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Abstract. We recall some of the multi-criteria and multi-disciplinary optimiza-
tion formulations with emphasis on algorithmic and implementation issues. We
use a partial controllability result which states that the vicinity of any point in the
optimization space can be reached in finite time from any other point in the space
following a trajectory solution of a particular second order dynamical system. We
use this continuous point of view to propose a class of heuristic optimization algo-
rithms also addressing global search issues. For multi-criteria problems this means
that any point on a Pareto front can be reached even if the front is non-convex
as far as the optimization algorithm has inertial features. The paper also recalls
the conditions under which a Pareto front can be accessed by descent methods
applied to multicriteria problems using the weighted sum approach. The question
of the density of the distribution of the points over the front is also addressed.
The approach is illustrated on academic examples as well as on a multi-criteria
distributed inverse problem for a heterogeneous data fusion problem.

1. Introduction

The paper is dedicated to two problems of interest in optimization. First, we
address the question of how descent methods can be improved to perform global
search ? Once this question discussed, one sees why global search methods are
necessary to reach points on general non-convex Pareto fronts where descent methods
fail. Addressing these questions lead to the development of a class of heuristic global
optimization methods as discretization of special 2nd order continuous dynamical
systems.

Descent algorithms can be interpreted as discrete forms of first order systems
[20]: a descent method solves a Cauchy problem for such a system. Now, suppose
we know the infimum of the functional and the question of global optimization is
then where it is reached ? Global optimization becomes then a boundary value
problem with an initial condition in the admissible space and a final condition on
the functional. Therefore, solving a global optimization problem with such methods
leads to an over-determined problem. In other words, if the final condition is given,
the initial condition should be prescribed and should be a variable of the problem
as well. Intuitively, this suggests that a descent method is willing to succeed if it
starts somewhere in the optimal attraction basin (i.e. where the infimum is).

The paper discusses how a controllability result can be used in the development
of heuristic optimization algorithms using recursive shootings in order to solve a
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boundary value problem. We recover the philosophy behind the Bock’s multiple
shooting algorithm [5] and the Lion’s parareal method [15].

The paper then considers the application of these ideas to multi-criteria problems.
We will see that weighted sums used to transform a multi-criteria problem into a
mono-criteria one can still be used to recover general Pareto fronts and not only
convex ones. This is interesting because this method is widely used and appreciated
by engineers.

Finally, we discuss the question of the distribution and localization of the points
on the Pareto front. Indeed, we will see that despite general fronts can be reached,
the points are often oddly distributed with concentrations in some regions of the
front while we might want some kind of uniform distribution of the points on the
front. To address this issue, we propose to couple the different trials introducing
a particular repulsion force in the corresponding second order dynamical systems.
This point is however not central in the paper and the concepts of the paper can be
used together with other proposals such as the normal boundary intersection or the
normal constraint methods [8, 1]. The proposed method has however the advantage
to remain compatible with the weighted sum formulation and easy to explain in
engineering environments.

2. Multi-criteria optimization

The literature on multi-criteria optimization is vast [7, 8, 9, 17, 22, 24]. Let us
briefly recall some notions and take this opportunity to introduce the notations which
will be used throughout the paper. We consider n real functions {Ji(x), i = 1, .., n}.
One way to look at multidisciplinary optimization is minimizing a vector [16]:

(1) min
x∈Oad⊂IRN

~J, ~J = (J1(x), .., Jn(x))t,

which brings the question of order relation in a vector space which is in turn related
to the norm one chooses for the optimization: shall we consider an L1, L2 or ... L∞

norm ? or shall we consider several or all of them ? There is no single answer to
this question. Instead, one should look for trade-off between conflicting objectives
and Pareto equilibrium [22].

2.1. Multicriteria optimization algorithms. Let us recall a few strategies to
solve problem (1) which has a wide literature dedicated to [11, 16, 17, 21]. This
paper is not on introducing a new algorithm for this purpose. The algorithms can
be cast into two classes considering either the functionals separately or through a
unique representation, after weighted summation for instance.

A natural representative of the first class is the min-max approach where one
looks for minimizing sequences for the following problem starting from an initial
value x0 ∈ Oad:

(2) min
x∈Oad

max
j=1,...n

{
Jj(x)

Jj(x0)

}
.

