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Abstract
We introduce a Geometry of Interaction model for higher-order
quantum computation, and prove its adequacy for a fully fledged
quantum programming language in which entanglement, duplica-
tion, and recursion are all available. This model is an instance of a
new framework which captures not only quantum but also classical
and probabilistic computation. Its main feature is the ability to model
commutative effects in a parallel setting. Our model comes with a
multi-token machine, a proof net system, and a PCF-style language.
Being based on a multi-token machine equipped with a memory,
it has a concrete nature which makes it well suited for building
low-level operational descriptions of higher-order languages.

Categories and Subject Descriptors F.3.2 [Semantics of Program-
ming Languages]: Algebraic approaches to semantics

Keywords Geometry of Interaction, memory structure, quantum,
probabilistic, PCF

1. Introduction
In classical computation, information is deterministic, discrete
and freely duplicable. Already from the early days [1], however,
determinism has been relaxed by allowing state evolution to be
probabilistic. The classical model has then been further challenged
by quantum computation [2], a computation paradigm which is
based on the laws of quantum mechanics.

Probabilistic and quantum computation are both justified by the
very efficient algorithms they give rise to: think about Miller-Rabin
primality test [3, 4], Shor’s factorization [5] but also the more recent
algorithms for quantum chemistry [6] or for solving linear systems
of equations [7]. Finding out a way to conveniently express those
algorithms without any reference to the underlying hardware, is then
of paramount importance.

This has stimulated research on programming languages for prob-
abilistic [8, 9] and quantum computation (see [10] for a survey), and
recently on higher-order functional languages [11–13]. The latter
has been epitomized by variations and extensions of the λ-calculus.
In order to allow compositional reasoning, it is important to give a
denotational semantics to those languages; maybe surprisingly, a
large body of works in this direction is closely connected to denota-
tional and interactive models of Linear Logic [14], in the style of
Game Semantics [15, 16] and the Geometry of Interaction [17].

The case of quantum computation is emblematic. The first ade-
quate denotational model for a quantum programming language à la
PCF, only two years old [13], marries a categorical construction for
the exponentials of linear logic [18, 19] to a suitable extension of the
standard model of quantum computation: the category of completely
positive maps [20]. The development of an interactive semantics
has proved to be highly nontrivial, with results which are impressive
but not yet completely satisfactory. In particular, the underlying lan-
guage either does not properly reflect entanglement [21–23], a key
feature of quantum computation, or its expressive power is too weak,
lacking recursion and duplication [24, 25]. The main reason for this
difficulty lies in the inherent non-locality of entanglement [2].

In this paper we show that Girard’s Geometry of Interaction
(GoI) indeed offers the right tools to deal with a fully fledged quan-
tum programming language in which duplication and full recur-
sion are available, when we equip GoI with an external quantum
memory, a standard technique for operational models of quantum
λ-calculi [11].

We go further: the approach we develop is not specific to
quantum computation, and our quantum model is introduced as
an instance of a new framework which models choice effects in
a parametric way, via a memory structure. The memory structure
comes with three operations: (1) allocation of fresh addresses in the
memory, (2) low-level actions on the memory, and (3) choice based
on the value of the memory at a given address. The notion of memory
structure is flexible, the only requirement being commutativity of the
operations. In Sec. 3.3 we show that different kinds of choice effects
can be systematically treated: classical, probabilistic and quantum
memory are all instances of this general notion. Therefore, the
memory makes the model suitable to interpret classical, probabilistic
and quantum functional programs. In particular, in the case of
quantum memory, a low-level action is an application of unitary
gate to the memory, while the choice performs a quantum measure.



The GoI model we give has a very concrete nature, as it consists
of a class of token machines [26, 27]. Their distinctive feature is to
be parallel and multi-token [25, 28] rather than single-token as in
classic token machines [26]. Being multi-token means that different
computational threads can interact with each other and synchronize
(think of this as a multi-player game, where players are able to
collaborate and exchange information). The presence of multiple
tokens allows to appropriately reflect non-locality in a quantum
setting, but also to generally deal with parallelism and choice effects
in a satisfactory way. We discuss why this is the case when we
concretely present the machine (Sec. 5).

Finally, to deal with the combination of parallelism, probabilistic
side-effects and non-termination, we develop a general notion of
PARS, probabilistic abstract rewrite system. The results we establish
on PARS are the key ingredient in the Adequacy proofs, but are also
of independent interest. The issues at sake are non-trivial and we
discuss them in the dedicated Sec. 1.2.

Contributions. We present a Geometry of Interaction (GoI) model
for higher-order quantum computation, which is adequate for a
quantum programming language in which entanglement, duplication,
and recursion are all available. Our model comes with a multi-
token machine, a proof net system, and a PCF-style language.
More specifically, this paper’s contributions can be summarized
as follows:
• we equip GoI with the ability to capture choice effects using a

parametric notion of memory structure (Sec. 3);
• we show that the notion of memory structure is able to capture

classical, probabilistic and quantum effects (Sec. 3.3);
• we introduce a construction which is parametric on the memory,

and produces a class of multi-token machines (Sec. 5), proof
net systems (Sec. 4) and PCF-style languages (Sec. 6). We
prove that (regardless of the specific memory) the multi-token
machine is an adequate model of nets reduction (Th. 28), and
the nets an adequate model of PCF term rewriting (Th. 29);

• we develop a general notion of parallel abstract rewrite system,
which allows us to deal with the combination of parallelism and
probabilistic choice in an infinitary setting (Sec. 2).

Being based on a multi-token machine associated to a memory, our
model has a concrete nature which makes it well suited to build
low-level operational descriptions of higher-order programming
languages. In the remainder of this section, we give an informal
overview of various aspects of our framework, and motivate with
some examples the significance of our contribution.

This report is an extended version of [29].

1.1 Geometry of Interaction and Quantum Computation
Geometry of Interaction is interesting as semantics for programming
languages [27, 30, 31] because it is a high-level semantics which
at the same time is close to low-level implementation and has a
clear operational flavor. Computation is interpreted as a flow of
information circulating around a network, which essentially is a
representation of the underlying program. Computational steps are
broken into low-level actions of one or more tokens which are
the agents carrying the information around. A long standing open
question is whether fully fledged higher-order quantum computation
can be modeled operationally via the Geometry of Interaction.

1.1.1 Quantum Computation
As comprehensive references can be found in the literature [2],
we only cover the very few concepts that will be needed in this
paper. Quantum computation deals with quantum bits rather than
bits. The state of a quantum system can be represented with a
density matrix to account for its probabilistic nature. However for
our purpose we shall use in this paper the usual, more operational,
non-probabilistic representation. Single quantum bits (or qubits)

will thus be represented by a ray in a two-dimensional complex
Hilbert space, that is, an equivalence class of non-zero vectors up to
(complex) scalar multiplication. Information is attached to a qubit by
choosing an orthonormal basis (|0〉, |1〉): a qubit is a superposition
of two classical bits (modulo scalar multiplication). If the state of
several bits is represented with the product of the states of single
bits, the state of a multi-qubit system is represented with the tensor
product of single-qubit states. In particular, the state of an n-qubit
system is a superposition of the state of an n-bit system. We consider
superpositions to be normalized.

Two kinds of operations can be performed on qubits. First, one
can perform reversible, unitary gates: they are unitary maps in
the corresponding Hilbert space. A more exotic operation is the
measurement, which is the only way to retrieve a classical bit out
of a quantum bit. This operation is probabilistic: the probabilities
depend on the state of the system. Moreover, it modifies the
state of the memory. Concretely, if the original memory state is
α0|0〉⊗φ0+α1|1〉⊗φ1 (with φ0 and φ1 normalized), measuring the
first qubit would answer xwith probability |αx|2, and the memory is
turned into |x〉 ⊗ φx. Note how the measurement not only modifies
the measured qubit, but also collapses the global state of the memory.

The effects of measurements are counterintuitive especially in
entangled system: consider the 2-qubit system

√
2

2
(|00〉 + |11〉).

This system is entangled, meaning that it cannot be written as φ⊗ψ
with 1-qubit states φ and ψ. One can get such a system from the
state |00〉 by applying first an Hadamard gate H on the second qubit,
sending |0〉 to

√
2

2
(|0〉 + |1〉) and |1〉 to

√
2

2
(|0〉 − |1〉), therefore

getting the state
√

2
2

(|00〉+|01〉), and then a CNOT (controlled-not)
gate, sending |xy〉 to |x⊕ y〉 ⊗ |y〉. Measuring the first qubit will
collapse the entire system to |00〉 or |11〉, with equal probability 1

2
.

Remark 1. Notwithstanding the global collapse induced by the
measurement, the operations on physically disjoint quantum states
are commutative. Let A and B be two quantum states. Let U act
on A and V act on B (whether they are unitaries, measurements, or
combinations thereof). Consider now A⊗B: applying U on A then
V on B is equivalent to first applying V on B and then A on U . In
other words, the order of actions on physically separated quantum
systems is irrelevant. We use this property in Sec. 3.3.3.

1.1.2 Previous Attempts and Missing Features
A first proposal of Geometry of Interaction for quantum computation
is [21]. Based on a purely categorical construction [32], it features
duplication but not general entanglement: entangled qubits cannot
be separately acted upon. As the authors recognize, a limit of their
approach is that their GoI is single-token, and they already suggest
that using several tokens could be the solution.

Example 2. As an example, if S =
√

2
2

(|00〉+ |11〉), the term

let x⊗ y = S in (Ux)⊗ (V y) (1)

cannot be represented in [21], because it is not possible to send
entangled qubits to separate parts of the program.

A more recent proposal [25], which introduces an operational
semantics based on multi-tokens, can handle general entanglement.
However, it does neither handle duplication nor recursion. More than
that, the approach relies on termination to establish its results, which
therefore do not extend to an infinitary setting: it is not enough to
“simply add” duplication and fix points.

Example 3. In [25] it is not possible to simulate the program that
tosses a coin (by performing a measurement), returns a fresh qubit
on head and repeats on tail. In mock-up ML, this program becomes

letrec f x = (ifx then new else f (H new)) in (f (H new))



where new creates a fresh qubit in state |0〉 and where the if test
performs a measurement on the qubit x. Note how the measure of
H new amounts to tossing a fair coin: H new produces

√
2

2
(|0〉+|1〉).

Measuring gives |0〉 and |1〉 with probability 1
2

.

Example 3 will be our leading example all along the paper.
Furthermore, we shall come back to both examples in Sec. 7.1.1.

1.2 Parallel Choices: Confluence and Termination
When dealing with both probabilistic choice and infinitary reduction,
parallelism makes the study of confluence and convergence highly
non-trivial. The issue of confluence arises as soon as choices
and duplication are both available, and non-termination adds to
the challenges. Indeed, it is easy to see how tossing a coin and
duplicating the result does not yield the same probabilistic result
as tossing twice the coin. To play with this, let us take for example
the following term of the probabilistic λ-calculus [33]: M =
(λx.x xor x)((tt ⊕ ff) ⊕ Ω) where tt and ff are boolean
constants, Ω is a divergent term, ⊕ is the choice operator (here,
tossing a fair coin), and xor is the boolean operator computing
the exclusive or. Depending on which of the two redexes we
fire first, M will evaluate to either the distribution {ff

1
2 } or to

the distribution {tt
1
8 , ff

1
8 }. In ordinary, deterministic PCF, any

program of boolean type may or may not terminate, depending on
the reduction strategy, but its normal form, if it exists, is unique.
This is not the case for our probabilistic term M : depending on
the choice of the redex, it evaluates to two distributions which are
simply not comparable.

In the case of probabilistic λ-calculi, the way-out to this is
to fix a reduction strategy; the issue however is not only in the
syntax, it appears—at a more fundamental level—also in the model.
This is the case for [33], where the model itself does not support
parallel probabilistic choice. Similarly, in the development of a
Game Semantics or Geometry of Interaction model for probabilistic
λ-calculi, the standard approach has been to use a polarized setting,
so to impose a strict form of sequentiality [34, 35]. If instead we
choose to have parallelism in the model, confluence is not granted
and even the definition of convergence is non-trivial.

In this paper we propose a probabilistic model that is infinitary
and parallel but confluent; to achieve this, in Sec. 2 we develop some
results which are general to any probabilistic abstract rewrite system,
and which to our knowledge are novel. More specifically, we provide
sufficient conditions for an infinitary probabilistic system to be
confluent and to satisfy a property which is a probabilistic analogous
of the familiar “weak normalization implies strong normalization”.
We then show that the parametric models which we introduce (both
the proof nets and the multi-token machine) satisfy this property;
this is indeed what ultimately grants the adequacy results.

