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INTRODUCTION

This document is a technical attachment to [1] for explicit
computations of the nominal states and the inputs of a Pro-
tocentric Aerial Manipulator (PAM) in 2D, using differential
flatness property. In [1] these values are used to control a
PAM in 3D. Furthermore, considering the aerial manipulator
design used for the experiments in that paper, here we inves-
tigate the case when the system is non-protocentric; i.e., the
manipulating arm is not exactly attached to the CoM of the
flying robot, P0. We show the effect of the distance between
this attachment point and P0 on the performance tracking a
composite trajectory. Finally some additional plots related to
the experimental results are provided.

A. Aerial physical interaction

For the reader interested in aerial vehicles physically inter-
acting with the external environment, a rapidly expanding and
broad topic, we also suggest the reading of [2], where a force
nonlinear observer for aerial vehicles is proposed, of [3], where
an IDA-PBC controller is used for modulating the physical
interaction of aerial robots, of [4], [5] where fully actuated
platforms for full wrench exertion are presented, of [6]–[8]
where the capabilities of exerting forces with a tool are studied,
and finally of [9]–[11] where aerial manipulators with elastic-
joint arms are modeled and their controllability properties
discovered. The reader interested in the analysis and control of
tethered aerial vehicles (another form of physical interaction)
is also referred to [12], where flatness, controllability and
observability is studied, to [13] where the case of a moving
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base is thoroughly analyzed, to [14] where real experiments for
tethered landing on sloped surfaces is shown, and to [15], [16]
where the case of multiple tethered vehicles is investigated.

I. EXPLICIT COMPUTATION OF THE NOMINAL STATES AND
THE INPUTS

In Sec. IV of [1] we describe how the nominal states and
the inputs of a PAM can be computed as sole functions of the
flat outputs and their derivatives up to the fourth order. These
flat outputs are given in the Fact. 1 of [1] as y = [pT0xz q

T
r ]T ∈

R(n+2), where the generalized coordinates of the PAM in 2D is
chosen as q2 = [pT0xz θ0 qTr ]T ∈ R3+n and the control inputs
of the system are u2 = [ut ur τT ]T ∈ R2+n. This means
that while the CoM positions of the VTOL and the absolute
orientations of the links are direct functions of the flat outputs,
y, the computations of θ0, θ̇0 (flying base pitch and its time
derivatives), and ut, ur, τνµ as functions of y, ẏ, ÿ,

...
y,

....
y are

implicit.
Let us start with the computations of θ0, θ̇0, and ut. As it

is given in (10) of the paper, these values are functions of the
CoM position of the overall system, p̈c and its derivative

...
pc

(actually we also need to compute
....
p c, because θ̈0 depends

on it, and θ̈0 is needed for computing the torque ur). Let us
then compute the derivatives of pc. Taking the time derivatives
of (11) of the paper (from second up to the fourth order), we
have;

p̈c =
1

ms

(
m0p̈0xz+

m∑
j=1

( nj∑
i=1

(mij p̈ij +mm
ij
p̈m

ij
)
))

...
pc =

1

ms

(
m0

...
p0xz

+

m∑
j=1

( nj∑
i=1

(mij
...
pij +mm

ij

...
pm

ij
)
))

....
pc =

1

ms

(
m0

....
p0xz

+

m∑
j=1

( nj∑
i=1

(mij
....
pij +mm

ij

....
pm

ij
)
))
.

(1)

Now, for p̈c,
...
pc,

....
pc to be functions of the flat outputs only

we must show that p̈ij , p̈mij ,
...
pij ,

...
pmij ,

....
p ij ,

....
pmij

can be
computed using only the flat outputs and their derivatives.
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Flat outputs From Fact 1 of [1], y = [pT0xz qTr ]
T ∈ R2+n. Since ∃fe : p0xz = fe(peµxz qr), it is also ye = [pT

e
µ
xz

qTr ]
T ∈ R2+n.

Nominal States The variables p0xz , ṗ0xz , qr and q̇r are direct functions of y and ẏ. This leaves θ0 and θ̇0 to be computed.

From (10) of [1], θ0 = θ0(p̈c). Hence from (1): p̈c = p̈c(p̈0xz , p̈mνµ , p̈νµ ), p̈mνµ = p̈mνµ (y, ẏ, ÿ),

p̈νµ = p̈νµ (y, ẏ, ÿ) =⇒ p̈c = p̈c(y, ẏ, ÿ). Then θ0 = θ0(y, ẏ, ÿ).

