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AREA-PRESERVING DIFFEOMORPHISMS OF THE HYPERBOLIC

PLANE AND K-SURFACES IN ANTI-DE SITTER SPACE

FRANCESCO BONSANTE AND ANDREA SEPPI

Abstract. We prove that any weakly acausal curve Γ in the boundary of Anti-de Sitter

(2+1)-space is the asymptotic boundary of two spacelike K-surfaces, one of which is
past-convex and the other future-convex, for every K ∈ (−∞,−1). The curve Γ is the

graph of a quasisymmetric homeomorphism of the circle if and only if the K-surfaces
have bounded principal curvatures. Moreover in this case a uniqueness result holds.

The proofs rely on a well-known correspondence between spacelike surfaces in Anti-

de Sitter space and area-preserving diffeomorphisms of the hyperbolic plane. In fact, an
important ingredient is a representation formula, which reconstructs a spacelike surface

from the associated area-preserving diffeomorphism.

Using this correspondence we then deduce that, for any fixed θ ∈ (0, π), every qua-
sisymmetric homeomorphism of the circle admits a unique extension which is a θ-landslide

of the hyperbolic plane. These extensions are quasiconformal.

1. Introduction

Since the groundbreaking work of Mess [Mes07], the interest in the study of Anti-de Sitter
manifolds has grown, often motivated by the similarities with hyperbolic three-dimensional
geometry, and with special emphasis on its relations with Teichmüller theory of hyperbolic
surfaces. See for instance [ABB+07, BBZ07, BBZ11, BKS11, BS12, KS07, BST17]. In fact,
as outlined in [AAW00, BS10, Sep17b, Sep16], several constructions can be generalized in
the context of universal Teichmüller space. For instance, given a smooth spacelike convex
surface S in Anti-de Sitter space, or a maximal surface, one can define two projections from
S to the hyperbolic plane H2, and their composition provides a diffeomorphism Φ between
domains of H2. In the context of non-smooth surfaces, an example of this phenomenon was
already introduced by Mess, who observed that a pleated surface provides an earthquake map
of H2. If S is a smooth maximal surface (namely, a surface of zero mean curvature), then the
associated map is a minimal Lagrangian map. A generalization of minimal Lagragian maps
are the so-called θ-landslides, which are one of the main objects of this paper. A θ-landslide
can be defined as a composition Φ = f2 ◦ (f1)−1, where f1 and f2 are harmonic maps from
a fixed Riemann surface, with Hopf differentials satisfying the relation

Hopf(f1) = e2iθHopf(f2) .

The θ-landslides are precisely the maps associated to K-surfaces, i.e. surfaces of constant
Gaussian curvature.

In this paper, we will frequently jump from one approach to the other: on the one hand,
the study of convex surfaces in Anti-de Sitter space, with special interest in K-surfaces;
on the other hand, the corresponding diffeomorphisms of (subsets of) H2, in particular θ-
landslides.

The authors were partially supported by FIRB 2010 project “Low dimensional geometry and topology”

(RBFR10GHHH003). The first author was partially supported by PRIN 2012 project “Moduli strutture
algebriche e loro applicazioni”. The authors are members of the national research group GNSAGA.
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A representation formula for convex surfaces. Let us briefly review the definition of
the diffeomorphism Φ associated to a convex spacelike surface in Anti-de Sitter space, and
survey the previous literature. Anti-de Sitter space AdS3 can be identified to Isom(H2),
endowed with the Lorentzian metric of constant curvature −1 which comes from the Killing
form. The group of orientation-preserving, time-preserving isometries of AdS3 is identified
to Isom(H2)× Isom(H2), acting by composition on the left and on the right.

The essential point of the construction is the fact that the space of timelike geodesics
of AdS3 is naturally identified to H2 × H2, where a point (x, y) parameterizes the geodesic
Lx,y = {γ ∈ Isom(H2) : γ(y) = x}, as proved in [Bar08a]. This fact has been used in
several directions, see for instance [Kas09, DGK16, GK17, Gué15, Bar08a, Bar08b, BBS11].
When S is spacelike surface, for every point γ ∈ S the orthogonal line is timelike and thus it
determines two points (x, y) of H2. Thus one can define the left projection πl(γ) = x and the
right projection πr(γ) = y, and therefore construct the associated map Φ = πr ◦ π−1

l . This
fact was first observed in [Mes07] when S is a pleated surface, thus producing earthquake
maps. For smooth convex surfaces, as observed in [KS07], it turns out that Φ = πr ◦ π−1

l is
a diffeomorphism of (subsets of) H2 which preserves the area. In [AAW00, BS10, Sep17b]
the case in which S is a maximal surface, and correspondingly Φ is a minimal Lagrangian
diffeomorphism, has been extensively studied. A similar construction has also been applied
to surfaces with certain singularities in [KS07, Tou16]. More recently, progresses have been
made on the problem of characterising the area-preserving maps Φ obtained by means of
this construction, satisfying certain equivariance properties, see [Bar16, BS17a, Sep17a].

The first problem addressed in this paper is to what extent the surface S can be recon-
structed from the datum of the area-preserving diffeomorphism Φ. By construction, the
surface S has to be orthogonal to the family of timelike geodesics {Lx,Φ(x)}. Another basic
observation is that, given a surface S, for every smooth surface obtained from S by follow-
ing the normal evolution of S, the associated map is still the same map Φ. In fact, the
orthogonal geodesics of the parallel surfaces of S are the same as those of S. Up to this am-
biguity, we are able to provide an explicit construction for the inverse of the left projection
πl, only in terms of Φ. Actually we will give a 1-parameter family of maps into AdS3, thus
reconstructing all the parallel surfaces which have associated map Φ.

Of course there are conditions on the map Φ. In fact, if Φ is a map which is associated
to a surface S, then it is not difficult to prove that there exists a smooth (1, 1)-tensor b such
that, if gH2 denotes the hyperbolic metric,

Φ∗gH2 = gH2(b·, b·) . (1)

and b satisfies the conditions:

d∇b = 0 , (2)

det b = 1 , (3)

tr b ∈ (−2, 2) , (4)

where ∇ is the Levi-Civita connection of H2. We prove the following converse statement:

Theorem 1.1. Let Φ : Ω→ Ω′ be a diffeomorphism between two open domains of H2. Sup-
pose that there exists a smooth (1, 1)-tensor b satisfying Equations (1),(2),(3),(4). Consider
the map σΦ,b : Ω → AdS3 defined by the condition that σΦ,b(x) is the unique isometry σ
satisfying

σ(Φ(x)) = x ; (5)

dσΦ(x) ◦ dΦx = −bx . (6)

Then σΦ,b is an embedding of Ω ⊆ H2 onto a convex surface in AdS3. If πl is the left
projection of the image of σΦ,b, then πl ◦ σΦ,b = id, and πr ◦ σΦ,b = Φ.
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In fact, given a tensor b satisfying Equations (1),(2) and (3), one can still define σΦ,b by
means of Equations (5) and (6), and the image of the differential of σΦ,b is orthogonal to
the family of timelike lines {Lx,Φ(x)}, but in general dσΦ,b will not be injective. Actually,
given b which satisfies Equations (1),(2) and (3), for every angle ρ, also the (1, 1)-tensor
Rρ ◦ b satisfies Equations (1),(2), where Rρ denotes the counterclockwise rotation of angle ρ.
Changing b by post-composition with Rρ corresponds to changing the surface S to a parallel
surface, moving along the timelike geodesics {Lx,Φ(x)}. The condition tr b ∈ (−2, 2) (which
in general is only satisfied for some choices of b) ensures that σΦ,b is an embedding.

We now restrict our attention to K-surfaces and θ-landslides. A θ-landslide is a diffeo-
morphism Φ for which there exists b satisfying the conditions of Equations (1),(2) and (3)
and moreover its trace is constant. More precisely,

tr b = 2 cos θ and trJb < 0 (7)

for θ ∈ (0, π). It turns out that θ-landslides are precisely the maps associated to past-convex
K-surfaces, for K = −1/cos2(θ/2). On the other hand, by means of the map defined in
Equations (5) and (6), one associates a K-surface to a θ-landslide. Changing b by −b in the
defining Equations (5) and (6) enables to pass from the K-surface to its dual surface, which
is still a surface of constant curvature K∗ = −K/(K + 1). Hence a θ-landslide is also the
map associated with a future-convex K∗-surface.

A special case of θ-landslides are minimal Lagrangian maps, for θ = π/2. In this case,
we get two (−2)-surfaces, dual to one another. It is well-known (see [BS10]) that a minimal
Lagrangian map is associated to a maximal surface S0 in AdS3, and that the two (−2)-
surfaces are obtained as parallel surfaces at distance π/4 from S0. Since in this case tr b = 0,
changing b by Jb, one has that Jb is self-adjoint for the hyperbolic metric, and the map
σΦ,Jb recovers the maximal surface with associated minimal Lagrangian map Φ.

Foliations by K-surfaces of domains of dependence. We then focus on the case of K-
surfaces. The first result we prove in this setting concerns the existence of convex K-surfaces
with prescribed boundary at infinity. The boundary of AdS3 is identified to ∂H2 × ∂H2,
where ∂H2 is the visual boundary of hyperbolic space, and thus ∂AdS3 is a torus. It is
naturally endowed with a natural conformal Lorentzian structure, for which the null curves
have either the first or the second component constant. A weakly acausal curve has the
property that in a neighborhood of every point ξ, the curve is contained in the complement
of the region connected to ξ by timelike segments.

The basic example of a weakly acausal curve is the graph of an orientation-preserving
homeomorphism of ∂H2. In fact, in this paper we prove an existence theorem for K-surfaces
with boundary at infinity the graph of any orientation-preserving homeomorphism of ∂H2:

Theorem 1.2. Given any orientation-preserving homeomorphism φ : ∂H2 → ∂H2, the two
connected components of the complement of the convex hull of Γ = graph(φ) in the domain
of dependence of Γ are both foliated by K-surfaces SK , as K ∈ (−∞,−1), in such a way
that if K1 < K2, then SK2

is in the convex side of SK1
.

Analogously to the case of hyperbolic space H3 (as proved in [RS94]), there exists two
K-surfaces with asymptotic boundary Γ, one of which is past-convex and the other future-
convex. Theorem 1.2, in the case of φ a quasisymmetric homeomorphism, gives positive
answer to the existence part of Question 8.3 in [BBD+12]. As expressed in [BBD+12],
Question 8.3 also conjectured uniqueness and boundedness of principal curvatures. These
are proved in Theorem 1.4 below.

In general, a weakly acausal curve Γ can contain null segments. In particular, if Γ contains
a sawtooth, that is, the union of adjacent “horizontal” and “vertical” segments in ∂H2 ×
∂H2, then the convex hull of the sawtooth is a lightlike totally geodesic triangle, which is
contained both in the boundary of the convex hull of Γ and in the boundary of the domain
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of dependence of Γ. Hence any (future or past) convex surface with boundary Γ must
necessarily contain such lightlike triangle.

An example is a 1-step curve, which is the union of a “horizontal” and a “vertical” segment
in ∂H2× ∂H2. A 2-step curve is the union of four segments, two horizontal and two vertical
in an alternate way. It is not possible to have a convex surface in AdS3 with boundary a
1-step or a 2-step curve.

The proof of Theorem 1.2 actually extends to the case of a general weakly acausal curve
Γ, except the two degenerate cases above.

Theorem 1.3. Given any weakly acausal curve Γ in ∂AdS3 which is not a 1-step or a 2-step
curve, for every K ∈ (−∞,−1) there exists a past-convex (resp. future-convex) surface S+

K

(resp. S−K) with ∂S±K = Γ, such that:

• Its lightlike part is union of lightlike triangles associated to sawteeth;
• Its spacelike part is a smooth K-surface.

Moreover, the two connected components of the complement of the convex hull of Γ in
the domain of dependence of Γ are both foliated by the spacelike part of surfaces S±K , as

K ∈ (−∞,−1), in such a way that if K1 < K2, then S±K2
is in the convex side of S±K1

.

In [BBZ11], the existence (and uniqueness) of a foliation by K-surfaces was proved in the
complement of the convex core of any maximal globally hyperbolic Anti-de Sitter spacetime
containing a compact Cauchy surface. Using results of [Mes07], this means that the state-
ment of Theorem 1.3 holds for curves Γ which are the graph of an orientation-preserving
homeomorphism which conjugates two Fuchsian representations of the fundamental group
of a closed surface in Isom(H2). Moreover, the K-surfaces are invariant for the represen-
tation in Isom(AdS3) ∼= Isom(H2) × Isom(H2) given by the product of the two Fuchsian
representations.

The proof of Theorem 1.2, and more generally Theorem 1.3, relies on an approximation
from the case of [BBZ11]. Some technical tools are needed. First, we need to show that
it is possible to approximate any weakly spacelike curve Γ by curves invariant by a pair of
Fuchsian representations. For this purpose, we adapt a technical lemma proved in [BS17b].

Second, we use a theorem of Schlenker ([Sch96]) which, in this particular case, essentially
ensures that a sequence Sn of K-surfaces in AdS3 converges C∞ to a spacelike surface S∞ (up
to subsequences) unless they converge to a totally geodesic lightlike plane (whose boundary
at infinity is a 1-step curve) or to the union of two totally geodesic lightlike half-planes,
meeting along a spacelike geodesic (in this case the boundary is a 2-step curve).

To apply the theorem of Schlenker, and deduce that the limiting surface S∞ is a K-surface
with ∂S∞ = Γ (thus proving Theorem 1.2), one has to prove that S∞ does not intersect the
boundary of the domain of dependence of Γ. More in general, for the proof of Theorem 1.3,
one must show that the spacelike part of S∞ does not intersect the boundary of the domain
of dependence of Γ. This is generally the most difficult step in this type of problems, and
frequently requires the use of barriers. Here this issue is indeed overcome by applying the
representation formula of Theorem 1.1 in order to construct suitable barriers.

In fact, it is possible to compute a family of θ-landslides from a half-plane in H2 to itself,
which commutes with the hyperbolic 1-parameter family of isometries of H2 preserving the
half-plane. By using this invariance, the equation which rules the condition of a map Φ being
a θ-landslide is reduced to an ODE. By a qualitative study it is possible to show that there
exists a 1-parameter family of smooth, spacelike K-surfaces whose boundary coincides with
the boundary of a totally geodesic spacelike half-plane in AdS3. In other words, Theorem
1.3 is proved by a hands-on approach when the curve Γ is the union of two null segments
and the boundary of a totally geodesic half-plane, in the boundary at infinity of AdS3. Such
K-surfaces are then fruitfully used as barriers to conclude the proof of Theorem 1.2 - and
the proof actually works under the more general hypothesis of Theorem 1.3.
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In the case Γ is the graph of a quasisymmetric homeomorphism, we then prove that the
K-surfaces with boundary Γ are unique. Moreover, it is not difficult to prove that if S
is a convex surface in AdS3 with ∂S = Γ and with bounded principal curvatures, then Γ
is the graph of a quasisymmetric homeomorphism. We give a converse statement for K-
surfaces, namely, a K-surface with boundary Γ = gr(φ), for φ quasisymmetric, necessarily
has bounded principal curvatures.

Theorem 1.4. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2, for every
K ∈ (−∞,−1) there exists a unique future-convex K-surface S+

K and a unique past-convex

K-surface S−K in AdS3 with ∂S±K = gr(φ). Moreover, the principal curvatures of S±K are
bounded.

To prove uniqueness, the standard arguments for these problems are applications of the
maximum principle, by using the existence of a foliation {SK} by K-surfaces and showing
that any other K-surface S′K must coincide with a leaf of the given foliation. However, in
this case, due to non-compactness of the surfaces, one would need a form of the maximum
principle at infinity. This is achieved more easily in this case by applying isometries of AdS3

so as to bring a maximizing (or minimizing) sequence on S′K to a compact region of AdS3.
Then one applies two main tools: the first is again the convergence theorem of Schlenker,
and the second is a compactness result for quasisymmetric homeomorphisms with uniformly
bounded cross-ratio norm. Up to subsequences, both the isometric images of S′K and the
isometric images of the leaves {SK} of the foliation converge to an analogous configuration
in AdS3. But now it is possible to apply the classical maximum principle to conclude the
argument.

Extensions of quasisymmetric homeomorphisms by θ-landslides. By interpreting
Theorems 1.3 and 1.4 in the language of diffeomorphism of H2 we can draw a direct conse-
quence.

Corollary 1.5. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2 and any θ ∈
(0, π), there exist a unique θ-landslide Φθ : H2 → H2 which extends φ. Moreover, Φθ is
quasiconformal.

Again, uniqueness follows from the uniqueness part Theorem 1.4 and from the construc-
tion of Theorem 1.1, while quasiconformality is a consequence of boundedness of principal
curvatures.

For θ = π/2, we obtain a new proof of the following result of [BS10]:

Corollary 1.6. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2 there exists a
unique minimal Lagrangian extension Φ : H2 → H2 of φ. Moreover, Φ is quasiconformal.

In fact, in [BS10] the extension by minimal Lagrangian maps was proved again by means of
Anti-de Sitter geometry, by proving existence and uniqueness (and boundedness of principal
curvatures, which implies quasiconformality) of a maximal surface with boundary the graph
of φ. Here we instead proved the existence of two (−2)-surfaces, which coincide with the
parallel surfaces at distance π/4 from the maximal surface - the minimal Lagrangian map
Φ associated to these three surfaces in the same.