1.3 Overview of the Framework, and Its Advantages
A quantum program has on one hand features which are specific
to quantum computing, and on the other hand standard constructs.
This is indeed the case for many paradigmatic languages; analyzing
the features separately is often very useful. Our framework clearly
separates (both in the language and in its operational model) the
constructs which are common to all programming languages (e.g.
recursion) and the features which are specific to some of them (e.g.
measurement or probabilistic choice). The former is captured by a
fixed operational core, the latter is encapsulated within a memory
structure. This approach has two distinctive advantages:
• Facilitate Comparison between Different Languages: clearly

separating in the semantics the standard features from the
“notions of computation” which is the specificity of the language,
allows for an easier comparison between different languages.

• Simplify the Design of a Language with Its Operational Model:
it is enough to focus on the memory structure which encapsu-
lates the desired effects. Once such a memory structure is given,
the construction provides an adequate Geometry of Interaction
model for a PCF-like language equipped with that memory.

Memory structures are defined in Sec. 3, while the operational
core is based on Linear Logic: a linearly-typed PCF-like language,
Geometry of Interaction, and its syntactical counterpart, proof nets.
Proof nets are a graph-based formal system that provides a powerful
tool to analyze the execution of terms as a rewriting process which
is mostly parallel, local, and asynchronous.

More in detail, our framework consists of:
1. a notion of memory structure, whose operations are suitable to

capture a range of choice effects;
2. an operational core, which is articulated in the three base rewrite

systems (a proof net system, a GoI multi-token machine, and a
PCF-style language);

3. a construction which is parametric on the memory, and lifts each
base rewrite system into a more expressive operational system.
We respectively call these systems: program nets, MSIAM
machines and PCFAM abstract machines.

Finally, the three forms of systems are all related by adequacy
results. As long as the memory operations satisfy commutativity, the
construction produces an adequate GoI model for the corresponding
PCF language. More precisely, we prove— again parametrically
on the memory—that the MSIAM is an adequate model of program
net reduction (Th. 28), and program nets are expressive enough to
adequately represent the behavior of the PCF language (Th. 29).

1.4 Related Work
The low-level layer of our framework can be seen as a generalization
and a variation of systems which are in the literature. The nets and
multi-token machine we use are a variation of [28], the linearly typed
PCF language is the one in [13] (minus lists and coproducts). What
we add in this paper are the right tools to deal with challenges like
probabilistic parallel reduction and entanglement. Neither quantum
nor probabilistic choice can be treated in [28], because of the issues
we clarified in Sec. 1.2. The specificity of our proposal is really its
ability to deal with choice together with parallelism.

We already discussed previous attempts to give a GoI model
of quantum computation, and their limits, in Sec. 1.1.2 above. Let
us quickly go through other models of quantum computation. Our
parametric memory is presented equationally: equational presen-
tations of quantum memory are common in the literature [36, 37].
Other models of quantum memories are instead based on Hilbert
spaces and completely positive maps, as in [13, 20]. In both of these
approaches, the model captures with precision the structure and
behavior of the memory. Instead, in our setting, we only consider
the interaction between the memory and the underlying computation
by a set of equations on the state of the memory at a given address,
the allocation of fresh addresses, and the low-level actions.

Finally, taking a more general perspective, our proposal is by no
means the first one to study effects in an interactive setting. Dynamic
semantics such as GoI and Game Semantics are gaining interest
and attention as semantics for programming languages because of
their operational flavor. [35, 38, 39] all deal with effects in GoI. A
common point to all these works is to be single-token. While our
approach at the moment only deals with choice effects, we indeed
deal with parallelism, a challenging feature which was still missing.

2. PARS: Probabilistic Abstract Reduction
Systems

Parallelism allows critical pairs; as we observed in Sec. 1.2, firing
different redexes will produce different distributions and can lead to



possibly very different results. Our parallel model however enjoys a
property similar to the diamond property of abstract rewrite systems.
Such a property entails a number of important consequences for
confluence and normalization, and these results in fact are general to
any probabilistic abstract reduction system. In particular, we define
what we mean by strong and weak normalization in a probabilistic
setting, and we prove that a suitable adaptation of the diamond
property guarantees confluence and a form of uniqueness of normal
forms, not unlike what happens in the deterministic case. Th. 11 is
the main result of the section.

In a probabilistic context, spelling out the diamond property
requires some care. We will introduce a strongly controlled notion
of reduction on distributions (⇒). The need for this control has the
same roots as in the deterministic case: please recall that strong
normalization follows from weak normalization by the diamond
property ( b← a→ c⇒ b = c ∨ ∃d(b→ d← c) ) but not from
subcommutativity ( b ← a → c ⇒ ∃d(b →= d ←= c) ) which
appears very similar, but “leaves space” for an infinite branch.

2.1 Distributions and PARS
We start by setting the basic definitions. Given a set A, we note
DST (A) for the set of probability distributions on A: any µ ∈
DST (A) is a function from A to [0, 1] such that

∑
a∈A µ(a) ≤ 1.

A distribution µ is proper if
∑
a∈A µ(a) = 1. The distribution

assigning 0 to each element of a set A is indicated with 0. We
indicate with SUPP(µ) the support of a distribution µ, i.e. the
subset of A whose image under µ is not 0. On DST (A), we define
the relation ⊆ point-wise: µ ⊆ ρ if µ(a) ≤ ρ(a) for each a ∈ A.

A probabilistic abstract reduction system (PARS) is a pair A =
(A,→) consisting of a set A and a relation → ⊆ A×DST (A)
(rewrite relation, or reduction relation) such that for each (a, µ) ∈
→, SUPP(µ) is finite. We write a → µ for (a, µ) ∈ →. An
element a ∈ A is terminal or in normal form (w.r.t.→) if there is
no µ with a→ µ, which we write a 6→.

We can partition any distribution µ into a distribution µ◦ on
terminal elements, and a distribution µ̄ on elements for which there
exists a reduction, as follows:

µ◦(a) =

{
µ(a) if a 6→,
0 otherwise; µ̄(a) = µ(a)− µ◦(a).

The degree of termination of µ, written T (µ), is
∑
a∈A µ

◦(a).
We write# for the reflexive and transitive closure of→, namely

the smallest subset of A × DST (A) closed under the following
rules:
a→ µ
a# µ a# {a1}

a# µ+ {bp} b# ρ b /∈ SUPP(µ)

a# µ+ p · ρ
We read a# µ as “a reaches µ”.
The Relation⇒⇒⇒. In order to extend to PARS classical results on
termination for rewriting systems, we define the binary relation
⇒, which lifts the notion of one step reduction to distributions:
we require that all non-terminal elements are indeed reduced. The
relation⇒ ⊆ DST (A)×DST (A) is defined as

µ = µ◦ + µ̄ {a→ ρa}a∈SUPP(µ̄)

µ⇒ µ◦ +
∑
a∈SUPP(µ̄) µ(a) · ρa .

Please note that in the derivation above, we require a→ ρa for each
a ∈ SUPP(µ̄). Observe also that µ◦ ⇒ µ◦ since SUPP(µ̄◦) = ∅.

We write µ ⇒n ρ if µ reduces to ρ in n ≥ 0 steps; we write
µ⇒∗ ρ if there is any finite sequence of reductions from µ to ρ.

With a slight abuse of notation, in the rest of the paper we
sometime write {a} for {a1}, or simply a when clear from the
context. As an example, we write a⇒ µ for {a1}⇒ µ. Moreover,
the distribution {ap11 , . . . , apnn } will be often indicated as

∑
pi ·

{ai} thus facilitating algebraic manipulations.

2.2 Normalization and Confluence
In this subsection, we look at normalization and confluence in
the probabilistic setting, which we introduced in Sec. 2.1. We
need to distinguish between weak and strong normalization. The
former refers to the possibility to reach normal forms following
any reduction order, while the latter (also known as termination,
see [40]) refers to the necessity of reaching normal forms. In both
cases, the concept is inherently quantitative.

Definition 4 (Weak and Strong Normalization). Let p ∈ [0, 1] and
let µ ∈ DST (A) Then:
• µ weakly p-normalizes (or weakly normalizes with probability

at least p) if there exists ρ such that µ⇒∗ ρ and T (ρ) ≥ p.
• µ strongly p-normalizes (or strongly normalizes with probability

at least p) if there exists n such that µ⇒n ρ implies T (ρ) ≥ p,
for all ρ.

The relation→ is said uniform if for each p, and each µ ∈ DST (A),
weak p-normalization implies strong p-normalization.

Following [40], we will also use the term p-termination for
strong p-normalization, and refer to weak p-normalization as simply
p-normalization.

Even the mere notion of convergent computation must be made
quantitative here:

Definition 5 (Convergence). The distribution µ ∈ DST (A) con-
verges with probability p, written µ ⇓p, if p = supµ⇒∗ρ T (ρ).

Observe that for every µ there is a unique probability p such that
µ ⇓p. Please also observe how Definition 5 is taken over all ρ such
that µ ⇒∗ ρ, thus being forced to take into account all possible
reduction orders. If→ is uniform, however, we can reach the limit
along any reduction order:

Proposition 6. Assume→ is uniform. Then for every µ such that
µ ⇓p and for every sequence of distributions (ρn)n such that µ = ρ0

and ρn ⇒ ρn+1 for every n, it holds that p = limn→∞ T (ρn).

Remark 7. Observe that because of Prop. 6, supµ⇒∗ξ T (ρ) =
supµ#ρ T (ρ).

A PARS is said to be confluent iff⇒ is a confluent relation in
the usual sense:

Definition 8 (Confluence). The PARS (A,→) is said to be con-
fluent if whenever τ ⇒∗ µ and τ ⇒∗ ξ, there exists ρ such that
µ⇒∗ ρ and ξ ⇒∗ ρ.

2.3 The Diamond Property in a Probabilistic Scenario
In this section we study a property which guarantees confluence and
uniformity.

Definition 9 (Diamond Property for PARS). A PARS (A,→)
satisfies the diamond property if the following holds. Assume µ⇒ ν
and µ⇒ ξ. Then (1) ν◦ = ξ◦ and (2) ∃ρ with ν ⇒ ρ and ξ ⇒ ρ.

As an immediate consequence:

Corollary 10 (Confluence). If (A,→) satisfies the diamond prop-
erty, then (A,→) is confluent.

Finally, then, the diamond property ensures that weak p-
normalization implies strong p-normalization, precisely like for
usual abstract rewrite systems:

Theorem 11 (Normalization and Uniqueness of Normal Forms).
Assume (A,→) satisfies the diamond property. Then:
1. Uniqueness of normal forms. µ ⇒k ρ and µ ⇒k τ for some

k ∈ N implies ρ◦ = τ◦.
2. Uniformity. If µ is weakly p-normalizing (for some p ∈ [0, 1]),

then µ strongly p-normalizes, i.e.,→ is uniform.



Proof. First note that (2) follows from (1). In order to prove (1),
we use an adaptation of the familiar “tiling” argument. It is not
exactly the standard proof because reaching some normal forms in
a distribution is not the end of a sequence of reductions. Assume
µ = ρ0 ⇒ ρ1 ⇒ ... ⇒ ρk, and µ ⇒ τ1 ⇒ ... ⇒ τk. We
prove ρ◦k = τ◦k by induction on k. If k = 1, the claim is true by
Definition 9 (1). If k > 1 we tile (w.r.t.⇒), as depicted below:

µ

ρ1

ρ2

τ1 τ2

ρk

τk

ρk−1

σ1

σ2

σk−1

we build the sequence σ0 = τ1⇒ σ1...⇒
σk−1 (see the Fig. on the side) where
each σi+1 (i ≥ 0) is obtained via Defi-
nition 9 (2), from ρi ⇒ ρi+1 and ρi ⇒
σi, by closing the diamond. By Defini-
tion 9 (1) ρ◦k = σ◦k−1. Now we observe
that τ1 ⇒k−1 τk and τ1 ⇒k−1 σk−1.
Therefore we have (by induction) σ◦k−1 =
τ◦k , from which we conclude ρ◦k = τ◦k .

3. Memory Structures
In this section we introduce the notion of memory structure. Com-
mutativity of the memory operations is ensured by a set of equations.
To deal with the notion of fresh addresses, and avoid unnecessary
bureaucracy, it is convenient to rely on nominal sets. The basic
definitions are recalled below (for details, see, e.g., [41]).

3.1 Nominal Sets
If G is a group, then a G-set (M, ·) is a set M equipped with an
action of G on M , i.e. a binary operation (·) : G ×M −→ M
which respects the group operation. Let I be a countably infinite
set; let M be a set equipped with an action of the group Perm(I) of
finitary permutations of I . A support for m ∈M is a subset A ⊆ I
such that for all σ ∈ Perm(I), ∀i ∈ A, σi = i implies σ ·m = m.
A nominal set is a Perm(I)-set all of whose elements have finite
support. In this case, if m ∈M , we write supp(m) for the smallest
support of m. The complementary notion of support is freshness:
i ∈ I is fresh for m ∈ M if i 6∈ supp(m). We write (i j) for the
transposition which swaps i and j.

We will make use of the following characterization of support in
terms of transpositions: A ⊆ I supports m ∈M if and only if for
every i, j ∈ I −A it holds that (i j) ·m = m. As a consequence,
for all i, j ∈ I , if they are fresh for m ∈M then (i j) ·m = m.

