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INTRODUCTION

This document is a technical attachment to [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] for explicit computations of the nominal states and the inputs of a Protocentric Aerial Manipulator (PAM) in 2D, using differential flatness property. In [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] these values are used to control a PAM in 3D. Furthermore, considering the aerial manipulator design used for the experiments in that paper, here we investigate the case when the system is non-protocentric; i.e., the manipulating arm is not exactly attached to the CoM of the flying robot, P 0 . We show the effect of the distance between this attachment point and P 0 on the performance tracking a composite trajectory. Finally some additional plots related to the experimental results are provided.

A. Aerial physical interaction

For the reader interested in aerial vehicles physically interacting with the external environment, a rapidly expanding and broad topic, we also suggest the reading of [START_REF] Yüksel | A nonlinear force observer for quadrotors and application to physical interactive tasks[END_REF], where a force nonlinear observer for aerial vehicles is proposed, of [START_REF]Reshaping the physical properties of a quadrotor through IDA-PBC and its application to aerial physical interaction[END_REF], where an IDA-PBC controller is used for modulating the physical interaction of aerial robots, of [START_REF] Rajappa | Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers[END_REF], [START_REF] Ryll | Modeling and control of FAST-Hex: a fully-actuated by synchronized-tilting hexarotor[END_REF] where fully actuated platforms for full wrench exertion are presented, of [START_REF] Mohammadi | Cooperative aerial tele-manipulation with haptic feedback[END_REF]- [START_REF] Gioioso | A forcebased bilateral teleoperation framework for aerial robots in contact with the environment[END_REF] where the capabilities of exerting forces with a tool are studied, and finally of [START_REF] Yüksel | Aerial robots with rigid/elasticjoint arms: Single-joint controllability study and preliminary experiments[END_REF]- [START_REF] Yüksel | Design, identification and experimental testing of a light-weight flexiblejoint arm for aerial physical interaction[END_REF] where aerial manipulators with elasticjoint arms are modeled and their controllability properties discovered. The reader interested in the analysis and control of tethered aerial vehicles (another form of physical interaction) is also referred to [START_REF] Tognon | Dynamics, control, and estimation for aerial robots tethered by cables or bars[END_REF], where flatness, controllability and observability is studied, to [START_REF] Tognon | Observer-based control of position and tension for an aerial robot tethered to a moving platform[END_REF] where the case of a moving base is thoroughly analyzed, to [START_REF] Tognon | Takeoff and landing on slopes via inclined hovering with a tethered aerial robot[END_REF] where real experiments for tethered landing on sloped surfaces is shown, and to [START_REF] Tognon | Control of motion and internal stresses for a chain of two underactuated aerial robots[END_REF], [START_REF]Nonlinear observer for the control of bi-tethered multi aerial robots[END_REF] where the case of multiple tethered vehicles is investigated.

I. EXPLICIT COMPUTATION OF THE NOMINAL STATES AND THE INPUTS

In Sec. IV of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] we describe how the nominal states and the inputs of a PAM can be computed as sole functions of the flat outputs and their derivatives up to the fourth order. These flat outputs are given in the Fact. 1 of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] as y = [p T 0xz q T r ] T ∈ R (n+2) , where the generalized coordinates of the PAM in 2D is chosen as q 2 = [p T 0xz θ 0 q T r ] T ∈ R 3+n and the control inputs of the system are u 2 = [u t u r τ T ] T ∈ R 2+n . This means that while the CoM positions of the VTOL and the absolute orientations of the links are direct functions of the flat outputs, y, the computations of θ 0 , θ0 (flying base pitch and its time derivatives), and u t , u r , τ ν µ as functions of y, ẏ, ÿ, ... y, .... y are implicit.

Let us start with the computations of θ 0 , θ0 , and u t . As it is given in [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] of the paper, these values are functions of the CoM position of the overall system, pc and its derivative ... p c (actually we also need to compute .... p c , because θ0 depends on it, and θ0 is needed for computing the torque u r ). Let us then compute the derivatives of p c . Taking the time derivatives of (11) of the paper (from second up to the fourth order), we have; 

Now, for pc , ... p c , .... p c to be functions of the flat outputs only we must show that pi j , pm i j , ... p i j , ... p m i j , .... p i j , .... p m i j can be computed using only the flat outputs and their derivatives.

Flat outputs

From Fact 1 of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF], y = [p T 0 xz q T r ] T ∈ R 2+n . Since ∃f e : p 0 xz = f e (p e µ xz q r ), it is also y e = [p T e µ xz q T r ] T ∈ R 2+n . Nominal States The variables p 0 xz , ṗ0 xz , q r and qr are direct functions of y and ẏ. This leaves θ 0 and θ0 to be computed.