Organization of the paper. In Section 2 we give an introduction of Anti-de Sitter space as
the group Isom(H2), from a Lie-theoretical approach. Section 3 discusses some properties of
the causal geometry of Anti-de Sitter space, including the definition of domain of dependence.
In Section 4 we introduce the left and right projection from a convex surface, and thus the
associated diffeomorphism of H2, and their relation with the differential geometry of smooth
surfaces. In Section 5 we construct the “representation” for the inverse of the left projection
of a convex (or maximal) surface, and we prove Theorem 1.1. Section 6 studies θ-landslides
which commute with a 1-parameter hyperbolic group, constructs the “barriers” which are
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necessary to prove Theorem 1.3 and their relevant properties. In Section 7 the existence
part of Theorem 1.3 is proved, while Section 8 proves that the K-surfaces give a foliation of
the complement of the convex hull in the domain of dependence. Finally, Section 9 proves
Theorem 1.4 and discusses Corollaries 1.6 and 1.5.

Acknowledgements. We are grateful to an anonymous referee for carefully reading the
paper and for several useful comments which improved the exposition. We would also like
to thank Thierry Barbot for pointing out several relevant references on the topic.

2. Anti-de Sitter space and isometries of H2

Let H2 denote the hyperbolic plane, which is the unique complete, simply connected
Riemannian surface without boundary of constant curvature -1. We denote by ∂H2 its
visual boundary, and by Isom(H2) the Lie group of orientation-preserving isometries of H2.
Recall that the Killing form κ on the Lie algebra of isom(H2), namely

κ(v, w) = tr(ad(v) ◦ ad(w)) ,

is Ad-invariant. Thus it defines a bi-invariant pseudo-Riemannian metric on Isom(H2), still
denoted by κ, which has signature (2, 1). We will normalize κ to impose that its sectional
curvature is −1. As this normalization will be relevant in this paper, we will briefly outline
the computation of the sectional curvature of κ.

Lemma 2.1. The Killing form κ has constant sectional curvature −1/8.

Proof. Let us fix v, w ∈ isom(H2). By results in [Mil76] the sectional curvature of the plane
Π generated by v, w is given by

KΠ =
1

4

κ([v, w], [v, w])

κ(v, v)κ(w,w)− κ(v, w)κ(v, w)
.

Now suppose that κ(v, v) = 1, κ(w,w) = 1, κ(v, w) = 0. Then [v, w] 6= 0 as v and w are
linearly independent. Denote u = [v, w]. Notice that by the properties of the Killing form
κ(u, v) = κ(u,w) = 0, so u is timelike. As [v, u] is orthogonal to both v and u, it turns out
that [v, u] = λw and analogously [w, u] = µv. Imposing that tr (ad(v)2) = tr (ad(w)2) = 1
we deduce that λ = 1/2 and µ = −1/2. So a simple computation shows that κ(u, u) =
tr (ad(u)2) = −1/2, so that KΠ = −1/8. By an analogous computation, picking v and w
with κ(v, v) = 1, κ(w,w) = −1, κ(v, w) = 0, the sectional curvature of a timelike plane is
also −1/8. �

Definition 2.2. Anti-de Sitter space of dimension 3 is the Lie group Isom(H2) endowed
with the bi-invariant metric gAdS3 = 1

8κ, and will be denoted by AdS3.

It turns out that AdS3 has the topology of a solid torus, is orientable and time-orientable,
and the induced pseudo-Riemannian metric has constant sectional curvature −1.

We will choose the time orientation of AdS3 in such a way that the timelike vectors which
are tangent to the differentiable curve

t ∈ [0, ε) −→ Rt ◦ γ ,
where Rt is a rotation of positive angle t around any point x ∈ H2 with respect to the
orientation of H2, are future-directed. Moreover, we fix an orientation of AdS3 so that if
v, w are linearly independent spacelike elements of isom(H2), then {v, w, [v, w]} is a positive
basis of isom(H2).

By construction, the group of orientation-preserving, time-preserving isometries of AdS3

is:
Isom(AdS3) ∼= Isom(H2)× Isom(H2) ,

where the left action on Isom(H2) is given by:

(α, β) · γ = α ◦ γ ◦ β−1 .
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The boundary at infinity of Anti-de Sitter space is defined as

∂AdS3 ∼= ∂H2 × ∂H2

where a sequence γn ∈ Isom(H2) converges to a pair (p, q) ∈ ∂H2 × ∂H2 if there exists a
point x ∈ H2 such that

γn(x)→ p γ−1
n (x)→ q , (8)

and in this case the condition is true for any point x of H2. The isometric action of Isom(H2)×
Isom(H2) on AdS3 continuously extends to the product action on ∂H2× ∂H2: if p, q ∈ ∂H2,
then

(α, β) · (p, q) = (α(p), β(q)) .

The boundary at infinity ∂AdS3 is endowed with a conformal Lorentzian structure, in such
a way that Isom(AdS3) acts on the boundary by conformal transformations. The null lines
of ∂AdS3 are precisely ∂H2 × {?} and {?} × ∂H2.

Since the exponential map at the identity for the Levi-Civita connection of the bi-invariant
metric coincides with the Lie group exponential map, the geodesics through the identity are
precisely the 1-parameter subgroups. In particular elliptic subgroups correspond to timelike
geodesics through the identity. Using the action of the isometry group, it follows that
timelike geodesics (i.e. those of negative squared length) have the form:

Lx,x′ = {γ ∈ Isom(H2) : γ(x′) = x} .
They are closed and have length π. Observe that with this definition the isometry group
acts on timelike geodesics in such a way that

(α, β) · Lx,x′ = Lα(x),β(x′) . (9)

For a similar argument as above, spacelike geodesics (i.e. those on which the metric is
positive) are of the form

L`,`′ = {γ ∈ Isom(H2) : γ(`′) = `} ,
where ` and `′ are oriented geodesics of H2. The geodesic L`,`′ has infinite length and
its endpoints in ∂AdS3 are (p1, q1) and (p2, q2), where p1 and p2 are the final and initial
endpoints of ` in ∂H2, while q1 and q2 are the final and initial endpoints of `′.

The involutional rotations of angle π around a point x ∈ H2, which we denote by Ix, are
the antipodal points to the identity in the geodesics Lx,x, and form a totally geodesic plane

Rπ = {Ix : x ∈ H2} .
See also Figure 1.

By using the definition in Equation (8), it is easy to check that its boundary at infinity
∂Rπ is the diagonal in ∂H2 × ∂H2:

∂Rπ = {(p, p) : p ∈ ∂H2} ⊂ ∂H2 × ∂H2 .

More generally, given any point γ of AdS3, the points which are connected to γ by a timelike
segment of length π/2 (actually, two timelike segments whose union form a closed timelike
geodesic) form a totally geodesic plane, called the dual plane γ∗. From this definition,
Rπ = (id)∗. If (α, β) is an isometry of AdS3 which sends id to γ, then γ∗ = (α, β) · Rπ. In
particular, γ∗ = (γ, 1) · Rπ = (1, γ−1) · Rπ. The boundary at infinity of a totally geodesic
spacelike plane is thus the graph of the trace on ∂H2 of an isometry of H2.

An isometry of AdS3 fixes a point if and only if it preserves its dual plane. In particular,
the subgroup which fixes the identity (and therefore preserves Rπ = id∗) is given by the
diagonal:

Stab(id) = Stab(Rπ) = {(γ, γ) : γ ∈ Isom(H2)} .
We can give an explicit isometric identification of H2 to the totally geodesic plane Rπ by
means of the following map:

x ∈ H2 7→ Ix ∈ Rπ .
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idRπ Ix

Figure 1. A (topological) picture of AdS3. The totally geodesic plane
Rπ is given by the midpoints of timelike geodesics from the identity. Its
boundary at infinity is the tangency locus of the lightcone from the identity
with the boundary of the solid torus.

The identification is a natural isometry, in the sense that the action of Isom(H2) on H2

corresponds to the action of Stab(Rπ) on Rπ, since

γIxγ−1 = Iγ(x) .

2.1. Two useful models. In this subsection we discuss two models of AdS3, arising from
the choice of two different models of H2, which will be both useful for different reasons in
some computations necessary for this paper.

For the first model, let us consider H2 as a sheet of the two-sheeted hyperboloid in
Minkowski space, namely:

H2 = {x ∈ R2,1 : 〈x, x〉R2,1 = −1 , x3 > 0} ,
where the Minkowski product of R2,1 is:

〈x, x〉R2,1 = x2
1 + x2

2 − x2
3 .

In this model, the orientation-preserving isometries of H2 are identified to the connected
component of the identity in SO(2, 1), namely:

Isom(H2) ∼= SO0(2, 1) .

Hence, the identification of H2 with Rπ ⊂ Isom(H2) is given by the map which associates
to x ∈ H2 the linear map of R2,1 sending x to x and acting by multiplication by −1 on the
orthogonal complement x⊥ = TxH2. Moreover, the tangent space at id is identified to the
Lie algebra of SO(2, 1):

TidAdS3 ∼= so(2, 1) .

There is a natural Minkowski cross product, defined by x�y = ∗(x∧y), where ∗ : Λ2(R2,1)→
R2,1 is the Hodge operator associated to the Minkowski product. Observe that, by means
of this cross product, one can write the almost-complex structure of H2. For v ∈ TxH2,

Jx(v) = x� v . (10)

Like the classical case of Euclidean space, one can define an isomorphism

Λ : R2,1 → so(2, 1) ,
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which is defined by:

Λ(x) = x� (·) .
See also Figure 2. This isomorphism has several remarkable properties:

• It is equivariant for the action of SO(2, 1) on R2,1 by isometries, and the adjoint action on
so(2, 1), which is the natural action of Stab(id) ∼= Isom(H2) on TidAdS3: if γ ∈ SO(2, 1),
then

Λ(γ · x)(v) = (γ · x) � v = γ(x� (γ−1v)) = γ ◦ Λ(x) ◦ γ−1(v) . (11)

• It pulls back the Lie bracket of so(2, 1) to the Minkowski cross product:

[Λ(x),Λ(y)] = Λ(x� y) . (12)

• It is an isometry between the Killing form of so(2, 1) and the Minkowski metric on R2,1,
up to a factor:

(gAdS3)id(Λ(x),Λ(y)) =
1

4
〈x, y〉R2,1 . (13)

Let us check the factor in Equation (13). By (12) for any x, y ∈ R2,1 we have

ad(Λ(x))(Λ(y)) = Λ(Λ(x)y)

that is

Λ−1 ◦ ad(Λ(x)) ◦ Λ = Λ(x) .

It follows that for any x, y ∈ R2,1

(gAdS3)id(Λ(x),Λ(y)) =
1

8
tr (Λ(x)Λ(y)) .

Using that

x� (y � z) = (〈x, y〉R2,1)z − (〈x, z〉R2,1)y

we have that tr (Λ(x)Λ(y)) = 2〈x, y〉R2,1 , hence obtaining Equation (13).

Figure 2. In the identification of TidAdS3 with R2,1, timelike vectors of
Minkowski space (in the interior of the cone) are the generators of elliptic
1-parameter subgroups; lightlike vectors generate parabolic subgroups and
spacelike vectors generate hyperbolic subgroups.

The second model we consider comes from the choice of the upper half-plane model of
H2, namely

H2 = {z ∈ C : Im(z) > 0} ,
endowed with the Riemannian metric |dz|2/Im(z)2 which makes every biholomorphism of the
upper-half plane an isometry. In this model Isom(H2) is naturally identified to PSL(2,R)
and the visual boundary ∂H2 is identified with the extended line RP1. The Lie algebra
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sl(2,R) is thus the vector space of traceless 2 by 2 matrices, and in this model the Anti de
Sitter metric at the identity is given by:

(gAdS3)id(m,m′) =
1

2
tr (mm′) . (14)

Consider the quadratic form q(M) = −detM on the space of 2-by-2 matrices. Its polar-
ization, say b, has signature (2, 2). We notice that the restriction of b to SL(2,R) is exactly
the double cover of gAdS3 . Indeed left and right multiplication by elements in SL(2,R) pre-
serve q, so that the restriction of b to SL(2,R) is a bi-invariant metric. Moreover at the
identity Equation (14) shows that it coincides with gAdS3 .

Hence this model of AdS3, namely

PSL(2,R) = {A : q(A) = −1}/{±1}
endowed with the pseudo-Riemannian metric which descends from b, is remarkably a pro-
jective model. In fact, PSL(2,R) is a subset of RP3, geodesics for the pseudo-Riemannian
metric of PSL(2,R) are the intersections of PSL(2,R) with a projective line, and totally ge-
odesic planes are the intersections with projective planes. Thus in an affine chart, geodesics
are straight lines and totally geodesic planes are affine planes.

Figure 3. In an affine chart, AdS3 is the interior of a one-sheeted hyper-
boloid. The null lines of ∂AdS3 coincide with the rulings of the hyperboloid.
The intersection with the horizontal plane z = 0 is a totally geodesic hy-
perbolic plane, in the Klein model.

3. Causal geometry of AdS3

Given a continuous curve Γ in ∂AdS3, we say that a Γ is weakly acausal if for every point
p of Γ, there exists a neighborhood U of p in ∂AdS3 such that U ∩ Γ is contained in the
complement of the regions of U which are connected to p by timelike curves.

There are two important objects we associate to a weakly spacelike curve.

Definition 3.1. Given a weakly acausal curve Γ, the convex hull C(Γ) is the smallest closed
convex subset which contains Γ.

It turns out that C(Γ) is contained in AdS3 ∪ ∂AdS3 and that C(Γ) ∩ ∂AdS3 = Γ (see
[BS10, Lemma 4.8]).

Definition 3.2. Given a weakly acausal curve Γ, the domain of dependence D(Γ) is the
union of points p of AdS3 such that p∗ is disjoint from Γ.



AREA-PRESERVING DIFFEOMORPHISMS OF H2 AND K-SURFACES IN AdS3 11

It turns out that the domain of dependence D(Γ) is always an open subset of AdS3

containing the interior part of C(Γ). Moreover, D(Γ) is contained in an affine chart for

AdS3, and admits no timelike support planes. As for the convex hull, D(Γ) ∩ ∂AdS3 = Γ.
Let us denote by D±(Γ) the connected components of D(Γ) \ C(Γ), so that

D(Γ) \ C(Γ) = D+(Γ) t D−(Γ) .

We choose the notation in such a way that there exists a future-directed timelike arc in D(Γ)
going from D−(Γ) to D+(Γ) and intersecting C(Γ).

Definition 3.3. Let K be any convex subset of AdS3 contained in some affine chart. A
locally convex spacelike (resp. nowhere timelike) surface S is a connected region of ∂K such
that the support planes of K at points of S are all spacelike (resp. non timelike).

Lemma 3.4. Let S be a locally convex nowhere timelike surface contained in an affine chart
U . Then S is contained either in all future half-spaces bounded by support planes at points
in S or in all past half-spaces.

In the former case we say that S is future-convex, in the latter past-convex.

Proof. For any point x ∈ S and any support plane P at x, S is contained either in the future
or in the past half-space bounded by P . It is immediate to verify that the set of (x, P ) such
that S is contained in the future half-space of P is open and closed in the set of pairs (x, P )
with x ∈ S and P support plane at x. As we are assuming that S is connected, we conclude
that this set is either the whole set or the empty set. �

For instance, the boundary of C(Γ) is composed of two pleated nowhere timelike surfaces,
which we denote by ∂±C(Γ), so that ∂+C(Γ) is past-convex and ∂−C(Γ) is future-convex.
They are distinct unless Γ is the boundary of a totally geodesic plane. More precisely, the
subset of ∂±C(Γ) which admits spacelike support planes is a pleated hyperbolic surface.
That is, there exists an isometric map f± : H± → ∂±C(Γ), where H± are complete simply
connected hyperbolic surfaces with geodesic boundary (also called straight convex sets in
[BB09]), such that every point x ∈ H± is in the interior of a geodesic arc which is mapped
isometrically to a spacelike geodesic of AdS3.

Given two spacelike planes Q1, Q2 in AdS3, we can define their hyperbolic angle α ≥ 0
by:

coshα = |〈N1, N2〉| ,
where N1 and N2 are the unit normal vectors. Using this notion, one can define (similarly
to [EM06] in the case of hyperbolic geometry) a bending lamination, which is a measured
geodesic lamination on the straight convex set H± in the sense of [BB09, Section 3.4].
In particular, the transverse measure satisfies the usual requirements in the definition of
measured geodesic laminations (see also Subsection 7.1 for more details), with the additional
property that the measure on a transverse arc I is infinite if and only if I has nonempty
intersection with ∂H±. The data of a straight convex set H and the measured geodesic
lamination on H determines the pleated surface up to global isometries of AdS3.

It is not difficult to show that ∂+C(Γ) intersects the boundary of the domain of dependence
D(Γ) in AdS3 if and only if the weakly acausal curve Γ contains a past-directed sawtooth,
that is, if it contains two segments of ∂AdS3, one which is part of a line of the left ruling
and the other in a line of the right ruling, having a common past endpoint. In this case,
∂+C(Γ) contains a totally geodesic lightlike triangle, bounded by the two above segments in
∂AdS3 and by a spacelike complete geodesic of AdS3. The bending lamination of ∂+C(Γ) has
therefore infinite weight on such spacelike geodesic. Of course one can give the analogous
definition and characterization for future-directed sawteeth, which can possibly be contained
in ∂−C(Γ). See also Figure 4.

In this paper, we are interested in convex nowhere timelike surfaces having as a boundary
at infinity a weakly acausal curve Γ ⊂ ∂AdS3. Given a future-convex (resp. past-convex)
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Figure 4. A past-directed and a future-directed sawtooth bounding a
lightlike triangle.

surface S with ∂S = Γ, S must necessarily be contained in D−(Γ) (resp. D+(Γ)), and in the
closure of the complement of C(Γ).

