
HAL Id: hal-01474623
https://hal.science/hal-01474623

Preprint submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The popsicle-stick cobra wave
Jean-Philippe Boucher, Christophe Clanet, David Quéré, Frédéric Chevy

To cite this version:
Jean-Philippe Boucher, Christophe Clanet, David Quéré, Frédéric Chevy. The popsicle-stick cobra
wave. 2017. �hal-01474623�

https://hal.science/hal-01474623
https://hal.archives-ouvertes.fr


The popsicle-stick cobra wave

Jean-Philippe Boucher 1, Christophe Clanet 1, David Quéré 2 and Frédéric Chevy 3

1LadHyX, UMR 7646 du CNRS, École Polytechnique, 91128 Palaiseau Cedex, France
2 PMMH, UMR 7636 du CNRS, ESPCI, 75005 Paris, France
3 Laboratoire Kastler Brossel, ENS-PSL Research University,
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The cobra wave is a popular physical phenomenon arising from the explosion of a metastable
grillage made of popsicle sticks. The sticks are expelled from the mesh by releasing the elastic energy
stored during the weaving of the structure. Here we analyse both experimentally and theoretically
the propagation of the wave-front depending on the properties of the sticks and the pattern of the
mesh. We show that its velocity and its shape are directly related to the recoil imparted to the
structure by the expelled sticks. Finally we show that the cobra wave can only exist for a narrow
range of parameters constrained by gravity and rupture of the sticks.

Physics of metastable states is a classical topic of sta-
tistical physics [1, 2]. A well known route to relax to-
wards equilibrium is via a nonlinear front which propa-
gates with a constant speed, such as in viral spread [3, 4],
bio-chemical reactions [5] or combustion [6, 7]. In me-
chanics, the domino race provides an example of such a
process for a non-connected network [8, 9]. For entan-
gled structures, the question of the optimization of the
strength of grillages has been addressed [10, 11] especially
because of its role in construction [12] but their stability
remains an open question. The same type of question
also arises in biological systems, such as in the micro-
tubule catastrophe [13, 14]. Microtubules are assemblies
of GDP tubulin arranged in a tubular shape ending with
a cap of GTP tubulin. The loss of this cap triggers a
rapid depolymerization driven by the release of the stored
mechanical strain [15–17]. Here we study a macroscopic
version of such a system, namely the so-called “popsicle-
stick cobra wave” [18], obtained by releasing a mesh of
sticks woven according to Fig. 1.b.

To generate a cobra wave, the whole structure is loaded
by the geometrically-constrained bending of the individ-
ual sticks and is held together by the red and blue sticks
at the end of the mesh (see Fig. 1.b). When one of
them is removed, the structure unravels by expelling one
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FIG. 1: (a) Picture of a wooden stick with its characteristic
parameters : length L, width w, thickness e, mass M , density
ρ and Young’s modulus E. (b) Schematics of the lattice with
definition of the angle θ of the lattice and the period a of the
pattern. The blue and red sticks are the sticks that end the
lattice. The construction of the lattice starts with the blue
stick (number 1), then the sticks are added one after the other
(according to the numbering for the first four sticks), with an
alternation of orange and green sticks up to the final red stick.
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FIG. 2: Time-lapse photographies of the cobra wave obtained
with sticks of type-1 (see [19]) for θ = 45o, from videos taken
at 1000 fps with a Photron-Fastcam high-speed camera. The
different colors represent the wave at different instants. (a) At
the beginning (∆t = 100 ms between two consecutive images);
(b) During the stationary phase (∆t = 70 ms), with v0 ' 2.2
m/s the velocity of the wave front ; (c) At the end (∆t = 70
ms). Scale bars are 10 cm long.

by one the freed sticks. Due to the asymmetry of the
weaving, two very different dynamics occur depending
on which stick was initially removed. When the red stick
is taken away first, the sticks are expelled upwards and
by reaction they pin down the rest of the mesh to the
ground (see [19]). The outcome is dramatically different
when the blue stick is removed. In this case, the sticks
are expelled downwards and they raise the whole struc-
ture as presented in Fig. 2.a (see also the movie provided
in [19]). After a few hundreds of milliseconds, the shape
of the wave reaches a steady state (Fig. 2.b), and propa-
gates at a few meters per second. Both the shape and the
velocity remain the same until the wave-front reaches the
end of the grillage (Fig. 2.c). In this letter, we combine
experimental and theoretical approaches to characterize
the velocity and shape of the cobra wave in the steady
state.

