it has been
forgotten in the hydrodynamic limits for θ > 1. In the case θ < 2−γ (reaction-diffusion
equation without diffusive part) the stationary profile is fully explicit and given by V0(q)

V1(q)
where

V0(q) = αq−γ + β(1− q)−γ, V1(q) = q−γ + (1− q)−γ. (2.13)

Observe that this profile is increasing, non-linear, convex on (0, 1/2) and concave on
(1/2,1) and connects α at 0 to β at 1. At the boundaries the profile is very flat. In
[9] it is proved that these properties remain valid for the stationary solution of the
hydrodynamic equation in the θ = 2− γ case.

The proof of Theorem 2.6 follows the usual approach of convergence in distribution
of stochastic processes. First we prove tightness of the sequence {QN}N≥1 and then we
prove uniqueness of the limiting point Q. These two results combined give the conver-
gence of {QN}N≥1 to Q as N →∞. In order to characterize the limiting point Q, we
prove that all limiting points of the sequence {QN}N≥1 are concentrated on trajectories
of measures that are absolutely continuous with respect to the Lebesgue measure and
whose density ρt(q) is a weak solution of the corresponding hydrodynamic equation
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θ > 1

θ = 1

2− γ < θ < 1

θ = 2− γ

θ < 2− γ

1
20 1

β

α

α+β
2

(α+β)σ2+2αmκ
2(mκ+σ2)

(α+β)σ2+2βmκ
2(mκ+σ2)

FIGURE 3. Profiles of the stationary solution of the hydrodynamic
equations according to the value of θ .

depending on the value of θ . From the uniqueness of the weak solutions of these equa-
tions, which is proved in Appendix A, we conclude that {QN}N≥1 has a unique limiting
point Q.

Notations: We write f (x)® g(x) if there exists a constant C independent of x such
that f (x) ≤ C g(x) for every x . We will also write f (x) = O (g(x)) if the condition
| f (x)|® |g(x)| is satisfied. Sometimes, in order to stress the dependence of a constant
C on some parameter a, we write C(a).

3. HEURISTICS FOR THE HYDRODYNAMIC EQUATIONS

In this section we give the main ideas which are behind the identification of limit
points as weak solutions of the partial differential equations given in Section 2.2. In
Section 4, we show that the sequence {QN}N≥1 is tight and in Appendix 7 we prove
that all limiting points of the sequence {QN}N≥1 are concentrated on trajectories of
measures that are absolutely continuous with respect to the Lebesgue measure, that
is πt(dq) = ρt(q)dq. Now we argue that the density ρt(q) is a weak solution of the
corresponding hydrodynamic equation for each regime of θ . The precise proof of this
result is given ahead in Proposition 7.1.

The identification of the density ρt(q) as a weak solution of the hydrodynamic equa-
tion is obtained by using auxiliary martingales. For that purpose, and to make the ex-
position simpler, we fix a function G : [0,1]→ R which does not depend on time and
is two times continuously differentiable. If θ < 1 we will assume further that it has
a compact support included in (0,1) and for θ ≥ 1 we assume that it has a compact
support strictly contained in [0, 1] so that G has a good decay at infinity. In the last
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case G can take non-zero values at 0 and 1. We know by Dynkin’s formula that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

Θ(N)LN 〈πN
s , G〉 ds, (3.1)

is a martingale with respect to the natural filtration {Ft}t≥0, where for each t ≥ 0,
Ft := σ(η(s) : s < t). Above the notation




πN
s , G

�

represents the integral of G with
respect the measure πN

s . This notation should not be mistaken with the notation used
for the inner product in L2([0,1]). A simple computation, based on (4.9) and the
discussion after this equation, shows that the EµN

�

�

M N
t (G)

�2�

vanishes as N → ∞.
Now we look at the integral term in (3.1). A simple computation shows that

∫ t

0

Θ(N)LN (〈πN
s , G〉) ds =

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

LN G( x
N )η

N
x (s) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑

x∈ΛN

(Gr−N )(
x
N )(α−η

N
x (s)) ds

+
κΘ(N)

(N − 1)Nθ

∫ t

0

∑

x∈ΛN

(Gr+N )(
x
N )(β −η

N
x (s) ds,

(3.2)

where for all x ∈ ΛN

(LN G)( x
N ) =

∑

y∈ΛN

p(y − x)
�

G( y
N )− G( x

N )
�

,

r−N (
x
N ) =

∑

y≥x

p(y), r+N (
x
N ) =

∑

y≤x−N

p(y).
(3.3)

Now, we want to extend the first sum in (3.2) to all the integers. For that purpose
we extend the function G to R in such a way that it remains two times continuously
differentiable. By the definition of LN , we get that

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

LN G( x
N )η

N
x (s) ds =

Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

(KN G)( x
N )η

N
x (s) ds

−
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

∑

y≤0

�

G( y
N )− G( x

N )
�

p(x − y)ηN
x (s) ds

−
Θ(N)

N − 1

∫ t

0

∑

x∈ΛN

∑

y≥N

�

G( y
N )− G( x

N )
�

p(x − y)ηN
x (s) ds,

(3.4)

where
(KN G)( x

N ) =
∑

y∈Z
p(y − x)

�

G( y
N )− G( x

N )
�

. (3.5)

Now, we are going to analyze all the terms in (3.4) and the boundary terms in (3.2)
for the different regimes of θ . Thus, we will be able to see how the different bound-
ary conditions appear on the hydrodynamic equations given in Section 2.2 from the
underlying particle system.

Let us first observe that, for any a ∈ (0,1), uniformly in u ∈ (a, 1− a), we have that

Nγr−N ([uN])→ cγγ
−1u−γ := r−(u), Nγr+N ([uN])→ cγγ

−1(1− u)−γ := r+(u) (3.6)

as N →∞.
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3.1. The case θ < 2−γ. In this regime we take initially a function G : (0,1)→ R two
times continuously differentiable and with compact support in (0, 1) (so that we can
choose an extension by 0 outside of the support of G).

Now we start by analyzing the first term in (3.4). Since Θ(N) = Nγ+θ , a simple
computation, shows that the first term in (3.4) vanishes for θ < 2 − γ. Indeed, by a
Taylor expansion on G and the fact that p(·) is mean zero, we have that

Nγ+θ
∑

y∈Z
(G( y+x

N )− G( x
N ))p(y)

is of same order as
Nγ+θ−2G′′( x

N )
∑

y∈Z
y2p(y)

and since θ < 2− γ last expression vanishes as N →∞.
Moreover, a simple computation shows that the second and third terms in (3.4)

vanish as N → ∞, since Θ(N) = Nγ+θ and θ < 2 − γ. Indeed we can bound from
above, for example the second term in (3.4) by tNθ times

1

N − 1

∑

x∈ΛN

Nγr−N (
x
N ) |G(

x
N )|

because G vanishes outside (0, 1) and |ηN
x (s)| ≤ 1 for all s > 0. Since θ < 0 and that the

previous sum converges to the (finite) integral of |G|r− on (0,1), by (3.6), the previous
display vanishes as N →∞. Now we look at the boundary terms in (3.2). The second
term in (3.2) can be written, for the choice of Θ(N) = Nγ+θ , as:

κNγ

N − 1

∫ t

0

∑

x∈ΛN

G
�

x
N

�

r−N (
x
N )(α−η

N
x (s)) ds

which can be replaced, thanks to (3.6) and the fact that G has compact support, by

κ

∫ t

0

〈πN
s , Gr−〉 ds→ κ

∫ t

0

∫ 1

0

G(q)r−(q)ρs(q)dq ds

as N →∞. The last convergence holds because G has a compact support included in
(0, 1) so that Gr− is a continuous function. For the remaining term we can perform
exactly the same analysis.

3.2. The case θ = 2 − γ. In this case, and as above, we take initially a function G :
(0, 1)→ R two times continuously differentiable and with compact support in (0, 1) (so
that we can choose an extension by 0 outside of its support). In this case, since Θ(N) =
N2, by Lemma 3.2, which we prove below, the first term in (3.4) can be replaced, for
N sufficiently big, by

1

N − 1

∫ t

0

∑

x∈ΛN

σ2

2
∆G( x

N )η
N
x (s) ds.

Moreover, a computation similar to the one above shows that the second and third
terms in (3.4) vanish as N →∞ (recall that Θ(N) = N2 and γ > 2). Finally, the first
term in (3.2) can be rewritten as

κNγ

(N − 1)

∫ t

0

∑

x∈ΛN

(Gr−N )(
x
N ) (α−η

N
x (s)) ds
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which can be replaced, thanks to (3.6) and the fact that G has compact support, by

κ

∫ t

0

〈πN
s , Gr−〉 ds→ κ

∫ t

0

∫ 1

0

G(q)r−(q)ρs(q)dq ds

as N →∞ because Gr− is a continuous function. The same computation can be done
for the remaining term.

3.3. The case θ ∈ (2− γ, 1). In this case we take again a function G : (0,1)→ R two
times continuously differentiable and with compact support in (0, 1) and extend it by
0 outside of (0,1). Here the situation is different from the previous ones since the last
two terms in (3.2) vanish as N →∞, as a consequence of Lemma 5.6. But, as before,
the second and third terms in (3.4) also vanish because, for example, the second term
in (3.4)

N2

N − 1

∫ t

0

∑

x∈ΛN

G( x
N )r

−
N (

x
N )η

N
x (s) ds

can be bounded from above by a constant times tN2−γ times a sum converging to the
integral of |G|r− on (0, 1). The estimate of the third term is analogous. Therefore since
γ > 2, both vanish as N →∞.

Remark 3.1. Observe that in the three previous cases, we imposed to G to have a compact
support included in (0,1). This was used in order to extend smoothly the function G by 0
outside of (0,1) (the condition G(0) = G(1) = 0 would not have been sufficient) and this
was fundamental to ensure that the functions Gr−, Gr+ do not have singularities at the
boundaries. On the other hand, in the two next cases, it will be fundamental to consider
test functions G : [0,1] → R which are not necessarily 0 at the boundaries in order to
“see" the boundaries in the weak formulation.

3.4. The case θ = 1. In this case we consider an arbitrary function G : [0,1] → R
which is two times continuously differentiable and we extend it on R in a two times
continuously differentiable function with compact support. Its support strictly contains
[0, 1] since G can take non-zero values at 0 and 1. We start by looking at the terms
coming from the boundary, namely the two last terms in (3.2). Then, in the second
term of (3.2)(resp. the third term) we do at first a Taylor expansion on G and then we
replace ηx by the average −→η εN0 =

1
εN

∑εN
x=1ηx (resp. ηx by←−η εNN =

1
εN

∑N−1
x=N−1−εN ηx),

which can be done as a consequence of Lemma 5.7 as pointed out in Remark 5.8.
Moreover, note that

∑

x∈ΛN

r−N (
x
N ) −−−→N↑∞

∑

y≥1

yp(y) := m,
∑

x∈ΛN

r+N (
x
N ) −−−→N↑∞

∑

y≥1

yp(y) := m. (3.7)

Therefore, we can write the last two terms in (3.2) as

mκ

∫ t

0

{(α−←−η εN0 (sN2))G(0) + (β −−→η εNN (sN2))G(1)} ds,

plus lower-orders terms (with respect to N). Since (in some sense that we will see in
the proof of Proposition 7.1 in Section 7),

−→η εN0 (sN2) −−−→
N↑∞

ρs(0),
←−η εNN (sN2) −−−→

N↑∞
ρs(1)
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last term writes as

mκ

∫ t

0

{(α−ρs(0))G(0) + (β −ρs(1))G(1)} ds. (3.8)

Now we look at the remaining terms, namely, the two last terms in (3.4). Recall that
the function G has been extended into a two times continuously differentiable function
on R. By a Taylor expansion on G we can write those terms as

N

N − 1

∑

x∈ΛN

G′( x
N )Θ

−
x ηx(sN2)−

N

N − 1

∑

x∈ΛN

G′( x
N )Θ

+
x ηx(sN2) (3.9)

plus lower-order terms (with respect to N). Above for x ∈ ΛN ,

Θ−x =
∑

y≤0

(x − y)p(x − y) and Θ+x =
∑

y≥N

(y − x)p(x − y).