If ∂S = Γ, the lightlike part of a future-convex surface S (i.e. the subsurface of S
admitting lightlike support planes) necessarily contains ∂−C(Γ)∩ ∂D(Γ), that is, it contains
all future-directed sawteeth. Analogously, the lightlike part of a past-convex surface S
contains ∂+C(Γ) ∩ ∂D(Γ).

The convex surface ∂−C has the property that its lightlike part coincides precisely with
the union of all future-directed sawteeth. The same of course holds for ∂+C. We define Γ−
as the boundary of the spacelike part of ∂−C.

The curve Γ− coincides with Γ in the complement of future-directed sawteeth. If Γ
contains future-directed sawteeth, then Γ− contains the spacelike lines whose endpoints
coincide with the endpoints of each sawtooth. The same description, switching future with
past sawteeth, can be given for past-convex nowhere timelike surfaces. In particular we
define Γ+ as the boundary of the spacelike part of Γ+. See also Figure 5. The K-surfaces
which, in Theorem 1.3, form a foliation of the future (resp. past) connected component of
D(Γ) \ C(Γ) will have as boundary the curve Γ+ (resp. Γ−).

Example 3.5. An example of the above constructions, which will be crucial in Section 6 and
7, is the following. Consider the curve Γ′ which is composed of the boundary of a totally
geodesic half-plane and of a past-directed sawtooth. See Figure 6. Then the upper boundary
of the convex hull is composed of the totally geodesic half-plane and of the lightlike triangle
bounded by the past sawtooth. On the other hand, the lower boundary of the convex hull
∂−C(Γ′) is pleated along a lamination which foliates the hyperbolic surface ∂−C(Γ′).

It is not difficult to understand the domain of dependence D(Γ′). In fact, the lower
boundary of D(Γ′) consists of the surface obtained by two totally geodesic lightlike half-
planes which intersect along a spacelike half-geodesic (L`,`′ in Figure 6, left), glued to the
cone over the end-point of the half-geodesic. On the other hand, the component D+(Γ′), in
the affine chart of the right side of Figure 6, is a region of a vertical cylinder, bounded by
the horizontal plane containing Γ′+, and by the lightlike plane containing the past-directed
sawtooth.

4. From differentiable surfaces in AdS3 to local diffeomorphisms of H2

The purpose of this section is to explain the construction which associates to a differen-
tiable embedded spacelike surface in AdS3 a map between subsets of H2. Most of the results
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Γ

Γ+

Figure 5. If the curve Γ contains a past-directed sawtooth, then Γ+ coin-
cides with Γ in the complement of the sawtooth, whereas Γ+ contains the
spacelike line which is the third side of the lightlike triangle bounded by the
sawtooth.

Lℓ,ℓ′

Γ

Γ

D+(Γ)

Figure 6. The two boundaries of the domain of dependence D(Γ), where
Γ is the curve of Example 3.5.

of this section have been already known and used before, see also the references mentioned
in the introduction.

4.1. Left and right projections. Given a differentiable spacelike surface S in AdS3, one
defines two projections πl : S → H2 and πr : S → H2 in the following way. If the timelike
geodesic orthogonal to S at γ is Lx,x′ , then

πl(γ) = x πr(γ) = x′ .
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An equivalent construction of the projections is the following. Given a point γ ∈ S, let
us denote by PγS the totally geodesic plane tangent to S at γ. Then, there exists a unique
isometry

Πγ
l ∈ {id} × Isom(H2)

which maps PγS to Rπ. In fact, if we denote G(γ) = (PγS)∗, then the isometry (id, G(γ)) ∈
Isom(H2)×Isom(H2) mapsG(γ) to id, and therefore coincides with Πγ

l . Analogously consider
the unique

Πγ
r ∈ Isom(H2)× {id}

mapping PγS to Rπ, which has the form (G(γ)−1, id). We then have

Πγ
l (γ) = γG(γ)−1 = Iπl(γ) , Πγ

r (γ) = G(γ)−1γ = Iπr(γ) .

Indeed, the previous formula is true if γ = Ix, and PγS = Rπ, in which case the isometries
Πγ
l and Πγ

r are trivial and the normal geodesic is Lx,x. The general case then follows by
observing that, from Equation (9), the projection to the point x of Lx,x′ is invariant by
composition with a right isometry, and analogously x′ does not change when composing
with an isometry on the left.

Example 4.1. The most basic example of left and right projections can be seen when S is a
totally geodesic plane. In this case, the PγS = S and thus πl (resp. πr) is the restriction to
S of the unique left (resp. right) isometry of AdS3 sending S to Rπ (up to the identification
of Rπ with H2). More generally, if S is a pleated surface, the left and right projections
are well-defined for every point γ ∈ S which admits only one support plane. Moreover, the
isometries Πγ

l and Πγ
r are constant on each stratum of the bending lamination. The induced

metric on S is the hyperbolic metric of a straight convex set H, and it can be proved (see
[Mes07]) that the projections are earthquake maps from H to H2.

Using Example 4.1, one easily proves that if S is convex, then πl and πr are injective.

Lemma 4.2. Let S be an embedded differentiable convex spacelike surface in AdS3. Then
πl and πr are injective.

Proof. By Lemma 3.4 we may assume that S is future convex. Pick two points γ, γ′ ∈ S.
By the hypothesis on S, the totally geodesic planes PγS and Pγ′S are spacelike and S is
contained in the intersection, say K1, of the future half-spaces bounded by PγS and Pγ′S,
in some affine chart. Let S1 be the boundary of K1. It is either a totally geodesic plane or a
pleated surface with pleating locus made by a single geodesic. Notice that S1 is tangent to S
at γ and γ′ so that the corresponding projections π1

l and π1
r coincide with πl and πr at γ and

γ′. As π1
l and π1

r are both injective, we conclude that πl(γ) 6= πl(γ
′) and πr(γ) 6= πr(γ

′). �

It turns out that, if S is oriented by means of the ambient orientation of AdS3 and the
choice of the future-directed normal vector field, then πl and πr are orientation-preserving.

When S is an embedded differentiable convex spacelike surface, one can define a bijective
map from Ωl = πl(S) to Ωr = πr(S), by

Φ : Ωl → Ωr Φ = πr ◦ (πl)
−1.

In [BS10] it was proved that if S is a convex surface with ∂S a curve Γ ⊂ ∂AdS3 =
∂H2×∂H2 which is the graph of an orientation-preserving homeomorphism φ : ∂H2 → ∂H2,
then Ωl = Ωr = H2, and Φ extends to φ on ∂H2. This is essentially the content of the next
lemma.

Lemma 4.3 ([BS10, Lemma 3.18, Remark 3.19]). Let S be a convex spacelike surface in
AdS3 with ∂S = gr(φ), for φ an orientation-preserving homeomorphism of ∂H2. If γn ∈ S
converges to (p, q) ∈ ∂AdS3, then πl(γn) converges to p and πr(γn) converges to q.
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In the case of pleated surfaces S, as already observed by Mess [Mes07], the associated
map Φ is an earthquake map. Hence if φ : ∂H2 → ∂H2 is an orientation-preserving homeo-
morphism, the boundaries of the convex hull of gr(φ) are pleated surfaces whose associated
maps provide a left and a right earthquake map which extends φ, hence recovering a theorem
of Thurston [Thu86].

Remark 4.4. The map Φ is constant under the normal evolution of a surface. More precisely,
suppose S is a differentiable surface such that the parallel surface Sε is well-defined for a
short time ε. Then the normal timelike geodesics of Sε are the same as those of S. Hence by
the above equivalent definition, using the identification of S and Sε given by the normal flow,
the maps πl and πr for S and Sε are the same. In particular, the composition Φ = πr ◦(πl)−1

is invariant for the normal evolution.

Remark 4.5. For the same reason, the left and right projections are the “same” for a convex
differentiable surface and its dual surface. More precisely, if S is a spacelike convex differ-
entiable surface, then one can define the dual surface S∗ as the image of the map from S
to AdS3 which associates to γ ∈ S the dual point (PγS)∗. Recalling that (PγS)∗ is the
midpoint of all timelike geodesics orthogonal to PγS, it turns out that S∗ is the π/2-parallel
surface of S and the identification between S and S∗ is precisely the π/2-normal evolution.
Therefore the area-preserving diffeomorphisms Φ associated with S and S∗ coincide.

4.2. Relation with the extrinsic geometry of surfaces. A smooth embedded surface
σ : Σ → AdS3 is called spacelike if its tangent plane is a spacelike plane at every point, so
that the first fundamental form I(v, w) = 〈dσ(v), dσ(w)〉 is a Riemannian metric on Σ. Let

N be a unit normal vector field to the embedded surface S = σ(Σ). We denote by ∇AdS3

and
∇I the ambient connection of AdS3 and the Levi-Civita connection of the first fundamental
form of the surface Σ, respectively. If σ is C2, the second fundamental form of Σ is defined
by the equation

∇AdS3

dσ(v)dσ(w̃) = dσ∇Ivw̃ + II(v, w)N

if w̃ is a vector field extending w, and N is the future-directed unit normal vector field. The
shape operator is the (1, 1)-tensor defined as

B(v) = (dσ)−1∇AdS3

dσ(v)N .

It is a self-adjoint operator for I, such that

II(v, w) = I(B(v), w) .

It satisfies the Codazzi equation d∇
I

B = 0, where (for vector fields ṽ and w̃ on S extending
v and w):

d∇
I

B(v, w) = ∇Iṽ(B(w̃))−∇Iw̃(B(ṽ))−B[ṽ, w̃] .

Moreover, B satisfies the Gauss equation

KI = −1− detB , (15)

where KI is the curvature of the first fundamental form.
In [KS07], a formula for the pull-back on S of the hyperbolic metric of H2 by the left and

right projections was given. We report this formula here:

Proposition 4.6. Let S be a smooth embedded spacelike surface in AdS3. Then:

π∗l gH2(v, w) = I((E + JIB)v, (E + JIB)w) , (16)

and

π∗rgH2(v, w) = I((E − JIB)v, (E − JIB)w) . (17)

Here E denotes the identity operator, and JI is the almost-complex structure induced by I.
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Observe that, since B is self-adjoint for I, tr(JIB) = 0 and thus det(E±JIB) = 1+detB.
Hence if detB 6= −1, then πl and πr are local diffeomorphisms. If moreover S is convex
(detB ≥ 0), then by Lemma 4.2, πl, πr are diffeomorphisms onto their images. Since
det(E + JIB) = det(E − JIB), the composition Φ = πr ◦ (πl)

−1 is area-preserving. In
conclusion, we have:

Corollary 4.7. If S is a smooth convex embedded spacelike surface in AdS3, then πl and
πr are diffeomorphisms on their images. Therefore, Φ = πr ◦ (πl)

−1 : Ωl → Ωr, where
Ωl = πl(S) and Ωr = πr(S), is an area-preserving diffeomorphism.

Moreover, using Lemma 4.3, one gets:

Corollary 4.8. If S is a smooth convex embedded spacelike surface in AdS3 with ∂S =
gr(φ) ⊂ ∂AdS3, for φ an orientation-preserving diffeomorphism of ∂H2, then πl and πr are
diffeomorphisms onto H2 and Φ = πr ◦ (πl)

−1 is an area-preserving diffeomorphism of H2

which extends to φ on ∂H2.

Let us now discuss some properties of the associated map Φ to a smooth convex embedded
surface S. In fact, we will prove the following proposition:

Proposition 4.9. Let S be a smooth strictly convex embedded spacelike surface in AdS3,
and let Φ = πr ◦ (πl)

−1 : Ωl → Ωr be the associated area-preserving map. Then there exists
a smooth tensor b ∈ Γ(End(TΩl)) such that

Φ∗gH2 = gH2(b·, b·) , (18)

which satisfies:

(1) d∇b = 0 ;
(2) det b = 1 ;
(3) tr b ∈ (−2, 2) .

Here ∇ is the Levi-Civita connection of H2.

Proof. Let us define

b = (E + JIB)−1(E − JIB) . (19)

Then from Equations (16) and (17), the condition in Equation (18) is satisfied. Let us check
the three properties of b:

(1) Observe that, since ∇IE and ∇IJI vanish and B is Codazzi for I, then E−JIB satisfies

d∇
I

(E − JIB) = 0 .

Using a formula given in [Lab92] or [KS07, Proposition 3.12], the Levi-Civita connection
of the metric π∗l gH2 is

∇vw = (E + JIB)−1∇Iv(E + JIB)w ,

for every v, w. Hence:

d∇b(v, w) = ∇vb(w)−∇wb(v)− b[v, w]

= (E + JIB)−1(∇Iv(E − JIB)(w)−∇Iw(E − JIB)(v)− (E − JIB)[v, w])

= (E + JIB)−1(d∇
I

(E − JIB)(v, w)) = 0 .

This concludes the first point.
(2) Since B is self-adjoint for I, then trJIB = 0, and thus

det(E + JIB) = det(E − JIB) = 1 + detB .

Therefore det b = 1.
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(3) Observe that

(E + JIB)−1 =
1

1 + detB
(E − JIB) . (20)

In fact, (E + JIB)(E − JIB) = E − (JIB)2 and, since tr (JIB) = 0, by the Cayley-
Hamilton Theorem (JIB)2 = −det(JIB)E = −(detB)E. Moreover by a direct compu-
tation, tr(E − JIB)2 = trE + tr (JB)2 = 2(1− detB) and thus:

tr b = tr (E + JIB)−1(E − JIB) =
1

1 + detB
tr (E − JIB)2 = 2

(
1− detB

1 + detB

)
. (21)

Since detB > 0 by hypothesis, tr b is always contained in (−2, 2) for a strictly convex
surface. �

Remark 4.10. Using Equation (19) and J = (E + JIB)−1JI(E + JIB), we get

Jb = J(E + JIB)−1(E − JIB) = (E + JIB)−1JI(E − JIB) .

By applying again Equation (20), one obtains that

tr(Jb) =
tr(JI(E − JIB)2)

1 + detB
=

2trB

1 + detB
.

Since we have chosen the future-directed normal vector field to the surface S, this shows
that S is future-convex if tr(Jb) > 0, and past-convex if tr(Jb) < 0.

4.3. From K-surfaces to θ-landslides. Recall that a smooth spacelike surface in AdS3 is
a K -surface if its Gaussian curvature is constantly equal to K. In this paper we are interested
in strictly convex surfaces, hence we will consider K-surfaces with K ∈ (−∞,−1), so that
by the Gauss equation

KI = −1− detB ,

we will have detB > 0.
In [BMS13] it is proved that, given a K-surface in AdS3, for K ∈ (−∞,−1), the associated

map Φ is a θ-landslide. In [BMS13] the definition of θ-landslides is the following:

Definition 4.11. Let Φ : Ω ⊆ H2 → H2 be an orientation-preserving diffeomorphism onto
its image and let θ ∈ [0, π]. We say that Φ is a θ-landslide if there exists a bundle morphism
m ∈ Γ(End(TΩ)) such that

Φ∗gH2 = gH2((cos θE + sin θJm)·, (cos θE + sin θJm)·) ,
and

• d∇m = 0 ;
• detm = 1 ;
• m is positive self-adjoint for gH2 .

Let us observe that a θ-landslide with θ = 0, π is an isometry. In [BMS13] it was proved
that a θ-landslide can be decomposed as Φ = f2 ◦ (f1)−1, where f1 and f2 are harmonic
maps from a fixed Riemann surface, with Hopf differentials satisfying the relation

Hopf(f1) = e2iθHopf(f2) .

We will restrict to the case of θ ∈ (0, π). In this case, we will mostly use an equivalent
characterization of landslides:

Lemma 4.12. Let Φ : Ω ⊆ H2 → H2 be an orientation-preserving diffeomorphism onto its
image. Then Φ is a θ-landslide if and only if there exists a bundle morphism b ∈ Γ(End(TΩ))
such that

Φ∗gH2 = gH2(b·, b·) ,
and

• d∇b = 0 ;
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• det b = 1 ;
• tr b = 2 cos θ ;
• trJb < 0.

Proof. Let us first suppose that Φ is a θ-landslide and prove the existence of b. Let b =
cos θE + sin θJm, for m as in Definition 4.11. Then tr b = 2 cos θ since m is self-adjoint
for gH2 , and thus Jm is traceless. On the other hand, tr(Jb) = − sin θ trm < 0 since m is
positive definite. Moreover, det b = cos2 θ + sin2 θ = 1 since detE = det J = detm = 1 and
again tr(Jm) = 0. Finally, d∇b = 0 since ∇E = ∇J = 0.

Conversely, let b satisfy the conditions in the statement. Then b− cos θE is traceless and
thus is of the form aJm, with m positive self-adjoint for gH2 , detm = 1, and a ∈ R. Since
d∇b = 0, one has d∇m = 0. Finally, 1 = det b = cos2 θ + a2(detm) = cos2 θ + a2 implies
that |a| = | sin θ|. Imposing that trJb < 0, we conclude that a = sin θ. �

Hence we are now able to reprove the following fact, which is known from [BMS13]:

Proposition 4.13. Let S be a past-convex K-surface in AdS3 with K ∈ (−∞,−1). Then
the associated map Φ : Ωl → Ωr is a θ-landslide, with

K = − 1

cos2( θ2 )
.

Proof. The proof follows, using the characterization of Lemma 4.12, from the choice

b = (E + JIB)−1(E − JIB)

in Proposition 4.9. In fact, the first two points are satisfied, and from Equation (21) one
obtains:

tr b = 2

(
1− detB

1 + detB

)
= 2 cos θ , (22)

for some θ ∈ (0, π). As observed in Remark 4.10, tr (Jb) < 0 since S is past-convex by
hypothesis. Finally, from Equation (22) one obtains:

detB =
1− cos θ

1 + cos θ
= tan2(θ/2)

and thus

K = −1− detB = − 1

cos2(θ/2)
,

thus concluding the claim. �

Remark 4.14. There clearly is an analogous statement of Proposition 4.13 for future-convex
surfaces. In fact, if S is future-convex K-surface, consider first the tensor b′ = (E +
JIB)−1(E − JIB) as in the proof of Proposition 4.13. In this case tr (Jb′) > 0, as ob-
served in Remark 4.10.