From (10) of [1], θ̇0 = θ̇0(p̈c,
...
pc). Hence from (1):

...
pc =

...
pc(

...
p0xz

,
...
pmνµ ,

...
pνµ ),

...
pmνµ =

...
pmνµ (y, ẏ, ÿ,

...
y),

...
pνµ =

...
pνµ (y, ẏ, ÿ,

...
y) =⇒ ...

pc =
...
pc(y, ẏ, ÿ, ÿ). Then θ̇0 = θ̇0(y, ẏ, ÿ,

...
y).

Nominal Inputs Considering (10) of [1] and p̈c from the above; first ut = ut(p̈c) =⇒ ut = ut(y, ẏ, ÿ).

Then, from [1], ∃fτ : τνµ = τνµ+1 + fτ (p̈0xz ,qr, q̇r, q̈r) =⇒ τνµ = τνµ (y, ẏ, ÿ) where τνµ+1 = 0 for νµ = nµ.

From (15) of [1], ur = J0θ̈0 +
∑m
j=1 τ1j − dGxut. Above it is show that ut = ut(y, ẏ, ÿ), τ1µ = τ1µ (y, ẏ, ÿ),

and from (10) of [1] it is θ̈0 = θ̈0(y, ẏ, ÿ,
...
y,

....
y ). Then, ur = ur(y, ẏ, ÿ,

...
y,

....
y ).

TABLE I: A summarizing table of the differential flatness of PAMs in 2D. Different outputs of the system are given on the top. The nominal
states and inputs as implicit functions of the flat outputs and their derivatives up to the fourth order are provided. Note that for the νµ-th
element of the system; pνµ and pmνµ are the (time varying) individual link and motor CoM positions represented in FW , respectively.

x0y0

P0

−utz0

urτ11

τ21

xW

yW

zW

Fig. 1: A physical model of a PAM done in Sim Mechanics of
Simulink–Matlab. The flying base is modeled as a cylindric disk
having the same mass and inertial parameters of our real VTOL
system. Similar is done to the manipulating arm, consisting of two
rigid bars. The actuation of the VTOL is done by applying −utz0
and ur at and around P0 in 3D, respectively. Manipulating arms are
actuated via velocity controlled motors.

For the ν-th motor of the µ-th manipulator (νµ-th motor of
the system) it is:

p̈mνµ (y, ẏ, ÿ) = p̈0xz + γ1(qrµ , q̇rµ , q̈rµ)︸ ︷︷ ︸
:=0, if νµ=1

...
pmνµ (y, ẏ, ÿ,

...
y) =

...
p0xz + γ2(qrµ , q̇rµ , q̈rµ ,

...
qrµ)︸ ︷︷ ︸

:=0, if νµ=1

(2)

....
pmνµ

(y, ẏ, ÿ,
...
y,

....
y )=

....
p 0xz+γ3(qrµ , q̇rµ , q̈rµ ,

...
qrµ ,

....
q rµ)︸ ︷︷ ︸

:=0, if νµ=1

,

where

γ1 =

νµ−1∑
iµ=1

(
R̄0iµ d̄iµ θ̈0iµ −R0iµ d̄iµ θ̇

2
0iµ

)
γ2 =

νµ−1∑
iµ=1

(
R̄0iµ d̄iµ

...
θ 0iµ − 3R0iµ d̄iµ θ̇0iµ θ̈0iµ − R̄0iµ d̄iµ θ̇

3
0iµ

)
γ3 =

νµ−1∑
iµ=1

(
R̄0iµ d̄iµ

....
θ 0iµ − 4R0iµ d̄iµ θ̇0iµ

...
θ 0iµ−

− 3R0iµ d̄iµ θ̈
2
0iµ − 6R̄0iµ d̄iµ θ̈0iµ θ̇

2
0iµ + R0iµ d̄iµ θ̇

3
0iµ

)
with d̄∗ = d∗ + d̃∗ as defined in [1] and R̄∗ = ∂R∗

∂θ∗
. This

gives the linear accelerations of the νµ-th motor CoM in the
xW−zW plane, and its first and second derivatives w.r.t. time
as sole functions of the flat outputs. For the νµ-th link it is:

p̈νµ = p̈mνµ + R̄0νµdνµ θ̈0νµ −R0νµdνµ θ̇
2
0νµ

...
pνµ =

...
pmνµ + R̄0νµdνµ

...
θ 0νµ− (3)

− 3R0νµdνµ θ̇0νµ θ̈0νµ − R̄0νµdνµ θ̇
3
0νµ

....
p νµ =

....
pmνµ

+ R̄0νµdνµ
....
θ 0νµ − 4R0νµdνµ θ̇0νµ

...
θ 0νµ−

− 3R0νµdνµ θ̈
2
0νµ6R̄0νµdνµ θ̈0νµ θ̇

2
0νµ + R0νµdνµ θ̇

4
0νµ .