Note that
∑

x∈ΛN

Θ−x ® 1 and
1
N

∑

x∈ΛN

xΘ−x −−−→N→∞
0. (3.10)

Moreover, note that
∑

x∈ΛN

Θ−x =
∑

x∈ΛN

∑

y≥x

yp(y) −−−→
N↑∞

σ2

2 ,

∑

x∈ΛN

Θ+x =
∑

x∈ΛN

∑

y≥N−x

yp(y) −−−→
N↑∞

σ2

2 .
(3.11)

In order to prove the convergence of
∑

x∈ΛN
Θ−x (or of

∑

x∈ΛN
Θ+x in (3.11)) we use

Fubini’s theorem to get that

∑

x∈ΛN

Θ−x =
∑

y∈ΛN

y
∑

x=1

yp(y) +
∑

y≥N

∑

x∈ΛN

yp(y)

=
∑

y∈ΛN

y2p(y) + (N − 1)
∑

y≥N

yp(y),

and since γ > 2 the result follows. By another Taylor expansion on G we can write
(3.9) as

N

N − 1
G′(0)

∑

x∈ΛN

Θ−x ηx(sN2)−
N

N − 1
G′(1)

∑

x∈ΛN

Θ+x ηx(sN2) (3.12)

plus lower-order terms (with respect to N). Thanks to Lemma 5.7 we can replace in
the term on the left (resp. right) hand side of last expression ηx(sN2) by −→η εN0 (sN2)
(resp. ←−η εNN (sN2)). Therefore, (3.12) can be replaced, for N sufficiently big and then ε
sufficiently small, by

G′(0)σ
2

2
−→η εN0 (sN2)− G′(1)σ

2

2
←−η εNN (sN2).

Since (in some sense that we will see in the proof of Proposition 7.1 in Section 7), we
have that −→η εN0 (sN2) −−−→

N→∞
ρs(0) and←−η εNN (sN2) −−−→

N→∞
ρs(1), last term tends to

G′(0)σ
2

2 ρs(0)− G′(1)σ
2

2 ρs(1). (3.13)

Putting together (3.8) and (3.13) we see the boundary terms that appear at the right
hand side of (2.9).
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3.5. The case θ ∈ (1,∞). In this case we consider an arbitrary function G : [0, 1]→ R
which is two times continuously differentiable and we extend it on R in a two times
continuously differentiable function with compact support. Its support strictly contains
[0, 1] since G can take non-zero values at 0 and 1. The last two terms in (3.2) vanish,
as N →∞ since, we can bound, for example, the first term in (3.2) by a constant times

N1−θ
∑

x∈ΛN

r−N (
x
N ).

Since γ > 2 last expression vanishes if θ > 1. Thus, we only need to look at the
expression (3.4). Therefore, in order to see the boundaries terms that appear in (2.9),
we can use exactly the computations already done in the case θ = 1 from which we
obtain (3.13).

Now we prove the convergence to the Laplacian which was required above.

Lemma 3.2. Let G : R → R be a two times continuously differentiable function with
compact support. We have

limsup
N→∞

sup
x∈ΛN

�

�

�

�

�

N2
∑

y∈Z
(G( y+x

N )− G( x
N ))p(y)−

σ2

2
∆G( x

N )

�

�

�

�

�

= 0.

Proof. Let ε > 0 be fixed. We have that N2
∑

y∈Z(G(
x+y

N )− G( x
N ))p(y) is equal to

N2
∑

|y|≥εN

(G( x+y
N )− G( x

N ))p(y) + N2
∑

|y|<εN

(G( x+y
N )− G( x

N ))p(y). (3.14)

The first term in (3.14) goes to zero with N , since we have that
�

�

�

�

�

N2
∑

|y|≥εN

(G( x+y
N )− G( x

N ))p(y)

�

�

�

�

�

®
‖G‖∞N2

(εN)γ
.

On the second term of (3.14) we perform a Taylor expansion of G and we have that

N2
∑

|y|<εN

[G( x+y
N )− G( x

N )]p(y)

= N2
∑

|y|<εN

�

G′( x
N )

y
N +

1
2

G′′( x
N )(

y
N )

2
�

p(y),

plus lower-order terms (with respect to N). Now, we use the fact that p(·) is symmetric
to see that

∑

|y|<εN yp(y) = 0. Since p(·) has finite second moment,
∑

|y|<εN y2p(y)→
σ2 so that the proof ends. �

4. TIGHTNESS

In this section we prove that the sequence {QN}N≥1, defined in Section 2.3, is tight.

Proposition 4.1. The sequence of measures {QN}N≥1 is tight with respect to the Skorohod
topology of D([0, T],M+).

Proof. In order to prove the assertion, it is enough to show that, for all ε > 0

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

PµN

�

ηN
· ∈ D([0, T],ΩN ) :

�

�〈πN
τ+τ̄, G〉 − 〈πN

τ , G〉
�

�> ε
�

= 0, (4.1)

holds for any function G belonging to C([0, 1]). Here TT is the set of stopping times
bounded by T and we implicitly assume that all the stopping times are bounded by T ,
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thus, τ+ τ̄ should be read as (τ+ τ̄)∧ T . In fact it is enough to prove the assertion for
functions G in a dense subset of C([0, 1]), with respect to the uniform topology.

We split the proof according to two different regimes of θ , namely θ ≥ 1 and θ < 1.
When θ ≥ 1 we prove (4.1) directly for functions G ∈ C2([0, 1]) and we conclude that
the sequence is tight. When θ < 1, we prove (4.1) first for functions G ∈ C2

c (0, 1)
and then we extend it, by a L1 approximation procedure which is explained below, to
functions G ∈ C([0, 1]).

Recall from (3.1) that M N
t (G) is a martingale with respect to the natural filtration

{Ft}t≥0. In order to prove (4.1) it is enough to show that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

�

�

∫ τ+τ̄

τ

Θ(N)LN 〈πN
s , G〉ds

�

�

�

�

= 0 (4.2)

and
lim
δ→0

lim sup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

�

�

M N
τ (G)−M N

τ+τ̄(G)
�2�

= 0. (4.3)

Proof of (4.2): Given a function G, we claim that we can find a positive constant C :=
C(G,α,β ,γ,κ) such that

Θ(N)LN (〈πN
s , G〉)≤ C (4.4)

for any s ≤ T , which trivially implies (4.2). To prove it, we recall (3.2) and start to
prove that the last two terms of (3.2) are bounded. For example, the absolute value of
the second term at the right hand side of (3.2) is bounded from above by

∫ t

0

�

�

�

Θ(N)κ
(N − 1)Nθ

∑

x∈ΛN

(Gr−N )(
x
N )(α−η

N
x (s))

�

�

�ds. (4.5)

Now, for θ < 1, we use the fact that G ∈ C2
c (0, 1) and that |ηN

x (s)| ≤ 1 is bounded,
and we bound from above this last term by a constant times Θ(N)N−θ−γ. Using the
definition of Θ(N) it is easy to see, for θ < 2− γ and for 2− γ ≤ θ < 1, that (4.5) is
bounded from above by a constant. This proves (4.4) in the case θ < 1. In the case
θ ≥ 1, we use the fact that the sum in (4.5) is uniformly bounded in N to conclude
that (4.5) is bounded from above even if G does not have a compact support included
in (0, 1) . A similar argument can be done for the last term at the right hand side of
(3.2).

Now we need to bound the first term at the right hand side of (3.2). For θ < 1 we

use the fact that G ∈ C2
c (0, 1) so that

�

�

�

Θ(N)
N − 1

〈πN
s ,LN G〉

�

�

� is less or equal than

Θ(N)

N − 1

∑

x∈ΛN

|KN G( x
N )|+

Θ(N)

N − 1

∑

x∈ΛN

|G( x
N )|r

−
N

�

x
N

�

+
Θ(N)

N − 1

∑

x∈ΛN

|G( x
N )|r

+
N

�

x
N

�

. (4.6)

The two terms at the right hand side of the previous expression can be bounded from
above by a constant times Θ(N)Nθ−γ. It is clearly bounded in the case θ ≥ 2− γ since
thenΘ(N) = N2 (recall γ > 2). In the case θ < 2−γ, Θ(N) = Nθ+γ and thusΘ(N)Nθ−γ

is bounded. This together with Lemma 3.2 shows that
�

�

�

Θ(N)
N − 1

〈πN
s ,LN G〉

�

�

�≤ C ,

which proves the claim (4.4) in the case θ < 1. Now, in the case θ ≥ 1, since Θ(N) =
N2, we have that the first term at the right hand side of (3.2) is bounded from above
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by a constant times

N2

N − 1

∑

x∈ΛN

|KN G( x
N )|+

N2

N − 1

∑

x∈ΛN

∑

y≤0

�

�G( y
N )− G( x

N )
�

� p(x − y)

+
N2

N − 1

∑

x∈ΛN

∑

y≥N

�

�G( y
N )− G( x

N )
�

� p(x − y).

(4.7)

By the Mean Value Theorem, the two terms at the right hand side of the previous ex-
pression can be bounded from above by

‖G′‖∞
∑

x∈ΛN

∑

y≤0

|y − x |p(x − y)®
∑

x∈ΛN

1
xγ−1

(4.8)

which is finite since γ > 2. This together with Lemma 3.2 proves (4.4) in the case
θ ≥ 1.

Proof of (4.3): We know by Dynkin’s formula that

�

M N
t (G)

�2 −
∫ t

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds,

is a martingale with respect to the natural filtration {Ft}t≥0. From the computations
of Appendix B we get that the term inside the time integral in the previous display is
equal to

Θ(N)
(N − 1)2

∑

x<y∈ΛN

�

G
�

x
N

�

− G
� y

N

��2
p(x − y)(ηN

y (s)−η
N
x (s))

2

+
Θ(N)κ

Nθ (N − 1)2
∑

x∈ΛN

G2
�

x
N

�

r−N (
x
N )(α−η

N
x (s))(1− 2ηN

x (s))

+
Θ(N)κ

Nθ (N − 1)2
∑

x∈ΛN

G2
�

x
N

�

r+N (
x
N )(β −η

N
x (s))(1− 2ηN

x (s)).

Since Θ(N) ≤ N2 and G′ is bounded it is easy to see that the absolute value of the
previous display is bounded from above by a constant times

1
(N − 1)2

∑

x ,y∈ΛN

(x − y)2p(x − y) +
Θ(N)

Nθ (N − 1)2
∑

x∈ΛN

G2
�

x
N

�

�

r−N (
x
N ) + r+N (

x
N )
�

(4.9)

Since
∑

x ,y∈ΛN
(x− y)2p(x− y) = O (N) the first term in (4.9) is O (N−1). For the second

term at the right hand side of (4.9), we split the argument according to the cases θ ≥ 1
and θ < 1. First when θ ≥ 1, by using the fact that γ > 2 and G is bounded so that
the sum in that term is finite, and since Θ(N) = N2, we conclude that the term is
O (N−θ )≤ O (N−1). From this we obtain (4.3). Now if θ < 1, recall that G has compact
support and (3.6). We then write

Θ(N)
Nθ (N − 1)2

∑

x∈ΛN

G2
�

x
N

�

�

r−N (
x
N ) + r+N (

x
N )
�

=
Θ(N)

Nθ+γ(N − 1)
IN (G)
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where IN (G) is a Riemann sum converging to
∫ 1

0 G2(q)
�

r−(q)+ r+(q)
�

dq <∞. There-
fore the second term in (4.9) is of order Θ(N)N−1−θ−γ = O (N−1) by (2.12).