3.2 Memory Structures
A memory structure Mem = (Mem, I, ·,L) consists of an infinite,
countable set I whose elements i, j, k, . . . we call addresses, a
nominal set (Mem, ·) each of whose elements we call memory
states, or more shortly, memories, and a finite set L of operations.

We write I∗ for the set of all tuples made from elements of I . A
tuple is denoted with (i1, . . . , in), or with~i. To a memory structure
are associated the following maps.
• test : I×Mem→ DST (Bool×Mem) (Observe that the set

Mem might be updated by the operation test: for this reason, it
also appears in the codomain – See Remark 15),

• update : I∗ × L×Mem ⇀ Mem (partial map),
• arity : L → N,

and the following three properties.

(1) The maps test and update respect the group action:
• σ · (test(i,m)) = test(σ(i), σ ·m),
• σ · (update(~i, x,m)) = update(σ(~i), x, σ ·m),

where the action of Perm(I) is extended in the natural way to
distributions and pairing with booleans.

(2) The action of a given operation on the memory is only defined
for the correct arity. More precisely, update((i1 . . . in), x,m) is
defined if and only if the ik’s are pairwise disjoint and arity(x) = n.
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Figure 1. Commutation of Tests and Updates.

(3) Disjoint tests and updates commute: assume that i 6= j,
that j does not meet ~k, and that ~k and ~k′ are disjoint. First, up-
dates on ~k and ~k′ commute: update(~k, x,update(~k′, x′,m)) =

update(~k′, x′, update(~k, x,m)). Then, tests on i commute with
tests on j and tests of j commute with updates on ~k. We pictorially
represent these equations in Fig. 1. The drawings are meant to be
read from top to bottom and represent the successive memories
along action. Probabilistic behavior is represented with two exiting
arrows, annotated with their respective probability of occurrence,
and the boolean resulting from the test operation. Intermediate mem-
ories are unnamed and represented with “·”. We write the formal
equations in Appendix A.

3.3 Instances of Memory Structures
The structure of memory is flexible and can accommodate several
choice effects. Let us give some relevant examples. Typically, here
I is N, but any countable set would do the job.

3.3.1 Deterministic, Integer Registers
The simplest instance of memory structure is the deterministic
one, corresponding to the case of classical PCF (this subsumes, in
particular, the case studied in [28]). Memories are simply functions
m from I to N, of value 0 apart for a finite subset of I . The test
on address i is deterministic, and tests whether m(i) is zero or not.
Operations in L may include the unary predecessor and successor,
and for example the binary max operator.

Example 12. A typical representation of this deterministic memory
is a sequence of integers: indexes correspond to addresses and coef-
ficients to values. A completely free memory is for example the se-
quence m0 = (0, 0, 0, . . .). If S corresponds to the successor and P
to the predecessor, here is what happens to the memory for some op-
erations. The memory m1 := update(0, S,m0) is (1, 0, 0, 0, . . .),
the memory m2 := update(1, S,m1) is (1, 1, 0, 0, . . .), and
the memory m3 := update(0, P,m2) is (0, 1, 0, 0, . . .). Finally,
test(1,m3) = (false, (0, 1, 0, 0, . . .)). Note that we do not need to
keep track of an infinite sequence: a dynamic, finite list of values
would be enough. We’ll come back to this in Sec. 3.3.3.

Remark 13. The equations on memory structures enforce the fact
that all fresh addresses (i.e., not on the support of the nominal set)
have equal values. Note that however the conditions do not impose
any particular “default” value. These equations also state that, in the
deterministic case, a test action on i can only modify the memory at
address i. Otherwise, it could for example break the commutativity
of update and test (unless L contains trivial operations, only).



3.3.2 Probabilistic, Boolean Registers
When the test operator is allowed to have a genuinely probabilistic
behavior, the memory model supports the representation of prob-
abilistic boolean registers. In this case, a memory m is a function
from I to the real interval [0, 1], whose values represent probabilities
of observing “true”. The test on address i could return

m(i){(true,m{i 7→ 1})}+ (1−m(i)){(false,m{i 7→ 0})}

Operations in L may for example include a unary “coin flipping”
operation setting the value associated to i to some fixed probability.

Example 14. If as in Example 12 we represent the memory as
a sequence, a memory filled with the value “false” would be
m0 = (0, 0, 0, . . .). Assume c is the unary operation placing a
fair coin at the corresponding address; if m1 is update(0, c,m0),
we have m1 = ( 1

2
, 0, 0, 0, . . .). Then test(0,m1) is the distribution

1
2
(false, (0, 0, 0, 0, . . .)) + 1

2
(true, (1, 0, 0, 0, . . .)).

3.3.3 Quantum Registers
A standard model for quantum computation is the QRAM model:
quantum data is stored in a memory seen as a list of (quantum)
registers, each one holding a qubit which can be acted upon. The
model supports three main operations: creation of a new register,
measurement of a register, and application of unitary gates on one
or more registers, depending on the arity of the gate under scrutiny.
This model has been used extensively in the context of quantum
lambda-calculi [11, 13, 24], with minor variations. The main choice
to be made is whether measurement is destructive (i.e., if one uses
garbage collection) or not (i.e., the register is not reclaimed).

A Canonical Presentation of Quantum Memory. To fix things,
we shall concentrate on the presentation given in [13]. We briefly
recall it. Given n qubits, a memory is a normalized vector in (C2)⊗n

(equivalent to a ray). A linking function maps the position of each
qubit in the list to some pointer name. The creation of a new qubit
turns the memory φ ∈ (C2)⊗n into φ ⊗ |0〉 ∈ (C2)⊗(n+1). The
measurement is destructive: if φ = α0q0 + α1q1, where each qb
(with b = 0, 1) is normalized of the form

∑
i φb,i⊗ |b〉⊗ψb,i, then

measuring φ returns
∑
i φb,i ⊗ ψb,i with probability |αb|2. Finally,

the application of a k-ary unitary gate U on φ ∈ (C2)⊗n simply
applies the unitary matrix corresponding to U on the vector φ. The
language comes with a chosen set U of such gates.

Quantum Memory as a Nominal Set. The quantum memory can
be equivalently presented using a memory structure: in the following
we shall refer to it as Q. The idea is to use nominal set to make
precise the hand-waved “pointer name”, and formalize the idea of
having a finite core of ”in use” qubits, together with an infinite pool
of fresh qubits. Let F0 be the set of (set-)maps from I (the infinite,
countable set of Sec. 3.2) to {0, 1} that have value 0 everywhere
except for a finite subset of I . We have a memory structure as
follows.
I is the domain of the set-maps in F0. The nominal set (Mem, ·)

is defined with Mem = H0, i.e. the Hilbert space built from finite
(complex) linear combinations over F0, while the group action
(·) corresponds to permutation of addresses: σ ·m is simply the
function-composition of σ with the elements of F0 in superposition
in m. The support of a particular memory m is finite: it consists of
the set of addresses that are not mapped to 0 by some (set)-function
in the superposition. The set of operations L is the chosen set U of
unitary gates. The arity is the arity of the corresponding gate.

Finally, the update and test operations correspond respectively to
the application of an unitary gate, and to a measurement followed by
a (classical) boolean test on the result. We omit the formalization of
these operations in the nominal set setting; instead we show how this

presentation in terms of nominal sets is equivalent to the previous
more canonical one.

Equivalence of the Two Presentations. Let m ∈ Q. We can
always consider a finite subset of I , say I0 = {i0 . . . in} for some
integer n such that all other addresses are fresh. As fresh values are
0 in m, then m is a superposition of sequences that are equal to 0
on I \ I0. Then m can be represented as “φ⊗ |000 . . .〉” for some
(finite) vector φ. We can omit the last |0000 . . .〉 and only work with
the vector φ: we are back to the canonical presentation of quantum
memory. Update and test can then be defined on the nominal set
presentation through this equivalence.

Equations. Memory structures come with equations, which are
indeed satisfied by quantum memories. Referring to Sec. 3.2 : (1) is
simply renaming of qubits, (2) is a property of applying a unitary,
and (3) holds because of the equations corresponding to the tensor
of two unitaries or the tensor of a unitary and a measurement (see
Remark 1).

Remark 15. The quantum case makes clear why Mem appears
in the codomain of test: in general the measurement of a register
collapses the global state of the memory (see Sec. 1.1.1). The
modified memory therefore has to be returned together with the
result.

3.4 Overview of the Forthcoming Sections
We use memory structures to encapsulate effects in three different
settings. In Sec. 4, we enrich proof nets with a memory, in Sec. 5,
we enrich token machines with a memory, while in Sec. 6, we equip
PCF terms with a memory. The construction is uniform for all the
three systems, to which we refer as operational systems, as opposite
to the base rewrite systems on top of which we build (see Sec. 1.3).

4. Program Nets and Their Dynamics
In this section, we introduce program nets. The base rewrite system
on which they are built is a variation1 of SMEYLL nets, as intro-
duced in [28]. SMEYLL nets are MELL (Multiplicative Exponential
Linear Logic) proof nets extended with fixpoints (Y-boxes) which
model recursion, additive boxes (⊥-boxes) which capture the if-
then-else construct, and a family of sync nodes, introducing explicit
synchronization points in the net.

The novelty of this section is the operational system which we
introduce in Sec. 4.3, by means of our parametric construction:
given a memory structure and SMEYLL nets, we define program
nets and their reduction. We prove that program nets are a PARS
which satisfies the diamond property, and therefore confluence and
uniqueness of normal forms both hold. Program nets also satisfy cut
elimination, i.e. deadlock-freeness of nets rewriting.

4.1 Formulas
The language of formulas is the same as for MELL. In this paper,
we restrict our attention to the constant-only fragment, i.e.:

A ::= 1 | ⊥ | A⊗A | A`A | !A | ?A.

The constants 1,⊥ are the units. As usual, linear negation (·)⊥ is
extended into an involution on all formulas: A⊥⊥ ≡ A, 1⊥ ≡ ⊥,
(A ⊗ B)⊥ ≡ A⊥ ` B⊥, (!A)⊥ ≡ ?A⊥. Linear implication is a
defined connective: A( B ≡ A⊥ `B. Positive formulas P and
negative formulas N are respectively defined as: P ::= 1 | P ⊗ P ,
and N ::= ⊥ | N `N .

1 In this paper, reduction of the⊥-box is not deterministic; there is otherwise
no major difference with [28].
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4.2 SMEYLL Nets
A SMEYLL net is a pre-net (i.e. a well-typed graph) which fulfills a
correctness criterion.

Pre-Nets. A pre-net is a labeled directed graph R built over the
alphabet of nodes represented in Fig. 2.
Edges. Every edge in R is labeled with a formula; the label of an
edge is called its type. We call those edges represented below (resp.
above) a node symbol conclusions (resp. premises) of the node. We
will often say that a node “has a conclusion (premise)A” as shortcut
for “has a conclusion (premise) of type A”. When we need more
precision, we explicitly distinguish an edge and its type and we use
variables such as e, f for the edges. Each edge is a conclusion of
exactly one node and is a premise of at most one node. Edges which
are not premises of any node are called the conclusions of the net.
Nodes. The sort of each node induces constraints on the number
and the labels of its premises and conclusions. The constraints are
graphically shown in Fig. 2. A sync node has n ∈ N premises of
types P1, P2, · · · , Pn respectively and n conclusions of the same
types P1, P2, · · · , Pn as the premises, where each Pi is a positive
type. A sync node with n premises and conclusions is drawn as n
many black squares connected by a line as in the figure. The total
number of 1’s in the Pi’s is called the arity of the sync node.

We call boxes the nodes ⊥, !, and Y . The leftmost conclusion of
a box is said to be principal, while the other ones are auxiliary. The
node⊥ has conclusion {⊥,Γ} with Γ 6= ∅. The exponential boxes !
and Y have conclusions {!A, ?Γ} (Γ possibly empty). To each !-box
(resp. Y -box) is associated a content, i.e. a pre-net of conclusions
{A, ?Γ} (resp. {A, ?A⊥, ?Γ}). To each ⊥-box are associated a left
and a right content: each content is a pair (bot, S), where bot is
a new node that has no premise and one conclusion ⊥, and S is a
pre-net of conclusions Γ. We represent a box b and its content(s) as
in Fig. 3. The nodes and edges in the content are said to be inside
b. As is standard, we often call a crossing of the box border a door,
which we treat as a node. We then speak of premises and conclusion
of the principal (resp. auxiliary) door. Observe that in the case of
⊥-box, the principal door has a left and a right premise.
Depth. A node occurs at depth 0 or on the surface in the pre-net R
if it is a node of R. It occurs at depth n+ 1 in R if it occurs at depth
n in a pre-net associated to a box of R.