Since the lifting force raising the lattice originates from
the recoil imparted by the expelled sticks, the global dy-
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namics of the wave is set by the ejection rate γ and the
momentum transferred during the expulsion Mv where
M is the mass of a stick and v the velocity of a stick
right after expulsion. The time γ−1 taken by a stick to
exit the mesh is given by L/v, where L is the length of
individual sticks (Fig. 1.a). Taking E the Young’s mod-
ulus, w the width and e the thickness of individual sticks
(Fig. 1.a), v can be estimated from the balance between
the kinetic energy Mv2 of a stick after ejection and the
bending energy Ewe5/L3 stored in each stick blocked by
the lattice.

From the previous scaling analysis, we readily deduce
the velocity v0 of the wave-front. Indeed, since the sticks
are expelled one by one, we have v0 = aγ/2 where a is
the spatial period of the pattern (Fig. 1.b). Noting that,
up to a geometric factor depending on the angle θ, we
have a ∝ L, both v and v0 scale as

v ' v0 = b(θ)

√
E

ρ

( e
L

)2
. (1)

where ρ is the mass-density of a stick and b(θ) is a scaling
factor that depends on the geometry of the mesh. With
c =

√
E/ρ the speed of sound in the material, we find

that v0 ∝ c(e/L)2. In Fig. 3, we confirm experimentally
this scaling for six kinds of wooden sticks (the values of
the mechanical and geometric parameters of the different
stick models are given in [19]) and we observe that indeed
v ∝ v0. As expected, the speed does not depend on the
width of the sticks and increases quadratically with the
ratio e/L. In Fig. 3.i, one can see that the speed of
the cobra decreases with the angle of the lattice θ. This
trend can be easily understood qualitatively by noting
that the velocity of the wave is proportional to the spatial
periodicity a = L cos θ/3.

We now focus on the shape of the wave. The height
of the cobra can be understood quantitatively within a
generalized version of Euler’s elastica theory, where the
mesh profile results from a competition between elastic-
ity, gravity and recoil imparted by the expelled sticks [20].
We treat the mesh as a linear continuous medium char-
acterized by a flexion modulus K̄ [19] and we describe
the expulsion of the sticks by a force F0 and a torque
C0 exerted at the free end of the grillage. Describing
the shape of the mesh by a profile r(s, t), where s is the
curvilinear abscissa (Fig. 4), the local force F (s, t) and
torque C(s, t) are given by

F = −K̄∂3sr C = K̄∂sr × ∂2sr. (2)

In steady state, the shape of the cobra is constant and
moves at the velocity v0. We therefore have r(s, t) =
r(s′ = s−v0t) and writing Newton’s Law for an infinites-
imally small element of the mesh leads to the following
dynamical equation

µv20∂
2
s′r = µg − K̄∂4s′r + ∂s′(Tτ ) +R. (3)
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FIG. 3: Speed of the wave-front v0 (filled dots) and speed of
the expelled sticks v (open dots) as a function of a charac-
teristic speed c(e/L)2 for θ = 45o and six different kinds of
sticks (see [19]). The black line corresponds to the fit v0 =
3.95 c(e/L)2 and the dashed line to the fit v = 5.46 c(e/L)2.
(i) Speed of the cobra wave v0 as a function of the angle of
the lattice θ for sticks of type-1.
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FIG. 4: Experimental cobra profile for sticks of type-4. The
steady profile (red dashed line) is described theoretically by
a parametric curve r(s′) where s′ is the linear abscissa. α
is the angle between the mesh and the horizontal axis and ψ
the angle between the velocity of the expelled sticks and the
tangent vector in s′ = smax. The scale bar is 10 cm long.