This ends the proof of tightness in the case θ ≥ 1, since C2([0,1]) is a dense subset
of C([0, 1]) with respect to the uniform topology. Nevertheless, for θ < 1, we have
proved (4.2) and (4.3), and thus (4.1), only for functions G ∈ C2

c (0, 1) and we need
to extend this result to functions in C([0,1]). To accomplish that, we take a function
G ∈ C([0, 1]) ⊂ L1([0, 1]), and we take a sequence of functions {Gk}k≥0 ∈ C2

c (0, 1)
converging to G with respect to the L1-norm as k→∞. Now, since the probability in
(4.1) is less or equal than

PµN

�

ηN
· ∈ D([0, T],ΩN ) :

�

�〈πN
τ+τ̄, Gk〉 − 〈πN

τ , Gk〉
�

�>
ε

2

�

+ PµN

�

ηN
· ∈ D([0, T],ΩN ) :

�

�〈πN
τ+τ̄, G − Gk〉 − 〈πN

τ , G − Gk〉
�

�>
ε

2

�

and since Gk has compact support, from the computation above, it remains only to
check that the last probability vanishes as N →∞ and then k→∞. For that purpose,
we use the fact that

�

�〈πN
τ+τ̄, G − Gk〉 − 〈πN

τ , G − Gk〉
�

�≤
2
N

∑

x∈ΛN

�

�(G − Gk)(
x
N )
�

� , (4.10)

and we use the estimate

1
N

∑

x∈ΛN

�

�(G − Gk)(
x
N )
�

�≤
∑

x∈ΛN

∫ (x+1)/N

x/N

�

�(G − Gk)(
x
N )− (G − Gk)(q)

�

� dq

+

∫ 1

0

|(G − Gk)(q)|dq

≤
1

N
‖(G − Gk)

′‖∞ +
∫ 1

0

|(G − Gk)(q)|dq.

We conclude the result by taking first the limsup in N →∞ and then in k→∞. �

5. REPLACEMENT LEMMAS AND AUXILIARY RESULTS

In this section we establish some technical results needed in the proof of the hydro-
dynamic limit. In what follows, we will suppose without loss of generality that α ≤ β .
Let h : [0, 1]→ [0,1] be a Lipschitz function such that α ≤ h(q) ≤ β , for all q ∈ [0,1].
Let νN

h(·) be the Bernoulli product measure on ΩN with marginals given by

νN
h(·){η : ηx = 1}= h

�

x
N

�

.

Given two functions f , g : ΩN → R and a probability measure µ on ΩN , we denote
here by 〈 f , g〉µ the scalar product between f and g in L2(ΩN ,µ), that is,

〈 f , g〉µ =
∫

ΩN

f (η)g(η) dµ.

The notation above should note be mistaken to the notation that we introduced in
Section 2.2. We denote by HN (µ|νN

h(·)) the relative entropy of a probability measure
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µ on ΩN with respect to the probability measure νN
h(·) on ΩN . It is easy to prove the

existence of a constant C0 := C0(α,β), such that

HN (µ|νN
h(·))≤ NC0. (5.1)

In fact, using the explicit formula for the entropy and the definition of the product
measure νN

h(·), we get that

H(µ|νN
h(·)) =

∑

η∈ΩN

µ(η) log

�

µ(η)
νN

h(·)(η)

�

≤
∑

η∈ΩN

µ(η) log

�

1
νN

h(·)(η)

�

≤ log

�

�

1
α∧ (1− β)

�N
�

∑

η∈ΩN

µ(η)≤ N log
�

1
α∧ (1− β)

�

≤ NC0.

5.1. Estimates on Dirichlet forms. For a probability measure µ on ΩN , x , y ∈ ΛN and
a density function f : ΩN → [0,∞) with respect to µ we introduce

Ix ,y(
p

f ,µ) :=

∫

ΩN

�
Æ

f (σx ,yη)−
Æ

f (η)
�2

dµ,

Iαx (
p

f ,µ) :=

∫

ΩN

cx(η;α)
�
Æ

f (σxη)−
Æ

f (η)
�2

dµ.

Then we define

DN (
p

f ,µ) := (D0
N + D`N + Dr

N )(
p

f ,µ)

where

D0
N (
p

f ,µ) :=
1

2

∑

x ,y∈ΛN

p(y − x) Ix ,y(
p

f ,µ), (5.2)

D`N (
p

f ,µ) :=
κ

Nθ

∑

x∈ΛN

∑

y≤0

p(y − x) Iαx (
p

f ,µ) =
κ

Nθ

∑

x∈ΛN

r−N (
x
N )I

α
x (
p

f ,µ) (5.3)

and Dr
N (
p

f ,µ) is the same as D`N (
p

f ,µ) but in Iαx (
p

f ,µ) the parameter α is replaced
by β and r−N (·) is replaced by r+N (·).

Our first goal is to express, for the measure νN
h(·), a relation between the Dirichlet

form defined by 〈LN

p

f ,
p

f 〉νN
h(·)

and DN (
p

f ,νN
h(·)). More precisely, we claim that for

any positive constant B, there exists a constant C > 0 such that

1
BN
〈LN

p

f ,
p

f 〉νN
h(·)
≤ −

1
4BN

DN (
p

f ,νN
h(·)) +

C
BN

∑

x ,y∈ΛN

p(y − x)
�

h( x
N )− h( y

N )
�2

+
Cκ

BN1+θ

∑

x∈ΛN

n
�

h( x
N )−α)

2r−N (
x
N ) +

�

h( x
N )− β

�2
r+N (

x
N )
o

.

(5.4)

Our aim is then to choose h(·) in order to minimize the error term, i.e. the two last
terms at the right hand side of the previous inequality.
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If h(·) is such that h(0) = α and h(1) = β , since it is assumed to be Lipschitz, we get
the estimate

N
B
〈LN

p

f ,
p

f 〉νN
h(·)
≤ −

N
4B

DN (
p

f ,νN
h(·)) +

C
B
σ2

+
Cκ

BN1+θ

∑

x∈ΛN

¦

x2r−N (
x
N ) +

�

x − N
�2

r+N (
x
N )
©

.
(5.5)

Moreover, if the function h(·) is such that h(0) = α and h(1) = β , Hölder of parameter
γ/2 at the boundaries and Lipschitz inside, then we have

N
B
〈LN

p

f ,
p

f 〉νN
h(·)
≤−

N
4B

DN (
p

f ,νN
h(·)) +

C
B
σ2 +

Cκ
BNγ+θ−2

. (5.6)

On the other hand if the function h(·) is constant, equal to α or to β , then we have

N
B
〈LN

p

f ,
p

f 〉να ≤ −
N
4B

DN (
p

f ,να) +
Cκ
B

N1−θ . (5.7)

In order to prove (5.4) we need some intermediate results. In what follows C is a
constant depending on α and β whose value can change from line to line.

Lemma 5.1. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation and c : η→ c(η) be a
positive local function. Let f be a density with respect to a probability measure µ on ΩN .
Then, we have that

¬

c(η)[
Æ

f (T (η))−
Æ

f (η)] ,
Æ

f (η)
¶

µ

≤ −
1
4

∫

c(η)
��
Æ

f (T (η))
�

−
�
Æ

f (η)
��2

dµ

+
1

16

∫

1
c(η)

�

c(η)− c(T (η))
µ(T (η))
µ(η)

�2
��
Æ

f (T (η))
�

+
�
Æ

f (η)
��2

dµ.

(5.8)

Proof. By writing the term at the left hand side of (5.8) as its half plus its half and
performing a change of variables η→ T (η) in one of them, we have that

∫

c(η)
�
Æ

f (T (η))−
Æ

f (η)
�
Æ

f (η) dµ

= −
1
2

∫

c(η)
�
Æ

f (T (η))−
Æ

f (η)
�2

dµ

+
1
2

∫

�
Æ

f (T (η))
�2
[c(η)− c(T (η))T (η)] dµ.

Repeating again the same argument, the second term at the right hand side of last
expression can be written as

1
4

∫

�
�
Æ

f (T (η))
�2
−
�
Æ

f (η)
�2�

[c(η)− c(T (η))T (η)] dµ.
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By Young’s inequality and the elementary equality a2− b2 = (a− b)(a+ b), last expres-
sion is bounded from above by

1
4

∫

c(η)
��
Æ

f (T (η))
�

−
�
Æ

f (η)
��2

dµ

+
1

16

∫

1
c(η)

�

c(η)− c(T (η))T (η)
�2 ��Æ

f (T (η))
�

+
�
Æ

f (η)
��2

dµ,

which finishes the proof. �

Lemma 5.2. There exists a constant C := C(h) such that for any N ≥ 1 and density f be
a density with respect to νN

h(·)

sup
x 6=y∈ΛN

∫

ΩN

f (σx ,yη) dνN
h(·)(η) ≤ C , sup

x∈ΛN

∫

ΩN

f (σxη) dνN
h(·)(η) ≤ C .

Proof. Let us prove only the first bound since the proof of the second one is similar. We
perform in the first integral above the change of variable ω = σx ,yη and we use that
uniformly in x , y ∈ ΛN and ω we have

θ x ,y(ω) =
νN

h(·)(σ
x ,yω)

νN
h(·)(ω)

= 1+O ( 1
N ).

By using the fact that f is a density it is easy to conclude. �

Now, let us look at some consequences of these lemmas. We start with the bulk
generator L0

N given in (2.2).

Corollary 5.3. There exists a constant C > 0 (independent of f and N) such that
¬

L0
N

p

f ,
p

f
¶

νN
h(·)

≤ −
1
4

D0
N (
p

f ,νN
h(·)) + C

∑

x ,y∈ΛN

p(y − x)
�

h( x
N )− h( y

N )
�2

for any density f with respect to νN
h(·).

Proof. To prove this we note that
¬

L0
N

p

f ,
p

f
¶

νN
h(·)

=
1
2

∑

x ,y∈ΛN

p(y − x)
¬�
Æ

f (σx ,yη)−
Æ

f (η)
�

,
Æ

f (η)
¶

νN
h(·)

.

Now, by Lemma 5.1 with c ≡ 1, T = σx ,y , and Lemma 5.2 last expression is bounded
from above by

−
1
4

D0
N (
p

f ,νN
h(·)) + C

∑

x ,y∈ΛN

p(y − x)
�

h
�

x
N

�

− h
� y

N

�

�2
,

because |θ x ,y(η)− 1|2 ® (h(x/N)− h(y/N))2. �

Now we look at the generators of the reservoirs given in (2.2).

Corollary 5.4. Let θ ∈ R be fixed. There exists a constant C > 0 (independent of f and
N) such that

〈L`N
p

f ,
p

f 〉νN
h(·)
≤ −

1
4

D`N (
p

f ,νN
h(·)) +

Cκ
Nθ

∑

x∈ΛN

r−N (
x
N )
�

h( x
N )−α

�2
,

〈L r
N

p

f ,
p

f 〉νN
h(·)
≤ −

1
4

Dr
N (
p

f ,νN
h(·)) +

Cκ
Nθ

∑

x∈ΛN

r+N (
x
N )
�

h( x
N )− β

�2
(5.9)
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for any density f with respect to νN
h(·).

Proof. We present the proof for the first inequality but we note that the proof of the
second one is analogous. First observe that

¬

L`N
p

f ,
p

f
¶

νN
h(·)

=
κ

Nθ

∑

x∈ΛN

∑

y≤0

p(y− x)
¬

cx(η;α)
�
Æ

f (σxη)−
Æ

f (η)
�

,
Æ

f (η)
¶

νN
h(·)

.

Now, by using Lemma 5.1 with c(η) = cx(η;α), T = σx and Lemma 5.2, last expression
is bounded from above by

−
1
4

D`N (
p

f ,νN
h(·)) +

Cκ
Nθ

∑

x∈ΛN

∑

y≤0

p(y − x)
�

h( x
N )−α

�2
.

�

From the two previous corollaries the claim (5.4) follows.