Nets. A net is given by a pre-net R which satisfies the cor-
rectness criterion of [28], together with a total map mknameR :
SyncNode(R) → L, where L is a finite set of names and
SyncNode(R) is the set of sync nodes appearing in R (including
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Figure 4. Nets Rewriting Rules.

those inside boxes); the map mknameR is simply naming the sync
nodes. From now on, we write R for the triple (R,L, mknameR).

Correctness is defined by means of switching paths. A switching
path in the pre-net R is an undirected path on the graph R (i.e. R is
regarded as an undirected graph) which uses at most one of the two
premisses for each ` and ?c node, and at most one of conclusions
for each sync node. A pre-net is correct if none of its switching
paths is cyclic, and the content of each of its box is itself correct.

Reduction Rules. Fig. 4 describes the rewriting rules on nets. Note
that the redex in the top row has two possible reduction rules, u0 and
u1. Note also the y reduction, which captures the recursive behavior
of the Y -box as a fixpoint (we illustrate this in the example below.)
The metavariables X,X1, X2 of Fig. 4 range over {!, Y } and are
used to uniformly specify reduction rules involving exponential
boxes (i.e., X’s can be either ! or Y ). The reduction of net has
two constraints: (1.) surface reduction, i.e. a reduction step applies
only when the redex is at depth 0, and (2.) exponential steps are
closed, i.e. they only take place when the !A premise of the cut is
the principal conclusion of a box with no auxiliary conclusion. We
come back on the former in Sec. 7.1.2.

As expected, the net reduction preserves correctness.

Example. The “skeleton” of the program in Example 3 could
be encoded2 as in the LHS of Fig. 5. The recursive function f is
represented with a Y-box, and has type !(1( 1) = !(⊥` 1). The
test is encoded with a ⊥-box: in one case we forget the function f
by using ?w and simply return a one node, and in the other case we
apply a Hadamard gate, which is represented with a (unary) sync
node. To the “in” part of the let-rec corresponds the dereliction node
?d, triggering reduction. With the rules presented in the previous
paragraph, the net rewrites according to Fig. 5, where the Y-box has

2 Precisely speaking, the nets shown in Fig. 5 are those obtained by the trans-
lation given in Fig. 15 and 16 (in the Appendix), with a bit of simplification
for clarity of discussion and due to lack of space.
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been unwound once. From there, we could reduce the one node with
the sync node H, but of course doing so we would not handle the
quantum memory. In order to associate to reductions an action on
the memory, we need a bit more, namely the notion of a program
net which is introduced in Sec. 4.3.

4.3 Program Nets
Let Inputs(R) be the set of all occurrences of 1’s which are
conclusions of one nodes at the surface, and of all the occurrences
of ⊥’s which appear in the conclusions of R.

Definition 16 (Program Nets). Given a memory structure Mem =
(Mem, I,L), a raw program net on Mem is a tuple (R, indR,m)
such that
• R is a SMEYLL net (with mknameR : SyncNode(R)→ L),
• indR : Inputs(R) ⇀ I is an injective partial map that is

however total on the occurrences of ⊥,
• m ∈ Mem.

We require that the arity of each sync node s matches the arity of
mknameR(s). Please observe that in the second item in Definition 16,
the occurrences of 1′s belonging to Inputs(R) are not necessarily
in the domain of indR; if they are, we say that the corresponding
one node is active. Program nets are the equivalence class of
raw program nets over permutation of the indexes. Formally, let
σ(R, indR,m) = (R, σ · indR, σ ·m), for σ ∈ Perm(I). The
equivalence class R = [(R, indR,m)] is {σ(R, indR,m) | σ ∈
Perm(I)}. We use the symbol∼ for the equivalence relation on raw
program nets.N indicates the set of program nets.

Reduction Rules. We define a relation  ⊆ N × DST (N ),
making program nets into a PARS. We first define the relation
 over raw program nets. Fig. 6 summarizes the reductions in a
graphical way; the function indR is represented by the dotted lines.

1. Link. If n is a one node of conclusion x, with indR(x) un-
defined, then (R, indR,m)  link(n,i) {(R, indR ∪ {x 7→
i},m)1} where i ∈ I is fresh both in indR and m.

2. Update. If R s R
′, and s is the sync node in the redex, then

(R, indR,m) update(s) {(R′, indR, update(l,~i,m)1}
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Figure 7. Example of Program Net Rewriting.

where l is the label of s, and~i are the addresses of its premises.
3. Test. If R  u0 R0 and R  u1 R1, and i is the address

of the premise 1 of the cut, then (R, indR,m)  test(i)

test(i,m)[false:=(R0, indR0 ,m), true:=(R1, indR1 ,m)],
where indR0 (resp. indR1 ) is the restriction of indR to
Inputs(R0) (resp. Inputs(R1)).

4. Otherwise, if R x R
′ with x 6∈ {s, u0, u1}, then we have

(R, indR,m) x {(R′, indR,m)1}

(observe that none of these rules modify the domain of indR).
The relation  extends immediately to program nets (by slight
abuse of notation we use the same symbol); Lem. 17 guarantees that
the relation is well defined. We write (R, indR,m)

r µ for the
reduction of the redex r in the raw program net (R, indR,m).

Lemma 17 (Reduction Preserves Equivalence). Suppose that
(R, indR,m)

r µ and (R, σ · indR, σ ·m)
r ν, then µ ∼ ν.

Proof. Let us check the rule test(i). Suppose (R′, indR′ ,m
′) =

σ(R, indR,m), (R, indR,m)
r test(i) µ= {(R0, indR0 ,m0)p0,

(R1, indR1 ,m1)p1}, and (R′, ind′R,m
′)

r test(i)

ν = {(R′0, ind′R0
,m′0)p

′
0 , (R′1, indR′1 ,m

′
1)p
′
1} by reducing the

same redex r. It suffices to show that ν = σ · µ. Element-wise,
we have to check R′i = Ri, ind′Ri

= σ ◦ ind′Ri
, m′i = σ ·mi,

and p′i = pi for i ∈ {0, 1}. The first two follow by definition of
 test(i) and the last two follow from the equation σ·(test(i,m)) =
test(σ(i), σ ·m). The other rules can be similarly checked.

Remark 18. In the definition of the reduction rules:
• Link is independent from the choice of i. If we chose another

address j with the same conditions, then we would have gone
to (R, indR ∪ {x 7→ j},m). However this does not cause a
problem: by using a permutation σ = (i j), since σ·m = m we
have σ(R, indR ∪ {x 7→ i},m) = (R, indR ∪ {x 7→ j},m)
and therefore (R, indR ∪ {x 7→ i},m) and (R, indR ∪ {x 7→
j},m) are as expected the exact same program net.

• In the rules Update and Test, the involved one nodes are required
to be active.

The pair (N , ) forms a PARS. Reduction can happen at
different places in a net, however the diamond property allows
us to deal with this seamlessly.



Proposition 19 (Program Nets are Diamond). The PARS (N , )
satisfies the diamond property.

The proof (see Appendix B) relies on commutativity of the
memory operations. Due to Th. 11, program net reduction enjoys
all the good properties we have studied in Sec. 2:

Corollary 20. The relation satisfies Confluence, Uniformity and
Uniqueness of Normal Forms (see Th. 11).

The following two results can be obtained as adaptations of
similar ones in [28].

Theorem 21 (Deadlock-Freeness of Net Reduction). Let R =
[(R, indR,m)] be a program net such that no ⊥, ? or ! appears in
the conclusions of the net R. If R contains cuts, a reduction step is
always possible.

Corollary 22 (Cut Elimination). With the same hypothesis as above,
if R 6 , (i.e. no further reduction is possible) then R is cut free.

Example. The net in LHS of Fig. 5 can be embedded into a pro-
gram net with a quantum memory of empty support: (0, 0, 0, . . .) ≡
“|000 . . .〉”. It reduces according to Fig. 5, with the same memory.
The next step requires a link-rewrite step to attach a fresh address—
say, 0—to the one node at surface. The H-sync node then rewrites
with a update-step, and we get the program net (A) in Fig. 7 with
the “update” action applied to the memory: the memory corresponds
to
√

2
2

(|0〉 + |1〉) ⊗ |00 . . .〉. From there, a choice reduction is in
order: it uses the “test” action of the memory structure, which, ac-
cording to Sec. 3.3.3 corresponds to the measurement of the qubit
at address 0. This yields the probabilistic superposition of the pro-
gram nets (B1) and (B2). As the net in (B1) is the LHS of Fig. 5,
it reduces to (C1) (dashed arrow (a)), similar to (A) modulo the
fact that the address 0 was not fresh: the link-rewrite step cannot
yield 0: here we choose 1. Note that we could have chosen any other
non-zero number as the address. The program net (B2) rewrites to
(C2) (dashed arrow (b)): the weakening node erases the Y-box, and
a fresh variable is allocated. In this case, the address 0 is indeed
fresh and can be picked.

5. A Memory-Based Abstract Machine
In this section we introduce a class of memory-based token ma-
chines, called the MSIAM (Memory-based Synchronous Interaction
Abstract Machine). The base rewrite system on which the MSIAM
is built, is a variation3 of the SIAM multi-token machine from [28],
which we recall in Sec. 5.1. The specificity of the SIAM is to al-
low not only parallel threads, but also interaction among them, i.e.
synchronization. Synchronization happens in particular at the sync
nodes (unsurprisingly, as these are nodes introduced with this pur-
pose), but also on the additive boxes (the ⊥-box). The transitions at
the ⊥-box model choice: as we see below, when the flow of compu-
tation reaches the ⊥-box (i.e. the tokens reach the auxiliary doors),
it continues on one of the two sub-components, depending on the
tokens which are positioned at the principal door.

The original contribution of this section is contained in Sections
5.2 through 5.4, where we use our parametric construction to define
the MSIAMMR for R as a PARS consisting of a set of states S,
and a transition relation→ ⊂ S ×DST (S), and establish its main
properties, in particular Deadlock-Freeness (Th. 26), Invariance
(Th. 27) and Adequacy (Th. 28).

5.1 SIAM

Let R be a net. The SIAM for R is given by a set of states and a
transition relation on states. Most of the definitions are standard.

3 In this paper we make this transition non-deterministic; otherwise there is
no major difference.
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Figure 8. SIAM Non-Deterministic Transition Rules.

Exponential signatures σ and stacks s are defined by
σ ::= ∗ | l(σ) | r(σ) | dσ, σe | y(σ, σ)
s ::= ε | l.s | r.s | σ.s | δ

where ε is the empty stack and . denotes concatenation. Two kinds
of stacks are defined: (1.) the formula stack and (2.) the box stack.
The latter is the standard GoI way to keep track of the different
copies of a box. The former describes the formula path of either
an occurrence α of a unit, or an occurrence ♦ of a modality, in a
formula A. Formally, s is a formula stack on A if either s = δ or
s[A] = α (resp. s[A] = ♦), with s[A] defined as follows: ε[α] = α,
σ.δ[♦B] = ♦, σ.t[♦B] = t[B] whenever t 6= δ, l.t[B�C] = t[B]
and r.t[B�C] = t[C] (where � is either ⊗ or `). We say that s
indicates the occurrence α (resp. ♦).

Example 23. Given the formula A = !(⊥ ⊗ !1), the stack ∗.δ
indicates the leftmost occurrence of !, the stack ∗.r.∗.δ indicates the
rightmost occurrence of !, and ∗.l[A] = ⊥.

Positions. Given a net R, the set of its positions POSR contains
all the triples (e, s, t), where e is an edge of R, s is a formula
stack on the type A of e, and t (the box stack) is a stack of n
exponential signatures, where n is the depth of e in R. We use
the metavariables s and p to indicate positions. For each position
p = (e, s, t), we define its direction dir(p) to be upwards (↑) if s
indicates an occurrence of ! or⊥, to be downwards (↓) if s indicates
an occurrence of ? or 1, to be stable (↔) if s = δ or if the edge e is
the conclusion of a bot node. The following subsets of POSR play a
role in the definition of the machine:
• the set INITR of initial positions p = (e, s, ε), with e conclu-

sion of R, and dir(p) is ↑;
• the set FINR of final positions p = (e, s, ε), with e conclusion

of R, and dir(p) is ↓;
• the set ONESR of positions (e, ε, t), e conclusion of a one node;
• the set DERR of positions (e, ∗.δ, t), e conclusion of a ?d node;
• the set STABLER of the positions p for which dir(p) =↔;
• the set of starting positions STARTR = INITR∪ONESR∪DERR.

SIAM States. A state (T, orig) of MR is a set of positions
T ⊆ POSR equipped with an injective map orig : T → STARTR.
Intuitively, T describes the current positions of the tokens, and orig
keeps track of where each such token started its path.

A state is initial if T ⊆ INITR and orig is the identity. We
indicate the (unique) initial state ofMR by IR. A state T is final if
all positions in T belong to either FINR or STABLER.

With a slight abuse of notation, we will denote the state (T, orig)
also by T . Given a state T ofMR, we say that there is a token in p
if p ∈ T . We use expressions such as “a token moves”, “crosses a
node”, in the intuitive way.