where µ = 2M/a is the linear mass density of the cobra,
T the longitudinal tension, τ the tangent unit vector and
R the ground reaction. We assume that the contact with
the ground occurs for s′ ≤ 0, so that z(s′ ≤ 0) = 0 and
R(s′ ≥ 0) = 0, and smax is the total mesh-length rising
above the ground. Projecting Eq. (3) on the tangent
and normal directions, these equations can be recast into
a closed equation for the curvature Γ = |∂2sr|
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2

[
d3Γ2

dα3
+
dΓ2

dα

]
=
µg

K̄

[
2 sinα

Γ
+

cosα

Γ2

dΓ

dα

]
. (4)

where α is the local angle between the mesh and the
horizontal axis.

This equation is of third order in α and thus requires
three boundary conditions to be solved. We obtain these
conditions by writing the stress at the free end αmax =
α(smax) of the mesh, namely:

C0 = K̄Γ (5)

F‖ = T + K̄Γ2 (6)

F⊥ = −K
2

dΓ2

dα
(7)

where F‖ = F0 · τ and F⊥ = F0 · n and the right-hand
side terms are taken at α = αmax. A fourth condition is
required by the fact that, contrary to the elastica prob-
lem where the length of the beam is fixed, we must here
determine self-consistently the mesh length rising above
the ground. To close the system, we therefore impose
the usual mobile contact-point condition Γ(α = 0) = 0
that assumes that there is no adhesion energy between
the mesh and the ground [21].

On the one hand, the forces can be calculated from the
momentum transfer between the lattice and the expelled
sticks and we have F⊥ = µv0v sinψ and F‖ = µv0(v0 −
v cosψ).

On the other hand, the torque exerted at the free end
of the cobra can be neglected. Indeed, assuming that all
the elastic energy is converted into rotational energy of
the sticks, we have the upper bound Cmax = γ

√
2IEel

where I is the moment of inertia of a stick. In Eq. (5)
and (6), the force must be compared to C2/K̄. We have

C2

K̄F
' γ2I(Ke2/L3))

KγMv0
'
( e
L

)2
� 1,

where K ' K̄ is the flexion modulus of a single stick
[19] and we have used the fact that v ' v0 ' γL and
I ' ML2. We thus see that for thin sticks, the torque
does not affect much the shape of the cobra.

Eq. (4) can be solved numerically in the general case
using the shooting method and the height of the cobra
can be obtained from

H =

∫ αmax

0

sinα

Γ(α)
dα. (8)

The analysis of equations (4-8) shows that H follows
the general scaling

H =

√
K̄

µv0v
hψ

(
Λ = g

√
K̄

µv30v
3

)
. (9)
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FIG. 5: Dimensionless height hψ as a function of the dimen-

sionless number Λ = g
√
K̄/ (µv30v

3) which compares grav-
ity and elasticity, for the six different kinds of sticks ([19]).
The solid line corresponds to the prediction of Eq. (4-8) for
ψ = 60o. The shaded band corresponds to the observed 10o

variations of the ejection angle. The red dashed line repre-
sents the large Λ expansion hψ ' 2 sin4 ψ/3Λ3 for ψ = 60o.

When gravity can be neglected, Eq. (4) can be solved an-

alytically and yields Γ = Γ0

√
cos(ψ − α)− cos(ψ) with

Γ0 =
√

2µvv0/K̄. We then obtain αmax = 2ψ and the
dimensionless height can be expressed in terms of the
elliptic integrals E and K [22] with

hψ(0) = 2 sin(ψ) [2E(sin(ψ/2))−K(sin(ψ/2))] . (10)

For large values of Λ, gravity becomes dominant and
the cobra does not rise as high. In this regime, αmax → 0
and we can therefore neglect the lower order derivatives
in each sides of Eq. (4) leading to the simplified expres-
sion

d3Γ2

dα3
=

2µg

K̄Γ2

dΓ

dα
. (11)

This equation can be solved analytically leading to an
asymptotic behaviour hψ ' 2 sin4 ψ/3Λ3.