Hence it is the choice b = −(E+JIB)−1(E−JIB) which makes the conditions in Lemma
4.12 satisfied. This shows that the associated map Φ is a θ-landslide where θ ∈ (0, π) is
chosen so that 2 cos θ = −tr ((E + JIB)−1(E − JIB)). The same computation as above
shows that the curvature of S is:

K = − 1

sin2(θ/2)
.

Let us remark that the result of this computation is consistent with the fact that the dual
surface of the K-surface S is a past-convex surface S∗, gives the same associated map Φ,
and has constant curvature

K∗ = − 1

cos2(θ/2)
.

In light of this remark, we will always restrict ourselves to consider past-convex K-surfaces.
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A special case is obtained for θ = π/2. Applying Lemma 4.12, a π/2-landslide is a
diffeomorphism Φ : Ω ⊆ H2 → Φ(Ω) ⊆ H2 such that Φ∗gH2 = gH2(b·, b·), where:

• d∇b = 0 ;
• det b = 1 ;
• tr b = 0 ;
• trJb < 0 .

Hence, by taking b0 = −Jb, we have tr (Jb0) = 0, and thus b0 has the property that
Φ∗gH2 = gH2(b0·, b0·) with:

• d∇b0 = 0 ;
• det b0 = 1 ;
• b0 is positive self-adjoint for gH2 .

This is known to be equivalent to Φ being a minimal Lagrangian map, namely Φ is area-
preserving and its graph is a minimal surface in H2 ×H2.

Remark 4.15. In [BS10], the existence of maximal surface in AdS3 (namely, such that
trB = 0 where B is the shape operator) was used to prove that every quasisymmetric
homeomorphism of ∂H2 admits a unique minimal Lagrangian extension to H2. We remark
that, given a smooth maximal surface in AdS3 with principal curvatures in (−1, 1), the two
π/4-parallel surfaces are (−2)-surfaces (see [BS10] or [KS07]). As already discussed in Re-
marks 4.4 and 4.5, the map associated to the two parallel surfaces (which are dual to one
another) is the same as the map associated to the original maximal surface.

5. A representation formula for convex surfaces

The purpose of this section is to provide a representation formula for convex surfaces in
AdS3 in terms of the associated diffeomorphism Φ : Ω ⊆ H2 → Φ(Ω) ⊆ H2, for Ω a domain
in H2. A basic observation to start with is the fact that, if S is a smooth strictly convex
embedded surface, with associated map Φ = πr ◦ (πl)

−1, and if γ ∈ S is such that πl(γ) = x,
then γ belongs to the timelike geodesic

Lx,Φ(x) = {η ∈ Isom(H2) : η(Φ(x)) = x} .

In fact, from Subsection 4.1, we know Lx,Φ(x) is precisely the timelike geodesic orthogonal
to S at γ.

Motivated by this observation, we will now define a 1-parameter family of parallel surfaces
SΦ,b, all orthogonal to the lines Lx,Φ(x), which depend on the diffeomorphism Φ and on the
choice of b ∈ Γ(End(TΩ)) satisfying the necessary conditions provided by Proposition 4.9.
The surface SΦ,b will be parameterized by the inverse map of the left projection πl : S → H2.

Definition 5.1. Let Ω be a domain in H2 and Φ : Ω ⊆ H2 → Φ(Ω) ⊆ H2 be an orientation-
preserving diffeomorphism such that

Φ∗gH2 = gH2(b·, b·) ,

where b ∈ Γ(End(TΩ)) is a smooth bundle morphism such that d∇b = 0 and det b = 1. Then
define the map σΦ,b : H2 → Isom(H2), where σΦ,b(x) is the unique isometry σ such that

• σ(Φ(x)) = x ;
• dσΦ(x) ◦ dΦx = −bx .

Example 5.2. If Φ is the identity of H2 and cos θ = 1, then clearly the identity operator
b = E satisfies the conditions d∇b = 0 and det b = 1. Hence by applying the definition,
σid,E(x) is the unique isometry which fixes x and has differential −E. In conclusion, σid,E :
H2 → Isom(H2) is our usual identification which maps x ∈ H2 to Ix.
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Remark 5.3. Clearly the smooth tensor b ∈ Γ(End(TΩ)) is not uniquely determined. In
fact, if b′ is another tensor satisfying

Φ∗gH2 = gH2(b′·, b′·) ,
with det b′ = 1, then b′x = Rxρ(x)bx, where ρ is a function and Rxρ is the rotation of ρ around

the basepoint x ∈ H2. Then we claim that d∇b′ = Rρ(dρ ∧ Jb + d∇b). Indeed, using that
∇Rρ = dρ⊗ JRρ we get

d∇(Rρb)(v, w) = ∇v(Rρb)(w)−∇w(Rρb)(v)

= (∇vRρ) ◦ b(w) +Rρ ◦ (∇vb)(w)− (∇wRρ) ◦ b(v)−Rρ ◦ (∇wb)(v)

= dρ(v)JRρb(w)− dρ(w)JRρb(v) +Rρ((∇vb)(w)− (∇wb)(v))

= Rρ(dρ(v)Jb(w)− dρ(w)Jb(v) + d∇b(v, w)) ,

(23)

Therefore, from the condition d∇b = 0, if b′ is another tensor as in the hypothesis of
Definition 5.1, then (up to replacing ρ with 2ρ), b′ = Rx2ρb, where ρ is a constant.

In this case, one gets that σ := σΦ,b(x) satisfies the condition dσΦ(x) = −bx ◦ (dΦx)−1,
while σ′ := σΦ,b′(x) satisfies

dσ′x = −b′ ◦ (dΦx)−1 = −Rx2ρ ◦ b ◦ (dΦx)−1 .

In other words, the map σΦ,b′ is obtained by displacing the map σΦ,b along the timelike lines
Lx,Φ(x) of a constant length ρ.

The next lemma discuss the naturality of the construction of the map σΦ,b.

Lemma 5.4. Let b ∈ Γ(End(TΩ)) be a smooth bundle morphism such that

Φ∗gH2 = gH2(b·, b·) ,
with d∇b = 0 and det b = 1. Let α, β be isometries of H2. Then:

• The smooth tensor b′ on β(Ω) defined by b′βx = dβx ◦ bx ◦ (dβx)−1 is such that

(αΦβ−1)∗gH2 = gH2(b′·, b′·), d∇b′ = 0 and det b′ = 1;
• σα◦Φ◦β−1,b′(β(x)) = β ◦ σΦ,b(x) ◦ α−1 = (β, α) · σΦ,b(x) .

Proof. For the first point, since β is an isometry, one has:

(αΦβ−1)∗gH2(v, w) = gH2(d(αΦβ−1)(v), d(αΦβ−1)(w))

= gH2(d(Φβ−1)(v), d(Φβ−1)(w)) = gH2(b′(v), b′(w)) .

Moreover,

d∇b′ = ∇v(dβb dβ−1(w))−∇w(dβb dβ−1(v))− dβb dβ−1[v, w]

= dβ
(
∇dβ−1(v)(b dβ

−1(w))− dβ∇dβ−1(w)(b dβ
−1(v))− b[dβ−1(v), dβ−1(w)]

)
= dβd∇b(dβ−1(v), dβ−1(w)) = 0 .

For the second point, we must check that σ̂ = β ◦ σΦ,b(x) ◦ α−1 satisfies the two properties
defining σα◦Φ◦β−1,b′(β(x)), namely σ̂(αΦβ−1(β(x))) = β(x) and dσ̂αΦ(x) ◦ d(αΦβ−1)β(x) =
−b′β(x).

For the first defining property, we have that for every x ∈ Ω:

(β ◦ σΦ,b(x) ◦ α−1)(α ◦ Φ ◦ β−1)(β(x)) = β(σΦ,b(x)Φ(x)) = β(x) .

For the second property,

d(βσΦ(x)α−1)αΦ(x) ◦ d(αΦβ−1)βx = dβx ◦ d(σΦ(x))Φ(x) ◦ dΦx ◦ dβ−1
β(x)

= −dβx ◦ bx ◦ (dβx)−1 = −b′β(x) .

This concludes the proof. �
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Let us now compute the pull-back of the induced metric on the surface SΦ,b = σΦ,b(Ω)
by means of σΦ,b.

Proposition 5.5. Let Ω be a domain in H2 and Φ : Ω ⊆ H2 → Φ(Ω) ⊆ H2 be an orientation-
preserving diffeomorphism such that

Φ∗gH2 = gH2(b·, b·) ,
where b ∈ Γ(End(TΩ)) is a smooth bundle morphism such that d∇b = 0 and det b = 1. Then

(σΦ,b)
∗gAdS3 =

1

4
gH2((E + b)·, (E + b)·) . (24)

Proof. In this proof, we will consider H2 in the hyperboloid model (recall Subsection 2.1),
so that Isom(H2) is identified to the connected component of the identity in SO(2, 1).

Let us fix a point x ∈ H2. By post-composing Φ with an isometry α (where actually
α = σΦ,b(x)), we can assume that Φ(x) = x and that dΦx = −b. Indeed, by Lemma 5.4, σΦ,b

is modified by right multiplication with α−1 and thus the embedding data are unchanged.
Therefore by Definition 5.1, σΦ,b(x) = id since σΦ,b(x) fixes x and its differential at x is the
identity.

Consider a smooth path x(t) with x(0) = x and ẋ(0) = v. Hence, regarding the isometries
of H2 as SO(2, 1)-matrices and points of H2 as vectors in R2,1, by differentiating at t = 0
the relation

σΦ,b(x(t)) · Φ(x(t)) = x(t) ,

we get
dσΦ,b(v) · x− b(v) = v ,

and therefore
dσΦ,ρ(v) · x = (E + b)v . (25)

On the other hand, choose a vector w ∈ TxH2 and extend w to a parallel vector field w(t)
along x(t). We start from the following relation (recall that we consider Isom(H2) in the
SO(2, 1) model, hence the differential of an isometry σ is σ itself):

σΦ,b(x(t)) · dΦx(t)(w(t)) = −bx(t)(w(t)) .

By differentiating this identity in R2,1, we obtain

−dσΦ,b(v) · (bxw) +
d

dt

∣∣∣∣
t=0

(dΦx(t)(w(t))) = − d

dt

∣∣∣∣
t=0

(bx(t)w(t)) . (26)

Now observe that, if ∇ is the Levi-Civita connection of H2 and 〈·, ·〉R2,1 is the Minkowski
product of R2,1, then

d

dt

∣∣∣∣
t=0

(bx(t)w(t)) = ∇v(bx(t)w(t)) + (〈v, b(w)〉R2,1)x .

For the other term, we obtain in a similar fashion that

d

dt

∣∣∣∣
t=0

(dΦx(t)(w(t))) = ∇dΦx(v)(dΦx(t)w(t)) + (〈b(v), b(w)〉R2,1)x ,

In the second term, we have used that dΦx = −b. Since Φ is an isometry between gH2 and
Φ∗gH2 = gH2(b·, b·), we have

∇dΦx(v)(dΦx(t)w(t)) = dΦx∇̃v(w(t)) = −bx∇̃v(w(t)) ,

where ∇̃ is the Levi-Civita connection of Φ∗gH2 . Using again the formula given in [Lab92]
or [KS07, Proposition 3.12], it turns out that for any two vector fields X,Y

∇̃XY = b−1∇X(b(Y )) . (27)

Therefore, from Equation (26) we obtain

−dσΦ,b(v)·(bxw)−∇v(bx(t)w(t))+(〈bxv, bxw〉R2,1)x = −∇v(bx(t)w(t))−(〈v, bxw〉R2,1)x (28)
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Therefore, replacing bxw with an arbitrary vector w, we obtain the relation

dσΦ,b(v) · w = (〈w, (E + b)v〉R2,1)x . (29)

It is straightforward to check, using Equations (25) and (29), that dσΦ,ρ(v) corresponds to
the linear map

dσΦ,b(v)(w) = J(E + b)v � w = Λ(J(E + b)(v))(w) , (30)

where J is the almost-complex structure of H2. Recalling from Equation (13) that the
identification of so(2, 1) with R2,1 sends the AdS metric of Isom(H2) to 1/4 the Minkowski
product, the first fundamental form is:

gAdS3(dσΦ,b(v1), dσΦ,b(v2)) =
1

4
〈J(E + b)v1, J(E + b)v2〉R2,1

=
1

4
〈(E + b)v1, (E + b)v2〉R2,1 ,

as in our claim. �

Remark 5.6. From the proof of Proposition 5.5, it turns out that, under the usual identi-
fication, the differential of σΦ,b is given by J(E + b). Hence the map σΦ,b is an immersion
provided

det dσΦ,b = 2 + tr b 6= 0 ,

or equivalently tr b 6= −2.

Corollary 5.7. In the hypothesis of Proposition 5.5, the image of dσΦ,b at a point x ∈ Ω is
orthogonal to the line Lx,Φ(x) at the point σΦ,b(x). In particular, if x is not a critical point,
then the family of lines L·,Φ(·) foliates a neighborhood of σΦ,b(x) and the map σΦ,b gives a
local parameterization of an integral surface of the orthogonal distribution.

Moreover, if σΦ,b is an immersion, then πl ◦ σΦ,b is the identity, and πr ◦ σΦ,b = Φ.

Proof. As in the proof of Proposition 5.5, we can assume that Φ(x) = x and that dΦx = −b,
which implies that σΦ,b(x) = id. From Equation (30), it follows that the image of dσΦ,b at
x is orthogonal to the direction given by Λ(x).

On the other hand, in this assumption Lx,Φ(x) = Lx,x is the 1-parameter subgroup gen-
erated by Λ(x) itself. �

Remark 5.8. From the proof Proposition 5.5 we have actually shown that, under the as-
sumption Φ(x) = x and that dΦx = −b, if dσΦ,b is non-singular at x, then under the
identification TidIsom(H2) ∼= so(2, 1) ∼= R2,1, the future unit normal vector at σΦ,b(x) = id
is N(x) = 2Λ(x). In fact, N(x) = 2Λ(x) is orthogonal to the surface at σΦ,b(x) by the
above observation, and is unit, since the AdS metric at id is identified to 1/4 the Minkowski
product, see Equation (13).

Proposition 5.9. Let Ω be a domain in H2 and Φ : Ω ⊆ H2 → Φ(Ω) ⊆ H2 be an orientation-
preserving diffeomorphism such that

Φ∗gH2 = gH2(b·, b·) ,
where b ∈ Γ(End(TΩ)) is a smooth bundle morphism such that d∇b = 0 and det b = 1. Then
the shape operator of the immersion σΦ,b is:

B = −JI(E + b)−1(E − b) , (31)

where JI denotes the almost-complex structure associated to the induced metric I.

Proof. To compute the covariant derivative of the normal vector field N along a tangent
vector dσΦ(v), we use the following formula (see [Mil76]):

∇AdS3

dσΦ,b(v)N = ∇ldσΦ,b(v)N +
1

2
[dσΦ,b(v), N ] = ∇rdσΦ,b(v)N −

1

2
[dσΦ,b(v), N ] ,
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where ∇l (resp. ∇r) is the left-invariant (resp. right-invariant) flat connection which
makes the left-invariant (resp. right-invariant) vector fields parallel, and [·, ·] denotes the
bi-invariant extension of Lie bracket on isom(H2). Assuming that σΦ,b(x) = id as before, we
can compute ∇rdσΦ,b(v)N as the differential at the identity of the vector field NσΦ,b(x)−1.

Observe that in the argument of Proposition 5.5 and Remark 5.8, while doing the assump-
tion that Φ(x) = x and that dΦx = −b (so that σΦ,b(x) = id), one is actually compos-
ing with an isometry of AdS3 of the form (id, α), where α = σΦ,b(x). Thus the formula
N(x)σΦ,b(x)−1 = 2Λ(x) is still true for every point x. Recall that, under the identification
of the Lie algebra so(2, 1) with R2,1, the Lie bracket [v, w] is identified to the Minkowski
product v � w (see Equation (12)). Therefore we get, using Equation (30),

∇AdS3

dσΦ,b(v)N = Λ

(
2v − 1

2
J(E + b)v � 2x

)
= Λ (2v − v − b(v)) = Λ ((E − b)v) ,

where we have used Equation (10). Therefore, using Equation (30), that is, dσΦ,b(v) =
Λ(J(E + b)v), one concludes that

B = −(E + b)−1J(E − b) .
Using that, from Equation (24) for the metric, JI = (E + b)−1J(E + b), one concludes the
proof. �

Observe that, if Φ is a θ-landslide, then by Lemma 4.12 we can choose b as in the hy-
pothesis, with moreover tr b = 2 cos θ. Hence by Equation (31), the curvature of σΦ,b(Ω)
is

detB =
2− tr b

2 + tr b
=

1− cos θ

1 + cos θ
= tan2

(
θ

2

)
,

and thus σΦ,b is a K-surface for K = −1/ cos2(θ/2).
More generally, we can now prove:

Theorem 5.10. Let S be a smooth strictly convex embedded spacelike surface in AdS3, and
let Φ = πr ◦ (πl)

−1 : Ωl → Ωr be the associated map. By identifying gH2 with the metric
I((E + JIB)·, (E + JIB)·) by means of the left projection πl, and choosing

b = (E + JIB)−1(E − JIB) ,

then the map σΦ,b : Ωl → AdS3 defined by σΦ,b(x) = σ, with:

• σ(Φ(x)) = x ;
• dσΦ(x) ◦ dΦx = −bx .

is an embedding whose image is the original surface S.