SIAM Transitions. The transition rules of the SIAM are described
in Fig. 8 and 9. Rules (i)-(iv) require synchronization among
different tokens; this is expressed by specific multi-token conditions
which we discuss in the next paragraph. First, we explain the
graphical conventions and give an overview of the rules.

The position p = (e, s, t) is represented graphically by marking
the edge e with a bullet •, and writing the stacks (s, t). A transition
T → U is given by depicting only the positions in which T and U
differ. It is intended that all positions of T which do not explicitly
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Figure 9. SIAM: Deterministic Transition Rules.

appear in the picture also belong to U . To save space, in Fig. 9 the
transition arrows are annotated with a direction; this means that the
rule applies (only) to positions which have that direction. When
useful, the direction of a position is directly annotated with ↓, ↑ or
↔. Note that no transition is defined for stable positions. For boxes,
whenever a token is on a conclusion of a box, it can move into that
box (graphically, the token “crosses” the border of the box) and it is
modified as if it were crossing a node. For exponential boxes, Fig. 9
depicts only the border of the box. We do not explicitly give the
function orig, which is immediate to reconstruct when keeping in
mind that it is a pointer to the origin of the token.

We briefly discuss the most interesting transitions (we refer to
[28] for a broader discussion). Fixpoints: the recursive behavior of Y-
boxes is captured by the exponential signature in the form y(·, ·), and
the associated transitions. Duplication: the key is rule (iv), which
generates a token on the conclusion of a ?d node; this token will
then travel the net, possibly crossing a number of contractions, until
it finds its exponential box; intuitively, each such token corresponds
to a copy of a box. One: the behavior of the token generated by rule
(iii) on the conclusion of a one node is similar to that of a dereliction
token; the one token searches for its⊥-box. Stable tokens: when the
token from an instance of a ?d or of a one node “has found its box”,
i.e. it reaches the principal door of a box, the token become stable
(↔). A stable token is akin to a marker sitting on the principal door
of its box, keeping track of the box copies and of the choice made
in each specific copy.

Multi-token Conditions. The rules marked by (i), (ii), (iii), and
(iv) in Fig. 9 require the tokens to interact, which is formalized

by multi-token conditions. Such conditions allow, in particular, to
capture choice and synchronization. Below we give an intuitive pre-
sentation; we refer to [28, 42] for the formal details. For convenience
we also recall them in Appendix C.

Synchronization, rule (i). To cross a sync node l, all the positions
on the premises of l (for the same box stack t) must be filled;
intuitively, having the same t, means that the positions all belong to
the same copy of l. Only when all the tokens have reached l, they
can cross it; they do so simultaneously.

Choice, rule (ii). Any token arriving at a ⊥-box on an auxiliary
door must wait for a token on the principal door to have made a
choice for either of the two contents, S0 or S1: a token (e, s, t) on
the conclusions Γ of the ⊥-box will move to S0 (resp. S1) only if
the principal door of S0 (resp. S1) has a token with the same t.

The rules marked by (iii) and (iv) also carry a multi-token
condition, but in a more subtle way: a token is enabled to start
its journey on a one or ?d node only when its box has been opened;
this reflects in the SIAM the constraint of surface reduction of nets.

5.2 MSIAM

Similarly to what we have done for nets, we enrich the machine with
a memory, and use the SIAM and the operations on the memory to
define a PARS.

MSIAM States. Given a memory structure Mem = (Mem, I,L)
and a raw program net (R, indR,mR) on Mem, a raw state of the
MSIAMMR is a tuple (T, indT,mT ) where
• T is a state ofMR,
• indT : STARTR → I is a partial injective map,
• mT ∈ Mem.

States are defined as the equivalence class T = [(T, indT ,mT )] of
row states over permutations, with the action of Perm(I) on tuples
being the natural one.

MSIAM Transitions. Let R be a program net, and T be a state
[(T, indT ,mT )] of MR. We define the transition T → µ ∈
S×DST (S). As we did for program nets, we first give the definition
on raw states. The definition depends on the SIAM transitions for T .
Let us consider the possible cases.

1. Link. Assume T
(iii)→ U (Fig. 9), and let n be the one node, x its

conclusion, and p the new token in U . We set

(T, indT ,m)→link(n,i) (U, indT ∪ {orig(p) 7→ i},m)

where we choose i = indR(x) if the one node is active, and
otherwise an address i which is fresh for both indT and (m).

2. Update. Assume T
(i)→ U (Fig. 9), l is the name associated to

the sync node, and~i are the addresses which are associated to
its premises (by composing orig and ind), then

(T, indT ,m)→update(s) {(U, indT ,update(l,~i,m)1}.

3. Test. Assume T nd0→ T0 and T nd1→ T1 (Fig. 8, non-deterministic
transition). If p ∈ T is the token appearing in the redex (Fig. 8),
and i the addresses that indT associates to orig(p), then

(T, indT,m)→test(i)

test(i,m)[false := (T0, indT ), true := (T1, indT )].
4. In all the other cases: if T → U then (T, indT ,m) →
{(U, indT ,m)1}.
Let R = [(R, indR,mR)]. The initial state ofMR is IR =

[(IR, indIR ,mR)], where indIR is only defined on the initial
positions: if p ∈ INITR, and x is the occurrence of⊥ corresponding
to p, then indIR(p) = indR(x). A state [(T, indT ,mT )] is final
if T is final.

In the next sections, we study the properties of the machine, and
show that the MSIAM is a computational model forN .
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Figure 10. MSIAM run of Fig. 5.

Example. We informally develop in Fig. 10 an execution of the
MSIAM for the LHS net of Fig. 5. In the first panel (A) tokens (a)
and (b) are generated. Token (a) reaches the principal door of the Y -
box, which corresponds to opening a first copy. Token (b) enters the
Y -box and hits the ⊥-box. The test action of the memory triggers
a probabilistic distribution of states where the left and the right
components of the ⊥-box are opened: the corresponding sequences
of operations are Panels (B0) and (B1) for the left and right sides.

In Panel (B0): the left-side of the ⊥-box is opened and its one-
node emits the token (c) that eventually reaches the conclusion of
the net. In Panel (B1): the right-side of the ⊥-box is opened and
tokens (c) and (d) are emitted. Token (d) opens a new copy of the
Y -box, while token (c) hits the ⊥-box of this second copy. The test
action of the memory again spawns a probabilistic distribution.

We focus on panel (C10) on the case of the opening of the left-
side of the ⊥-box: there, a new token (e) is generated. It will exit
the second copy of the Y -box, go through the first copy and exit to
the conclusion of the net.

5.3 MSIAM Properties, and Deadlock-Freeness
Intuitively, a run of the machineMR is the result of composing tran-
sitions ofMR, starting from the initial state IR (composition being
transitive composition). We are not interested in the actual order in
which the transitions are performed in the various components of a
distribution of states. Instead, we are interested in knowing which
distributions of states are reached from the initial state. This notion
is captured well by the relation# (see Sec. 2.1). We will say that a
run of the machineMR reaches µ ∈ DST (SR) if IR # µ. We
will also use the expression “a run ofMR reaches a state T” if
I# µ with T ∈ SUPP(µ).

An analysis similar to the one done for program nets shows the
next lemma (Lem. 24) and therefore Prop. 25:

Lemma 24 (Diamond). The relation → satisfies the diamond
property.

Proposition 25 (Confluence, Uniqueness of Normal Forms, Unifor-
mity). The relation→ satisfies confluence, uniformity, and unique-
ness of normal forms.

By the results we have studied in Sec. 2, we thus conclude that
all runs ofMR have the same behavior with respect to the degree
of termination, i.e. if IR p-normalizes following a certain sequence
of reductions, it will do so whatever sequence of reductions we pick.
We say that the machineMR p-terminates if IR p-terminates (see
Def. 4).

Deadlocks. A terminal state T 9 of MR can be final or not.
A non-final terminal state is called a deadlocked state. Because
of the inter-dependencies among tokens given by the multi-token
conditions, a multi-token machine is likely to have deadlocks. We
are however able to guarantee that any MSIAM machine is deadlock-
free, whatever is the choice for the memory structure.

Theorem 26 (Deadlock-Freeness of the MSIAM). Let R be a
program net of conclusion 1; if IR # µ and T ∈ SUPP(µ)
is terminal, then T is a final state.

The proof (see Appendix D.3) relies on the diamond property of
the machine (more precisely, uniqueness of the normal forms).

5.4 Invariance and Adequacy
The machine MR gives a computational semantics to R. The
semantics is invariant under reduction (Th. 27); the adequacy result
(Th. 28) relates convergence of the machine and convergence of the
nets. We define the convergence of the machine as the convergence
of its initial state:

MR ⇓p if IR converges with probability p (i.e. IR ⇓p).

Theorem 27 (Invariance). Let R be a program net of conclusion 1.
Assume R 

∑
i pi · {Ri}. Then we have thatMR ⇓q if and only

ifMRi ⇓qi with
∑
i(pi · qi) = q.

Theorem 28 (Adequacy). Let R be a program net of conclusion 1.
Then,MR ⇓p if and only if R ⇓p.

The proofs of invariance and adequacy, are both based on the
diamond property of the machine, and on a map—which we call
transformation—which allows us to relate the rewriting of program
nets with the MSIAM. To obtain the proofs, we need to establish a
series of technical results which we give in Appendix D.

6. A PCF-style Language with Memory Structure
We introduce a PCF-style language which is equipped with a
memory structure, and is therefore parametric on it. The base type
will correspond to elements stored in the memory, and the base
operations to the operations of the memory structure.

6.1 Syntax and Typing Judgments
The language PCFLL which we propose is based on Linear Logic,
and is parameterized by a choice of a memory structure Mem.

The terms (M,N,P ) and types (A,B) are defined as follows:

M,N,P ::= x |λx.M |MN | let 〈x, y〉 = M inN | 〈M,N〉 |
letrec f x = M inN |
new | c | ifP thenM elseN,

A,B ::= α |A( B |A⊗B | !A
where c ranges over the set of memory operations L. A typing
context ∆ is a (finite) set of typed variables {x1 : A1, . . . , xn :
An}, and a typing judgment is written as ∆ ` M : A. An
empty typing context is denoted by “·”. We say that a type is
linear if it is not of the form !A. We denote by !∆ a typing
context with only non-linearly typed variables. A typing judgment
is valid if it can be derived from the set of typing rules presented in
Fig. 11. We require M and N to have empty context in the typing
rule of ifP thenM elseN . The requirement does not reduce
expressivity as typing contexts can always be lambda-abstracted.
The typing rules make use of a notion of values, defined as follows:
U, V ::= x |λx.M | 〈U, V 〉 | c.

6.2 Operational Semantics
The operational semantics for PCFLL is similar to the one of [13],
and is inherently call-by-value. Indeed, being based on Linear Logic,



!∆ ` new : α !∆, x : !(A( B) ` x : A( B
A linear

!∆, x : A ` x : A

!∆ ` V : A( B V value
!∆ ` V : !(A( B)

∆, x : A `M : B

∆ ` λx.M : A( B

!∆,Γ1 `M : A( B !∆,Γ2 ` N : A

!∆,Γ1,Γ2 `MN : B

!∆,Γ1 `M : A⊗B !∆,Γ2, x : A, y : B ` N : C

!∆,Γ1,Γ2 ` let 〈x, y〉 = M inN : C

!∆,Γ1 `M : A !∆,Γ2 ` N : B

!∆,Γ1,Γ2 ` 〈M,N〉 : A⊗B

∆ ` P : α · `M : A · ` N : A
∆ ` ifP thenM elseN : A

arity(c) = n

!∆ ` c : α⊗n ( α⊗n
!∆, f : !(A(B), x : A `M : B !∆,Γ, f : !(A(B) ` N : C

!∆,Γ ` letrec f x = M inN : C

Figure 11. Typing Rules.

the language only allows the duplication of “!”-boxes, that is, normal
forms of “!”-type: these are the values. The operational semantics is
in the form of a PARS, written→.

The PARS is defined using a notion of reduction context C[−],
defined by the grammar

C[−] ::= [−] |C[−]N |V C[−] | 〈C[−], N〉 | 〈V,C[−]〉
| let 〈x, y〉 = C[−] inN | ifC[−] thenM elseN,

and a notion of abstract machine: the PCFAM. A raw PCFAM closure
is a tuple (M, indM ,m) where M is a term, indM is an injective
map from the set of free variables of M to I , and m ∈ Mem.
PCFAM closures are defined as equivalence classes of raw PCFAM

closures over permutations of addresses.
The rewrite system is defined in Fig. 12. First, the creation of

a new base type element (→link) is simply memory allocation: x
is fresh (and not bound) in C and i is a new address neither in
the image of ind nor in the support of m. Then, the operation c
reduces through→update(c) using the update of the memory when
arity(c) = n and ind(xk) = ik. Then, the if-then-else reduces
through→test(i) using the test operation where ind(x) = i. Note
how we remove x from the domain of ind. Finally we have the
three rules that do not involve probabilities: Note how the mapping
ind can be kept the same: the set of free variables is unchanged.