5.2. Replacement Lemmas.

Lemma 5.5. For any density f with respect to νN
h(·), any x ∈ ΛN and any positive constant

Ax , we have that

�

�

�




tαx , f
�

νN
h(·)

�

�

� ®
1
Ax

Iαx (
p

f ,νN
h(·)) + Ax + [h(

x
N )−α],

where tαx (η) = ηx −α. The same result holds if α is replaced by β .

Proof. By a simple computation we have that:

�

�

�




tαx , f
�

νN
h(·)

�

�

� ≤
1
2

�

�

�

�

∫

tαx (η)( f (η)− f (σxη)) dνN
h(·)

�

�

�

�

+
1
2

�

�

�

�

∫

[ f (σxη) + f (η)]t x(η) dνN
h(·)

�

�

�

�

, (5.10)

where σx is the flip given in (2.3). By Young’s inequality, using the fact that (a− b) =
(
p

a−
p

b)(
p

a+
p

b) for all a, b ≥ 0 and Lemma 5.2, the first term at the right side of
(5.10) is bounded from above, for any positive constant Ax , by

Ax

4

∫

(t x(η))2

cx(η;α)

��
Æ

f (σxη)
�

+
�
Æ

f (η)
��2

dνN
h(·) +

Iαx (
p

f ,νN
h(·))

4Ax

® Ax +
Iαx (
p

f ,νN
h(·))

Ax
.

Now, we look at the second therm at the right hand side of (5.10). By using the fact
that νN

h(·) is product and denoting by η̄ the configuration η removing its value at x so
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that (ηx , η̄) = η , we have that the second term at the right side of (5.10) is equal to

1
2

�

�

∑

η̄

�

(1−α)( f (1, η̄) + f (0, η̄))νN
h(·)(ηx = 1)

− α( f (0, η̄) + f (1, η̄))νN
h(·)(η(x) = 0)

�

νN
h(·)(η̄)

�

�

=
1
2

�

�

�

∑

η̄

�

h( x
N )−α

�

( f (0, η̄) + f (1, η̄))νN
h(·)(η̄)

�

�

�

®
�

h( x
N )−α

�∑

η̄

h( x
N ) f (1, η̄)νN

h(·)(η̄) +
�

1− h( x
N )
�

f (0, η̄)νN
h(·)(η̄)

=
�

h( x
N )−α

� ∑

η∈ΩN

f (η)νN
h(·)(η) =

�

h( x
N )−α

�

because maxx∈ΛN

¦

1

2h
� x

N

� , 1

2
�

1−h
� x

N

��

©

is bounded from above by a constant depending

only on α and β . Above f (1, η̄) (resp. f (0, η̄)) means that we are computing f (η)
with ηx = 1 (resp. ηx = 0). �

Lemma 5.6. For any t > 0, we have that

lim
N→∞
EµN





�

�

�

∫ t

0

N1−θ
∑

x∈ΛN

Gr−N (
x
N )(ηx(sN2)−α) ds

�

�

�



= 0,

lim
N→∞
EµN





�

�

�

∫ t

0

N1−θ
∑

x∈ΛN

Gr+N (
x
N )(ηx(sN2)− β) ds

�

�

�



= 0,

(5.11)

for G : R→ R Lipschitz and such that G(0) = 0 = G(1), for any θ > 2− γ; and for any
bounded G : R→ R for θ > 1.

Proof. We present the proof for the first term, but we note that the proof for the second
term is completely analogous.

We start by fixing a Lipschitz profile h(·) such that h(0) = α and h(1) = β . By the
entropy inequality, for any B > 0, the first expectation of (5.11) is bounded from above
by

H(µN |νN
h(·))

BN
+

1
BN

logEνN
h(·)

�

eBN |
∫ t

0 N1−θ∑
x∈ΛN

Gr−N

�

x
N

�

(ηx (sN2)−α)ds|
�

. (5.12)

We can remove the absolute value inside the exponential since e|x | ≤ ex + e−x and

limsup
N→∞

N−1 log(aN + bN )≤max
§

limsup
N→∞

N−1 log(aN ), lim sup
N→∞

N−1 log(bN )
ª

. (5.13)

By (5.1) and the Feynman-Kac’s formula, (5.12) is bounded from above by

C0

B
+ t sup

f

¦

N1−θ
∑

x∈ΛN

�

�

�Gr−N (
x
N )〈t

α
x , f 〉νN

h(·)

�

�

�+
N
B

¬

LN

p

f ,
p

f
¶

νN
h(·)

©

,

where the supremum is carried over all the densities f with respect to νN
h(·). We recall

that tαx (η) = ηx − α. From Lemma 5.5 we have that there exists a constant C :=
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C(α,β ,γ)> 0 such that

N1−θ
∑

x∈ΛN

�

�

�(Gr−N )(
x
N )〈t

α
x , f 〉νN

h(·)

�

�

�

≤ CN1−θ
∑

x∈ΛN

|(Gr−N )(
x
N )|

�

Ax +
Iαx (
p

f ,νN
h(·))

Ax
+ x

N

�

≤ 4C2κ−1BN1−θ
∑

x∈ΛN

G2( x
N )r

−
N (

x
N ) +

N
4B

D`N (
p

f ,νN
h(·)) + CN−θ

∑

x∈ΛN

|G( x
N )|r

−
N (

x
N )x .

(5.14)

The last inequality is obtained by choosing Ax = 4κ−1C |G( x
N )|B. Recall (5.5).

In the case θ > 2−γ, we have G(0) = 0 so that |G( x
N )|®

x
N . Then (5.12) is bounded

from above by a constant (independent of N and B) times

1
B
+

B + B−1

N1+θ

∑

x∈ΛN

¦

x2r−N (
x
N ) +

�

x − N
�2

r+N (
x
N )
©

+
1

N1+θ

∑

x∈ΛN

x2r−N (
x
N ). (5.15)

Since we have that

∑

x∈ΛN

x2r−N (
x
N )®







N3−γ, γ ∈ (2, 3),
log N , γ= 3,

1, γ > 3,

(5.16)

and that the same holds for x2r−N replaced with
�

x − N
�2

r+N , this implies that the ex-
pression (5.15), for any θ ≥ 2−γ, goes to zero by taking the limit as N →∞ and then
B→∞.

In the case θ > 1, since the function G is only assumed to be bounded and does not
satisfy a priori G(0) = 0 we use (5.14) and (5.5) and estimate from above (5.12) by a
constant times

1
B
+

1
BN1+θ

∑

x∈ΛN

¦

x2r−N (
x
N ) +

�

x − N
�2

r+N (
x
N )
©

+BN1−θ
∑

x∈ΛN

r−N (
x
N ) + N−θ

∑

x∈ΛN

r−N (
x
N )x ,

(5.17)

which, by (5.16) and (3.7), goes to zero as N →∞ and then B→∞. �

Let us define for ` ∈ N the following empirical densities

−→η `0 :=
1
`

∑̀

y=1

ηy and ←−η `N :=
1
`

N−1
∑

y=N−1−`

ηy . (5.18)

Lemma 5.7. For any t > 0 and any θ ≥ 1 we have that

lim
ε→0

lim
N→∞
EµN





�

�

�

∫ t

0

∑

x∈ΛN

Θ−x (ηx(sN2)−−→η εN0 (sN2)) ds
�

�

�



= 0,

lim
ε→0

lim
N→∞
EµN





�

�

�

∫ t

0

∑

x∈ΛN

Θ+x (ηx(sN2)−←−η εNN (sN2)) ds
�

�

�



= 0.
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Proof. We present the proof for the first term, but we note that the proof for the second
one it is analogous. Here we take as reference measure the Bernoulli product measure
with constant parameter (for example α) and we recall (5.7). By the entropy inequality
the expectation in the statement of the lemma is bounded from above, for any B > 0,
by

H(µN |νN
α )

BN
+

1
BN

logEνN
α

h

eBN |
∫ t

0

∑

x∈ΛN
Θ−x (ηx (sN2)−−→η εN0 (sN2)) ds|

i

.

As in the previous proof, we can remove the absolute value inside the exponential, so
that by (5.1) and by the Feynman-Kac’s formula last expression can be estimated from
above by

C0

B
+ t sup

f

¦ ∑

x∈ΛN

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
B

¬

LN

p

f ,
p

f
¶

νN
α

©

, (5.19)

where the supremum is carried over all the densities f with respect to νN
α . Here

τεNx (η) = ηx −
−→η εN0 .

Now we have to split the sum in x , depending on wether N − 1 ≥ x ≥ εN or
x ≤ εN − 1. We start by the first case and we have

〈τεNx , f 〉νN
α
=

1
εN

εN
∑

y=1

∫

(ηx −ηy) f (η) dνN
α

=
1
εN

εN
∑

y=1

x−1
∑

z=y

∫

(ηz+1 −ηz) f (η) dνN
α .

By writing the previous term as its half plus its half and by performing in one of the
terms the change of variables η into σz,z+1η, for which the measure νN

α is invariant, we
write it as

1
2εN

εN
∑

y=1

x−1
∑

z=y

∫

( f (η)− f (σz,z+1η))(ηz+1 −ηz) dν
N
α .

By using the fact that (a − b) = (
p

a −
p

b)(
p

a +
p

b) for any a, b ≥ 0 and since

ab ≤
Aa2

2
+

b2

2A
for all A> 0, we have that

N−1
∑

x=εN

Θ−x 〈τ
εN
x , f 〉νN

α
≤

A

2

N−1
∑

x=εN

Θ−x
1

2εN

εN
∑

y=1

x−1
∑

z=y

∫

(
Æ

f (η)−
Æ

f (σz,z+1η))2dνN
α

+
1

2A

N−1
∑

x=εN

Θ−x
1

2εN

εN
∑

y=1

x−1
∑

z=y

∫

(
Æ

f (η) +
Æ

f (σz,z+1η))2(ηz+1 −ηz)
2dνN

α .

(5.20)

By neglecting the jumps of size bigger than one, we see that

DNN (
p

f ,νN
α ) =

∑

z∈ΛN

∫

�
Æ

f (η)−
Æ

f (σz,z+1η)
�2

dνN
α ® D0

N (
p

f ,νN
α ).
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Therefore, by using also (3.10), the first term at the right hand side of (5.20) can be
bounded from above by

A

4

N−1
∑

x=εN

Θ−x DNN (
p

f ,νN
α ) ® ADNN (

p

f ,νN
α ) ® AD0

N (
p

f ,νN
α ). (5.21)

Recall (5.7) and observe that DN (
p

f ,νN
α ) ≥ D0

N (
p

f ,νN
α ). Then we choose the con-

stant A in the form A = CN/B for some suitable C in order that one half of the term
− N

4B DN (
p

f ,να) appearing in (5.7) counterbalances negatively the term at the right
hand side of (5.21). Moreover we can bound from above the last term at the right
hand side of (5.20) by (use Lemma 5.2)

B
N

N−1
∑

x=εN

Θ−x
1

2εN

εN
∑

y=1

x−1
∑

z=y

∫

(
Æ

f (η) +
Æ

f (σz,z+1η))2(ηz+1 −ηz)
2dνN

α ®
B
N

∑

x∈ΛN

xΘ−x

(5.22)

which vanishes as N →∞ by (5.7). Therefore we proved that uniformly in ε

limsup
B→∞

lim sup
N→∞

sup
f

¦

N−1
∑

x=εN

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
2B

¬

LN

p

f ,
p

f
¶

νN
α

©

= 0.

It remains to prove that

limsup
B→∞

limsup
ε→0

lim sup
N→∞

sup
f

¦

εN−1
∑

x=1

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
2B

¬

LN

p

f ,
p

f
¶

νN
α

©

= 0.

If x ≤ εN − 1, we write

〈τεNx , f 〉νN
α
=

1
εN

εN
∑

y=1

∫

(ηx −ηy) f (η) dνN
α

=
1
εN

x−1
∑

y=1

x−1
∑

z=y

∫

(ηz+1 −ηz) f (η) dνN
α −

1
εN

εN
∑

y=x+1

y−1
∑

z=x

∫

(ηz+1 −ηz) f (η) dνN
α .

and the same estimates as before give there exists a constant C > 0 such that for any
A> 0,

εN−1
∑

x=1

Θ−x 〈τ
εN
x , f 〉νN

α
≤ C

�

ADN (
p

f ,νN
α ) +

εN

A

εN−1
∑

x=1

Θ−x

�

.