From [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF], θ 0 = θ 0 (p c ). Hence from (1): pc = pc (p 0 xz , pm ν µ , pν µ ), pm ν µ = pm ν µ (y, ẏ, ÿ), pν µ = pν µ (y, ẏ, ÿ) =⇒ pc = pc (y, ẏ, ÿ). Then θ 0 = θ 0 (y, ẏ, ÿ).

From [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] Nominal Inputs Considering (10) of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] and pc from the above; first

u t = u t (p c ) =⇒ u t = u t (y, ẏ, ÿ).
Then, from [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF], ∃f τ :

τ ν µ = τ ν µ +1 + f τ (p 0 xz , q r , qr , qr ) =⇒ τ ν µ = τ ν µ (y, ẏ, ÿ) where τ ν µ +1 = 0 for ν µ = n µ . From (15) of [1], u r = J 0 θ0 + m j=1 τ 1 j -d G x u t .
Above it is show that u t = u t (y, ẏ, ÿ), τ 1 µ = τ 1 µ (y, ẏ, ÿ), and from (10) of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] it is θ0 = θ0 (y, ẏ, ÿ, ... y, .... y ). Then, u r = u r (y, ẏ, ÿ, ... y, .... y ).

TABLE I:

A summarizing table of the differential flatness of PAMs in 2D. Different outputs of the system are given on the top. The nominal states and inputs as implicit functions of the flat outputs and their derivatives up to the fourth order are provided. Note that for the ν µ -th element of the system; pνµ and pm ν µ are the (time varying) individual link and motor CoM positions represented in FW , respectively.

x 0 For the ν-th motor of the µ-th manipulator (ν µ -th motor of the system) it is:

y 0 P 0 -u t z 0 u r τ 1 1 τ 2 1
pm ν µ (y, ẏ, ÿ) = p0xz + γ 1 (q r µ , qr µ , qr µ ) :=0, if ν µ =1 ... p m ν µ (y, ẏ, ÿ, ... y) = ... p 0xz + γ 2 (q r µ , qr µ , qr µ , ... q r µ ) :=0, if ν µ =1 (2) 
....

p m ν µ (y, ẏ, ÿ, ... y, .... y ) = .... p 0xz +γ 3 (q r µ , qr µ , qr µ , ... q r µ , .... q r µ ) :=0, if ν µ =1
,

where γ1 = ν µ -1 i µ =1 R0i µ di µ θ0i µ -R0iµ di µ θ2 0i µ γ2 = ν µ -1 i µ =1 R0i µ di µ ... θ 0i µ -3R0iµ di µ θ0i µ θ0i µ -R0i µ di µ θ3 0i µ γ3 = ν µ -1 i µ =1 R0i µ di µ .... θ 0i µ -4R0iµ di µ θ0i µ ... θ 0i µ - -3R0iµ di µ θ2 0i µ -6 R0i µ di µ θ0i µ θ2 0i µ + R0iµ di µ θ3 0i µ
with d * = d * + d * as defined in [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] and R * = ∂R * ∂θ * . This gives the linear accelerations of the ν µ -th motor CoM in the x Wz W plane, and its first and second derivatives w.r.t. time as sole functions of the flat outputs. For the ν µ -th link it is:

pν µ = pm ν µ + R0ν µ d ν µ θ0ν µ -R 0ν µ d ν µ θ2 0ν µ ... p ν µ = ... p m ν µ + R0ν µ d ν µ ... θ 0ν µ - (3) -3R 0ν µ d ν µ θ0ν µ θ0ν µ -R0ν µ d ν µ θ3 0ν µ .... p ν µ = .... p m ν µ + R0ν µ d ν µ .... θ 0ν µ -4R 0ν µ d ν µ θ0ν µ ... θ 0ν µ - -3R 0ν µ d ν µ θ2 0ν µ 6 R0ν µ d ν µ θ0ν µ θ2 0ν µ + R 0ν µ d ν µ θ4 0ν µ .
Using ( 2) in (3) we compute the linear acceleration of the ν µ -th link CoM in the x Wz W plane, and its first and second time derivatives as sole functions of the flat outputs. Substituting both (2) and ( 3) in (1) we do the same for the overall system CoM accelerations and its derivatives.

Finally applying what derived so far to [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] in [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] and taking into account (9) in [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF], we compute the nominal values of θ 0 (y, ẏ, ÿ), θ0 (y, ẏ, ÿ, ... y), and u t (y, ẏ, ÿ) as sole functions of the flat outputs and their finite number of derivatives.