The asymptotic behaviours obtained in both the weak
and strong gravity regimes can be understood by a
straightforward argument. We note first that Eq. (7)
and (8) lead to the following scalings

F⊥ ' K̄
Γ2
0

αmax
H ' α2

max

Γ0
. (12)

We can then distinguish two regimes. For small g, the

height is saturated and αmax ' 1, hence Γ0 '
√
F⊥/K̄

and H ' Γ−10 '
√
K̄/F⊥. The scaling for H yields

the condition hψ ' 1 for weak gravity. Using Eq. (1),
we can express v0 and F⊥ with K, e and L. We then
obtain a simple scaling for H ' L2/e, which does not
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FIG. 6: Set of parameters (e, L) for which a cobrastick wave
can be observed (red region). This region is delimited by
the two conditions given in Eq. (14) and (16) : the limit

set by gravity Lmax =
(
36Ee4/ρg

)1/5
and the breaking limit

Lmin = 1.5× 3
√
E/σ∗e. Filled blue dots : sets of parameters

for which the cobrastick wave is observed. Open blue dots :
sets of parameters for which the cobrastick wave could not be
observed (the sticks are too small and therefore break). (i)
Schematics of the shape of a stick in the lattice with the most
probable breaking region.

depend any more on the elasticity of the mesh. This
purely geometric scaling stems from the fact that, when
gravity is negligible, stick elasticity provides both the
thrusting and restoring forces responsible for the shape
of the mesh.

For heavy sticks, the lattice is almost horizontal and
the value of αmax is set by the balance between F⊥
and the weight. The length of the cobra being smax '
αmax/Γ0, we have thus the additional condition

F⊥ '
µgαmax

Γ0
. (13)

Combining Eq. (12) and (13) yields the condition αmax '
Λ−2 and hψ ' 1/Λ3. The transition between the two
regimes occurs for Λ ' 1.

We now compare the previous model to our measure-
ments. We measured the velocity v and the angle ψ at
which the sticks are expelled. We observe that for al-
most all stick models, ψ varies between 50o and 70o. In
Fig. 5, we compare our measurements to the predicted
value hψ=60o without any adjustable parameter. Except
in the weak-gravity regime, we observe a relatively good
agreement between experiment and theory. We attribute
the saturation of the height of the cobra-wave for small
Λ to the strong curvature of the mesh (in this regime
the radius of curvature is only a few times larger than
stick length), leading to a breakdown of the underlying
assumptions of the theoretical model. For instance the
validity of the continuum approximation for the descrip-
tion of the mesh, or the linear approximation for the

bending energy. Friction can also play a larger role, and
the strong deformation can weaken the structure, pre-
venting it from reaching its predicted height.

Finally, we discuss the condition of existence of the
cobra-wave. The first requirement is that the curvature
energy stored in a single stick (Eel = 18Ewe5/L3) should
overcome the gravitational energy (Eg = ρgweL2/2).
This leads to an upper bound for the length L of the
sticks:

L < Lmax =

(
36Ee4

ρg

)1/5

. (14)

However, the length L of the sticks cannot be too small
because if so it becomes impossible to build the lattice:
the sticks either break or slide over each other destroying
the lattice. The breaking condition is derived from a
simple scaling law for the bending stress in a beam which
sets an upper limit for the curvature of a stick in the
lattice (Fig. 6.i) :

C ∼ e

d2
<
σ∗

Ee
, (15)

where the length d = (L−w)/3 is defined in Fig. 6.i and
σ∗ is the bending stress at rupture of the material. We
then get a lower bound for the length L of the sticks

L > Lminb
∼ 3

√
E

σ∗
e+ w. (16)