Recall (5.7) and (3.10). Then, we choose A= N/8CB and we get that

lim sup
B→∞

limsup
ε→0

limsup
N→∞

sup
f

¦

εN−1
∑

x=1

Θ−x 〈τ
εN
x , f 〉νN

α
+

N
2B

¬

LN

p

f
p

f
¶

νN
α

©

= 0.

This finishes the proof. �

Remark 5.8. We note that above, if we change in the statement of the lemma Θ−x by r−N ,
then the same result holds by performing exactly the same estimates as above, because
what we need is that

∑

x∈ΛN

Θ−x ® 1 and
1
N

∑

x∈ΛN

xΘ−x → 0 (5.23)

which also holds for r−N instead of Θ−x since γ > 2.
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5.3. Fixing the profile at the boundary. LetQ be a limit point of the sequence {QN}N≥1,
whose existence follows from Proposition 4.1 and assume, without lost of generality,
that {QN}N≥1 converges toQ. We note that since our model is an exclusion process, it is
standard ([10]) to show thatQ almost surely the trajectories of measures are absolutely
continuous with respect to the Lebesgue measure, that is: πt(dq) = ρt(q)dq for any
t ∈ [0, T]. In Section 6 we prove that the density ρt(q) belongs to L2(0, T ;H 1(0,1))
if θ ≥ 2 − γ. In particular, for almost every t, ρt can be identified to a continuous
function on [0,1].

In this section we prove that if θ ∈ [2−γ, 1) then the profile satisfies ρt(0) = α and
ρt(1) = β .

Recall (5.18). Observe that

EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN2)−α) ds

�

�

�

�

= EQN

�

�

�

�

∫ t

0

(〈πs, ι
0
ε 〉 −α) ds

�

�

�

�

where ι0ε (·) = ε
−1 1(0,ε)(·). Therefore we have that for any δ > 0,

QN

�

�

�

�

∫ t

0

(〈πs, ι
0
ε 〉 −α) ds

�

�

�> δ

�

≤ δ−1EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN2)−α) ds

�

�

�

�

.

Py Portemanteau’s Theorem 2 we conclude that

Q
�

�

�

�

∫ t

0

(〈πs, ι
0
ε 〉 −α) ds

�

�

�> δ

�

≤ δ−1 lim inf
N→∞

EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN2)−α) ds

�

�

�

�

.

Now, if we are able to prove that the right hand side of the previous inequality is zero,
since we have that Q a.s. πs(dq) = ρs(q)dq with ρs a continuous function in 0 for
a.e. s, by taking the limit ε → 0, we can deduce that Q a.s. ρs(0) = α for a.e. s. A
similar argument applies for the right boundary. Therefore it is sufficient to prove the
following lemma.

Lemma 5.9. For any t ∈ [0, T] we have that

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ t

0

(−→η εN
0 (sN2)−α) ds

�

�

�

�

= 0,

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ t

0

(←−η εN
N (sN2)− β) ds

�

�

�

�

= 0.

Last lemma is a consequence of the next two results.

Lemma 5.10. For any t ∈ [0, T] we have that

lim
N→∞
EµN

�

�

�

�

∫ t

0

(η1(sN2)−α) ds
�

�

�

�

= 0,

lim
N→∞
EµN

�

�

�

�

∫ t

0

(ηN−1(sN2)− β) ds
�

�

�

�

= 0.

2In fact, since ι0ε is not a continuous function it is not given for free that the set
¦

π ;
�

�

�

∫ t
0 (〈πs , ι

0
ε 〉−α) ds

�

�

�>

δ
©

is an open set in the Skorohod topology. A simple argument based on a L1-approximation of ι0ε by

continuous functions permits to bypass this difficulty.
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Proof. We give the proof for the first display, but we note that for the other one it is
similar. Fix a Lipschitz profile h(·) such that α ≤ h(·) ≤ β and h(0) = α, h(1) = β
and h(·) is γ/2-Hölder at the boundaries. By the entropy inequality, for any B > 0, the
previous expectation is bounded from above by

H(µN |νN
h(·))

BN
+

1
BN

logEνN
h(·)

�

eBN |
∫ t

0 (η1(sN2)−α) ds|
�

.

By (5.1), the Feynman-Kac’s formula and noting, as we did in the proof of Lemma
5.6, that we can remove the absolute value inside the exponential, last display can be
estimated from above by

C0

B
+ t sup

f

§




tα1 , f
�

νN
h(·)
+

N
B

¬

LN

p

f ,
p

f
¶

νN
h(·)

ª

, (5.24)

where the supremum is carried over all the densities f with respect to νN
h(·). Here we

recall that tα1 (η) = η1 − α. By Lemma 5.5, since h is Lipschitz, for any A> 0, the first
term in the supremum in (5.24) is bounded from above by

C
�

1
A

Iα1 (
p

f ,νN
h(·)) + A+

1
N

�

for some constant C > 0 independent of f and A. Moreover from (5.6), since

DN (
p

f ,νN
h(·))≥ D`N (

p

f ,νN
h(·))

and γ+ θ − 2≥ 0, we know that there exists a constant C ′ > 0 such that

N
B
〈LN

p

f ,
p

f 〉νN
h(·)
≤ −

N1−θ

4B

∑

x∈ΛN

Iαx (
p

f ,νN
h(·))r

−
N (

x
N ) +

C ′

B
.

To get an upper bound, at the right hand side of the previous inequality, we only keep
the term coming from x = 1 in the sum. By choosing A= 4C(r−N (

1
N ))

−1BNθ−1, we get
then that the expression inside the brackets in (5.24) is bounded by

4C2 BNθ−1

r−N (
1
N )
+

C

N
+

C ′

B
.

Now since r−N (
1
N ) is bounded from below by a constant independent of N and θ < 1,

the proof follows by sending first N →∞ and then B→∞. �

Lemma 5.11. For any t > 0 we have that

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ t

0

−→η εN
0 (sN2)−η1(sN2)) ds

�

�

�

�

= 0,

lim
ε→0

lim
N→∞
EµN

�

�

�

�

∫ t

0

←−η εN
N (sN2)−ηN−1(sN2)) ds

�

�

�

�

= 0.

(5.25)

Proof. We present the proof of the first item, but we note that for the second it is exactly
the same. Fix a Lipcshitz profile h(·) such that α ≤ h(·) ≤ β , h(0) = α, h(1) = β and
h(·) is γ/2-Hölder at the boundaries. By the entropy inequality, for any B > 0, the
previous expectation is bounded from above by

H(µN |νN
h(·))

BN
+

1
BN

logEνN
h(·)

�

eBN |
∫ t

0
−→η εN

0 (sN2)−η1(sN2) ds|
�

.
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By (5.1), the Feynman-Kac’s formula, and using the same argument as in the proof of
the previous lemma, the estimate of the previous expression can be reduced to bound

C0

B
+ t sup

f

¦1
`

`+1
∑

y=2

|〈v1
y , f 〉νN

h(·)
|+

N
B

¬

LN

p

f ,
p

f
¶

νN
h(·)

©

,

(5.26)

where `= εN and v1
y(η) = ηy−η1. Here the supremum is carried over all the densities

f with respect to νN
h(·). Note that since y ∈ ΛN we know that v1

y(η) =
∑y−1

z=1 (ηz+1−ηz).
Observe now that

y−1
∑

z=1

∫

(ηz+1 −ηz) f (η)dν
N
h(·) =

1
2

y−1
∑

z=1

∫

(ηz+1 −ηz)( f (η)− f (σz,z+1η))dνN
h(·)

+
1
2

y−1
∑

z=1

∫

(ηz+1 −ηz)( f (η) + f (σz,z+1η))dνN
h(·).

By using the fact that for any a, b ≥ 0, (a − b) = (
p

a −
p

b)(
p

a +
p

b) and Young’s
inequality, we have, for any positive constant A, that

1
`

`+1
∑

y=2

|〈v1
y , f 〉νN

h(·)
| ≤

1
2A`

`+1
∑

y=2

y−1
∑

z=1

∫

(ηz+1 −ηz)
2
�
Æ

f (η) +
Æ

f (σz,z+1η)
�2

dνN
h(·)

+
A
2`

`+1
∑

y=2

y−1
∑

z=1

∫

�
Æ

f (η)−
Æ

f (σz,z+1η)
�2

dνN
h(·)

+
1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

ηz+1 −ηz

�

�

f (η) + f (σz,z+1η)
�

dνN
h(·)

�

�

�

�

�

.

(5.27)

By neglecting the jumps of size bigger than one, we see that

DNN (
p

f ,νN
h(·)) =

∑

z∈ΛN

∫

�
Æ

f (η)−
Æ

f (σz,z+1η)
�2

dνN
h(·) ® D0

N (
p

f ,νN
h(·)).

Then, the second term on the right hand side of (5.27) is bounded from above by

A
2`

`+1
∑

y=2

DNN (
p

f ,νN
h(·))≤ A DNN (

p

f ,νN
h(·))≤ CA D0

N (
p

f ,νN
h(·))≤ CA DN (

p

f ,νN
h(·))

where C is a positive constant independent of A,`, f . Then, for the choice A= N(4BC)−1

and from (5.6), since γ+ θ − 2≥ 0, we can bound from above (5.26) by

2BC
N`

`+1
∑

y=2

y−1
∑

z=1

∫

(ηz+1 −ηz)
2
�
Æ

f (η) +
Æ

f (σz,z+1η)
�2

dνN
h(·)

+
1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

ηz+1 −ηz

�

�

f (η) + f (σz,z+1η)
�

dνN
h(·)

�

�

�

�

�

+
C ′

B

®
B`
N
+

1
B
+

1
2`

`+1
∑

y=2

�

�

�

�

�

y−1
∑

z=1

∫

�

ηz+1 −ηz

�

�

f (η) + f (σz,z+1η)
�

dνN
h(·)

�

�

�

�

�

(5.28)
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for some constant C ′ > 0. For the last inequality we used Lemma 5.2. Observe that
B`/N = Bε vanishes as ε→ 0. It remains to estimate the third term on the right hand
side of the last inequality. For that purpose we make a similar computation to the one of

Lemma 5.5. Let Cz = max

¨

1

h
� z

N

�
�

1−h
� z+1

N

�� , 1

h
� z+1

N

�
�

1−h
� z

N

��

«

which is bounded above

by a constant depending only on α and β . By using the fact that νN
h(·) is product and

denoting by η̃ the configurationη removing its value at z and z+1 so that (ηz ,ηz+1, η̃) =
η, we have that

y−1
∑

z=1

�

�

�

�

∫

(ηz+1 −ηz)( f (η) + f (σz,z+1η))dνN
h(·)
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( f (0,1, η̃) + f (1,0, η̃))h( z+1
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h
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�
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Above, for example, f (1, 0, η̃) (resp. f (0, 1, η̃)) means that we are computing f (η)
with η such that ηz = 1 and ηz+1 = 0 (resp. ηz = 0 and ηz+1 = 1). Since h(·) is
Lipschitz, by (5.28), this estimate provides an upper bound for (5.26) which is in the
form of a constant times

B`
N
+

1
B
+

1
N`

`+1
∑

y=2

y ® Bε + B−1 + ε

which vanishes, as ε→ 0 and then B→∞. This ends the proof. �

6. ENERGY ESTIMATES

LetQ be a limit point of the sequence {QN}N≥1, whose existence follows from Propo-
sition 4.1 and assume, without lost of generality, that {QN}N≥1 converges toQ. We note
that since our model is an exclusion process, it is standard ([10]) to show that Q al-
most surely the trajectories of measures are absolutely continuous with respect to the
Lebesgue measure, that is: πt(dq) = ρt(q)dq for any t ∈ [0, T].