Using (2) in (3) we compute the linear acceleration of
the νµ-th link CoM in the xW − zW plane, and its first
and second time derivatives as sole functions of the flat
outputs. Substituting both (2) and (3) in (1) we do the same
for the overall system CoM accelerations and its derivatives.
Finally applying what derived so far to (10) in [1] and taking
into account (9) in [1], we compute the nominal values of
θ0(y, ẏ, ÿ), θ̇0(y, ẏ, ÿ,

...
y), and ut(y, ẏ, ÿ) as sole functions

of the flat outputs and their finite number of derivatives.
The computation of ur, τνµ , and hence τ are explained

in [1]. Any further computation necessary to create the explicit
mapping from the flat outputs to these inputs are already given
in [10] and in [17]. A summary of these results is given in
Table I.

II. EXTENSIVE SIMULATIONS

In [1], the experimental validation of the proposed controller
using differential flatness is presented. The experimental setup
consists of a Quadrotor VTOL and a two DoF manipulating
arm (see Fig. 3 of the paper). The arm is attached to the
quadrotor, with a 6 [cm] of offset along the z-axis of F0

between the position of CoM of the VTOL (P0) and the first
joint. Despite this not being conform with the protocentric
assumption of the design, performance degradation effects on
the controller were not particularly noticeable.

This leads us to the question; what is the effect of the non-
protocentricity, i.e., what if in the real system there is a generic
offset between the CoM of the VTOL and the first joint of
which the controller is not aware? An attempt to answer this



3

question is done in a simulation environment, using a physics-
based model of our experimental setup built in Sim-Mechanics
of Matlab–Simulink (see Fig. 1 for details).

Define d0 = [d0x d0z ]
T ∈ R2 as the relative position

between the attachment point of the first motor of the manipu-
lating arm and P0 espressed in F0. We run a set of simulations
testing the tracking of composite trajectories in the flat output
space using the proposed controller, while varying the value
d0 between the ranges

dmin0x = 0 [m], dmax0x = 0.4 [m],

dmin0z = −0.4 [m], dmax0z = 0.4 [m]

with a discrete sampling of 15 points. Thrust and torque limits
of the quadrotor VTOL are also imposed (VTOL torque limits
are chosen as +/ − 4.55 Nm; the minimum thrust is set to
1 [N] while maximum thrust is set to 21 [N]). The results are
given in Fig. 2.

The initial condition is set far from the start of the desired
trajectory in order to test the transient behavior. However
from Fig. 2 it is clear that all the tracked outputs converge
to their desired ones quickly. It is clearly shown that for the
protocentric design, d0 = 0, the controller lets the system
track the desired outputs almost perfectly. When the system
is not protocentric (d0 6= 0), then the outputs of the system
start to diverge from the desired ones, which in turn forces
the system actuators towards their limits. This is due to the
dynamic effect of the non-protocentric design which is not
considered in the controller, as well as the actuation limits that
do not allow the feedback term of the controller to steer the
system quickly to the desired values (see the last row of Fig. 1
for the control inputs). Nonetheless, the feedback term is still
able to keep the real behavior close enough to the desired one,
showing a good robustness, as explained in Sec. III of [1].

In the future, we plan to investigate the non-protocentric
aerial manipulators and their control more in detail.

III. DETAILED EXPERIMENTAL RESULTS

In this section, and in particular in Figs 3, 4 and 5, we
integrate the plots related to the experimental results presented
in [1] with some additional informations, i.e., , the full state
of the VTOL (position and orientation) and its thrust. The
considerations and comments of the figures are the same of
the ones in the paper.

REFERENCES
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Fig. 3: Experimental results for trajectory (a).
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Fig. 5: Experimental results for trajectory (c).
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