The computation of u r , τ ν µ , and hence τ are explained in [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF]. Any further computation necessary to create the explicit mapping from the flat outputs to these inputs are already given in [START_REF] Yüksel | Differential flatness and control of protocentric aerial manipulators with any number of arms and mixed rigid-/elastic-joints[END_REF] and in [START_REF] Yüksel | Protocentric aerial manipulators: Flatness proofs and simulations[END_REF]. A summary of these results is given in Table I.

II. EXTENSIVE SIMULATIONS

In [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF], the experimental validation of the proposed controller using differential flatness is presented. The experimental setup consists of a Quadrotor VTOL and a two DoF manipulating arm (see Fig. 3 of the paper). The arm is attached to the quadrotor, with a 6 [cm] of offset along the z-axis of F 0 between the position of CoM of the VTOL (P 0 ) and the first joint. Despite this not being conform with the protocentric assumption of the design, performance degradation effects on the controller were not particularly noticeable. This leads us to the question; what is the effect of the nonprotocentricity, i.e., what if in the real system there is a generic offset between the CoM of the VTOL and the first joint of which the controller is not aware? An attempt to answer this question is done in a simulation environment, using a physicsbased model of our experimental setup built in Sim-Mechanics of Matlab-Simulink (see Fig. 1 

for details).

Define

d 0 = [d 0x d 0z ] T ∈ R 2
as the relative position between the attachment point of the first motor of the manipulating arm and P 0 espressed in F 0 . We run a set of simulations testing the tracking of composite trajectories in the flat output space using the proposed controller, while varying the value d 0 between the ranges

d min 0x = 0 [m], d max 0x = 0.4 [m], d min 0z = -0.4 [m], d max 0z = 0.4 [m]
with a discrete sampling of 15 points. Thrust and torque limits of the quadrotor VTOL are also imposed (VTOL torque limits are chosen as +/ -4.55 Nm; the minimum thrust is set to

1 [N] while maximum thrust is set to 21 [N]
). The results are given in Fig. 2. The initial condition is set far from the start of the desired trajectory in order to test the transient behavior. However from Fig. 2 it is clear that all the tracked outputs converge to their desired ones quickly. It is clearly shown that for the protocentric design, d 0 = 0, the controller lets the system track the desired outputs almost perfectly. When the system is not protocentric (d 0 = 0), then the outputs of the system start to diverge from the desired ones, which in turn forces the system actuators towards their limits. This is due to the dynamic effect of the non-protocentric design which is not considered in the controller, as well as the actuation limits that do not allow the feedback term of the controller to steer the system quickly to the desired values (see the last row of Fig. 1 for the control inputs). Nonetheless, the feedback term is still able to keep the real behavior close enough to the desired one, showing a good robustness, as explained in Sec. III of [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF].

In the future, we plan to investigate the non-protocentric aerial manipulators and their control more in detail.

III. DETAILED EXPERIMENTAL RESULTS

In this section, and in particular in Figs 3, 4 and 5, we integrate the plots related to the experimental results presented in [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF] with some additional informations, i.e., , the full state of the VTOL (position and orientation) and its thrust. The considerations and comments of the figures the same of the ones in the paper. U rx U rz u rx u rz Fig. 2: Simulations for an aerial manipulator which is not protocentric. The controller assumes the protocentric design as presented in [START_REF] Tognon | Dynamic decentralized control for protocentric aerial manipulators[END_REF].

The coordinates in the plane of interest (xW × zW ) are shown in the first two columns, and all the other coordinates are gathered in the last row of the second column. The control inputs of the VTOL are given in the last row. The desired trajectories are depicted with black dashed curves. The blue solid curve used for the coordinates of the PAM when the model is protocentric (d0 = 0). The red color is used to depict the evolution of the system with different non-protocentric designs (d0 = 0): the maximum and the minimum values of all coordinates out of 15 simulations are plotted, and the space between them is filled in pink. A similar color code is used also for the control inputs. In the last sub-figures of the second and third rows, a different color code is used, but the same way of plotting is applied (notice that all values are almost zero). Notice the transient phase at the beginning of the simulations. 

Fig. 1 :

 1 Fig. 1: A physical model of a PAM done in Sim Mechanics of Simulink-Matlab. The flying base is modeled as a cylindric disk having the same mass and inertial parameters of our real VTOL system. Similar is done to the manipulating arm, consisting of two rigid bars. The actuation of the VTOL is done by applying -utz0 and ur at and around P0 in 3D, respectively. Manipulating arms are actuated via velocity controlled motors.

Fig. 3 :

 3 Fig. 3: Experimental results for trajectory (a).

Fig. 4 :

 4 Fig. 4: Experimental results for trajectory (b).

Fig. 5 :

 5 Fig. 5: Experimental results for trajectory (c).
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