6.1. The case θ ≥ 2−γ. Recall that in this case the system is speeded up in the diffusive
time scale so that Θ(N) = N2. In this section we prove that the density ρt(q) belongs to
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L2(0, T ;H 1(0,1)), see Definition 2.1. For that purpose, we define the linear functional
`ρ on C0,1

c ([0, T]× (0, 1)) by

`ρ(G) =

∫ T

0

∫ 1

0

∂qGs(q)ρs(q) dqds =

∫ T

0

∫ 1

0

∂qGs(q) dπs(q)ds.

By Proposition 6.1 below we have that `ρ is Q almost surely continuous, thus we can
extend this linear functional to L2([0, T]× (0, 1)). Moreover, by the Riesz’s Represen-
tation Theorem we find ζ ∈ L2([0, T]× (0, 1)) such that

`ρ(G) = −
∫ T

0

∫ 1

0

Gs(q)ζs(q)dqds,

for all G ∈ C0,1
c ([0, T]× (0,1)), which implies that ρ ∈ L2(0, T ;H 1(0, 1)).

Proposition 6.1. For all θ ≥ 2− γ. There exist positive constants C and c such that

E
�

sup
G
{`ρ(G)− c‖G‖2

2}
�

≤ C <∞,

where the supremum above is taken on the set C0,1
c ([0, T] × (0, 1)). Here we denote by

‖G‖2 the norm of a function G ∈ L2([0, T]× (0, 1)).

Proof. By density it is enough to prove Proposition 6.1 for a countable dense subset
{Gm}m∈N on C0,2

c ([0, T]× (0, 1)) and by Monotone Convergence Theorem it is enough
to prove that

E
�

sup
k≤m
{`ρ(Gk)− c‖Gk‖2

2}
�

≤ K0,

for any m and for K0 independent of m. Now, we define Φ : D([0, T],M+)→ R by

Φ(π·) =max
k≤m

¨

∫ T

0

∫ 1

0

∂qGk
s (q) dπs(q)ds− c‖Gk‖2

2

«

,

which is a continuous and bounded function for the Skorohod topology ofD([0, T],M+).
Thus we have that

E[Φ] = lim
N→∞
EµN

�

max
k≤m

¨

∫ T

0

1
N − 1

N−1
∑

x=1

∂qGk
s (

x
N )ηx(s)ds− c‖Gk‖2

2

«�

.

By the entropy inequality, Jensen’s inequality and the fact that emaxk≤m ak ≤
∑m

k=1 eak the
previous display is bounded from above by

C0 +
1
N

logEνN
h(·)

�

m
∑

k=1

e
∫ T

0

∑

x∈ΛN
∂qGk

s (
x
N )ηx (s)ds−cN‖Gk‖2

2

�

,

where νN
h(·) is the Bernoulli product measure corresponding to a profile h(·) which is

Lipschitz such that α ≤ h(·) ≤ β , h(0) = α, h(1) = β and h is γ/2-Hölder at the
boundaries. In order to deal with the second term in the previous display we use (5.13)
and it is enough to bound

limsup
N→∞

1
N

logEνN
h(·)

h

e
∫ T

0

∑

x∈ΛN
∂qGs(

x
N )ηx (s)ds−cN‖G‖2

2

i

,
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for a fixed function G ∈ C0,2
c ([0, T] × (0, 1)), by a constant independent of G. By

Feynman-Kac’s formula, the expression inside the limsup is bounded from above by
∫ T

0

sup
f

¦ 1
N

∫

ΩN

∑

x∈ΛN

∂qGs(
x
N )ηx f (η)dνN

h(·)(η)− c‖G‖2
2 +
Θ(N)

N
〈LN

p

f ,
p

f 〉νN
h(·)

©

ds

where the supremum is carried over all the densities f with respect to νN
h(·). Let us

now focus on the first term inside braces in the previous expression. Observe first
that the space derivative of Gs can be replaced by the discrete gradient ∇N Gs(

x−1
N ) =

N
�

Gs(
x
N ) − Gs(

x−1
N )

�

of Gs with an error RN (G) satisfying uniformly in N the bound
|RN (G)| ® 1/N since G ∈ C0,2

c ([0, T], (0, 1)). By summing and subtracting the term
∇N Gs(

x−1
N ) inside the sum, and doing a summation by parts, we can write

1
N

∫

ΩN

∑

x∈ΛN

∂qGs(
x
N )ηx f (η)dνN

h(·)(η) =

∫

ΩN

N−2
∑

x=1

Gs(
x
N )(ηx−ηx+1) f (η)dν

N
h(·)(η)+RN (G).

A simple computation shows that we can write the first term at the right hand side of
the previous display as

1
2

∫

ΩN

N−2
∑

x=1

Gs(
x
N )(ηx −ηx+1)( f (η)− f (σx ,x+1η))dνN

h(·)

+
1
2

∫

ΩN

N−2
∑

x=1

Gs(
x
N )(ηx −ηx+1) f (σ

x ,x+1η)(θ x ,x+1(η)− 1)dνN
h(·).

(6.1)

Recall that for u, v ≥ 0, u− v = (
p

u−
p

v)(
p

u+
p

v) and the inequality ab ≤
Ba2

2
+

b2

2B
valid for any B > 0. Taking B =

N
Θ(N)

and using Lemma 5.2 we bound the first term

in (6.1) by

N
4Θ(N)

∫

ΩN

N−2
∑

x=1

(Gs(
x
N ))

2(
Æ

f (η) +
Æ

f (σx ,x+1η))2dνN
h(·)(η)

+
Θ(N)
4N

∫

ΩN

N−2
∑

x=1

(
Æ

f (η)−
Æ

f (σx ,x+1η))2dνN
h(·)(η)

≤
Θ(N)
4N

D0
N (
p

f ,νN
h(·)) +

CN
Θ(N)

∑

x∈ΛN

(Gs(
x
N ))

2

for some C > 0. Similarly we can estimate the second term in (6.1) from above by

1
4N

∫

ΩN

N−2
∑

x=1

(Gs(
x
N ))

2(ηx −ηx+1)
2 f (σx ,x+1η)dνN

h(·)(η)

+
N
4

∫

ΩN

N−2
∑

x=1

f (σx ,x+1η)(θ x ,x+1(η)− 1)2dνN
h(·)(η)

®
1
N

∑

x∈ΛN

(Gs(
x
N ))

2 + 1.

We use now (5.6) with B = 1 there and observe that last two terms at the right hand
side of (5.6) are bounded from above by a constant since γ+ θ − 2 ≥ 0. Observe also



32 CÉDRIC BERNARDIN, P. GONÇALVES, AND B. JIMENEZ OVIEDO

that D0
N (
p

f ,νN
h(·)) ≤ DN (

p

f ,νN
h(·)). Recalling that Θ(N) = N2 we get then that (6.1)

is bounded from above by

C

∫ T

0

�

1+
1
N

∑

x∈ΛN

(Gs(
x
N ))

2
�

ds − c‖G|22 + RN (G)

where C is a positive constant independent of G. We then choose c > C in order to
conclude that

lim sup
N→∞

¦

C

∫ T

0

�

1+
1
N

∑

x∈ΛN

(Gs(
x
N ))

2
�

ds − c‖G|22 + RN (G)
©

® 1.

This achieves the proof. �

6.2. The case θ < 2− γ. Recall that in this case the system is speeded up in the time
scaleΘ(N) = Nθ+γ. In this section we prove that the function (t, q)→ ρt(q)−α belongs
to L2([0, T]× (0, 1), d t⊗dµ), where µ is the measure that has the density with respect
to the Lebesgue measure given by

u ∈ [0,1]→
1
uγ

.

A similar proof would show that the function (t, q)→ ρt(q)−β belongs to L2([0, T]×
(0, 1), d t ⊗ dµ′), where µ′ is the measure that has the density with respect to the
Lebesgue measure given by

u ∈ [0,1]→
1

(1− u)γ
.

Let νN
h(·) be as above, where h : [0,1]→ [0,1] is a profile such that α ≤ h(q) ≤ β ,

for all q ∈ [0, 1], h(0) = α and h(1) = β , Hölder of parameter γ/2 at the boundaries
and Lipschitz inside. Let G ∈ C1,∞

c ([0, T]× [0,1]). By the entropy inequality and the
Feynmann-Kac’s formula, we have that

EµN

 

∫ T

0

d t Nγ−1
∑

x∈ΛN

G(t, x
N )r

−
N

�

x
N

�

(ηx(tNθ+γ)−α)

!

≤ C0 +

∫ T

0

sup
f

(

Nγ−1
∑

x∈ΛN

G(t, x
N )r

−
N

�

x
N

�

〈tαx , f 〉νN
h(·)
+ Nγ+θ−1

¬

LN

p

f ,
p

f
¶

νN
h(·)

)

d t

(6.2)

where the supremum is taken over all the densities f on ΩN with respect to νN
h(·). Be-

low C is a constant that may change from line to line. Since the profile is Hölder of
parameter γ/2 at the boundaries and Lipschitz inside, and from (5.6) the term at the
right hand side of last expression is bounded from above by

−Nγ+θ−1

4 DN (
p

f ,νN
h(·)) + C + CNθ+γ−2.

Repeating the proof of Lemma 5.9 last expression is bounded from above by

CNγ−1
∑

x∈ΛN

r−N
�

x
N

�

G2
�

t, x
N

�

+ C + CNθ+γ−2.
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We take the limit N →∞. We conclude that there exist constants C ′, C ′′ > 0 indepen-
dent of G such that

E

�

∫ T

0

∫ 1

0

(ρt(u)−α)G(t, u)

|u|γ
dud t − C

∫ T

0

∫ 1

0

G2(t, u)

|u|γ
dud t

�

≤ C ′. (6.3)

By using a similar method as in the proof of the previous lemma we see that the supre-
mum over G can be inserted in the expectation so that

E

�

sup
G

¨

∫ T

0

∫ 1

0

(ρt(u)−α)G(t, u)

|u|γ
dud t − C

∫ T

0

∫ 1

0

G2(t, u)

|u|γ
dud t

«�

≤ C ′. (6.4)

The previous formula implies that

E

�

∫ T

0

∫ 1

0

(ρt(u)−α)2

|u|γ
dud t

�

≤ C ′′.

which proves the claim.

7. CHARACTERIZATION OF LIMIT POINTS

We prove in this section that for each range of θ , all limit points Q of the sequence
{QN}N∈N are concentrated on trajectories of measures absolutely continuous with re-
spect to the Lebesgue measure whose density ρt(q) is a weak solution of the corre-
sponding hydrodynamic equation. Let Q be a limit point of the sequence {QN}N≥1,
whose existence follows from Proposition 4.1 and assume, without lost of generality,
that {QN}N≥1 converges to Q. As mentioned above, since there is at most one particle
per site, it is easy to show thatQ is concentrated on trajectories πt(dq) which are abso-
lutely continuous with respect to the Lebesgue measure, that is, πt(dq) = ρt(q)dq (for
more details see [10]). Below, we prove, for each range of θ , that the density ρt(q) is
a weak solution of the corresponding hydrodynamic equation.

Proposition 7.1. If Q is a limit point of {QN}N∈N then
1. if θ < 1:

Q
�

π· ∈ D([0, T],M+) : FRD(t,ρ, G, g) = 0,∀t ∈ [0, T], ∀G ∈ C1,2
c ([0, T]× [0,1])

�

= 1.

2. if θ ∈ [1,+∞):

Q
�

π· ∈ D([0, T],M+) : FRob(t,ρ, G, g) = 0,∀t ∈ [0, T], ∀G ∈ C1,2([0, T]× [0, 1])
�

= 1.

Remark 7.2. In this proposition, the constants κ̂, σ̂, m̂ appearing in FRD and FRob are
fixed by Theorem 2.6.