To make sure the sequence xp is a descent sequence for each of the vector functional
components, one should require a new proposal xp+1 not to degrade any of the
current achievements. This means that xp+1 should be solution of the following
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constrained minimization problem:

min
x∈Oad

max
j=1,...n

{
Jj(x)

Jj(x0)

}
such that Ci = Ji(x)− Ji(xp) ≤ 0, i = 1, ..., n, i 6= j.

This can be achieved solving the KKT conditions for the Lagragian Lj(x,Λ) =
Jj + ΛtC with C ∈ IRn−1 the vector of constraints and Λ ∈ IRn−1

+ is the vector
of positive Lagrange multipliers. This Lagrangian might change at each iteration.
Looking to achieve the KKT conditions means building xp+1 aiming at vanishing
∇xLj = ∇xJj + Λt∇xC with the complementary condition ΛtC = 0 making a
distinction between an inactive constraint where Ci < 0 and λi = 0 and an active
one where Ci = 0 and λi > 0. In this former situation we have λi = −∂Jj/∂Ci
meaning that the Lagrange multiplier gives the sensitivity of Jj with respect to a
perturbation of this particular active constraint. Once the optimum is reached, this
information permits a better construction of the Pareto front.

2.2. Geometric interpretation. This construction can be understood geometri-
cally. To be admissible, a search direction d needs to be orthogonal to the following
convex cone:

(3) Sp = {x | x =

p∑
i=1

βi∇xCi, βi > 0 | Ci = 0} ⊆ IRp ⊂ IRn−1,

where we have p active constraints. At the solution, ∇xJ is orthogonal to this cone.
Before working on the cone, let us start defining a local orthonormal basis {q̃i=1,...,p}
for S̃p defined by (3) but with βi ∈ IR. S̃p is a vector space and an orthonormal basis

can be defined for S̃p orthonormalizing the columns of ∇xC by the Gram-Schmidt
procedure. Now, we consider the vectors qi = ±q̃i and the sign chosen such that
< qi=1,...,p,∇xCk >≥ 0, if Ck = 0 for k = 1, ..., p (i.e. pointing inside the cone for an
active constraint). {qi=1,...,p} are the generators of the cone Sp deduced from a basis

of S̃p. If the generators cannot be defined, the problem is found having no solution
as at least two of the constraints are incompatible with their gradients parallel and
pointing in opposite directions. These generators permit to define an admissible
search direction d at iteration n following:

(4) d = ∇xJj −
p∑
i=1

χi < qi,∇xJj > qi,

with χi = 0 if < qi,∇xJj >≥ 0 and χi = 1 if < qi,∇xJj >< 0. At the optimum, the
Lagrange multipliers for active constraints correspond to 0 < λi = − < qi,∇xJj >.
This construction can also be obtained applying the Uzawa algorithm for the solution
of:

min
x∈Oad

max
Λ∈IRn−1

+

Lj(x,Λ),

at each iteration of problem (2). The solution of (2) belongs to the Pareto front as
there is no way to improve one of the criteria without degrading the others.

This approach requires the gradients of all the functionals and, for large dimen-
sional optimization problems, this means the solution of n adjoint problems [20] at
each iteration which can be very costly, especially with sophisticated state equa-
tions solvers. With black-box solvers and if the size of the problem is small finite
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differences are often used instead of adjoint because of their natural parallelism and
simplicity together with a weighted sum formulation to only handle one functional.

2.3. Weighted sum formulation. The classical method for multi-objective opti-
mization remains the weighted sum method because of its simplicity [7, 8, 24]:

(5) J(x) = ΣαiJi(x), Σαi = 1, αi ∈ [0, 1].

A sampling in αi enables to reach various points in the Pareto front using a descent
method for J(x). Indeed any point x̄ ∈ Oad minimizing J is a Pareto equilibrium.
Actually any point x ∈ Oad dominating x̄ would yield an improved weighted sum
J(x) < J(x̄) in contradiction with the minimizing property of x̄.