Let M = [(M, ind,m)] be a PCFAM closure. We define the
judgment x1 : A1, . . . , xm : Am ` M : B if none of the xi’s
belongs to Dom(ind), y1 : α, . . . , yk : α, x1 : A1, . . . , xm :
Am `M : B, and {y1, . . . , yk} = Dom(ind).

6.3 Modeling PCFLL with Nets
We now encode PCFLL typing judgments and typed PCFAM closures
into program nets. As the type system is built on top of Linear Logic,
the translation (−)† is rather straightforward, modulo one subtlety:
it is parameterized by a memory structure m and a partial function
ind mapping term variables to addresses in I .

The mapping (−)† of types to formulas is defined by α† := 1,
(A ( B)† := (A†⊥ `B†) and (A ⊗ B)† := A† ⊗ B†. Now,
assume that {y1, . . . , yn} ∩Dom(ind) = ∅, that ∆ is a judgment
whose variables are all of type α, and that |∆| = Dom(ind). The
typing judgment y1 : A1, . . . , yn : An,∆ ` M : A is mapped
through (−)†ind,m to a program net M†ind,m = [(RM , indRM ,m)]

with conclusions (A†1)⊥,. . . (A†n)⊥, (B†) and memory state m (note
how the variables in ∆ do not appear as conclusions). The full
definition is found in Appendix E.

6.3.1 Adequacy
As in Sec. 2 and 5.4, given a PCFAM closure M we write M ⇓p (M
converges to p) if p = supM⇒∗µT (µ). The adequacy theorem then
relates convergence of programs and convergence of nets. A sketch
of the proof is given in Appendix E.

Theorem 29. Let ` M : α, then M⇓p if and only if M†⇓p.

7. Results and Discussion
As we anticipated in Sec. 1.3, we have proved—parametrically on
the memory—that the MSIAM is an adequate model of program
nets reduction (Th. 28), and program nets are expressive enough to
adequately represent the behavior of the PCFLL abstract machine
(Th. 29). What does this mean? As soon as we choose a concrete
instance of memory structure, we have a language and an adequacy
result for it. This is in particular the case for all instances of memory
which are outlined in Sec. 3.3. To make this explicit, let I, P andQ
be respectively a deterministic, probabilistic and quantum memory.
We denote by PCFLL(I), PCFLL(P) and PCFLL(Q), respectively,
the language which is obtained by choosing that memory. Observe
in particular that the choice of P orQ, respectively specialize our
adequacy result into a semantics for a probabilistic PCF in the style
of [33], and a semantics for a quantum PCF, in the style of [11, 13].

7.1 The Quantum Lambda Calculus
Let us now focus on the quantum case, and analyze in some depth
our result. We have a quantum lambda-calculus, namely PCFLL(Q),
together with an adequate multi-token semantics. How does our
calculus relate with the ones in the literature?

We first observe that the syntax of PCFLL(Q) is very close
to the language of [13] (we only omit lists and coproducts). The
operational semantics is also the same, as one can easily see. Indeed,
the abstract machine in [13] consists of a triple (Q,L,M) whereM
is a lambda-term and where Q and L are as presented in Sec. 3.3.3.
As we discussed there, for Q and L one can use either the canonical
presentation of [13], or the memory structureQ.

7.1.1 Discussion on the Quantum Model
It is now time to go back to the programs in our motivating examples,
Examples 2 and 3. Both programs are valid terms in PCFLL(Q); we
have already informally developed Example 3 within our model.

We claimed in the Introduction that Example 2 cannot be
represented in the GoI model described in [21]: the reason is that the
model does not support entangled qubits in the type α⊗α (using our
notation), a tensor product is always separable. To handle entangled
states, [21] uses non-splittable, crafted types: this is why the simple
term in Example 2 is forbidden. In the MSIAM, entangled states
pose no problem, as the memory is disconnected from the types.

The term of Example 3, valid in PCFLL(Q), is mapped through
(−)† to the net of Fig. 5: Th. 29 and 28 state that the corresponding
MSIAM presented in Fig. 10 is adequate. Note that Example 3 was
presented in the context of quantum computation. It is however
possible (and the behavior is going to be the same as the one already
described) to use the probabilistic memory sketched in Sec. 3.3.2.
In this case, the H-sync node would be changed for the coin-sync
node.

7.1.2 Qubits, Duplication and Erasing
It is worth to pinpoint the technical ingredients which allow for
the coexistence of quantum bits with duplication and erasing. In



(C[new], ind,m)→link (C[x], ind ∪ {x 7→ i},m) (C[c 〈x1, . . . , xn〉], ind,m)→update(c) (C[〈~x〉], ind, update(~i, c,m))

(C[ifx thenMtt elseMff], ind,m)→test(i) test(i,m)[true := (Mtt, ind \ {x 7→ i}), false := (Mff, ind \ {x 7→ i})]
(C[(λx.M)U ], ind,m)→ (C[M{x := U}], ind,m) (C[let 〈x, y〉 = 〈U, V 〉 inM ], ind,m)→ (C[N [x := U, y := V ]], ind,m)

(C[letrec f x = M inN ], ind,m)→ (C[N{f := λx.letrec f x = M inM}], ind,m)

Figure 12. Rewrite System for PCFAM.

the language, the reason is that, similarly to [13], PCFLL allows
only lambda-abstractions (or tuples thereof) to be duplicated. In the
case of the nets (and therefore of the MSIAM), the key ingredient
is surface reduction (Sec. 4.2): the allocation of a quantum bit is
captured by the link rule which associates a one node to the memory.
Since a one node linked to the memory cannot lie inside a box,
it will never be copied nor erased. Indeed, the ways in which the
language and the model deal with quantum bits, actually match.

7.1.3 More Possibilities for Quantum Memory Structure
In the presentation of Q we have given in Sec. 3.3.3, fresh qubits
were arbitrarily created in state |0〉. We could as well have chosen,
say, |1〉 for default value. Formally, if we want to do that we can
use the set F1 of (set-)maps from I to {0, 1} that have value 1
everywhere except for a finite subset of I . The structure Q would
then have been defined as H1, the Hilbert space built from finite
linear combinations of F1.

Unlike the case of the integer memory, the mathematical proper-
ties of quantum states can make the test action modify the state of
the fresh addresses. Let us see how this happens.

Indeed, one can not only build a memory structure Q with
H0 and H1 but also with a superposition of the elements in H0

and H1. For example, one could choose Q = {αv0 + βv1)|vx ∈
Hx, |α|2 + |β|2 = 1}. This makes a memory structure satisfying
all the equations. In this system, a valid memory can have all of
its fresh variables in superposition. Any measurement on a fresh
variable of this memory will collapse the state... and “modify” the
global state of the fresh variables. So, despite the fact that a test on i
cannot touch another address, it can globally act on the memory.

This paradox is of course solved when remembering that mea-
surements and unitary operations (and measurements and measure-
ments) do commute independently of the state on which they are
applied (Remark 1). So the fact that the memory changes globally
after a test is irrelevant.

7.2 Conclusion
In this paper, we have introduced a parallel, multi-token Geometry
of Interaction capturing the choice effects with a parametric memory.
This way, we are able to represent classical, probabilistic and
quantum effects, and adequately model the linearly-typed language
PCFLL parameterized by the same memory structure. We expect our
approach to capture also non-deterministic choice in a natural way:
this is ongoing work.
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A. Commutation of Tests and Updates on
Memory States

The commutation of tests and updates is formally defined as follows.
Assume that i 6= j, that j does not meet ~k, and that ~k and ~k′ are
disjoint.

• Tests on i commute with tests on j. More precisely, if

test(i,m) = p0{(true,m0)}+ p1{(false,m1)}
test(j,m0) = p00{(true,m00)}+ p01{(false,m01)}
test(j,m1) = p10{(true,m10)}+ p11{(false,m11)}

and if

test(j,m) = q0{(true,m′0)}+ q1{(false,m′1)}
test(i,m′0) = q00{(true,m′00)}+ q01{(false,m′01)}
test(i,m′1) = q10{(true,m′10)}+ q11{(false,m′11)}

then for all x, y = 0, 1, mxy = m′yx and pxpxy = qyqyx.

• Tests of j commute with updates on ~k. More precisely, if

test(i,m) = p0{(true,m0)}+ p1{(false,m1)}

update(~k, x,m0) = m′0

update(~k, x,m1) = m′1

and if update(~k, x,m) = m′ then

test(i,m′) = p0{(true,m′0)}+ p1{(false,m′1)}.

• Updates on ~k and ~k′ commute. More precisely:

update(~k, x,update(~k′, x′,m)) =

update(~k′, x′, update(~k, x,m))

B. Program Nets: proof of the Diamond Property
We prove that the PARS (N , ) satisfies the diamond property
(Prop.19 ). We write (R, indR,m)

r µ for the reduction of the
redex r in the raw program net (R, indR,m).

First, we observe the following property, proven by case analysis.

Lemma 30 (Locality of  ). Assume that R = [(R, indR,m)]

has two distinct redexes r1 and r2, with R
r1 µ1, R

r2 µ2 and
µ1 6= µ2. Then the redex r2 (resp. r1) is still a redex in each
(R′, indR′ ,m

′) ∈ SUPP(µ1) (resp. SUPP(µ2)).

The proof of Prop. 19 goes as follows.

Proof. (of Prop. 19.) The locality implies the following two facts:
(1) If (R, indR,m)  µ with µ◦ 6= ∅, then the raw program net
(R, indR,m) contains exactly one redex.
(2) If (R, indR,m)

r1 µ and (R, indR,m)
r2 ξ with µ 6= ξ, then

there exists ρ satisfying µ ⇒ ρ and ξ ⇒ ρ. Concretely, µ ⇒ ρ
is obtained by reducing the redex r2 in each (R′, indR′ ,m

′) ∈
SUPP(µ), and ξ ⇒ ρ is obtained by reducing r1.

Assuming µ ⇒ ν and µ ⇒ ξ, item 1. implies ν◦ = ξ◦, and
item 2. implies ∃ρ.ν ⇒ ρ ∧ ξ ⇒ ρ. Let us review some of the
non-evident cases explicitly.

If r1 and r2 are both non-active one nodes, say x and y respec-
tively, (R, indR,m) reduces to (R, indR ∪ {x 7→ i, y 7→ j},m)
and (R, indR ∪ {x 7→ k, y 7→ l},m) for some fresh indexes i, j,
k, l. The permutation (i, k) ◦ (j, l) renders the two program nets
equivalent.

If both r1 and r2 modify memories (i.e. they perform either
update or test), the property holds because the injectivity of indR
guarantees that we always have the requirement (disjointness of

indexes) of the equations given in Appendix A. Hence the two
reductions commute both on memory (up to group action) and on
probability.

C. SIAM: Multitoken Conditions, Formally
Stable Tokens. A token in a stable position is said to be stable.
Each such token is the remains of a token which started its journey
from DER or ONES, and flowed in the graph “looking for a box”.
This stable token therefore witnesses the fact that an instance of
dereliction or of one “has found its box”. Stable tokens keep track
of box copies; let us formalize this. Let S be either R, or a structure
associated to a box (at any depth). Given a state T ofMR, we define
CopiesT(S) to be {ε} if R = S (we are at depth 0). Otherwise,
if S is the structure associated to a box node b of R, we define
CopiesT(S) as the set of all t such that (e, s, t) is a stable token
on the premiss(es) of b’s principal door. Intuitively, each such t
identifies a copy of the box which contains S.

Multitoken Conditions: Synchronization, Choice, and Boxes
Management. Rules marked by (i), (ii), and (iii), (iv) in Fig. 9
only apply if the following conditions are satisfied.
(i) Tokens cross a sync node l only if for a certain t, there is a

token on each position (e, s, t) where e is a premise of l, and s
indicates an occurrence of atom in the type of e. In this case, all
tokens cross the node simultaneously. Intuitively, insisting on
having the same stack t means that the tokens all belong to the
same box copy.

(ii) A token (e, s, t) on one of the conclusions Γ of the ⊥-box
can move inside the box only if its box stack t belongs to
CopiesT(S0) (resp. CopiesT(S1)), where S0 (resp. S1) is the
left (resp. right) content of the ⊥-box. Note that if the ⊥-box is
inside an exponential box, there could be several stable tokens
on each premise of the principal door, one stable token for each
copy of the box.

(iii) The position p = (e, ε, t) under a one node (resp. (e, δ, t)
under a ?d node) is added to the state T only if: it does not
already belong to orig(T ), and t ∈ CopiesT(S), where S
is the structure to which e belongs. If both conditions are
satisfied, T is extended with the position p (and orig(p) = p).
Intuitively, each (e, ε, t) (resp. (e, δ, t)) corresponds to a copy
of one (resp. ?d) node.