Proof. Note that in order to prove the proposition, it is enough to verify, for δ > 0 and
G in the corresponding space of test functions, that

Q
�

π· ∈ D([0, T],M+) : sup
0≤t≤T

|F•(t,ρ, G, g)|> δ
�

= 0,

for each θ , where F• stands for FRD if θ < 1 and FRob if θ ≥ 1. From here on, in order
to simplify notation, we will erase π· from the sets that we have to look at.

• We start with the case θ ∈ [1,∞). Recall FRob(t,ρ, G, g) from Definition 2.9. Ob-
serve that, due to the boundary terms that involve ρs(1) and ρs(0), the set inside last
probability is not an open set in the Skorohod space, therefore we cannot use directly
Portmanteau’s Theorem as we would like to. In order to avoid this problem, we fix
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ε > 0 and we consider two approximations of the identity given by ι0ε (q) =
1
ε1(0,ε)(q)

and ι1ε (q) =
1
ε1(1−ε,1)(q) and we sum and subtract to ρs(0) (resp. ρs(1)) the mean

< πs, ι
0
ε >=

1
ε

∫ ε

0 ρs(q)dq (resp. < πs, ι
1
ε >=

1
ε

∫ ε

1−ε ρs(q)dq). Thus, we bound last
probability from above by the sum of the following four terms

Q

�

sup
0≤t≤T

�

�

�

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

ρ0(q)G0(q) dq−
∫ t

0

∫ 1

0

ρs(q)
�

σ̂2

2 ∆+ ∂s

�

Gs(q) dqds

−
∫ t

0

< πs, ι
0
ε >

�

σ̂2

2 ∂qGs(0)− m̂Gs(0
�

ds+

∫ t

0

< πs, ι
1
ε >

�

σ̂2

2 ∂qGs(1) + m̂Gs(1)
�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

4

�

,

(7.1)

Q

�

�

�

�

∫ 1

0

(ρ0(q)− g(q))G0(q) dq
�

�

�>
δ

4

�

, (7.2)

Q
�

sup
0≤t≤T

�

�

�

∫ t

0

�

ρs(0)−< πs, ι
0
ε >

�

�

m̂Gs(0)−
σ̂2

2
∂qGs(0)

�

ds
�

�

�>
δ

4

�

, (7.3)

and

Q
�

sup
0≤t≤T

�

�

�

∫ t

0

�

ρs(1)−< πs, ι
1
ε >

�

(m̂Gs(1) +
σ̂2

2
∂qGs(1))ds

�

�

�>
δ

4

�

. (7.4)

We note that the terms (7.3) and (7.4) converge to 0 as ε→ 0 since we are comparing
ρs(0) (resp. ρs(1)) with the corresponding average around the boundary points 0 (resp.
1) and (7.2) is equal to zero since Q is a limit point of {QN}N∈N and QN is induced
by µN which satisfies (2.11). Therefore it remains only to consider (7.1). We still
cannot use Portmanteau’s Theorem, since the functions ι0ε and ι1ε are not continuous.
Nevertheless, we can approximate each one of these functions by continuous functions
in such a way that the error vanishes as ε → 0. Then, from Proposition A.3 of [5] we
can use Portmanteau’s Theorem and bound (7.1) from above by

lim inf
N→∞

QN

�

sup
0≤t≤T

�

�

�

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
� σ̂2

2
∆+ ∂s

�

Gs(q) dqds

−
∫ t

0

< πs, ι
0
ε >

� σ̂2

2
∂qGs(0)− m̂Gs(0

�

ds+

∫ t

0

< πs, ι
1
ε >

� σ̂2

2
∂qGs(1) + m̂Gs(1)

�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

24

�

.

(7.5)

Summing and subtracting

∫ t

0

N2 LN 〈πN
s , Gs〉ds to the term inside the supremum in

(7.5), recalling (3.1) and (5.18), the definition of QN , we bound (7.5) from above
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by the sum of the next two terms

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

25

�

, (7.6)

and

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

N2 LN 〈πN
s , Gs〉 ds−

σ̂2

2

∫ t

0

∫ 1

0

ρs(q)∆Gs(q) dqds

−
∫ t

0

−→η εN0 (s)
� σ̂2

2
∂qGs(0)− m̂Gs(0

�

ds+

∫ t

0

←−η εNN−1(s)
� σ̂2

2
∂qGs(1) + m̂Gs(1)

�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

25

�

.

(7.7)

From Doob’s inequality together with (4.9), (7.6) goes to 0 as N →∞. Finally, (7.7)
can be rewritten as

lim inf
N→∞

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

N2 LN 〈πN
s , Gs〉 ds−

σ̂2

2

∫ t

0

〈πN
s ,∆Gs〉 ds

−
∫ t

0

−→η εN0 (s)
� σ̂2

2
∂qGs(0)− m̂Gs(0

�

ds+

∫ t

0

←−η εNN−1(s)
� σ̂2

2
∂qGs(1) + m̂Gs(1)

�

ds

−m̂

∫ t

0

Gs(0)α+ Gs(1)β ds
�

�

�>
δ

25

�

.

(7.8)

Now, from (3.2) and (3.4) we can bound from above the probability in (7.8) by the
sum of the five following terms

PµN

 

sup
0≤t≤T

�

�

�

N2

N − 1

∫ t

0

∑

x∈ΛN

KN Gs(
x
N )ηx(sN2)ds−

σ̂2

2

∫ t

0




πN
s ,∆Gs

�

ds
�

�

�>
δ

26

!

, (7.9)

PµN

 

sup
0≤t≤T

�

�

�

N2

N − 1

∫ t

0

∑

x∈ΛN

∑

y≤0

�

Gs(
y
N )− Gs(

x
N )
�

p(x − y)ηx(sN2)ds

+
σ̂2

2

∫ t

0

−→η εN0 (sN2)∂qGs(0) ds
�

�

�>
δ

26

�

,

(7.10)

and

PµN

 

sup
0≤t≤T

�

�

�

∫ t

0

Nκ

N − 1

∑

x∈ΛN

(Gs r
−
N )(

x
N )(α−ηx(sN2)) ds

−mκ

∫ t

0

Gs(0)(α−
−→η εN0 (sN2))ds

�

�

�>
δ

26

�

(7.11)

and the sum of two terms which are very similar to the two previous ones but which are
concerned with the right boundary. Thus, to conclude we have to show that these five
terms go to 0. Applying Lemma 3.2 and noting that |ηx(sN2)| ≤ 1 for any x and any
s ≥ 0, we conclude that (7.9) goes to 0 as N →∞. Note also that by Taylor expansion,
we can bound from above (7.10) by

PµN

 

sup
0≤t≤T

�

�

�

∫ t

0

∂qGs(0)
∑

x∈ΛN

Θ−x
�

ηx(sN2)−−→η εN0 (sN2)
�

ds
�

�

�>
δ

28

!

. (7.12)
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Using Lemma 5.7 we see that (7.12) vanishes as N →∞. Now we look at (7.11) and
we prove that is vanishes as N →∞. Performing a Taylor expansion on Gs at 0 and
using (3.7) the probability in (7.11) is bounded from above by

PµN

 

sup
0≤t≤T

�

�

�

∫ t

0

Gs(0)
∑

x∈ΛN

r−N (
x
N )
�−→η εN0 (sN2)−ηx(sN2)

�

ds
�

�

�>
δ

28

!

,

plus lower-order terms (with respect to N). From Lemma 5.7 and Remark 5.8 last
display vanishes as N →∞. Similarly the two terms which are similar to (7.10) and
(7.11) but which are concerned with the right boundary vanish as N →∞. Thus the
proof is finished.

• Now we treat the case θ < 1. We have to prove that

Q
�

π· ∈ D([0, T],M+) : sup
0≤t≤T

|FRD(t,ρ, G, g)|> δ
�

= 0

for any G ∈ C1,2
c ([0, T]× [0,1]). We can bound from above the previous probability by

Q

�

sup
0≤t≤T

�

�

�

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

ρ0(q)G0(q) dq−
∫ t

0

∫ 1

0

ρs(q)
�

σ̂2

2 ∆+ ∂s

�

Gs(q) dqds

−κ̂
∫ t

0

∫ 1

0

Gs(q)V0(q) dq ds+ κ̂

∫ t

0

∫ 1

0

Gs(q)ρs(q)V1(q) dq ds
�

�

�>
δ

2

�

,

(7.13)

and

Q

�

�

�

�

∫ 1

0

(ρ0(q)− g(q))G0(q) dq
�

�

�>
δ

2

�

, (7.14)

where V0(q) =
α
qγ +

β
(1−q)γ and V1(q) =

1
qγ +

1
(1−q)γ We note that (7.14) is equal to zero

since Q is a limit point of {QN}N∈N and QN is induced by µN which satisfies (2.11). We
note that from Proposition A.3 of [5], the set inside the probability in (7.13) is an open
set in the Skorohod space (the singularities of V0 and V1 are not present because Gs has
compact support). From Portmanteau’s Theorem we bound (7.13) from above by

lim inf
N→∞

QN

�

sup
0≤t≤T

�

�

�

∫ 1

0

ρt(q)Gt(q) dq−
∫ 1

0

ρ0(q)G0(q) dq

−
∫ t

0

∫ 1

0

ρs(q)
�

σ̂2

2 ∆+ ∂s

�

Gs(q) dqds− κ̂
∫ t

0

∫ 1

0

Gs(q)V0(q) dq ds

+κ̂

∫ t

0

∫ 1

0

Gs(q)ρs(q)V1(q) dq ds
�

�

�>
δ

2

�

.

Summing and subtracting

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds to the term inside the previous ab-

solute values, recalling (3.1) and the definition of QN , we can bound the previous
probability from above by the sum of the next two terms

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�

,
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and

PµN

�

sup
0≤t≤T

�

�

�

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds−

∫ t

0

¬

πN
s , σ

2

2 ∆Gs

¶

ds

− κ̂
∫ t

0

∫ 1

0

Gs(q)V0(q) dq ds +κ̂

∫ t

0

∫ 1

0

Gs(q)ρs(q)V1(q) dq ds
�

�

�>
δ

4

�

.

(7.15)

The first term above can be estimated as in the case θ ≥ 1 and it vanishes as N →∞.
It remains to prove that (7.15) vanishes as N →∞. For that purpose, we recall (3.6)
and we use (3.2), (3.4) to bound it from above by the sum of the following terms

PµN

 

sup
0≤t≤T

�

�

�

∫ t

0

Θ(N)

N − 1

∑

x∈ΛN

KN Gs(
x
N )ηx(sN2)ds−

σ̂2

2

∫ t

0




πN
s ,∆Gs

�

ds
�

�

�>
δ

24

!

,

(7.16)
and

PµN

 

sup
0≤t≤T

�

�

�

∫ t

0

¦

κΘ(N)
(N−1)Nθ

∑

x∈ΛN

(Gs r
−
N )(

x
N )(α−ηx(sN2))

−κ̂
∫ 1

0

(Gs r
−)(q)(α−ρs(q))dq

©

ds
�

�

�>
δ

24

�

,

(7.17)

and

PµN

 

sup
0≤t≤T

�

�

�

∫ t

0

¦

κΘ(N)
(N−1)Nθ

∑

x∈ΛN

(Gs r
+
N )(

x
N )(β −ηx(sN2))

−κ̂
∫ 1

0

(Gs r
+)(q)(β −ρs(q))dq

©

ds
�

�

�>
δ

24

�

,

(7.18)

In the case θ ∈ [2− γ, 1), since Θ(N) = N2 and σ̂ = σ, from Lemma 3.2 we have
that (7.16) goes to 0 as N →∞. In the case θ < 2−γ, since Θ(N) = Nθ+γ and σ̂ = 0,
from Lemma 3.2 we also have that (7.16) goes to 0 as N →∞.