Proof. Recall from Proposition 4.9 that b satisfies the hypothesis d∇b = 0 and det b = 1.
Moreover, since S is strictly convex, then tr b ∈ (−2, 2) and thus σΦ,b is an immersion by
Remark 5.6. We will check that the embedding data of σΦ,b ◦ πl coincide with those of S,
and thus in principle σΦ,b ◦ πl extends to a global isometry (γl, γr) of AdS3. By Corollary
5.7, if πl(γ) = x, then the point σΦ,b(x) belongs to the geodesic Lx,Φ(x) which is orthogonal
to S at γ, and is also orthogonal to the image of σΦ,b. So we deduce that (γl, γr) preserves
every geodesic of the form Lx,Φ(x). Hence γl fixes every point x ∈ Ωl, and analogously γr
fixes every point Φ(x). Therefore γl = γr = id and this will conclude the proof.

To check the claim of the embedding data, using Equation (24),

π∗l σ
∗
Φ,b(gAdS3) =

1

4
π∗l gH2((E + b)·, (E + b)·) =

1

4
I((E + JIB)(E + b)·, (E + JIB)(E + b)·) .

On the other hand,

(E + JIB)(E + b) = (E + JIB)(E + (E + JIB)−1(E − JIB))

= (E + JIB)(E + JIB)−1(E + JIB + E − JIB) = 2E .
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In a similar way, according to Equation (31), the shape operator of σΦ,b ◦ πl is:

−JI(E + b)−1(E − b) = JI(E + (E + JIB)−1(E − JIB))−1(E − (E + JIB)−1(E − JIB))

= JI(2(E + JIB)−1)−1(−2(E + JIB)−1JIB) = −J2
IB ,

and thus it coincides with B, the shape operator of the original surface S. This concludes
the proof. �

As already observed, the condition that tr b is a constant in (−2, 2) coincides with the
condition that S has constant curvature in (−∞,−1). Hence we obtain the following corol-
lary:

Corollary 5.11. Let Ω be a domain in H2 and Φ : Ω ⊆ H2 → H2 be a θ-landslide with
θ ∈ (0, π). If b ∈ Γ(End(TΩ)) satisfies

Φ∗gH2 = gH2(b·, b·) ,
with d∇b = 0, det b = 1, tr b = 2 cos θ and trJb < 0, then the map σΦ,b defined by:

• σ(Φ(x)) = x ;
• dσΦ(x) ◦ dΦx = −bx .

is the embedding of the past-convex K-surface in AdS3 (for K = −1/ cos2(θ/2)) such that
πl ◦ σΦ,b = id and πr ◦ σΦ,b = Φ.

Remark 5.12. Applying Remark 5.3, the map σΦ,−b, which is defined by:

• σ(Φ(x)) = x ;
• dσΦ(x) ◦ dΦx = bx .

corresponds to the dual embedding, which is a K∗-surface, with K∗ = −K/(K + 1), whose
associated landslide map Φ is the same.

Although this is not the main point of this paper, we observe that this representation
formula holds also for maximal surfaces. In fact, if Φ is a minimal Lagrangian map (which
is the same as a (π/2)-landslide, as already observed), then there exists a smooth b0 ∈
Γ(End(TΩ)) such that Φ∗gH2 = gH2(b0·, b0·) with

• d∇b0 = 0 ;
• det b0 = 1 ;
• b0 is self-adjoint for gH2 .

Moreover, one can assume b0 is positive definite (up to replacing b0 with −b0). The condition
that b0 is positive definite ensures that tr b0 6= −2, and thus σΦ,b0 is an immersion. Moreover,
by a direct computation (see [BS10, §3]), B is traceless, that is, σΦ,b0(Ω) is a maximal surface.
In fact, in [BS10] the existence of maximal surfaces was proved in order to obtain results
on the existence of minimal Lagrangian extensions. Our next corollary goes in the opposite
direction.

Corollary 5.13. Let Ω be a open domain in H2 and Φ : Ω ⊆ H2 → H2 be a minimal
Lagrangian map such that

Φ∗gH2 = gH2(b0·, b0·) ,
so that b0 is positive definite, gH2-self-adjoint, d∇b0 = 0 and det b0 = 1. Then the map σΦ,b0

defined by:

• σ(Φ(x)) = x ;
• dσΦ(x) ◦ dΦx = −(b0)x .

is the embedding of the maximal surface in AdS3 such that πl ◦σΦ,b0 = id and πr ◦σΦ,b0 = Φ.

In fact, as it is to be expected, considering b = ±Jb0 one recovers the K-surfaces which
are (π/4)-parallel surfaces to the maximal surface.
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6. The explicit construction of a barrier

In this section we will construct an explicit example of θ-landslides between hyperbolic
surfaces, which commute with a 1-parameter hyperbolic group of isometries.

We will use the upper half-plane model of H2, and will denote by z = x+ iy the standard
coordinates of the upper half-plane. Let us introduce a new coordinate w = s + it, with
w ∈ R× (−π/2, π/2), defined by

z = i exp(w) .

(See also [Hub06, Chapter 2].) Clearly w is a conformal coordinate, and the hyperbolic
metric takes the form

h0 =
|dz|2
y2

=
|dw|2

cos2(t)
. (32)

In this coordinates, the line l = {t = 0} is a geodesic with endpoints 0,∞ ∈ RP1. The
isometries preserving the geodesic l have the form γa(s, t) = (s + a, t). Moreover, the lines
{s = s0} are geodesics orthogonal to l. See Figure 7.

{t = 0}
{t = t0}

{s = s0}

Figure 7. In the w = s + it on the upper half-plane, the curves {t = t0}
are equidistant curves from the geodesic {t = 0}. The curves {s = s0} are
geodesics orthogonal to {t = 0}.

We will look for a θ-landslide Φθ invariant for the 1-parameter group γa. More precisely,
we require that Φθ ◦ γa = γa ◦ Φθ. Hence Φθ will necessarily have the form

Φθ(s, t) = (s− ϕ(t), ψ(t)) .

We want to impose that Φθ is an orientation-preserving diffeomorphism, hence we will
assume ψ increasing. Thus we will always consider ψ′ > 0.

We will make use of the following remark:

Remark 6.1. Given an orientation-preserving local diffeomorphism Φ : Ω ⊆ H2 → H2, there
exists a unique bundle morphism b0 ∈ Γ(End(TH2)) with

Φ∗gH2 = gH2(b0·, b0·) ,
such that b0 is positive definite and self-adjoint for gH2 (which is equivalent to trJb0 = 0).
Indeed, b0 is the square root of (gH2)−1Φ∗gH2 . In general, Φ∗gH2 is equal to gH2(b·, b·), for a
(smooth) bundle morphism b, if and only if b is of the form Rρb0 for some smooth function
ρ.

Hence, let us begin by computing

Φ∗θh0 =
1

cos2(ψ(t))

(
(ds− ϕ′(t)dt)2 + ψ′(t)2dt2

)
=
ds2 − 2ϕ′(t)dsdt+ (ϕ′(t)2 + ψ′(t)2)dt2

cos2(ψ(t))
.
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Therefore we have Φ∗θh0 = h0(b0·, b0·) = h0(·, b20), where b0 is self-adjoint for h0, positive
definite, and in the (s, t)-coordinates

b20 = h−1
0 Φ∗θh0 =

cos2(t)

cos2(ψ(t))

(
1 −ϕ′(t)

−ϕ′(t) ϕ′(t)2 + ψ′(t)2

)
.

Let us observe that

det b20 =
cos4(t)

cos4(ψ(t))
ψ′(t)2 .

Since we are imposing that Φθ is area-preserving, we must require det b = 1, which is
equivalent to det b0 = det b20 = 1. We obtain (assuming ψ′(t) > 0):

ψ′(t)

cos2(ψ(t))
=

1

cos2(t)
,

which leads to the condition tan(ψ(t)) = tan t+ C (after a choice of the sign).
In the following, we choose C = 0, thus ψ(t) = t and we look for a map of the form

Φ(s, t) = (s− ϕ(t), t).
Observe that, for the Cayley-Hamilton theorem, b20 − (tr b0)b0 + (det b0)E = 0. Hence we

have b20 + E = (tr b0)b0 and, taking the trace, (tr b0)2 = 2 + tr (b20). In our case, tr (b20) =
2 + ϕ′(t)2 and therefore we obtain the following positive definite root of b20:

b0 =
1√

4 + ϕ′(t)2
(b20 + E) =

1√
4 + ϕ′(t)2

(
2 −ϕ′(t)

−ϕ′(t) 2 + ϕ′(t)2

)
.

From Remark 6.1, it remains to impose that b = Rρb0 satisfies tr b = 2 cos θ, trJb < 0
and the Codazzi condition for gH2 .

Remark 6.2. The condition tr b = 2 cos θ is equivalent to tr (Rρb0) = 2 cos θ. Observe that

Rρb0 = (cos ρE + sin ρJ)b0 = (cos ρ)b0 + (sin ρ)Jb0 .

Since b0 is self-adjoint, we have tr (Jb0) = 0, hence the following formula holds:

tr(Rρb0) = cos ρ tr b0 .

Using this formula, the condition tr (Rρb0) = 2 cos θ can be rewritten as

cos ρ =
2 cos θ

tr b0
. (33)

Note that tr b0 ≥ 2, since det b0 = 1 and b0 is positive definite. Thus there are precisely two
possible continuous choices of the angle ρ, namely

ρ = ± arccos

(
2 cos θ

tr(b0)

)
. (34)

Since cos θ 6= 1, neither of these two functions can vanish at any point.

In the case being considered, tr (b0) =
√

4 + ϕ′(t)2. Hence, by imposing that tr (Jb) < 0,
we get sin ρ > 0 and thus

ρ = arccos

(
2 cos θ√

4 + ϕ′(t)2

)
.

It thus remains to impose the Codazzi condition to b = Rρb0 to determine the function ϕ(t).
Using Equation (23), it suffices to impose

dρ(∂s)Jb0(∂t)− dρ(∂t)Jb0(∂s) + d∇b0(∂s, ∂t) = 0 ,

and since dρ(∂s) = 0 and [∂s, ∂t] = 0, we must impose

∇∂sb0(∂t)−∇∂tb0(∂s)− dρ(∂t)Jb0(∂s) = 0 . (35)
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For this purpose, let us compute

∇∂sb0(∂t) = ∇∂s

(
1√

4 + ϕ′(t)2
(−ϕ′(t)∂s + (2 + ϕ′(t)2)∂t)

)

=
1√

4 + ϕ′(t)2

(
−ϕ′(t)∇∂s∂s + (2 + ϕ′(t)2)∇∂s∂t

)
Observing that ∇∂s∂s = − tan(t)∂t and ∇∂s∂t = tan(t)∂s, we obtain

∇∂sb0(∂t) =
tan(t)√

4 + ϕ′(t)2

(
(2 + ϕ′(t)2)∂s + ϕ′(t)∂t

)
.

On the other hand,

∇∂tb0(∂s) = ∇∂t

(
1√

4 + ϕ′(t)2
(2∂s − ϕ′(t)∂t)

)

= − ϕ′(t)ϕ′′(t)

(4 + ϕ′(t)2)3/2
(2∂s − ϕ′(t)∂t) +

1√
4 + ϕ′(t)2

(2∇∂t∂s − ϕ′′(t)∂t − ϕ′(t)∇∂t∂t) ,

Using moreover ∇∂t∂t = tan(t)∂t,

∇∂tb0(∂s) =

(
− 2ϕ′(t)ϕ′′(t)

(4 + ϕ′(t)2)3/2
+

2 tan(t)√
4 + ϕ′(t)2

)
∂s

+

(
ϕ′(t)2ϕ′′(t)

(4 + ϕ′(t)2)3/2
− ϕ′′(t) + ϕ′(t) tan(t)√

4 + ϕ′(t)2

)
∂t .

We also compute:

∂tρ =
1√

1− 4 cos2 θ
4+ϕ′(t)2

2 cos θ

(4 + ϕ′(t)2)3/2
ϕ′(t)ϕ′′(t)

=
2 cos θ ϕ′(t)ϕ′′(t)

(4 + ϕ′(t)2)
√

4 sin2 θ + ϕ′(t)2

.

Finally Jb0(∂s) = (ϕ′(t)∂s+2∂t)/
√

4 + ϕ′(t)2. Therefore the Codazzi condition in Equa-
tion (35) gives, for the ∂s components,

tan(t)ϕ′(t)2√
4 + ϕ′(t)2

= − 2ϕ′(t)ϕ′′(t)

(4 + ϕ′(t)2)3/2
+

2 cos θ ϕ′(t)2ϕ′′(t)

(4 + ϕ′(t)2)3/2

√
4 sin2 θ + ϕ′(t)2

,

and thus

− tan(t) =
2

4 + ϕ′(t)2

 1

ϕ′(t)
− cos θ√

4 sin2 θ + ϕ′(t)2

ϕ′′(t) . (36)

On the other hand, equating the ∂t-components in (35) gives

ϕ′(t)2ϕ′′(t)

(4 + ϕ′(t)2)3/2
=
ϕ′′(t) + 2ϕ′(t) tan(t)√

4 + ϕ′(t)2
− 4 cos θ ϕ′(t)ϕ′′(t)

(4 + ϕ′(t)2)3/2

√
4 sin2 θ + ϕ′(t)2

and thus

2ϕ′(t) tan(t) =
ϕ′′(t)(ϕ′(t)2 − 4− ϕ′(t)2)

(4 + ϕ′(t)2)
+

2 cos θ ϕ′(t)ϕ′′(t)

(4 + ϕ′(t)2)
√

4 sin2 θ + ϕ′(t)2

,

hence leading again to Equation (36).
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Remark 6.3. Observe that, for the first term in the RHS of Equation (36),∫
2ϕ′′(t)

ϕ′(t)(4 + ϕ′(t)2)
dt =

1

2
log(ϕ′(t))− 1

4
log(ϕ′(t)2 + 4) + cost.

Hence if cos θ = 0, by straightforward algebra one obtains

ϕ′(t)2

ϕ′(t)2 + 4
= e−4C cos4(t) ,

for some constant C. In conclusion,

ϕ′(t)2 = 4

(
1

1− e−4C cos4(t)
− 1

)
,

or equivalently

ϕ′(t) = 2
e−2C cos2(t)√

1− e−4C cos4(t)
. (37)

Observe that, if C > 0, then ϕ′(t) is defined for all t ∈ [−π/2, π/2], and therefore
we obtain minimal Lagrangian maps from H2 to H2. Up to composing with a hyperbolic
translation still of the form γa(s, t) = (s + a, t), we can assume ϕ is a primitive of the
RHS of Equation (37) such that ϕ(−π/2) = 0, so that the points in ∂H2 with coordinates
w = (s,−π/2) (namely, those points in the boundary on one side of the geodesic connecting
0 and ∞) are fixed. It is also easy to check that the map obtained by choosing the opposite
sign in Equation (37) provides the inverse map. See Figure 8. However, in this paper we
are interested in the solutions of Equation (36) which are not defined on the whole interval
[−π/2, π/2].

Figure 8. The dynamics of the map Φ when the constant C is positive, in
the w = s+ it coordinate. This is a conformal model of H2.

6.1. Landslides of the hyperbolic half-plane. Let us now study the ODE in Equation
(36). Let us define

F : [0,+∞)→ R F (r) = −2 cos θ

∫ r

0

du

(4 + u2)
√

4 sin2 θ + u2
.

Clearly F (0) = 0 and

|F (+∞)| := lim
r→+∞

|F (r)| < +∞ .

By integrating both sides of Equation (36), one obtains

1

2
log(ϕ′(t))− 1

4
log(ϕ′(t)2 + 4) + F (ϕ′(t)) = log(cos(t)) + C . (38)

Observe that the the function

r 7→ 1

2
log r − 1

4
log(r2 + 4) + F (r) ,
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which corresponds to the LHS of Equation (38) with ϕ′(t) = r, is an increasing function of
r, since by construction its derivative is the expression

r 7→ 2

4 + r2

(
1

r
− cos θ√

4 sin2 θ + r2

)
which is positive (even if cos θ > 0). (Compare Equation (36).) An equivalent form of
Equation (38) is:

ϕ′(t)1/2

(ϕ′(t)2 + 4)1/4
eF (ϕ′(t)) = eC cos(t) . (39)

Let us put C = F (+∞). With this choice, the real function

G(r) = − arccos

(
r1/2

(r2 + 4)1/4
eF (r)−C

)
is strictly increasing and sends [0,+∞) to [−π/2, 0). Hence Equation (39) defines ϕ′(t) =
G−1(t), and in particular

lim
t→0−

ϕ′(t) = +∞ and lim
t→−π/2

ϕ′(t) = 0 . (40)

We will need a more precise analysis of the behavior of ϕ(t) close to 0.

Lemma 6.4. Any solution ϕ of Equation (39), with C = F (+∞), satisfies

lim
t→0−

tϕ′(t) = −
√

2(1− cos θ) . (41)

Therefore, limt→0 ϕ(t) = +∞ and

lim
t→0−

teϕ(t)/2 = 0 . (42)

Proof. Recalling that ϕ′ is defined by ϕ′(t) = G−1(t), to prove (41) we need to show that

lim
t→0−

tG−1(t) = −
√

2(1− cos θ) .

Being G−1 a diffeomorphism between [−π/2, 0) and [0,+∞), observe that

lim
t→0−

tG−1(t) = lim
v→+∞

vG(v) = lim
u→0

G(1/u)

u
.