For wooden sticks, these two conditions set the bound-
aries of the cobra-wave region of existence. The phase
diagram (e, L) is plotted in Fig. 6 with the region of
existence of the cobrastick wave in red, assuming the
width w to be negligible compared to the length L of
the sticks. In particular, this region is semi-infinite, the
maximal length being L∗ ∼ 10 m which corresponds to a
maximal thickness e∗ ∼ 25 cm.
We identify a third condition on L which is related to the
friction of the sticks and can be obtained from Coulomb’s
law of friction

L > Lminf
∼ 3e

f
+ 4w, (17)

where f is the coefficient of static friction.
It is noticeable that the relative position of the break-

ing threshold and the friction threshold depends on the
material of the sticks. For instance, for sticks made
of PVC, unlike wooden sticks, the friction threshold is
higher than the breaking threshold and is therefore the
one that sets the lower bound for the length of the sticks.

In conclusion, we have shown that the shape of the
popsicle-stick cobra wave was the result of a competi-
tion between on the one hand elastic and gravitational
restoring forces and on the other hand the thrust pro-
vided by the expulsion of the sticks. Depending on the
relative importance of gravity, we identified two asymp-
totic regimes. In particular, for negligible gravity, the
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cobra rises at a height which is solely set by the weaving
pattern and the dimensions of single sticks. Finally, we
showed that the Cobra wave can only exist in a narrow
region of the parameter space bounded by gravity and
rupture of the sticks. In future work, we will study more
carefully the local expulsion dynamics of individual sticks
to clarify the role of the weaving pattern.
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Supplementary materials

I. CHARACTERISTICS OF THE STICKS

We measured the Young modulus E of our sticks
through measurements of the load on a force sensor for
given deflections of the sticks and we found E ' 15 GPa.
We estimated the bending stress at rupture of the sticks
σ∗ ' 120MPa experimentally through a three-point flex-
ural test.

Sticks L (mm) w (mm) e (mm) M (g)

1 150 18.0 1.6 2.64

2 114 14.3 1.5 1.45

3 150 9.0 1.6 1.30

4 114 7.0 1.5 0.70

5 113 9.0 2.0 1.23

6 150 17.0 1.5 2.45

7 56 7.0 1.5 0.25

8 93 9.0 2.0 1.02

TABLE I: Geometrical and mechanical properties of the
wooden sticks used in this study. Sticks 7 and 8 are sticks
for which the cobrastick wave was not observed and appear
in Fig. 6.

II. ELASTIC MODULUS OF THE MESH

The elastic properties of the mesh are described by a
bending energy

Eel =
K̄

2

∫
Γ(s)2 ds, (18)

where Γ is the local curvature of the mesh and K̄ the
effective bending modulus. K̄ is determined experimen-
tally by measuring the load on a force sensor for given
deflections of the mesh. In Fig. 7, we plot the measured
value K̄ normalized by the bending modulus of a single
stick K = EI⊥ (where I⊥ = we3/12 is the second mo-
ment of area) as a function of the weaving angle θ. For
θ = π/4, we find in particular K̄ ' 0.7K. Assuming
that the sticks are simply wrapped with an angle θ on a
cylinder of radius Γ−1, one obtains K̄ = 3K cos(θ)3. This
scaling is close to the fitted behaviour K̄/K = k0 cos(θ)3,
with k0 = 2.2. The discrepancy with the expected value
k0 = 3 may come from the torsion of the sticks in the
mesh or from the fact that even in the absence of macro-
scopic bending of the mesh, individual sticks are already
bent by the weaving of the mesh.
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FIG. 7: Normalized bending modulus of the mesh K̄/K as a
function of the weaving angle θ obtained experimentally by
measuring the force on a load cell for imposed deflections of
the mesh. Solid line: fit of the data using the theoretical func-
tion K̄/K = k0 cos(θ)3 with k0 = 2.2, close to the expected
value k0 = 3 derived from a purely geometric argument.
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