D. MSIAM

The proofs of invariance, adequacy, and deadlock-freeness, all
are based on the diamond property of the machine, and on a
map—which we call Transformation—which allows us to relate
the rewriting of program nets with the MSIAM. In this section
we establish the technical tools we need. In Sec. D.2 we prove
Invariance, in Sec. D.3 we proof adequacy and deadlock-freeness.

The tool we use to relate net rewriting and the MSIAM is a
mapping from states of R to states of Ri, which we are going to
introduce in this section. This tool together with confluence (due to
the diamond property) allows us to establish the main result of this
section, from which Invariance (Th. 27) follows.

From now on, we use the following conventions and assumption.

• The letters T ,U range over raw MSIAM states, the letters T,U
over MSIAM states, and the letters T,U over SIAM states.
• To keep the notation light, we will occasionally rely on our

convention of denoting the distribution {T1} by {T} or even
simply by T, when there is no ambiguity.
• We assume that R  

∑
i pi · {Ri}, where i ∈ {0} or

i ∈ {0, 1}, R = [(R, indR,mR)], Ri = [(Ri, indRi ,mRi)].



• Unique initial state. We assume that R has a single conclusion,
which has type 1. As a consequence, Dom(indR) = ONESR,
and MR has a a unique raw initial state, which is IR =
(∅, ∅,mR). We have IR = {IR}.
• We denote by SIR the set of states T which can be reached from
IR, i.e. IR # µ and T ∈ SUPP(µ).
• we do not insist too much on the distinction between raw states

and states, which in this section is not relevant.

D.1 Properties and Tools
In this section, most of the time we analyze the reduction of raw
program nets and raw states, because we do not need to use the
equivalence relation. Which is the same: we pick a representative of
the class, and follow it through its reductions.

D.1.1 Exploit the Diamond
Because the MSIAM is diamond, we can always pick a run of the
machine which is convenient for us to analyze the machine. By
confluence and uniqueness of normal forms, all choices produce the
same result w.r.t. both the degree of termination of any distribution
which can be reached (invariance), and the states which are reached
(deadlock-freeness).

In case of R  ρ via link,update or test, we will always
choose a run which begins as indicated below:

1. Link. Assume (R, indR,mR)  link(n,j) {(R, indR ∪ {x 7→
j},mR)}. The machine does the same: from the initial state the
machine transitions using its reduction link(n, j), on the same
one node. We can choose the same address j because we know
it is fresh for mR. Therefore we have (I, indI ,mR)→link(n,j)

{(U, indU ,mR)} = µ.

2. Update. Assume (R, indR,mR) update(s)

{(R′, indR,update(l,~i,mR)}. Observe that the one node n
in the redex is active; let j be the corresponding address. We
choose a run which starts with the transitions (I, indI ,mR)

→link(n,j) {(U, indU ,mR)} and (U, indU ,mR)→update(s)

{(U, indU , update(l,~i,mR)} = µ.

3. Test. Assume (R, indR,mR)  test(j) ρ where for each i,
R  ui Ri. Again the one node n in the redex is active; let
j be the corresponding address. Our canonical way to start the
run of the machine applies to the initial state (I, indI ,mR) the
transition link(n, j), crosses the cut, and finally applies the same
test(j), to reach test(j,mR)[true := U0, false := U1]) = µ.

D.1.2 The Transformation Map
The tool we use to relate net rewriting and the MSIAM is a mapping
from states of MR to states of MRi . We first define a map on
positions of R, then on SIAM states, and finally on MSIAM raw
states.

Transformation of SIAM States. For eachRi to whichR reduces,
we define a transformation on positions, as a partial function
trsfR Ri : POSR ⇀ POSRi . The key case is the case of ⊥-box
reduction, illustrated in Fig. 13; for each position outside the redex,
we intend that trsf(p) is the identity. The other cases are as in [28].

The definition extends to the states of the SIAM point-wisely, in
the obvious way.

From now on, we write trsfRi or sometimes simply trsfi for
trsfR Ri .

Transformation of MSIAM States. We now extend trsfR Ri to
MSIAM states. To do so smoothly, we define a subset [trsfRi ] of
SIR , which depends on the reduction rule. To work with such states
simplify the proofs, and is always possible because of Sec. D.1.1.

• Case  link(n,j). We define [trsfRi ] as the set of the states in
SIR in which ind(p) = j, where p is the position associated
to the one node n.
• Case  update(s). We define [trsfRi ] as the set of the states

in SIR which “have crossed” the sync node s. We can easily
characterize these states. Assume p1, . . . ,pn are the positions
associated to the premises of s (observe that each pi belongs
to ONESR). [trsfRi ] is the set of the states T ∈ SIR such that
{p1, . . . ,pn} ⊆ orig(T ) and {p1, . . . ,pn} 6⊆ T .
• Case test(j). We define [trsfR0 ] as the set of the states in SIR

which have a token on the left bot of the redex (the edge e0 in
the Fig. 13). We define [trsfR1 ] similarly.
• Otherwise: we define [trsfRi ] = SIR .

Definition 31 (Transformation Map).

1. trsfi : [trsfRi ] ⊂ SIR → SRi maps the state T =
[(T, ind,m)] into [trsfi(T, ind,m)], with

trsfi(T, ind,m) = (trsfi(T ), ind,m).

2. The definition extends linearly to distributions. Assume µ =∑
ck · {Tk} and Tk ∈ [trsfRi ] for each Tk, then

trsfR Ri(µ) :=
∑

ck · {trsfR Ri(Tk)}.

Fact 32. If T ∈ [trsfRi ], with T → µ and U ∈ SUPP(µ), then
U ∈ [trsfRi ].

Lemma 33 (Important Observation). The construction given in
D.1.1 leads each time to a distribution µ, where each state in the
support satisfies:

• Ui ∈ [trsfRi ].
• trsfRi(Ui) = IRi .

D.1.3 Properties of the Reachable States
Let us analyze the set of states which is spanned by a run of the
MSIAM. Given a ⊥-box of R, let e0 be the conclusion of the
left ⊥ and e1 be the conclusion of the right ⊥. For any stacks
s, t, we call the two stable positions (e0, s, t) and (e1, s, t) a ⊥-
pair. These two positions are mutually exclusive in a state, because
orig(e0, s, t) = orig(e1, s, t).

We say that two states T,U ∈ SIR are in conflict, written
T ^ U, if T contains one of the two positions of a ⊥-pair and
S the other. We observe that conflict is hereditary with respect to
transitions, because stable positions are never deleted or modified
by a transition. Let ↑(T) = {U | T ⇒∗ ρ ∧ U ∈ SUPP(ρ)}.
The following properties are all immediate:

1. If T^ T′, U ∈ ↑(T), and U′ ∈ ↑(T′), then U^ U′.

2. If T→ µ, either the transition is deterministic, or SUPP(µ) =
{U0,U1} with U0 ^ U1.

3. If I⇒∗ µ, then for each T 6= T′ ∈ SUPP(µ), T^ T′.

States in conflict are in particular disjoint. Therefore we can
safely sum them:

Lemma 34. Given a distribution of states µ ∈ DST (SIR),

∀Ti,Tj ∈ SUPP(µ).Ti ^ Tj {T⇒k ρT}T∈SUPP(µ)

µ⇒k ∑
T∈SUPP(µ) µ(T) · ρT .

As an immediate consequence, the following also hold:

U→ µ {T⇒k ρT}T∈SUPP(µ)

U⇒k+1 ∑
T∈SUPP(µ) µ(T) · ρT
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U⇒n µ {T⇒k ρT}T∈SUPP(µ)

U⇒n+k ∑
T∈SUPP(µ) µ(T) · ρT

D.1.4 The Reachability Relation#
The reachability relation# (defined in Sec. 2.1) is a useful tool in
the study of the MSIAM.

A derivation of a# µ is inductively obtained by using the rules
which define#.

In the case of the MSIAM the relations# and⇒ are equivalent
with respect to normal forms.

Lemma 35. If {T}⇒n ξ then T# ξ. Conversely, if T# µ then
there exists ρ with {T}⇒∗ ρ and such that µ◦ ⊆ ρ◦.

Proof. The former part is by induction on n. The latter is by
structural induction (on the rules shown above).

It is helpful to define also another auxiliary relation T #◦ τ
which holds if there exists µ satisfying # µ and τ ⊆ µ◦. This
relation4 states that T reaches a set of terminal states. It is immediate
that T#◦ τ iff ∃ρ, T⇒∗ ρ and τ ⊆ ρ◦.

D.1.5 Properties of trsf

We now study the action of trsf on transitions. We first look at how
trsf maps initial/final/deadlock states.

Lemma 36. 1. If IR ∈ [trsfRi ], then trsfRi(IR) = IRi .
2. Assume T ∈ [trsfRi ] is a final/deadlock state of MR; then

trsfRi(T) is a final/deadlock state ofMRi .
3. If τ = τ◦ (i.e. all states are terminal), and SUPP(τ) ⊆

[trsfRi ], then T (τ) = T (trsfRi(τ)).

Lemma 37. If T^ T′ and T,T′ ∈ [trsfRi ], then trsfRi(T) ^
trsfRi(T

′)

It is also important to understand the action of trsf on the number
of stable tokens. We observe that the number of tokens, and stable
tokens in particular, in any state T which is reached in a run ofMR

is finite. We denote by S(T) the number of stable tokens in T. The
following is immediate by analyzing the definition of transformation,
and checking which tokens are deleted.

Fact 38 (stable tokens). For any trsfRi , S(T) ≥ S(trsfRi(T)).
Moreover, if the reduction is d, y or ui, then we also have that
S(T) > S(trsfRi(T)).

D.2 Invariance
We prove the following result, from which invariance (Th. 27)
follows.

Proposition 39 (Main Property). Assume R 
∑
i pi · {Ri}. IR

q-terminates if and only if IRi qi-terminates and
∑

(qi · pi) = q.

Let us first sketch the ingredients of the proof. We need to work
our way “back and forth” via Lemmas 42 and 43, because of the
following facts.
• Unfortunately, for IR ⇒∗ µ it is not true that trsfRi(IR)⇒∗

trsfRi(µ). However we have that if IR # µ in MR, then
trsfRi(IR) # trsfRi(µ) (under natural conditions). This is
made precise by Lemma 42.

• On the other side, the strength of the relation ⇒ is that if
IR ⇒n µ, then for any sequence of the same length IR ⇒n ρ,
we have that ρ◦ = µ◦. This is not the case for the relation#
which is not informative. The (slightly complex) construction
which is given by Lemma 43 allows us to exploit the power of
⇒.

4 It is easy also to give rules to define#◦ inductively.

We have everything in place to study the action of trsf on a
run of the machine. What is the action of trsf on a transition? By
checking the definition in Fig. 14 we observe that it may be the
case that T → {U} and trsfR Ri(U) = trsfR Ri(T). We say
that such a transition collapses for trsfR Ri . We observe some
properties:

Lemma 40. From a state ofMR, we have at most a finite number
of collapsing transitions.

Proof. Since the reduction is surface, and since the type of any
edge is finite, the set {(e, s, t) | e is an edge of the redex, (e, s, t) is
involved in a collapsing transition} is at most finite. Suppose there
are infinitely many collapsing transitions from a state. Then there
exist two or more tokens which have the same stacks involved in
the sequence of transitions. They must have the same origin, and
hence by injectivity they are in fact the “same” token visiting the
redex twice or more. Therefore, by “backtracking” the transitions
on that token, it again comes to the same edge in the redex with the
same stack, hence we can go back infinitely many times. However
this cannot happen in our MSIAM machine, since any token starts
its journey from a position in START from which it cannot go back
anymore, and transitions are bideterministic on each token.

Fact 41. Given a transition T → µ, if T ∈ [trsfRi ], then either
the transition collapses, or trsfRi(T)→ trsfRi(µ) is a transition
ofMRi .

Lemma 42. If T ∈ [trsfRi ] and T # µ (in MR), then
trsfRi(T)# trsfRi(µ) holds.

Proof. We transform a derivation Π of T # µ in MR into a
derivation of trsfRi(T) # trsfRi(µ) in MRi , by induction on
the structure of the derivation.

• Case T#{T} becomes trsfRiT#{trsfRi(T)}

• Case
T→

∑
pU ·U {

. . .
U#µU}

T#
∑
pU · µU

We examine the left premise, checking if it collapses:
If it does not collapse, trsfRi(T)→

∑
pU · trsfRi(U) is a

transition ofMR′ and we have:

trsfRi(T)→
∑
pU · trsfRi(U)

{trsfRi(U)# trsfRi(µU)} by I.H.

trsfRi(T)#
∑
pU · trsfRi(µU)

If it collapses, we have T→ {U}, we also have trsfRiT =
trsfRi(U),and the derivation Π is of the form:

T→{U}
...

U#µ
T#µ

By induction, trsfRiU # trsfRi(µ), and therefore we
conclude trsfRiT# trsfRi(µ).