A simple computation shows that

F (1/u)− C = 2 cos θ

∫ +∞

1/u

dr

(4 + r2)
√

4 sin2 θ + r2
= 2 cos θ

∫ u

0

sds

(4s2 + 1)
√

4s2 sin2 θ + 1

so F (1/u)− C = cos θu2 + o(u2). Thus

cosG(1/u) =
eF (1/u)−C

(1 + 4u2)1/4
= (1−u2 +o(u2))(1 + cos θu2 +o(u2)) = 1− (1− cos θ)u2 +o(u2)

so
G2(1/u)/2 = (1− cos θ)u2 + o(u2)

and we conclude that G(1/u) = −
√

2(1− cos θ)u+ o(u), which implies (41).

For (42), notice that
√

2(1− cos θ) < 1, and choose a number α ∈ (
√

2(1− cos θ), 1).
Now fixing t0 < 0 so that ϕ′(t) < α/|t| for t ∈ [t0, 0) (this exists by (41)). So for t > t0 we
have

ϕ(t)− ϕ(t0) =

∫ t

t0

ϕ′(r)dr < α ln(t0/t)

so

eϕ(t) ≤ eϕ(t0)

(
t0
t

)α
= c|t|−α ,

and this proves (42). �
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The associated map

Φθ : H2
+ → H2

+ ,

where H2
+ = {z ∈ H2 | <(z) > 0} = {t ≤ 0} is a half-plane in H2, of the form

Φθ(s, t) = (s− ϕ(t), t) ,

is a θ-landslide of H2
+. Here ϕ is a primitive of ϕ′ chosen in such a way that ϕ(−π/2) = 0, so

that Φ(s,−π/2) = (s,−π/2) for every s ∈ R. Since from Lemma 6.4 we know ϕ(t) diverges
as t → 0, the map does not extend to the geodesic boundary of H2

+, which is the geodesic
invariant for the 1-parameter hyperbolic group.

We additionally observe that Φθ maps the curve qs0 : (0, π/2)→ H2
+, parameterized by

qs0(t) =

(
s0 +

1

2
ϕ(t), t

)
,

to the curve ps0 with parameterization

ps0(t) =

(
s0 −

1

2
ϕ(t), t

)
,

which is the image of qs0 by means of the reflection (s, t) 7→ (2s0 − s, t). See Figure 9.

Φθ

s0s0

Figure 9. A sketch of the dynamics of the map Φθ, in the w = s + it
coordinate.

Let us remark that, since Φθ commutes with the 1-parameter hyperbolic group γa, then
the images of the constant curvature embeddings σΦθ,Rρb0 are invariant for the group of
isometries of the form (γa, γa), which preserve the plane Rπ. We want to prove that the
image of σΦθ,Rρb0 is the spacelike part of a past-convex K-surface SK (with as usual K =

−1/ cos2(θ/2)) whose boundary in ∂AdS3 is the union of the boundary at infinity of an
invariant half-plane in Rπ and a sawtooth, i.e. two null segments in ∂AdS3. Moreover,
the lightlike part of Sθ is precisely the lightlike triangle bounded by the two null segments.
This last condition will be the key property we will need to use SK as a barrier in the next
sections.

Defining σ(t) = σΦθ,Rρb0(qs0(t)), by applying the definition, the isometry σ(t) maps the
point ps0(t) to qs0(t). From Equation (32), the distance of a point from the geodesic {t = 0}
only depends on the t-coordinate, and thus ps0 and qs0 have the same distance from the
geodesic {t = 0}. Hence σ(t) can be an elliptic isometry with fixed point on the geodesic
{s = s0}, a parabolic isometry fixing an endpoint of {s = s0}, or a hyperbolic isometry
whose axis is orthogonal to the geodesic {s = s0}.

The goal of this part is to prove that for t → 0 the family of isometries σΦθ,Rρb0(qs0(t))
actually converges to I(s0,0), that is, to the elliptic isometry of order two fixing the point of
intersection of {s = s0} and {t = 0}. In this way we will get that the surface associated to
Φθ contains the spacelike line in the totally geodesic plane Rπ invariant by (γa, γa).
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Lemma 6.5. If in the w = s + it coordinate we denote p(t) = ps0(t) = (s0 − (1/2)ϕ(t), t),
q(t) = qs0(t) = (s0 + (1/2)ϕ(t), t) and σ(t) = σΦθ,Rρb0(qs0(t)), then

d(σ(t))

(
∂

∂s

∣∣∣∣
p(t)

)
= cos ξ(t)

(
∂

∂s

∣∣∣∣
q(t)

)
+ sin ξ(t)

(
∂

∂t

∣∣∣∣
q(t)

)

d(σ(t))

(
∂

∂t

∣∣∣∣
p(t)

)
= − sin ξ(t)

(
∂

∂s

∣∣∣∣
q(t)

)
+ cos ξ(t)

(
∂

∂t

∣∣∣∣
q(t)

)
.

(43)

where ξ is a function of t ∈ (−π/2, 0) with

lim
t→0

ϕ′(t) sin ξ(t) = 2(1− cos θ) , (44)

lim
t→0

cos ξ(t) = −1 . (45)

In particular, ξ(t)→ π mod 2π as t→ 0

Proof. First observe that {cos t ∂∂s |p(t), cos t ∂∂t |p(t)} and {cos t ∂∂s |q(t), cos t ∂∂t |q(t)} are orthonor-
mal basis respectively at p(t) and q(t), for the form (32) of the metric. Thus d(σ(t)) at p(t)
must have the form of Equation (43) for some angle ξ(t).

Let us now compute ξ(t). Observe that, with respect to the (∂s, ∂t)-frame,

(dΦ0)(s,t) =

(
1 −ϕ′(t)
0 1

)
.

Recall that,

b(s,t) = Rρ ◦ (b0)(s,t) =
1√

4 + ϕ′(t)2

(
cos ρ(t) − sin ρ(t)
sin ρ(t) cos ρ(t)

)(
2 −ϕ′(t)

−ϕ′(t) 2 + ϕ′(t)2

)
,

and thus

dσ = −b ◦ (dΦ0)−1 = − 1√
4 + ϕ′(t)2

(
cos ρ(t) − sin ρ(t)
sin ρ(t) cos ρ(t)

)(
2 ϕ′(t)

−ϕ′(t) 2

)
.

It follows that

sin ξ(t) = − 1√
4 + ϕ′(t)2

(2 sin ρ(t)− ϕ′(t) cos ρ(t))

By Equation (40), ϕ′(t) → +∞ as t → 0, so tr(b0) =
√

4 + ϕ′(t)2 tends to infinity as
well. By Equation (33),

ϕ′(t) cos ρ(t) = ϕ′(t)
2 cos θ

tr(b0)
→ 2 cos θ .

On the other hand, as ρ = arccos(2 cos θ/tr(b0)), sin ρ(t)→ 1 as t→ 0. Therefore, as t→ 0:

ϕ′(t) sin ξ(t) = − ϕ′(t)√
4 + ϕ′(t)2

(2 sin ρ(t)− ϕ′(t) cos ρ(t))→ −2(1− cos θ) .

Finally an explicit computation shows that

cos ξ(t) = − 1√
4 + ϕ′(t)2

(2 cos ρ(t) + ϕ′(t) sin ρ(t)) .

Hence lim cos ξ(t) = − lim sin ρ(t) = −1. �

Proposition 6.6. Denoting p(t) = (s0 − (1/2)ϕ(t), t), and σ(t) = σΦθ,Rρb0(q(t)) (in the
w = s + it coordinate, as in Lemma 6.5), then as t → 0 the family of isometries {σ(t)}
converges to Im, the elliptic rotation of angle π around the point m = (s0, 0).
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Proof. The isometry σ(t) is defined by the properties that it sends p(t) to q(t) and its
differential sends the vector ∂

∂s |p(t) to a vector forming the positive angle ξ(t) with ∂
∂s |q(t),

by Equation (43).
Recall that in the z = x + iy coordinate of the upper half-plane model, z = i expw =

exp(s+ i(π/2 + t)), so

p(t) = exp(s0 − ϕ(t)/2 + i(π/2 + t)) q(t) = exp(s0 + ϕ(t)/2 + i(π/2 + t)) .

The transformation δ(t) : z 7→ eϕ(t)z sends p(t) to q(t) and ∂
∂s |p(t) to ∂

∂s |q(t). So σ(t) is
obtained as the rotation of angle ξ(t) around p(t) post-composed with δ(t).

An explicit computation shows that the rotation around a point p = |p|eiη of angle ξ is
represented by the SL(2,R) matrix(

sin(η+ξ/2)
sin η − sin(ξ/2)|p|

sin η
sin(ξ/2)
|p| sin η

sin(η−ξ/2)
sin η

)
.

(Notice that changing ξ by ξ + 2π the matrix changes by sign.)
Applying this formula to p(t), η = η(t) = π/2 + t and |p| = es0−ϕ(t)/2 and multiplying

the rotation matrix by δ(t) = diag(eϕ(t)/2, e−ϕ(t)/2) we get that

(σ(t))21 = −es0 sin(ξ(t)/2)

cos t

(σ(t))12 = e−s0
sin(ξ(t)/2)

cos t

(σ(t))22 = e−ϕ(t)/2 sin(π/2 + t− ξ(t)/2)

cos t
.

As ξ(t) → π (mod2π), we obtain lim(σ(t))21 = ±e−s0 and lim(σ(t))12 = ∓es0 , whereas
(σ(t))22 → 0.

On the other hand, the first entry of σ(t) is

(σ(t))11 = eϕ(t)/2 sin(π/2 + t+ ξ(t)/2)

cos t
= eϕ(t)/2 cos(t+ ξ(t)/2)

cos t
.

Now,

cos(t+ ξ(t)/2) = cos t cos(ξ(t)/2)− sin t sin(ξ(t)/2)

= cos t

√
cos ξ(t) + 1

2
− sin t sin(ξ(t)/2)

=
cos t sin ξ(t)√
2(1− cos ξ(t))

− sin t sin(ξ(t)/2) .

By Equations (44) and (41) it follows that the ratio

cos(t+ ξ(t)/2)

t

is bounded. Thus using Equation (42) we deduce that limt→0 σ11(t) = 0.
In conclusion

σ(t)→
[

0 e−s0

−es0 0

]
= Im ,

which proves the claim. �

Corollary 6.7. The constant curvature embedding σΦθ,Rρb0 : H2
+ → Isom(H2) defined by

• (σΦθ,Rρb0(z))(Φθ(z)) = z ;
• (dσΦθ,Rρb0(z))z ◦ (dΦθ)z = −Rρb0 ;
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with respect to the map Φθ and the bundle morphism b = Rρb0 constructed above, has image
a constant curvature surface in AdS3 whose boundary coincides with the boundary of the
half-plane H2

+.

Proof. From Proposition 6.6, for every s0 we found a family of points ps0(t) whose images for
the embedding σΦθ,Rρb0 converges to (s0, 0). That is, all points on the geodesic boundary

of H2
+ (identified to a half-plane of the totally geodesic plane Rπ) are in the frontier of

σΦθ,Rρb0(H2
+).

To conclude the proof, it remains to show that, when t → −π/2, σΦθ,Rρb0 tends to

the boundary at infinity of the half-plane H2
+ of Rπ. Denoting again by σ(t) the image

of the point ps0(t) by the embedding σΦθ,Rρb0 , we claim that both sequences σ(t)(m) and

σ(t)−1(m), where m is the point ies0 , converge to es0 , which is in the boundary of the upper
half-plane model. Since s0 is chosen arbitrarily, and recalling the definition of Equation (8),
this will conclude the proof.

Here the computation is similar, though much simpler. Indeed, recalling that ϕ′(t)→ 0 as

t→ −π/2, we have that tr(b0) =
√

4 + ϕ′(t)2 → 2 as t→ −π/2. Therefore, from the choice
of Equation (34), we get ρ → θ. Moreover, recall that we have chosen ϕ as the primitive
of ϕ′ such that ϕ(−π/2) = 0. Using the above, a straigthforward computation shows that
σ(t)(ies0)→ es0 . Analogously, σ(t)−1(ies0)→ es0 . �

7. Existence of constant-curvature surfaces

The idea of the proof of the existence of K-surfaces with prescribed boundary is to obtain
a K-surface by approximation from surfaces which are invariant by a cocompact action. In
that case, the existence of constant curvature surfaces is guaranteed by the following theorem:

Theorem 7.1 ([BBZ11]). Let φ : ∂H2 → ∂H2 be an orientation-preserving homeomorphism
which is equivariant for a pair of Fuchsian surface group representation

ρl, ρr : π1(Σg)→ Isom(H2) ,

where Σg is a closed surface. Let Γ the curve in ∂AdS3 which is the graph of φ. Then there
exists a foliation of D+(Γ) and D−(Γ) by surfaces of constant curvature K ∈ (−∞,−1),
which are invariant for the representations

(ρl, ρr) : π1(Σg)→ Isom(AdS3) ∼= Isom(H2)× Isom(H2) .

The foliations are such that, if |K1| < |K2|, then the K1-surface is in the convex side of the
K2-surface.

For this purpose, we will use three main technical tools. The first is the following lemma,
which we prove in Subsection 7.1 below.

Lemma 7.2. Given any weakly acausal curve Γ in ∂AdS3, there exists a sequence of curves
Γn invariant for pairs of Fuchsian representations of the fundamental group of closed surfaces

((ρl)n, (ρr)n) : π1(Σgn)→ Isom(AdS3) ∼= Isom(H2)× Isom(H2)

such that Γn converges to Γ in the Hausdorff convergence.

The second is the following theorem of Schlenker on the smooth convergence of surfaces,
specialized to the case of the ambient manifold (M, g) = AdS3:

Theorem 7.3 ([Sch96]). Let σn : D → M be a sequence of uniformly elliptic spacelike
immersions (i.e. with uniformly positive determinant of the shape operator) in a Lorentzian
manifold (M, g). Assume σ∗ng converges C∞ to a metric g∞. If xn ∈ D is a sequence
converging to a point x∞, such that the 1-jet j1σn(xn) is converging, but σn does not converge
C∞ in a neighborhood of x∞, then there exists a maximal geodesic γ of (D, g∞) containing
the point x∞ such that σn, restricted to γ, converges to an isometry onto a geodesic γ′ of
M .
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Moreover, in the conditions of Theorem 7.3, the degeneration of the immersions σn is
well-understood in [Sch96]: if σn does not converge C∞ in a neighborhood of x∞, then the
surfaces σn(D) converge to a surface which contains all the (future-directed or past-directed)
light rays starting from points on the geodesic γ′ of M .

The third tool is the use of the barrier we constructed in Section 6, in particular Corollary
6.7.

7.1. Approximation of measured geodesic laminations. We recall here the definition
of measured geodesic lamination on H2. Let G be the set of (unoriented) geodesics of H2.
The space G is identified to ((∂H2×∂H2)\∆)/ ∼ where ∆ is the diagonal and the equivalence
relation is defined by (p, q) ∼ (q, p). Note that G has the topology of an open Möbius strip.

Definition 7.4. A geodesic lamination on H2 is a closed subset of G such that its elements
are pairwise disjoint geodesics of H2. A measured geodesic lamination is a locally finite
Borel measure on G such that its support is a geodesic lamination.

For the approximation procedure, we will use the following Lemma 7.6 on the approxi-
mation of measured geodesic laminations, which is proved in [BS17b, Lemma 3.4]. We first
need to recall some definitions.

Definition 7.5. A sequence {µn}n of measured geodesics laminations converges in the
weak* topology to a measured geodesic lamination, µn ⇀ µ, if

lim
n→∞

∫
G
fdµn =

∫
G
fdµ

for every f ∈ C0
0 (G).

Lemma 7.6. Given a measured geodesic lamination µ on H2, there exists a sequence of
measured geodesic laminations µn such that µn is invariant under a torsion-free cocompact
Fuchsian group Gn < Isom(H2) and µn ⇀ µ.

The second technical lemma ensures that the weak*-convergence of the bending lamina-
tions implies the convergence of the curves in the boundary of AdS3, which is basically the
same as the uniform convergence of the corresponding left earthquake maps.

Lemma 7.7. Let µn, µ be measured geodesic laminations on H2 such that µn ⇀ µ in
the weak* topology. Assume µn and µ induce earthquakes of H2 and p0 is a point of H2

which is not on any weighted leaf of µ. Then the homeomorphism φn of ∂H2 obtained
by earthquake along µn, normalized in such a way that the stratum containing p0 is fixed,
converges uniformly to the homeomorphism φ obtained by earthquake along µ, normalized in
the analogous way.

Proof. Let Cn = gr(φn) be the 1-dimensional submanifold of ∂H2× ∂H2 which is the graph
of φn : ∂H2 → ∂H2. Up to a subsequence, Cn converges to a subset C of ∂H2 × ∂H2 in the
Hausdorff convergence. As Cn are acausal curves, it turns out that C is a weakly acausal
curve. Hence, in order to prove that C = gr(φ), it suffices to show that gr(φ) ⊆ C. In fact
we will prove that for every point x ∈ ∂H2 there exists a sequence xk converging to x such
that (xk, φ(xk)) ∈ C.

Let p ∈ H2 which is not on any weighted leaf of µ. Denote by Fn(p) the stratum of µn
which contains p, and analogously F (p) is the stratum of µ contaning p. We claim that for
any sequence yn ∈ ∂H2 in the boundary of Fn(p) and any y0 in the boundary of F (p), if yn →
y0, then φn(yn) → φ(y0). This follows by [EM06, Theorem 3.11.5], where in the language
of cocycles, Eµn(p0, p) → Eµ(p0, p) in Isom(H2), and therefore φn(yn) = Eµn(p0, p)(yn)
converges to φ(y0) = Eµ(p0, p)(y0). In this case, one then has (y0, φ(y0)) ∈ C.