The converse is true in a convex setting. That is, any Pareto equilibrium x̄ is a
minimum point of some weighted sum J given by (5), provided that the functionals
Ji and the set Oad are convex. Indeed set

C = {ξ ∈ IRn, ∃x ∈ Oad, ξi ≥ Ji(x), ∀i ∈ {1, . . . , n} },
K = {ξ ∈ IRn, ξ < Ji(x̄), ∀i ∈ {1, . . . , n} }.

These are convex nonvoid subsets of IRn, and K is open. Moreover C ∩K = ∅, since
any point ξ ∈ C ∩ K would verify Ji(ξ) < Ji(x̄) in contradiction with x̄ being a
Pareto equilibrium. Hence, there exists a hyperplane separating sets C and K (see
figure 1); that is, there exist a vector α = (α1, . . . , αn) ∈ IRn \ {0} and a scalar b
such that

ξ ∈ K ⇒ α ξt ≤ b,(6)

ξ ∈ C ⇒ α ξt ≥ b.(7)

Let ξ be some fixed point in K. For all λ ∈ IRn with nonnegative components,
ξ − λ lies in K too, and with (6) we have αξt − αλt ≤ b. Hence necessarily ai ≥ 0
for all i ∈ {1, . . . , n}, and there is no harm in supposing

∑n
i=1 αi = 1.

Figure 1. Hyperplane separating sets C and K.
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Let K denote the closure of K in IRn. Since (J1(x̄), . . . , Jn(x̄)) ∈ K ∩C, we have∑n
i=1 αiJi(x̄) ≤ b ≤

∑n
i=1 αiJi(x̄), hence b =

∑n
i=1 αiJi(x̄). Finally with (7) we

obtain in particular

x ∈ Oad ⇒
n∑
i=1

αiJi(x) ≥
n∑
i=1

αiJi(x̄),

which means that x̄ is a minimum point of J .

A shorter proof may be given under reinforced assumptions. If x̄ is a Pareto
equilibrium, it is a solution to the constrained optimization problem:

inf {J1(x), x subject to Ji(x) ≤ Ji(x̄), i ∈ {2, . . . , n}}.

Indeed Ji(x) ≤ Ji(x̄), for i ∈ {1, . . . , n}, entails Ji(x) = Ji(x̄) for i ∈ {1, . . . , n}.
Under the extra assumption (see [13] e.g.)⋂

i∈{2,...,n}

{x ∈ Oad, Ji(x) < Ji(x̄)} 6= ∅,

there exist nonnegative multipliers αi for i ∈ {2, . . . , n} such that x̄ minimizes the
functional J1 +

∑
i∈{2,...,n} αi(Ji − Ji(x̄)), and the functional J1 +

∑
i∈{2,...,n} αiJi as

well. Now divide the latter by 1 +
∑

i∈{2,...,n} αi to recover a weighted sum J such as

given by (5).

It is reported that this approach does not find Pareto optimal solutions in non-
convex regions of the Pareto front [2]. This is linked to the fact that when the tangent
to the Pareto front is parallel to one of the axes the corresponding functional has a
plateau which cannot be crossed by a descent method not having inertial features.

Now consider the situation of two functionals and a Pareto front P (J1, J2) = 0. In
cases, where the front is non-convex but the tangent never parallel to one of the axes
the implicit function theorem can be applied and one can find J1 = j1(J2), J2 =
j2(J1). In these cases, as shown in [2], one can still use a descent method for
increasing power m in the functional:

J̃(x) = αJm1 (x) + (1− α)Jm2 (x), α ∈ [0, 1].

The aim is to find the lowest m making the Pareto front P̃ (Jm1 , J
m
2 ) convex. But,

this approach has the disadvantage of degrading the conditioning of the optimization
problem.

In the sequel we show that the failure of the weighted sum approach is due to a
lack in global minimization feature in descent methods and propose an alternative
solution which is not submitted to the mentioned limitation on the tangent to the
Pareto front.

3. Controllability and global optimization

Consider the minimization of a functional J(x) ∈ IR, x ∈ Oad. We suppose
the problem admissible (i.e. there exist at least one solution xm to the problem:
J(xm) = Jm). Most minimization algorithms can be seen as discrete expressions for
the following Cauchy problem [20]:

(8) M(x(t))xt = −d(x(t)), x(t = 0) = x0.
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M is aimed to be positive definite and M−1d is built to be an admissible direction.
Global solution of (8) means, for instance, finding x(T ) for finite T such that

(9) M(x(t))xt = −d(x(t)), x(0) = x0, J(x(T )) = 0.