Lemma 42, the construction shown in Appendix D.1.1, and
Lemma 36, allow us to transfer termination from IR to IRi , and to
prove one direction of Prop. 39. The other direction is more delicate.

Assume that IRi qi-terminates; this implies that for a certain n,
whenever IRi ⇒n σ then T (σ) ≥ q. The following Lemma builds
such a sequence in a way that σ = trsfRi(µ), with µ inMR. This
allows us to transfer the properties of termination of IRi back to IR,
ultimately leading to the other direction of Prop. 39.

Lemma 43. Assume T ∈ [trsfRi ] . For any n:



1. there exists µ such that T# µ and trsfRi(T)⇒n trsfRi(µ);
2. we can choose µ such that T (µ) = T (trsfRi(µ)).

Proof. 1. We build µ and its derivation, by induction on n.
n = 1. • Assume T is terminal, then trsfRi(T) is terminal, and

trsfRi(T)⇒ trsfRi(T).
• Assume there is µ s.t. T→ µ non-collapsing. We have

trsfRi(T)⇒ trsfRi(µ).
• Assume that all transitions from T are collapsing.

For such a reduction, we have that T → T′ and
trsfRi(T) = trsfRi(T

′). It is immediate to check that
from any T ∈ SIR there is at most a finite number of con-
secutive collapsing transitions. We repeat our reasoning
on T′ until we find U which is either terminal or has a
non-collapsing transition U→ µ. The former case is im-
mediate, the latter gives U# µ and therefore T# µ by
transitivity, and trsfRi(T) = trsfRi(U)→ trsfRi(µ),
hence trsfRi(T)⇒ trsfRi(µ).

n > 1. Assume we have built a derivation of T# ρ with
trsfRi(T) ⇒n−1 trsfRi(ρ). We have that trsfRi(ρ) =∑
ρ(U) · trsfRi(U). For each U ∈ SUPP(ρ), we apply

the base step, and obtain a derivation of U # µU with
trsfRi(U) ⇒ trsfRi(µU). Putting things together, T #∑
ρ(U) ·µU and trsfRi(T)⇒n ∑ ρ(U) · trsfRi(µU) by

Lemma 34.
2. We now prove the second part of the claim. Let T # µ be

the result obtained at the previous point. Let {Uk} be the
set of states in SUPP(µ) such that trsfRi(Uk) is terminal.
This induces a partition of µ, namely µ = ρ +

∑
ck · {Uk}.

It is immediate to check that each Uk # {U′k} with U′k
terminal and trsfRi(U

′
k) = trsfRi(Uk). Observe also that

ρ does not contain any terminal state. Let ν =
∑
ck · {U′k}.

We have by transitivity T # (ρ + ν), and trsfRi(T) ⇒n

trsfRi(ρ + ν) (because trsfRi(ρ + ν) = trsfRi(µ)). We
have T (trsfRi(ρ + ν)) = T (trsfRi(ν)) =

∑
ck because

trsfRi(ν) =
∑
ck · trsfRi(U

′
k). We conclude by observing

that T (ρ+ ν) = T (ν) =
∑
ck.

Summing up, we now have all the elements to prove Prop. 39.

Proof. (Prop. 39)
⇒. Follows from Prop. 42, by using the construction in

Sec. D.1.1, Lemma 36, and linearity of trsf .
Assume IR ⇒∗ µ, with µ◦ not empty, and that the machine

starts as described in Sec. D.1.1 (in case  is link, update or
test). We observe that every state T ∈ SUPP(µ) is contained
in [trsfi] for some i. We can then prove that for each i there
exists µi ∈ DST (SIR) such that IRi # trsfRi(µi), and such
that ν =

∑
i pi · µi.

⇐. Follows from Lemma 43. We examine the only non-
straightforward case. Assume R  test(i,m) {Rp0

0 ,Rp1
1 }. We

choose a run of the machine which starts as described in Sec. D.1.1;
we have that IR #

∑
pi · {Ti}, with trsfRi(Ti) = IRi by

Lemma 33. By hypothesis, IRi terminates with probability at least
qi; assume it does so in n steps. By using Lemma 43, we build
a derivation Ti # µi such that trsfRi(Ti) ⇒n trsfRi(µi) and
T (µi) = T (trsfRi(µi)). By Th. 11, T (trsfRi(µi)) ≥ qi.

Putting all together, we have that IR #
∑
pi · µi, and IR

terminates with probability at least
∑
pi · qi.

D.3 MSIAM Adequacy and Deadlock-Freeness: The
Interplay of Nets and Machines

We are now able to establish adequacy (Th. 28) and deadlock-
freeness (Th. 26). Both are direct consequence of Prop. 45 below,

which in turn follows form Prop. 39 and the following Fact, by finely
exploiting the interplay between nets and machine.

Fact 44. Let R be a net of conclusion 1 and such that no reduction
is possible. By Th. 22, R has no cuts, and is therefore simply a one
node. On such a simple net,MR can only terminate in a final state:
no deadlock is possible.

Proposition 45 (Mutual Termination). Let R be a net of conclusion
1. The following are equivalent:

1. IR q-terminates;
2. R q-terminates;

Moreover

3. if IR # µ and T ∈ SUPP(µ) is terminal, then T is a final
state.

Proof. (1.⇒ 2.) and 3. We prove that

if IR #◦ τ , then
(*) R terminates with probability at least T (τ),
(**) all states in SUPP(τ) are final.

The proof is by double induction on the lexicographically ordered
pair (S(τ),W (R)), where W (R) is the weight of the cuts at the
surface of R, and S(τ) =

∑
T∈SUPP(τ) S(T) with S(T) the

number of stable tokens in T (Fact38). Both parameters are finite.
We will largely use the following fact (immediate consequence

of the definition of#◦ and of results we have already proved): if
T#◦ τ inMR and T ∈ [trsfi], then trsfi(T)#◦ trsfi(τ).

• If R has no reduction step, then T (R) = 1, which trivially
proves (*); (**) holds by Fact 44.
• Assume R  6test(i,m) R′ (observe that this is a deterministic

reduction). We have that IR′ #◦ trsf(τ), and T (trsf(τ)) =
T (τ). By Fact 38, S(trsf(τ)) ≤ S(τ). If R  d R′, then
S(trsf(τ)) < S(τ). Otherwise S(trsf(τ)) = S(τ) but
W (R′) < W (R) because the step reduces a cut at the surface,
and does not open any box. Hence by induction, R′ terminates
with probability at least T (trsf(τ)) = T (τ) (and therefore so
does R) and all states in trsf(τ) are final, from which (**) holds
by Lemma 36.2.
• Assume R  test(i,m)

∑
pi · {Ri}. From IR #◦ τ , by

Lemma 35 we have that there is ρ satisfying IR ⇒∗ ρ and
τ ⊆ ρ◦. Using the construction in Sec. D.1.1, we have IR ⇒∗∑
pi ·{Ti}, which induces a partition of τ in τ = p0 ·τ0+p1 ·τ1

with Ti #◦ τi for each i. We have that S(τi) < S(τ),
and that IRi #◦ trsfi(τi), because trsfi(Ti) is defined and
therefore trsfi(U) is defined for each state U ∈ τi. By Fact
38, S(trsfi(τi)) ≤ S(τi) < S(τ), thus by induction Ri

terminates with probability at least T (trsfi(τi)), and all states
in SUPP(trsfi(τi)) are final. Therefore, R terminates with
probability at least

∑
pi · T (trsfi(τi)) =

∑
pi · T (τi) =

T (τ) by Lemma 36.3, and all states in SUPP(τ) are final by
Lemma 36.2.

2.⇒ 1. By hypothesis, R ⇒n ρ with T (ρ) ≥ q. We prove the
implication by induction on n.

Case n = 0. The implication is true by Fact 44.
Case n > 0. Assume R  

∑
pi · Ri. By hypothesis, each

Ri terminates with probability at least qi (with
∑
pi · qi = q).

By induction, each IRi qi-terminates, and therefore (Prop. 39) IR
q-terminates.



D.4 MSIAM: Full development of Fig. 10
Here we fully develop what was sketched as description of the
MSIAM execution presented in Fig. 10.

In the first panel (A), no box are yet opened: only two tokens
are generated: the dereliction node emits token (a), in state (∗.δ, ε)↓,
while the one-node emits token (b), in state (ε, ε)↓, and attached
to a fresh address of the memory. Eventually token (a) reaches the
entrance of the Y -box and opens a copy: its state is now (δ, ∗.ε)↔.
Token (b) also flows down: it first reaches the H-sync node, crosses
it while updating the memory, crosses the ⊗-node and gets the
new state (l.ε, ε)↓. It continues through ?d with new state (∗.l.ε, ε),
reaches the Y -entrance: its copy ID is ∗.ε, and it has been opened by
token (a), it can carry onto the left branch with new state (l.ε, ∗.ε).
It arrives at the `-node and follow the left branch with state (ε, ∗.ε):
it now hits a bot-box.

The test-action of the memory is called, and a probabilistic
distribution of states is generated where the left and the right-side of
the⊥-box are probabilistically opened: the corresponding sequences
of operations are represented in Panel (B0) for the left side, and Panel
(B1) for the right side.

In Panel (B0): the left-side of the bot-box is opened and its one-
node emits token (c), in state (ε, ∗.ε): note how the box stack of this
newly-created token is the one of the copy of the Y -box it sits in. In
any case, the token also comes equipped with a fresh address from
the memory, and carries downward. When it reaches the entrance
of the Y -box, coming from the left it exits and eventually reaches
the conclusion of the net. Note how we end up with a normal form:
token (b) and (a) are stable at doors of boxes.

In Panel (B1): the right-side of the bot-box is opened and its
one-node emits a token, that we can also call (c), also in state
(ε, ∗.ε). The ?d-node emits token (d) in state (∗.δ, ∗.ε): this token
flows down and gets to the entrance of the Y -box: it stops there in
state (δ, y(∗, ∗).ε) and opens a new copy of the Y -box. Token (c)
goes down, arrives at the Y -entrance and enters this new copy (of
ID y(∗, ∗)). It hits the corresponding copy of the ⊥-box, and the
test-action of the memory spawns a new probabilistic distributions.

We focus on panel (C10) on the case of the opening of the left-
side of the ⊥-box: there, a new token (e) is generated (with a fresh
address attached to it) and goes down. It will exit the copy of ID
y(∗, ∗), enter the first copy, goes over the axiom node, and eventually
exits from this first Y -box-copy. It is now at level 0, and goes to the
conclusion of the net. The machine is in normal form.

E. PCFLL: Adequacy
The translation of PCFAM closures into program nets is given in
Fig. 15 and 16. There, we assume that the translation is with respect
to the fixed pair (ind,m). The partial map indRM is depicted with
a dotted line, and corresponds exactly to the parameter to the map
(−)†ind,m.

With this definition, the well-typed closure y1 : A1, . . . , ym :
Am ` (M, ind,m) : B can now simply be mapped to the program
net M†ind,m.

We prove here the adequacy theorem (Th. 29).

Th. 29 (Recall). Let ` M : α, then M⇓p if and only if M†⇓p.

Before proving the theorem, we first establish a few technical
lemmas which analyze the properties of the translation (−)†.

Lemma 46. Assume that M = (M, ind,m) is PCFAM closure
that ` M : α, and µ a distribution of such closures. We have:

1. M is a normal form if and only if M† is a normal form.
2. T (µ) = T (µ†).

Lemma 47. Under the hypotheses of Lemma 46:

1. if M→ µ then M† ⇒k µ†, with k ≥ 1.
2. if µ⇒∗ ν then µ† ⇒∗ ν†.

Corollary 48. Under the hypotheses of Lemma 46:

1. If M†  ρ, then there is µ s.t. M→ µ with M† 6= µ†.
2. If M† ⇒k ρ, then there is µ s.t. M⇒∗ µ and M† ⇒m µ†, with
m ≥ k.

Proof. (1.) Immediate consequence of Lemma 46 and 47 (2.) By
induction.

We are now ready to prove Th. 29.

Proof of Th. 29. Assume M ⇓pterm and M† ⇓pnet ; we want to prove
that pterm = pnet .
pterm ≤ pnet. It follows from the following. Assume M ⇒∗ µ
with T (µ) = q, then M† ⇒∗ µ† (by Lemma 47.2) and T (µ†) = q
(by Lemma 46.2).
pterm ≥ pnet. We prove that if M† ⇒∗ ρ then it exists µ with
M ⇒∗ µ and T (µ) ≥ T (ρ). Assume M† ⇒k ρ. By Corollary
48, M ⇒∗ µ and M† ⇒m µ†, with m ≥ k. By Uniqueness of
Normal Forms (Th. 11.1) we have that T (µ†) ≥ T (ρ). By Lemma
46, T (µ) = T (µ†), from which we deduce the statement.
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Figure 15. Translation of PCFLL into Nets.
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Figure 16. Translation of PCFLL into Nets.