Next, we claim that for every x ∈ ∂H2 there exists a sequence of points xk such that
xk → x and (xk, φ(xk)) ∈ C. This will conclude the proof, by the above observations. Let
pk be a sequence of points in H2 converging to x, such that every pk is not on any weighted
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leaf of µ. For every fixed k, consider the stratum Fn(pk) and let yn(pk) be the point of ∂H2,
in the boundary of Fn(pk), closest to x (in the round metric of ∂H2 ∼ S1, in the Poincaré
disc model, for instance). If x itself is in the boundary of Fn(pk), then obviously yn(pk) = x.

Observe that the distance of yn(pk) from x is bounded in terms of the distance of pk
from x (in the Euclidean metric on the disc model, for instance). Let xk = limn yn(pk),
up to a subsequence. By our first claim, (xk, φ(xk)) ∈ C. Moreover, d(yn(pk), x) → 0 as
k → +∞ uniformly in n (as it is estimated by d(pk, x) → 0). Therefore also d(xk, x) tends
to zero as k → +∞. This implies that every x ∈ ∂H2 is approximated by points xk such
that (xk, φ(xk)) ∈ C. �

pk

x

pk

x

Figure 10. Possible positions of the points yn(pk), as the position of pk
changes. The Euclidean distance d(yn(pk), x) is uniformly bounded in terms
of d(pk, x), and it goes to zero as d(pk, x)→ 0.

One might consider the definition of measured geodesic lamination on a straight convex set
of H2, in the sense of [BB09], and prove more general statements of Lemma 7.6 and Lemma
7.7. However, to avoid technicalities, we will circumvent this issue by approximating in two
steps.

Proof of Lemma 7.2. Let Γ be a weakly acausal curve in ∂AdS3. It is possible to find a
sequence φn of orientation-preserving homeomorphisms of ∂H2 such that the graphs Γn =
gr(φn) converge to Γ in the Hausdorff convergence. Moreover, by Lemma 7.6 for every n
there exists a sequence Γn,k of graphs invariant for some pairs ((ρl)n,k, (ρr)n,k) of torsion-
free cocompact Fuchsian representations. By Lemma 7.7, the Γn,k converge to Γn in the
Hausdorff convergence. By a standard diagonal argument, one finds a sequence Γn,k(n) which
converges to Γ. �

7.2. Proof of the existence part. The purpose of this section is to prove the existence
part of K-surfaces of Theorem 8.7.

A 1-step curve is the boundary of a totally geodesic lightlike plane, while a 2-step curve
is the union of four null segments in ∂AdS3. Those are the two cases in which the convex
hull of the curve Γ coincides with the domain of dependence D(Γ). See Figure 11.

Theorem 7.8. Given any weakly acausal curve Γ in ∂AdS3 which is not a 1-step or a 2-
step curve, for every K ∈ (−∞,−1) there exist two convex surfaces S+

K , S
−
K in AdS3 with

∂S±K = Γ, such that:

• The lightlike part of S±K is D±(Γ) ∩ C(Γ), that is, the union of all lightlike triangles
bounded by past-directed (resp. future-directed) sawteeth of Γ;

• The spacelike part of S±K is a smooth K-surface.

Remark 7.9. The first property of the surface S±K in Theorem 7.8 means that its lightlike
part is the smallest possible, under the condition that the boundary is the curve Γ. In
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Figure 11. A 1-step curve (left) bounds a lightlike plane. On the right, a
2-step curve, which is the boundary of the surface obtained as the union of
two lightlike half-planes which intersect along a spacelike geodesic.

particular, if it is possible to construct a past-convex spacelike surface with boundary Γ,
then the lightlike part of S+

K is empty and therefore S+
K is a smooth spacelike K-surface

with boundary Γ. The same holds for future-convex surfaces. In general, the boundary of
the spacelike part of S±K coincides with the boundary of the spacelike part of C±(Γ).

Proof of Theorem 7.8. For definiteness, we will provide the argument for the past-convex
surface S+

K contained in D+(Γ), the other argument being completely analogous. Let Γn
be a sequence of curves in ∂AdS3 invariant for a pair of torsion-free cocompact Fuchsian
representations ((ρl)n, (ρr)n), converging to Γ, as in Lemma 7.2. Fix K < −1. By Theorem
7.1, there exists a past-convex K-surface (SK)n in D+(Γn), with ∂(SK)n = Γn.

Step 1: There exists a C0-limit of the surfaces (SK)n. Introducing the model of AdS3

given by (see [BS10]): (
D2 × S1,

4|dz|2 − (1 + |z|2)dt2

(1− |z|2)2

)
, (46)

we see that, since (SK)n is spacelike, (SK)n is the graph of a 4-Lipschitz function from D2

to S1, with respect to the Euclidean metric of the disc. By an application of the Ascoli-
Arzelà Theorem, there exists a subsequence (which we still denote by (SK)n) whose closure
converges uniformly to the closure of a locally convex nowhere timelike surface (SK)∞. As
a consequence ∂(SK)∞ = Γ.

It remains to show the two properties in the statement.
Step 2: The lightlike part of the limit (SK)∞ is the union of all maximal lightlike triangles

bounded by past-directed sawteeth. We already know that, for any past-directed sawtooth
contained in Γ, the surface (SK)∞ contains entirely the totally geodesic lightlike triangle
corresponding to the sawtooth. We will need to show the other inclusion. Namely, we will
show that any point in the complement of the past-directed lightlike triangles is not in the
lightlike part of (SK)∞. (Observe that the existence of a point x in the lightlike part of
(SK)∞ lying in the complement of the lightlike triangles implies that Γ is not the boundary
of a lightlike plane or the boundary of two lightlike half-planes intersecting in a spacelike
geodesic. See Figure 11.)

For this purpose, suppose by contradiction that x ∈ (SK)∞ is a point in the complement
of such lightlike triangles, but still in the lightlike part of (SK)∞. This implies that (SK)∞
has a lightlike support plane P which contains x. Let us show that the dual point y of P is
necessarily on the curve Γ. Indeed, let ` be the past-directed light-ray joining x to y (which
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is contained in P ). On the one hand, by convexity of (SK)∞, ` does not intersect the open
convex region bounded by (SK)∞ (in an affine chart containing Γ). On the other hand, as
` is the limit of timelike rays though x, which are contained in this open convex region, it
turns out that ` is in (SK)∞. Hence the endpoint y of ` is in the curve at infinity Γ.

Now, we can find a curve Γ′, as in Example 3.5 (compare also Figure 12), with the
following properties:

• Γ′ is composed of a past-directed sawtooth contained inside the plane P and of the
boundary of a totally geodesic spacelike half-plane;

• Γ′ does not intersect Γ transversely;
• In an affine chart which entirely contains D(Γ), the totally geodesic spacelike plane

which contains a portion of Γ′ disconnects x from Γ.

Indeed, if P ∩Γ is composed of a single point y, one can insert a small enough past-directed
sawtooth with vertex in y, such that the corresponding lightlike triangle is contained inside
P but does not contain x. Moreover Γ′ can be arranged to intersect Γ only at y. The
situation is similar if P ∩ Γ contains a light-like segment, but not a past-directed sawtooth.
Similarly, if P ∩ Γ contains a past-directed sawtooth, it suffices to choose a slightly larger
sawtooth, in such a way that Γ ∩ Γ′ coincides with the sawtooth P ∩ Γ. See Figure 12. Of
course this is possible provided Γ is not the boundary of a totally geodesic lightlike plane.

x

P

Γ

Γ′

y

x

P

Γ

Γ′

Figure 12. The construction of the curve Γ′, when Γ is the graph of an
orientation-preserving homeomorphism (left) and when Γ contains a past-
directed sawtooth (right).

Let us consider the surface S′K , which was constructed in Corollary 6.7, with the following
properties:

• The lightlike part of S′K is the maximal lightlike triangle with boundary in Γ′,
• The spacelike part of S′K is a smooth K-surface.

To conclude Step 2, it suffices to show that S′K and (SK)∞ do not intersect transversely. In
fact, from Corollary 6.7 the surface S′K intersects P exactly in the maximal lightlike triangle
with boundary in Γ′. But by construction x is not in such maximal lightlike triangle. Hence
if we show that S′K and (SK)∞ do not intersect transversely, it follows that (SK)∞ cannot
intersect P at x, thus giving a contradiction.

To show the claim, observe that since Γn converges to Γ as n → ∞, one can choose a
sequence of isometries χn ∈ Isom(AdS3) such that:

• χn(Γn) is disjoint from Γ′;
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• χn → id as n→∞.

We claim that the surfaces S′K and χn(SK)n do not intersect transversely. Since their
boundaries Γ′ and χn(Γn) are disjoint, and S′K contains a lightlike triangle, the intersection
must be contained in a compact region of the spacelike part of S′K . Observe that S′K lies
outside of the convex hull of χn(Γn). By Theorem 7.1, there is a function

κ : D+(χn(Γn))→ (−∞,−1)

such that the level sets {κ = K} are K-surfaces. Observe that κ→ −∞ as x→ ∂D(Γ). Let
K0 be the maximum of κ on S′K ∩ D+(χn(Γn). Then the K0-surface χn(SK0

)n is tangent
to the spacelike part of S′K at an interior point and χn(SK0

)n is contained in the convex
side of S′K . By an application of the maximum principle at the intersection point, K0 < K.
But again by Theorem 7.1, χn(SK)n is in the convex side of χn(SK0)n and so S′K cannot
intersect χn(SK)n.

Since χn(SK)n converges uniformly on compact sets to (SK)∞, this shows that S′K and
(SK)∞ do not intersect transversely. This concludes Step 2. In fact, we have proved that for
any point x ∈ (SK)∞ which is in the complement of the lightlike triangles corresponding to
sawteeth of Γ, x does not lie in the boundary of the domain of dependence D(Γ). Therefore,
the lightlike part of (SK)∞ coincides precisely with the union of all maximal past-directed
lightlike triangles.

In particular, the spacelike part of (SK)∞ in nonempty unless Γ is a 1-step or a 2-step
curve.

Step 3: The spacelike part of (SK)∞ is a smooth K-surface. Let x be any point of (SK)∞,
in the complement of the union of all maximal lightlike triangles, and let xn ∈ (SK)n such
that xn → x. Regarding (SK)n as the graph of a Lipschitz function in the conformal model
of (46), we argue that there is a cylindrical neighborhood U of x such that the restriction of
the projection π : AdS3 → D2 is uniformly bi-Lipschitz on U ∩ (SK)n. We deduce that there
exists ε such that the metric ball B(SK)n(x, ε) is compact in (SK)n, contained in U , and thus

its projection is uniformly bounded in D2. Recall that the induced metric on (SK)n has
constant curvature K, and thus, up to rescaling the metric by a factor |K|, it is isometric
to a subset of H2. Let o ∈ H2 and let

σn =: BH2(o, ε)→ Sn

be an isometric embedding (after rescaling the metric by |K|) with σn(o) = xn. Composing
with the projection π, it then turns out that π ◦ σn are uniformly bounded and uniformly
bi-Lipschitz. Hence the maps σn converge C0 up to a subsequence. The limit map σ∞ has
image B(SK)∞(x, ε).

Observe that the 1-jet of σn at 0 is bounded. Indeed, if the 1-jet were not bounded, there
would be a subsequence nk such that the tangent planes TxnkSnk converge to a lightlike

plane, which is a support plane for (SK)∞ at x. Hence x is a point in the boundary of the
domain of dependence D(Γ), contradicting the previous claim.

We can thus extract a subsequence in such a way that j1σn(0) converges. Since σn are
isometric embeddings of BH2(o, ε), (up to rescaling by the constant factor |K|), the pull-back
σ∗n(gAdS3) of the Anti-de Sitter metric is constant, and we are in the right assumptions to
apply Theorem 7.3. It follows that σn converges C∞ in a neighborhood of 0. Indeed, if
this were not the case, by Theorem 7.3 the surfaces (SK)n would converge to the union of
two half-planes of lightlike type in AdS3, intersecting along a spacelike geodesic, and this
possibility is ruled out again by the fact that x is in the spacelike part of (SK)∞. This
concludes the proof that σn converges C∞, and therefore the spacelike part of (SK)∞ is
smooth and has curvature K at every point x. �
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8. Foliations of the complement of the convex hull

The purpose of this section is to prove that the K-surfaces obtained in Theorem 7.8
provide foliations of D+(Γ) and D−(Γ), as K ∈ (−∞,−1). We first compute the curvature
of a spacelike surface in AdS3, expressed as a graph over the horizontal plane in an affine
chart for the projective model of Subsection 2.1.

Proposition 8.1. Let V be an open subset of a smooth spacelike surface in AdS3. Suppose
that, in an affine chart of the projective model for which AdS3 is the interior of the standard
one-sheeted hyperboloid, V is expressed as the graph of a function u : R2 → R, namely:

V = {(x, y, t) : (x, y) ∈ Ω, t = u(x, y)} ,
where Ω ⊂ R2 is some domain. Then u satisfies the equation:

detD2u =
(1− |Du|2 + ((x, y) ·Du− u)2)2

(1 + u2 − x2 − y2)2
detB , (47)

where B is the shape operator of S.

Proof. Recall that in the projective description of AdS3 of Subsection 2.1, the double cover
SL(2,R) of PSL(2,R) is identified to the subset of R4 where the quadratic form x2

1 + x2
2 −

x2
3−x2

4 takes the value −1. Hence we will denote by R2,2 the ambient R4 with the standard
bilinear form of signature (2, 2), and we will suppose that the affine chart is given by x4 6= 0.
We use the affine coordinates:

[x1 : x2 : x3 : x4] −→ (x, y, t) =

(
x1

x4
,
x2

x4
,
x3

x4

)
,

so that the horizontal hyperplane H0 corresponds to x3 = 0.
Denote by H the hyperplane defined by x4 = 1, and by H− the region of H where

the quadratic form is negative, that is the image of AdS3 in the affine chart. We denote
by ξ : H− → SL(2,R) the radial map ξ(x1, x2, x3, 1) = f(x1, x2, x3) · (x1, x2, x3, 1) where
f(x1, x2, x3) = (1 + x2

3 − x2
1 − x2

2)−1/2. The local parameterization of S in the affine chart
is of the form

σ̄(x, y) = (x, y, u(x, y), 1) ,

while the parameterization of the lifting of the surface in SL(2,R) is σ = ξ ◦ σ̄ = f(σ̄) · σ̄.
We want to compute the determinant of the shape operator B of σ. If I e II denote the first
and second fundamental form matrices of σ in the {∂x, ∂y} frame, it turns out that

detB = (det II)/(det I) .

First let us compute det I. If � denotes the vector product on SL(2,R), then σx � σy is a
tangent vector at σ normal to immersion. In particulat it is timelike and by standard facts

det I = −〈σx � σy, σx � σy〉 .
Considering SL(2,R) as a submanifold of R2,2 we can orient R2,2 so that the positive normal
vector at η ∈ SL(2,R) is N(η) = η. Now it is immediate to check that the following formula
holds for any v, w ∈ TηSL(2,R)

v � w = ∗(η ∧ v ∧ w) ,

where ∗ : Λ3(R4)→ R4 is the Hodge-operator on R2,2. So a direct computation shows that

σx � σy = ∗(fσ̄ ∧ dξ(σ̄x) ∧ dξ(σ̄y)) = f3 ∗ (σ̄ ∧ σ̄x ∧ σ̄y)

Now σ̄ = σ̄0 + e4, where e4 is the positive normal of the hyperplane H, and

σ̄0(x, y) = (x, y, u(x, y), 0) .

Denoting with � also the vector product on H (that is intrinsically a copy of Minkowski
space),

∗(e4 ∧ σ̄x ∧ σ̄y) = (σ̄x � σ̄y) = ν ,
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where it turns out that ν = (ux, uy, 1, 0). Writing σ̄0 = σ̄ − e4, one obtains:

∗(σ̄0 ∧ σ̄x ∧ σ̄y) = 〈σ0, ν〉e4 = 〈σ, ν〉e4 .

We thus conclude that

σx � σy = f3(ν + 〈σ̄, ν〉e4) (48)

and thus det I = f6g where g(x, y) = 〈σ̄, ν〉2 − 〈ν, ν〉 = 1− |Du|2 + ((x, y) ·Du− u)2.
To compute II, notice that the normal vector of the immersion σ is

N =
σx � σy√

det I
∈ TσSL(2,R) .

Now II11 = 〈N, σxx〉. Observe that σxx = fxxσ̄+ 2fxσ̄x + fσ̄xx. Using that σx = fxσ̄+ fσ̄x
and that N is orthogonal to σx and to σ̄, we get

II11 = f〈N, σ̄xx〉 =
f√

det I
〈σx � σy, σ̄xx〉 =

f4

√
det I

〈σ̄x � σ̄y, σ̄xx〉 ,

where in the last equality we have used Equation (48) and the fact that 〈e4, σ̄xx〉 = 0, since
σ̄xx = (0, 0, uxx, 0). Hence, observing that 〈ν, σ̄xx〉 = −uxx, one finally has:

II11 = − f4

√
det I

uxx

With analogous computations we get

II = − f4

√
det I

D2u ,

and therefore det II = f8

det I detD2u. This concludes the proof that

detB =
f8

(det I)2
detD2u = f−4g−2 detD2u .

which corresponds to Equation (47). �

Remark 8.2. From the proof of Proposition 8.1, the factor (1 − |Du|2 + ((x, y) ·Du − u)2)
does not vanish as long as S is a spacelike surface, whereas the factor (1 + u2 − x2 − y2)
vanishes precisely when (x, y, u(x, y)) is in ∂AdS3.