This is an over-determined boundary value problem and it tells us why one should
not solve global optimization problems with methods which are discrete form of (8).
This limitation can be somehow removed if one can provide an initial condition in
the attraction basin of the global optimum. To remove this overdetermination one
shall consider, for instance, the following second order system:

(10) ηxtt +M(x(t))xt = −d(x(t)), x(t = 0) = x0, J(x(T )) = Jm.

This can be solved using solution techniques for boundary value problems with
free surface. An analogy can be given with the problem of finding the interface
between water and ice which is only implicitly known through the iso-value of zero
temperature [3].

3.1. Practical impacts. In practice the final condition is not aimed at being ex-
actly realized. Rather, one would like, for a given precision δ in the functional,
to build at least one trajectory (x(t), 0 ≤ t ≤ Tδ) passing for finite Tδ in the ball
Bδ(xm). This can be summarized as:

(11) ∀ δ > 0,∃ (v, Tδ) ∈ Oad × [0,+∞[ such that J(xv(Tδ))− Jm ≤ δ.

If Jm is unknown Tδ defines the maximum calculation complexity wanted. This
is how optimization algorithms are actually used: one chooses the maximum cal-
culation/memory effort one can afford and one looks for the best solution for this
complexity. In these cases, setting Jm = −∞, one retains the best solution obtained
over [0, Tδ]. In other words, one solves:

(12) ∀ (δ, Tδ) ∈ IR+ × [0,+∞[,∃ (v, τ) ∈ Oad × [0, Tδ],

such that J(xv(τ))− Jm ≤ δ.

The following theorem formalizes this controllability question with M = Id and
d = ∇J .

Theorem 1: Let J : IRN → IR be a C2-function such that minIRN J exists
and is reached at xm ∈ IRN . Then for every (x0, δ) ∈ IRN × IR+, there exists
(σ, t′) ∈ IRN × IR+ such that the solution of the following system:

(13) ηxtt(t) + xt(t) = −∇J(x(t)), t ≥ 0, x(0) = x0, xt(0) = σ,

with η ∈ IR, passes at time t′ = t into the ball Bδ(xm).

Proof :

We assume x0 6= xm (x0 = xm is a trivial case). Let ε > 0, we consider first the
initial value problem:

(14) ηytt(t) + εyt(t) = −ε2∇J(y(t)), t ≥ 0, y(0) = x0, yt(0) = %(xm − x0),

with % ∈ IR+\{0}.
Let us show that y(.) passes at some time into the ball Bδ(xm):
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• If ε = 0, we obtain the following system :

(15) ηytt,0(t) = 0, t ≥ 0, y0(0) = x0, yt,0(0) = %(xm − x0).

System (15) describes a straight line of origin x0 and passing at some time
θ% by the point xm, i.e. y0(θ%) = xm.
• If ε 6= 0, system (14) can be rewritten as (w2)t = f(η, w, ε), with w =

(w1, w2)t = (y(t), ηyt(t))
t and f = −ε/ηw2 − ε∇J(w1(t)) satisfying the

Cauchy-Lipschitz conditions (J is a C2 function). Then limε→0 |yε(θ%) −
y0(θ%)| = 0. Thus, for every δ ∈ IR+\{0}, there exists εδ such that for every
ε < εδ:

(16) |yε(θ%)− xm| < δ.

Finally, let us consider the change of variables t′ = εδt and x(t′) = yεδ(
t′

ε
δ
). Then

system (14) becomes:

(17) ηxt′t′(t
′) + xt′(t

′) = −∇J(x(t′)), t′ ≥ 0, x(0) = x0, ẋ(0) =
%

ε
δ

(xm − x0).

Let ϑ = ε
δ
θ%. Under this assumption, x(ϑ) = yε

δ
(θ%). Thus, due to (16): |x(ϑ)−

xm| < δ. We have found σ = %
ε
δ
(xm − x0) ∈ IRN and tb = ϑ ∈ IR+ such that the

solution of system (13) passes at time tb into the ball Bδ(xm).