Now we analyze the boundary terms (7.17) and (7.18). Note that in the case θ ∈
(2−γ, 1) we have θ (N) = N2 and κ̂= 0, so that the two previous probabilities vanish,
as N →∞, as a consequence of Lemma 5.6. In the case θ ≤ 2−γ, since Θ(N) = Nγ+θ ,
κ̂ = κcγγ

−1, |ηx(sN2)| ≤ 1, in order to conclude it is enough to note that since Gs has
compact support in (0,1) we know by (3.6) that NγGs r

−
N (q) and NγGs r

+
N (q) converge

uniformly to (Gs r
−)(q) and (Gs r

+)(q), respectively, as N →∞. This ends the proof. �
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APPENDIX A. UNIQUENESS OF WEAK SOLUTIONS

The uniqueness of the weak solutions of the partial equations given in Section 2.2 is
fundamental for the proof of the hydrodynamic limit. The uniqueness of weak solutions
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of (2.6) is standard if κ̂ = 0. Since we were not able to find in the literature a proof
in the case κ̂ > 0 we give a complete proof below. The proof of uniqueness of weak
solutions of (2.8) can be found in, for example, [1].

Now we prove the uniqueness of weak solutions of (2.6). We assume that σ̂ > 0
and κ̂ > 0 first and then we consider the case σ̂ = 0 and κ̂ > 0.

Let ρ1 and ρ2 be two weak solutions of (2.2) with the same initial condition and let
us denote ρ̄ = ρ1 −ρ2. By assumption we have that

ρ̄ ∈ L2
�

0, T ;H 1
�

∩ L2
�

0, T ; L2((0, 1); V1(q)dq)
�

where V1(q) = q−γ+(1− q)−γ. Let us denote by 〈·, ·〉V1
(resp. ‖ · ‖V1

) the scalar product
(resp. the norm) corresponding to the Hilbert space L2((0,1), V1(q)dq).

For almost every t ∈ [0, T], we identify ρ̄t with its continuous representation in
[0,1]. Therefore, from 3. in Definition 2.2, we have that ρ̄t(0) = ρ̄t(1) = 0 for all
t ∈ [0, T]. Since H 1

0 is equal to the set of functions in H 1 vanishing at 0 and 1 we
have that for a.e. time t ∈ [0, T], ρ̄t ∈ H 1

0 and in fact ρ̄ ∈ L2(0, T ;H 1
0 ). From 2. in

Definition 2.2, for any t ∈ [0, T] and any G ∈ C1,2
c ([0, T]× [0, 1]) we have

∫ 1

0

ρ̄t(q)Gt(q) dq−
∫ t

0

∫ 1

0

ρ̄s(q)
�

∂s +
σ̂2

2
∆
�

Gs(q) dqds

+ κ̂

∫ T

0

∫ 1

0

V1(q)Gs(q)ρ̄s(q) dq ds = 0.

(A.1)

We know that C1,∞
c ([0, T]×(0, 1)) is dense in L2(0, T ;H 1

0 )∩L2
�

0, T ; L2((0,1); V (q)dq)
�

.

Therefore, let (Hn)n≥0 be a sequence of functions in C1,∞
c ([0, T] × (0, 1)) converging

to ρ̄ with respect to the norms of L2(0, T ;H 1
0 ) and L2

�

0, T ; L2((0, 1); V1(q)dq)
�

. We

define Gn in C1,∞
c ([0, T]× [0,1]) by

∀t ∈ [0, T], ∀q ∈ [0, 1], Gn(t, q) =

∫ T

t

Hn(s, q) ds. (A.2)

Plugging Gn into (A.1) and letting n→∞ we conclude, by Lemma A.1 below, that

∫ T

0

∫ 1

0

ρ̄2
s (q) dq ds+

σ̂2

4







∫ T

0

ρ̄sds






2

1
+
κ̂

2







∫ T

0

ρ̄sds






2

V1

= 0.

It follows that for almost every time s ∈ [0, T] the continuous function ρ̄s is equal
to 0 and we conclude the uniqueness of weak solution to (2.6) in the case σ̂ > 0.

Lemma A.1. Let (Gn)n≥0 be defined as in (A.2). We have

i) limn→∞
∫ T

0

∫ 1

0 ρ̄s(q) (∂sGn)(s, q) dqds = −
∫ T

0

∫ 1

0 ρ̄
2
s (q) dqds.

ii) limn→∞
∫ T

0

∫ 1

0 ρ̄s(q)∆Gn(s, q) dqds = − 1
2







∫ T

0 ρ̄sds






2

1
.

iii) limn→∞
∫ T

0

∫ 1

0 V1(q)Gn(s, q)ρ̄s(q) dq ds = 1
2







∫ T

0 ρ̄sds






2

V1

<∞.
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Proof. For i) we write

−
∫ T

0

∫ 1

0

ρ̄s(q) (∂sGn)(s, q) dqds =

∫ T

0

∫ 1

0

ρ̄s(q)Hn(s, q) dqds =

∫ T

0

〈ρ̄s , Hn(s, ·)〉 ds

=

∫ T

0




ρ̄s , Hn(s, ·)− ρ̄s

�

ds +

∫ T

0

‖ρ̄s‖2
L2 ds.

Observe then that by Cauchy-Schwarz inequality we have
�

�

�

�

�

∫ T

0




ρ̄s , Hn(s, ·)− ρ̄s

�

ds

�

�

�

�

�

≤
∫ T

0

‖ρ̄s‖L2 ‖Hn(s, ·)− ρ̄s‖L2 ds

≤

√

√

√

∫ T

0

‖ρ̄s‖2
L2 ds

√

√

√

∫ T

0

‖Hn(s, ·)− ρ̄s‖2
L2 ds

(A.3)

which goes to 0 as n→∞. Above we have used the fact that (Hn)n≥0 converges to ρ̄
as N →∞ with respect to the norm of L2(0, T ;H 1

0 ).
For ii) we first use the integration by parts formula for H1 functions which permits

to write
∫ T

0

∫ 1

0

ρ̄s(q)∆Gn(s, q) dqds = −
∫ T

0

¬

ρ̄s , Gn(s, ·)
¶

1
ds.

Then we have
∫ T

0

¬

ρ̄s , Gn(s, ·)
¶

1
ds =

∫ T

0

¬

ρ̄s ,

∫ T

s

ρ̄udu
¶

1
ds+

∫ T

0

¬

ρ̄s , Gn(s, ·)−
∫ T

s

ρ̄udu
¶

1
ds

=

∫∫

0≤s<u≤T

〈ρ̄s , ρ̄u〉1 du ds +

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

1
ds

=
1

2

∫∫

[0,T]2
〈ρ̄s , ρ̄u〉1 duds +

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

1
ds

=
1

2







∫ T

0

ρ̄sds






2

1
+

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

1
ds.

To conclude the proof of ii) it is sufficient to prove that

lim
n→∞

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

1
ds = 0.

This is a consequence of a successive use of Cauchy-Schwarz inequalities:
�

�

�

�

�

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

1
ds

�

�

�

�

�

≤
∫ T

0





ρ̄s







1







∫ T

s

{Hn(u, ·)− ρ̄u}du






1
ds

≤
∫ T

0





ρ̄s







1

∫ T

s





Hn(u, ·)− ρ̄u







1
du ds

≤

�

∫ T

0





ρ̄s







1
ds

� �

∫ T

0





Hn(u, ·)− ρ̄u







1
du

�

≤ T

√

√

√

∫ T

0





ρ̄s







2

1
ds

√

√

√

∫ T

0





Hn(u, ·)− ρ̄u







2

1
du −−−→

n→∞
0.
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Above we have used again the fact that (Hn)n≥0 converges to ρ̄ as N →∞with respect
to the norm of L2(0, T ;H 1

0 ).
The proof of iii) is similar. We have

∫ T

0

¬

ρ̄s , Gn(s, ·)
¶

V1

ds =

∫ T

0

¬

ρ̄s ,

∫ T

s

ρ̄udu
¶

V1

ds+

∫ T

0

¬

ρ̄s , Gn(s, ·)−
∫ T

s

ρ̄udu
¶

V1

ds

=

∫∫

0≤s<u≤T

〈ρ̄s , ρ̄u〉V1
du ds +

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

V1

ds

=
1

2

∫∫

[0,T]2
〈ρ̄s , ρ̄u〉V1

du ds +

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

V1

ds

=
1

2







∫ T

0

ρ̄sds






2

V1

+

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

V1

ds.

To conclude the proof of iii) it is sufficient to prove that

lim
n→∞

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

V1

ds = 0.

This is a consequence of the Cauchy-Schwarz inequality:
�

�

�

�

�

∫ T

0

¬

ρ̄s ,

∫ T

s

{Hn(u, ·)− ρ̄u}du
¶

V1

ds

�

�

�

�

�

≤
∫ T

0





ρ̄s







V1







∫ T

s

{Hn(u, ·)− ρ̄u}du






V1

ds

≤
∫ T

0





ρ̄s







V1

∫ T

s





Hn(u, ·)− ρ̄u







V1

du ds

≤

�

∫ T

0





ρ̄s







V1

ds

� �

∫ T

0





Hn(u, ·)− ρ̄u







V1

du

�

≤ T

√

√

√

∫ T

0





ρ̄s







2

V1

ds

√

√

√

∫ T

0





Hn(u, ·)− ρ̄u







2

V1

du −−−→
n→∞

0.

�

Now we look at the case σ̂ = 0. In this case we do not have any regularity assumption
on ρ̄(·). However, it can be proved that

∫ T

0

∫ 1

0

ρ̄2
s (q) dqds+

κ̂

2







∫ T

0

ρ̄sds






2

V1

= 0 (A.4)

holds by showing only the first and third item of the previous lemma. This requires only
the density of C1,∞

c ([0, T]× (0, 1)) in L2
�

0, T ; L2((0, 1); V1(q)dq)
�

. We also note that
in the proof of item i) in Lemma A.1, in order to conclude the convergence in (A.3),
before applying the Cauchy-Schwarz inequality, we multiply and divide the integrand
function by V1 and since V−1

1 is bounded we get that ‖ρ̄sV
−1

1 ‖
2
L2 <∞ and the result

follows.
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APPENDIX B. COMPUTATIONS INVOLVING THE GENERATOR

Lemma B.1. For any x 6= y ∈ ΛN , we have

L0
N (ηxηy) = ηx L0

Nηy +ηy L0
Nηx − p(y − x)(ηy −ηx)

2,

L r
N (ηxηy) = ηx L r

Nηy +ηy L r
Nηx ,

L`N (ηxηy) = ηx L`Nηy +ηk L`Nηx .

(B.1)

Proof. By definition of L0
N we have that

L0
N (ηxηy) =

1

2

∑

u,v∈ΛN

p(v − u)
�

(σu,vη j)(σ
u,vηy)−ηxηy

�

=
1

2

∑

u,v∈ΛN

p(v − u)
�

((σu,vηx)ηy −ηxηy) + ((σ
u,vηk)η j −η jηk)+

+(σu,vηx)(σ
u,vηy)− (σu,vηx)ηy − (σu,vηy)ηx +ηxηy

�

= ηx L0
Nηy +ηy L0

Nηx +
1

2

∑

u,v∈ΛN

p(v − u) [(σu,vηx)−ηx]
�

(σu,vηy)−ηy

�

= ηx L0
Nηy +ηy L0

Nηx − p(y − x)(ηy −ηx)
2.

In order to prove the second expression, note that [(σuηx)−ηx]
�

(σuηy)−ηy

�

= 0,
for all u ∈ Z, thus by definition of L r

N we have

L r
N (ηxηy) =

∑

u∈ΛN ,v≥N

p(v − u) [ηu(1− β) + (1−ηu)β]
�

(σu(ηxηy))−ηxηy

�

= ηx L r
Nηy +ηy L r

Nηx+

+
∑

u∈ΛN ,v≥N

p(v − u) [ηu(1− β) + (1−ηu)β] [(σ
uηx)−ηx]

�

(σuηy)−ηy

�

= ηx L r
Nηy +ηy L r

Nηx .

The proof of the third expression is analogous. �
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