We will now introduce a notion of locally pleated surface. Recall that the definition of
locally convex nowhere timelike surface was given in Definition 3.3.

Definition 8.3. A locally convex nowhere timelike surface S in AdS3 is locally pleated if
for every γ ∈ S there exists a neighborhood U of γ in AdS3 such that S ∩U is contained in
the boundary of the convex hull of S ∩ ∂U .

The condition that S is a locally pleated surface can be expressed by saying that no point
of S is a vertex (or extremal point) in the sense of convex geometry ([Roc70]). Using this
characterization, we prove the following lemma.

Lemma 8.4. Let S be a locally pleated surface in AdS3, with ∂S = Γ a weakly acausal curve
in ∂AdS3. Then S is a pleated surface, that is, S coincides with a boundary component of
the convex hull of Γ.

Proof. Let K be the convex hull of S. By convexity, S lies in ∂K. By Krein-Milman
Theorem ([KM40]), K is the convex hull of extreme points of S ∪ ∂S. As S contains no
extreme points from the above definition, we conclude that K is the convex hull of ∂S. �
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Recall that, given a convex function u : Ω ⊂ R2 → R, the Monge-Ampère measure MAu
of u is defined in such a way that, if ω ⊆ Ω is a Borel subset, then MAu(ω) is the Lebesgue
measure of the union of the subdifferentials of u over points in ω. In particular, if u is C2,
then

MAu(ω) =

∫
ω

(detD2u)dL .

We will use the following property of Monge-Ampère measures:

Lemma 8.5 ([TW08, Lemma 2.2]). Given a sequence of convex functions un which con-
verges uniformly on compact sets to u, the Monge-Ampère measure MAun converges weakly
to MAu.

Moreover, the following is a characterization of functions with vanishing Monge-Ampère
measure:

Theorem 8.6 ([Gut01, Theorem 1.5.2]). Given a convex function u : Ω ⊂ R2 → R, u ∈
C0(Ω), where Ω is a convex bounded domain, if MAu ≡ 0, then u is the convex envelope of
u|∂Ω.

We are now ready to prove that the K-surfaces with prescribed boundary a weakly space-
like curve Γ ⊂ ∂AdS3, whose existence was proved in Theorem 7.8, provide a foliation of
D+(Γ) and D−(Γ).

Theorem 8.7. Given any weakly acausal curve Γ in ∂AdS3 which is not a 1-step or a 2-step
curve, D+(Γ) and D−(Γ) are foliated by K-surfaces S±K , as K ∈ (−∞,−1), in such a way

that if K1 < K2, then S±K2
is in the convex side of S±K1

.

Proof. For definiteness, we give the proof for the region D+(Γ), as the other case is com-
pletely analogous.

As in the proof of Theorem 7.8, let Γn be a sequence of curves in ∂AdS3 invariant for a pair
((ρl)n, (ρr)n) of torsion-free cocompact Fuchsian representations of π1(Σgn) → Isom(H2)×
Isom(H2). Recall that in Theorem 7.8 we showed that for every K ∈ (−∞,−1) there exists a
subsequence on which the K-surfaces (SK)n invariant for ((ρl)n, (ρr)n) converge to a convex
nowhere timelike surface (SK)∞ with ∂(SK)∞ = Γ, whose lightlike part is the union of
all maximal past-directed lightlike triangles bounded by Γ, and whose spacelike part is a
smooth K-surface.

By choosing a numeration of Q ∩ (−∞,−1), by a classical diagonal argument we can
extract a subsequence nk such that for every q ∈ Q, as k →∞, (Sq)nk converges uniformly
on compact sets to a convex surface, whose spacelike part is a smooth q-surface, which we
denote (with a slight abuse of notation) by Sq. Let us denote again by (Sq)n the converging
subsequence, omitting the subindex k. We will prove that the family of surfaces {Sq} extend
to a foliation of D+(Γ) by K-surfaces.

Step 1: The spacelike parts of the surfaces Sq are pairwise disjoint. Indeed, for every
q1 < q2, the surface (Sq2)n lies in the convex side of (Sq1)n. Therefore the same holds for
Sq2 and Sq1 , and in particular they do not intersect transversely. Moreover, it is not possible
that Sq2 and Sq1 are tangent at one point in the spacelike part, since the determinant of the
shape operator of Sq2 is strictly smaller than the determinant of the shape operator of Sq1 .
Therefore if they were tangent, Sq2 could not be in the convex side of Sq1 , since this would
contradict the maximum principle.

Step 2: For every irrational K < −1 the sequences {Sq′ : q′ > K} and {Sq′′ : q′′ < K}
both converge to the same surface. Let us denote

(SK)′ = lim
q′>K

Sq′ and (SK)′′ = lim
q′′<K

Sq′′ ,

where the limit clearly exists as the sequences are monotone. Moreover, since every Sq′

is in the convex side of every Sq′′ , the limit (SK)′ is in the convex side of (SK)′′, and in
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particular they do not intersect transversely. Suppose by contradiction that there exists
an open set U which is contained in the region between (SK)′ and (SK)′′. Now, since the
surfaces (SK)n foliate D+(Γn) by Theorem 7.1, for large n there is a surface (Sqn)n in
the approximating sequence, for qn ∈ Q ∩ (−∞,−1), which intersects U . By the uniform
convergence on compact sets, for n larger than some n0, qn < q′ for every q′ > K. But for
the same argument, for some possibly larger n0, if n ≥ n0 then qn > q′′ for every q′′ < K.
This gives a contradiction.

Step 3: The spacelike part of the limit SK := (SK)′ = (SK)′′ is a smooth K-surface. By
the usual application of Theorem 7.3, for every γ ∈ SK , pick a sequence γq′ ∈ Sq′ converging
to γ and pick the homothetic embeddings

σq′ : BH2(o, ε)→ Sq′ .

As in the proof of Theorem 7.8, the σq′ converge C∞ and therefore SK is a smooth K-surface.
So far we have proved that {SK : K ∈ (−∞,−1)} is a foliation by smooth K-surfaces of

a subset of D+(Γ). We finally need to prove that
⋃{SK : K ∈ (−∞,−1)} coincides with

D+(Γ).
Step 4: The surfaces SK approach the spacelike part of ∂+C(Γ) as K → −1. As SK is a

monotone sequence in K, consider the C0-limit

S−1 := lim
K→−1

SK .

We claim that S−1 is locally pleated. As the lightlike part of S−1 is the union of lightlike
triangles corresponding to sawteeth of Γ, we only have to prove the claim for the spacelike
part of S−1. Let γ ∈ S−1 and let us choose an affine chart so that a support plane of S−1

at γ is the horizontal plane as in Proposition 8.1.
Hence, in a neighborhood of γ, the surfaces SK are the graph of a convex function

uK : ΩK → [0,+∞). Using Remark 8.2, as K → −1 then (1 + uK(x, y)2 − x2 − y2) remains
bounded for every (x, y) ∈ Ω−1 (since the point (x, y, u−1(x, y)) is not in the boundary
of AdS3). Also (1 − |DuK(x, y)|2 + ((x, y) · DuK(x, y) − uK(x, y))2) remains bounded for
(x, y) ∈ Ω−1, as otherwise the limiting surface would have a lightlike support plane over
(x, y), and this is not possible for the usual argument, as γ is in the spacelike part of S−1.
Hence, applying Lemma 8.5 to Equation (47), we get that u−1 satisfies detD2u−1 ≡ 0 on
Ω−1. Since γ was arbitrary, by Theorem 8.6, S−1 is locally pleated. By Lemma 8.4, S−1

coincides with ∂+C(Γ) as claimed.
Step 5: The surfaces SK approach the boundary ∂+D(Γ) as K → −∞. As before, we can

take the limit

S−∞ = lim
K→−∞

SK .

Suppose that S−∞ does not coincide with the boundary of D(Γ). Since ∂−C(Γ) is the dual
surface to ∂+D(Γ), the dual surfaces (SK)∗ would converge to (S−∞)∗. But the shape
operator of (SK)∗ is identified to the inverse of the shape operator of SK , and thus the
(SK)∗ are again surfaces of constant Gaussian curvature K∗ = −K/(K + 1). In particular
K∗ tends to −1 as K → −∞. Thus applying the same argument as in Step 4, one gets a
contradiction. �

9. Uniqueness and boundedness of principal curvatures

In this section we consider the problem of the uniqueness of the K-surfaces with fixed
boundary curve Γ (which we will be able to prove under the assumption that Γ is the graph
of a quasisymmetric homeomorphism) and the boundedness of principal curvatures. The two
problems are tackled with similar techniques, and the key tool is the following compactness
theorem for quasisymmetric homeomorphisms:
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Lemma 9.1 ([BZ06]). Let φn : ∂H2 → ∂H2 be a family of orientation-preserving quasisym-
metric homeomorphisms of ∂H2. Suppose there exists a constant M such that, for every
symmetric quadruple Q (i.e. such that the cross-ratio of Q is cr(Q) = −1) and for every n,

| log |crφn(Q)|| ≤M . (49)

Then there exists a subsequence φnk for which one of the following holds:

• The homeomorphisms φnk converge uniformly to a quasisymmetric homeomorphism
φ : ∂H2 → ∂H2;

• The homeomorphisms φnk converge uniformly on the complement of any open neigh-
borhood of a point of ∂H2 to a constant map c : ∂H2 → ∂H2.

We start with a remark, which shows us that the condition that Γ = gr(φ), with φ
quasisymmetric, is not restrictive for the study of surfaces with bounded principal curvatures.
That is, if S is a surface with bounded principal curvatures and ∂S = Γ, then Γ is necessarily
the graph of a quasisymmetric homeomorphism.

Remark 9.2. Suppose S is a convex spacelike surface in AdS3 with ∂S = Γ, such that
the principal curvatures of S are bounded. We claim that the associated map Φ is a bi-
Lipschitz diffeomorphism of H2. In particular Φ is quasiconformal and Γ is the graph of the
quasisymmetric extension of Φ.

By the same argument as in the proof of [BB09, Proposition 6.21], the bound on the
second fundamental form implies that S is geodesically complete. Let us show that the
projections πl, πr are bi-Lipschitz. Using the completeness of S, this implies that they are
coverings, hence diffeomorphisms. Therefore Φ is a bi-Lipschitz diffeomorphism of H2.

The minimal and maximal stretch of πl (resp. πr) are the eigenvalues of E + JB (resp.
E−JB). Since B is bounded, the maximal stretch is bounded from above by some constant
M . To obtain the bound from below, it suffices to notice that det(E±JB) = 1 + detB > 1.
Hence the minimal stretch is bounded from below by 1/M . This proves that πl and πr are
bi-Lipschitz.

Another basic observation is the fact that the condition Γ = gr(φ), φ being quasisymmet-
ric, is equivalent to the condition that the measured geodesic lamination on the upper (or
on the lower) boundary of the convex hull of Γ is bounded. Indeed, the latter condition is
equivalent to saying that the Thurston norm of the left (or right) earthquake lamination is
bounded, which is known to be equivalent to quasisymmetry of φ, as proved independently
in [GHL02] and [Šar06] (see also [Thu86, Šar08]). Boundedness of the measured geodesic
lamination can be seen as a condition of boundedness of curvatures for the non-smooth
surface ∂±C(Γ).

Theorem 1.4 gives a similar statement for K-surfaces, that is, a K-surface S with ∂S = Γ
has bounded principal curvatures if and only if φ is quasisymmetric - and moreover it is
unique. The proof of Theorem 1.4 is split in two propositions, which are proved with
similar techniques. Proposition 9.3 first proves the uniqueness part of Theorem 1.4, while
Proposition 9.4 proves boundedness of principal curvatures.

Proposition 9.3. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2, for every
K ∈ (−∞,−1) there exists a unique (spacelike, smooth) future-convex K-surface S−K and a

unique past-convex K-surface S+
K with ∂S±K = gr(φ).

Proof. Let us give the proof for past-convex surfaces, for definiteness. Let Γ = gr(φ). We
have already proved the existence of a foliation by K-surfaces S+

K of D+(Γ). Hence we have
a function κ : D+(Γ) → (−∞,−1), such that κ(γ) = κ0 if γ ∈ S+

κ0
. Let S be another

K-surface, for fixed K. We must show that S coincides with S+
K = κ−1(K).

Let
κmax = sup

γ∈S
κ(γ) and κmin = inf

γ∈S
κ(γ) .
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Let us show that κmax ≤ K. Then by an analogous argument, we will have κmin ≥ K, and
thus κmax = κmin = K.

Suppose the supremum κmax is achieved at some point γmax, such that κmax = κ(γmax).
First, it follows that κmax > −∞, for otherwise S would touch the boundary of the domain
of dependence. Then in this case, S and Sκmax are tangent at γ, and Sκmax is on the convex
side of S. Hence by a standard application of the maximum principle, the determinant of
the shape operator of Sκmax

at γ is larger than the determinant of the shape operator of S
(which equals −1−K). Therefore K ≥ κmax.

On the other hand, suppose that κmax = limn κ(γn), where γn ∈ S is a diverging sequence.
Let χn ∈ Isom(H2) such that χn(γn) = Ix (for x ∈ H2 a fixed point) and χn(PγnS) = Rπ,
where PγnS is the totally geodesic plane tangent to S at γn. Observe that, if Γ = gr(φ) is
the curve in ∂AdS3 of S, then χn(Γ) = gr(φn), where φn is obtained by pre-composing and
post-composing φ with isometries of H2. Hence the condition of Equation (49) in Lemma
9.1 is satisfied.

We claim that there can be no subsequence φnk which converges to a constant map.
In terms of Anti-de Sitter geometry, this means that the curve χnk(Γ) would converge (in
the Hausdorff convergence) to the boundary of a totally geodesic lightlike plane P . Let
ξ ∈ ∂AdS3 be the point which determines the lightlike plane, namely the self-intersection
point of ∂P (see Figure 11, left). Since PγnS is a support plane for S, ∂PγnS does not
intersect Γ for every n. By applying χn, this means that ∂Rπ does not intersect χn(Γ), and
thus ξ must necessarily be in ∂Rπ. See Figure 13. But in this case, (Ix)∗ does not contain
ξ, so (Ix)∗ meets χn(Γ) for n large, which contradicts the fact that Ix is in the domain of
dependence of χn(Γ) for every n.

P

Rπ

ξ

Ix

Figure 13. The position of the lightlike plane P of the claim in the proof
of Proposition 9.3.

Therefore, by Lemma 9.1, there exists a subsequence φnk which converges to a quasisym-
metric homeomorphism φ∞ of ∂H2. Let Γ∞ = gr(φ∞). By the same argument as the
proofs of Theorem 7.8 and Theorem 8.7, there exists a foliation of D+(Γ∞) by K-surfaces
which are obtained as limits (up to taking subsequences) of the surfaces χn(S+

K). Moreover,
taking a further subsequence, we can suppose χn(S) converges to a smooth K-surface S∞
contained in D+(Γ∞) (as in the proof of Theorem 7.8). Now we are again in the situation
of the beginning of the proof, where κmax = supγ∈S∞ κ∞(γ), and this supremum is achieved
at Ix. Thus applying again the above argument, the proof is concluded. �
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We will now apply a similar argument to show that, under the assumption that Γ is the
graph of a quasisymmetric homeomorphism, the principal curvatures of the K-surfaces SK
with ∂SK = Γ are uniformly bounded.

Proposition 9.4. Let S be a K-surface, for K ∈ (−∞,−1), with ∂S = gr(φ), where
φ : ∂H2 → ∂H2 is a quasisymmetric homeomorphism. Then the principal curvatures of S
are bounded.

Proof. By contradiction, assume that there exists a sequence of points γn ∈ S where one
principal curvature λ1(γn) tends to infinity (and thus the other tends to zero). As in the proof
of Proposition 9.3, let χn ∈ Isom(H2) such that χn(γn) = Ix and χn(TγnS) = Rπ. By the
same argument, the curves χn(Γ) converge to the graph of a quasisymmetric homeomorphism
Γ∞ = gr(φ∞), and as in Theorem 7.8, the surfaces χn(S) converge to a smooth K-surface
S∞ with ∂S∞ = Γ∞. But then for the C∞ convergence, the principal curvatures λ1(γn),
which are equal to the largest principal curvature of χn(S) at χn(γn) = Ix, converge to the
largest principal curvature of S∞ at Ix. Thus they cannot go to infinity and this gives a
contradiction. �

We remark that the key points in the proofs of Proposition 9.3 and Proposition 9.4 are
the use of the compactness result for quasisymmetric homeomorphisms (Lemma 9.1), and
on the other hand, the convergence result of Theorem 7.3, which essentially can be fruitfully
applied (as for Theorem 7.8) provided the curve Γ is not a 1-step or a 2-step curve.

Proposition 9.3 and Proposition 9.4 together give the statement of Theorem 1.4.
Recall that the map Φ : πr ◦ (πl)

−1 associated to a past-convex K-surface S is a θ-
landslide, for K = −1/cos2(θ/2), and that if ∂S = gr(φ) then Φ extends to φ on ∂H2.
Then we conclude by a corollary about the extensions by θ-landslides of quasisymmetric
homeomorphisms.

Corollary 9.5. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2 and any θ ∈
(0, π), there exist a unique θ-landslides Φθ : H2 → H2 which extend φ. Moreover, Φθ is
quasiconformal.

In fact, Theorem 7.8 and Proposition 9.3 prove existence and uniqueness of a past-convex
K-surface for every K ∈ (−∞,−1). Therefore the associated map is a θ-landslide. On the
other hand, given any θ-landslide Φθ, by the procedure described in Section 5, in particular
Corollary 5.11, Φθ must necessarily come from one of the two K-surfaces with boundary
gr(φ).
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