2

3.2. Algorithmic considerations. This theorem is insightful and permits to de-
rive a global minimization algorithm which requires δ > 0, the infimum Jm and
0 ≤ Tδ <∞ [4]. If Jm is unknown, one sets Jm = −∞. Again, Tδ shall be seen as a
maximal admissible complexity for the calculation. We then minimize the functional
hδ,Tδ,Jm : Oad → IR+:

(18) hδ,Tδ,Jm(v) = min
A

(J(xv(τ))− Jm),

where A = {xv(τ) ∈ Oad, τ ∈ [0, Tδ]}. Hence, global minimization becomes a nested
minimization problem where one looks to improve the initial impulse v for a ’core’
minimization sub-problem to generate the trajectory (xv(τ), 0 ≤ τ ≤ Tδ) by:

(19) ηxtt +M(x(t))xt = −d(x(t)),

x(t = 0) = x0, xt(t = 0) = v, t ∈ [0, Tδ].

In cases one would like to use a core minimization algorithm which is a discrete form
of a first order dynamical system (i.e. η = 0), (19) becomes:

(20) M(x(t))xt = −d(x(t)), x(t = 0) = v, t ∈ [0, Tδ].

In other words, the external minimization problem aims at improving the initial
condition for the core optimization sub-problem. Both the initial condition and ini-
tial impulse can therefore be considered as optimization variables by the external
optimization problem. To solve the external minimization problem, our approach is
based on constructing a multi-level reduced-order parametric model by ’data assimi-
lation’ or ’learning’ [4, 3, 14, 20]. This algorithm has shown great efficiency for cases
where the functional is coercive and comes from perturbation of a convex functional
[20]. However, we keep its discussion to a minimum as it is not central to our topic
here.
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4. Application to the identification of Pareto fronts

We saw how to link any couple of points in the admissible space in finite time with
some given accuracy by a trajectory solution of a second order dynamical system.
If the problem is admissible a point in a Pareto front corresponds to a point in the
admissible control space. Theorem 1 states that the vicinity of this point can be
reached in finite time from any other point in the control space following a trajectory
solution of the second order system (13). The algorithm above can therefore be used
to recover any point in a Pareto front with:

(21) hδ,T,J̃m(v) = min
A
‖~J(xv(τ))− ~Jm‖,

regardless of whether the front is convex or not. The unknown components of ~Jm
are set to −∞ as in mono-objective minimization. One looks for the best solution at
given complexity. In all cases, this means that one shall use a minimization method
which has global search features to cross local minima in the case of non-convex
Pareto fronts. Let us illustrate this construction on a simple example.

4.1. A first illustration. We consider the functionals J1 = x1 + x2 and J2 =
(1/x1 + ‖x‖2) + β(exp(−100(x1 − 0.3)2) + exp(−100(x1 − 0.6)2)) for x ∈ [0.1, 1]2.
Functional J1 is bilinear and J2 has local minima for non zero β. We consider the
cases of β = 0 and β = 3. One expects a local minimization algorithm to be captured
by local minima for the latter situation showing that the corresponding Pareto front
generation requires a global minimization algorithm.

Figure 2 shows examples of convex and non-convex and non-connected Pareto
fronts for these two functionals when the parameter space has been uniformly sam-
pled. The figure also shows the front identified by a steepest descent method with
optimal step size and when enriching the method with second order dynamics fea-
tures as presented in the paper. This improves the global search capabilities of the
method and permits to reach the non-convex region in the front. We have solved
20 minimization problems based on uniform sampling of the weighting parameter
α ∈ [0, 1] in the weighted sum with the steepest descent method which corresponds
to a discrete expression of (20). We have then solved the same minimization prob-
lems with a discrete expression of (19) with M = Id, d = α∇J1 + (1 − α)∇J2 and
η = 1.

4.2. Improving the sampling of the Pareto front coupling dynamical sys-
tems . We saw that the vicinity of any admissible point in the Pareto front can
be reached in finite time from any point in the admissible domain. As we are in-
terested in a discretization of the Pareto front, this means we proceed with several
minimization in parallel as described in previous sections. However, these minimiza-
tion by our dynamical systems can interact in order to increase their global search
features. This coupling can also be used to achieve a more uniform distribution of
the points over the Pareto front to avoid the kind of situation one sees in figure 2
even for a convex Pareto front where points accumulate in some regions regardless
of whether the dynamics is first or second order. A natural way to introduce the
uniformity of the distribution is to ask for a point to be pushed away the positions
already occupied by others. This can be done introducing a repulsive force in our
dynamics. This couples the different paths using cross-information and involving a
global gradient.
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Figure 2. Top: Pareto front for (J1, J2) given in section 4.1 for β = 0
and β = 3 after uniform sampling of the parameter space. Solutions by
optimization algorithms issued from discretization of a first (middle)
and second-order (bottom) dynamical system for a uniform 20 point
sampling of α ∈ [0, 1].
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Figure 3. Pareto front by second-order dynamics accounting for re-
pulsive forces (22) to be compared to lower images in figure 2.

More precisely, we consider q individuals (xj, j = 1, ..., q) with their motions
prescribed by q systems (19):

(22) ηxjtt +Mxjt = dj +Gj, xj(t = 0) = x0, xt(t = 0) = vj.

dj is based on the gradient of the functional J j given by (5) for a particular choice of
the n-uplet αj ∈ [0, 1]n such that

∑n
i=1 α

j
i = 1. Gj is a global gradient representing

the interaction between the individuals:

Gj = −
q∑

k=1,k 6=j

J j − Jk

||xj − xk||2
(xj − xk), for j = 1, ..., q.

This repulsive force aims at forcing the search to take place in regions not already
visited. The right-hand side in (22) is therefore a balance between local and global
forces.

This construction aims at achieving similar behavior than methods such as the
normal boundary intersection [8] or the normal constraint [1]. It has the great
advantage to be easy to implement and to be naturally parallel. Figure 3 shows the
impact of this correction on the Pareto fronts given in figure 2. In the sequel, we
will apply this combination to a more sophisticated multi-criteria and multi-physics
data fusion problem.

5. Application to multi-criteria and multi-physics data fusion

As previously, our multi-criteria problem involves a vector of functionals:

~J = (J1(u1(x)), ..., Jn(un(x)))t ∈ IRn,

for a same set of optimization parameters x ∈ Oad ⊂ IRN . For simplicity we
assume all the parameters are public and do not split the optimization parameters
between public or global and private or local or disciplinary sets. One natural way
to achieve this splitting in our context is to consider territory splitting strategies
and to affect or not a given parameter xi=1,...,N to a given discipline j represented
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by Jj=1,...,n following its sensitivity dJj/dxi. The difficulty is that these sensitivities
are a propri unknown. This splitting is an important step in the formulation of a
multidisciplinary optimization problem but it is not central in our discussion [10,
12, 18].

5.1. Multicriteria and multiphysics data fusion. Our interest is on data as-
similation/fusion and m represents the different data set to be assimilated. In this
case, Ji reads for instance as:

(23) Ji(ui(x), u∗i ) = ‖ui(x)− u∗i ‖2
Σ−1
i

+ Ti(x), with Ti(x) ≥ 0.

Ti(x) represents regularity control requirements or additional constraint. The norm
‖.‖Σ−1

i
uses the inverse of the covariance matrix Σi of the different target observations

u∗i .
The problem is multi-physics as getting the functional Ji necessitates the solution

of a different state equations Fi(ui(x)) = 0 for the description of the different state
variable ui(x) ∈ IRM . One expects M to be very large. For instance, in the case of a
distributed optimization problem involving the solution of PDE models, M typically
represents the size of the mesh.

5.2. An example of vector and scalar fields assimilation. Consider the general
problem of mixing a passive scalar (here the temperature) in a fluid. The question is
to find the flow field which permits to realize a given distribution for a transported
quantity with constraint on what the admissible field is. Inversely, one wants to an-
swer the question of source identification from a few flow field and advected quantity
observations. The state equations we consider are the incompressible Navier-Stokes
equations together and an advection and diffusion equation for the temperature.
Details on these equations and the flow solver can be found in [19]. The flow field
can be controlled by various means as, for instance, injection devices or variations
of a magnetic field. The former is taken into account through a modification of the
boundary conditions for the velocity and the later by the introduction of a source
term in the flow equations. Here we consider a vector x of 12 control parameters
with lower and upper bounds on each component. The bounds express the admissi-
bility domain for flow directions and maximum possible velocity amplitude. Figure
4 shows an example of flow velocity intensity and temperature distributions for a
centrifugal device in which control of such quantities might of interest for suitable
functioning.

The two cost functions we consider are non dimensionalized and are of the form:

J1(x) =
1

|Ω|T 2

des

∫
Ω

(T (x)− T
des

)2, J2(x) =
1

|Ω|‖~u
des
‖

2

∫
Ω

‖~u(x)− ~u
des
‖2,

where upper bars indicate mean values over the domain. To simplify the presentation
we have assumed identity covariance matrices in (23). These aim at realizing target
flow velocity and temperature distributions in the domain or some part of it.

A sampling of the control space to generate the domain of possible (J1(x), J2(x)) ∈
IR2 is too costly even if the use of sparse grids [6, 23] or other intelligent sampling
techniques can bring some relief. Indeed, sampling an admissible domain in dimen-
sion n would require 2n evaluations of the functional to have just the bounds for
the variations of the cost function due to each of the parameters. Here, with only
four points over each of the variables range we need over than 16 millions functional
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evaluations. In this problem we obviously have no idea of how the Pareto front is
and we can only guess the front from the simulations. Therefore, what we would
like to mainly see through this example is the exploration capability of optimization
methods based on discrete forms of either first (20) or second order (19) dynamical
systems together with the repulsion forces given in section 4.2.

Figures 5 and 6 show visited (J1(x), J2(x)) points by first and second order dy-
namics for a same set of optimization problems corresponding to a 20 points uniform
sampling of α ∈ [0, 1] and the weighted functional αJ1 + (1 − α)J2 as described in
the previous academic example. However, this problem is much more computer
intensive.

One can see that second order dynamics have higher exploration capabilities.
The functional J1 and J2 are apparently non-convex as the first order dynamics do
not necessarily reach points on the non-convex part of the front as the trajectories
are probably captured by local minima, away from the front. We can also see
that it is interesting to combine the information from the first and second order
constructions. Indeed, some points on the Pareto front (highlighted by the circle in
figure 5) have been identified by the first order dynamics while missed by the second
order construction. We do not have an explanation for this behavior yet. Combining
the two sets of information, we have drawn an estimation of the Pareto front which
we think is non-convex and also non-connected.

Figure 4. Typical flow field ‖~u‖ distribution and temperature T iso-
contours for a set of control parameters x. Two injection locations can
be seen on the external wall.
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Figure 5. Visited (J1(x), J2(x)) points by first order dynamics to-
gether with repulsion forces and estimation (continuous line) of the
Pareto front combining information from these simulations and those
from the second order dynamics shown in figure 6. The first order
dynamics has difficulty in reaching the Pareto front as most of the
trials seem to be trapped by local minima.

Figure 6. Visited (J1(x), J2(x)) points by second order dynamics
together with repulsion forces and estimation (continuous line) of the
Pareto front combining information from from first and second orders
dynamics.

6. Concluding remarks

Different formulations of multicriteria optimization problems have been presented
together with a class of metaheuristic optimization algorithms intuited from theo-
retical behavior of continuous dynamical systems. In that purpose, global optimiza-
tion has been formulated as solution of boundary value problems for second order
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systems. Two theoretical results have been given for the continuous systems on
sub-optimal partial controllability in finite time and on the conditions under which
a Pareto front can be accessed by descent methods applied to multicriteria problems
using the weighted sum approach. It has been shown that global search features
are suitable for the identification of points on general Pareto fronts. The behavior
of minimization algorithms based on first and second order dynamical systems have
been discussed on an academic example and a distributed data fusion problem in
large dimension. For this latter case a sampling of the parameter space is clearly
impossible. Both situations feature non-convex and non-connected fronts. It has
been shown that minimization algorithms having inertial features permit to reach
non-convex regions in Pareto fronts thanks to their higher global search capabili-
ties. The question of the distribution and localization of the points on the Pareto
front has also been discussed to see how to monitor the distribution of the points on
the front. The different trials have been coupled introducing a particular repulsion
force in the corresponding second order dynamical systems. However, to address
this issue, the concepts of the paper can also be applied together with the normal
boundary intersection [8] or the normal constraint [1] method.
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