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Abstract We provide a detailed estimate for the logical resource requirements of
the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502,
2009) including the recently described elaborations and application to computing
the electromagnetic scattering cross section of a metallic target (Clader et al. in
Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard
quantum-circuit model of quantum computation; they comprise circuit width (related
to parallelism), circuit depth (total number of steps), the number of qubits and ancilla
qubits employed, and the overall number of elementary quantum gate operations as
well as more specific gate counts for each elementary fault-tolerant gate from the stan-
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dard set {X,Y, Z , H, S, T, CNOT}. In order to perform these estimates, we used an
approach that combines manual analysis with automated estimates generated via the
Quipper quantum programming language and compiler. Our estimates pertain to the
explicit example problem size N = 332,020,680 beyond which, according to a crude
big-O complexity comparison, the quantum linear-system algorithm is expected to run
faster than the best known classical linear-system solving algorithm. For this problem
size, a desired calculation accuracy ε = 0.01 requires an approximate circuit width
340 and circuit depth of order 1025 if oracle costs are excluded, and a circuit width and
circuit depth of order 108 and 1029, respectively, if the resource requirements of oracles
are included, indicating that the commonly ignored oracle resources are considerable.
In addition to providing detailed logical resource estimates, it is also the purpose of this
paper to demonstrate explicitly (using a fine-grained approach rather than relying on
coarse big-O asymptotic approximations) how these impressively large numbers arise
with an actual circuit implementation of a quantum algorithm. While our estimates
may prove to be conservative as more efficient advanced quantum-computation tech-
niques are developed, they nevertheless provide a valid baseline for research targeting
a reduction of the algorithmic-level resource requirements, implying that a reduction
by many orders of magnitude is necessary for the algorithm to become practical.

Keywords Quantum computation · Concrete resource estimation in quantum
algorithms · Automated quantum-circuit generation · Quantum programming
language Quipper

1 Introduction

Quantum computing promises to efficiently solve certain hard computational problems
for which it is believed no efficient classical algorithms exist [1]. Designing quantum
algorithms with a computational complexity superior to that of their best known clas-
sical counterparts is an active research field [2]. The quantum linear-system algorithm
(QLSA), first proposed by Harrow et al. [3], afterward improved by Ambainis [4],
and recently generalized by Clader et al. [5], is appealing because of its great prac-
tical relevance to modern science and engineering. This quantum algorithm solves a
large system of linear equations under certain conditions exponentially faster than any
current classical method.

The basic idea of QLSA, essentially a matrix-inversion quantum algorithm, is to
convert a system of linear equations, Ax = b, where A is a Hermitian1 N × N matrix
over the field of complex numbers C and x, b ∈ C

N , into an analogous quantum-
theoretic version, A |x〉 = |b〉, where |x〉 , |b〉 are vectors in a Hilbert space H =
(C2)⊗n corresponding to n = �log2 N� qubits and A is a self-adjoint operator on H ,
and use various quantum-computation techniques [1,6–8] to solve for |x〉.

Extended modifications of QLSA have also been applied to other important
problems (cf. [2]), such as least-squares curve-fitting [9], solving linear differential

1 Note that, if A is not Hermitian, the problem can be restated as Āx̄ = b̄ with a Hermitian matrix
Ā := ( 0 A

A† 0

)
, see Sect. 3.
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equations [10], and machine learning [11]. Recent efforts in demonstrating small-scale
experimental implementation of QLSA [12,13] have further highlighted its popularity.

1.1 Objective of this work

The main objective of this paper is to provide a detailed logical resource estimate
(LRE) analysis of QLSA based on its further elaborated formulation [5]. Our analysis
particularly also aims at including the commonly ignored resource requirements of
oracle implementations. In addition to providing a detailed LRE for a large practical
problem size, another important purpose of this work is to demonstrate explicitly, i.e.,
using a fine-grained approach rather than relying on big-O asymptotic approxima-
tions, how the concrete resource counts accumulate with an actual quantum-circuit
implementation of a quantum algorithm.

Our LRE is based on an approach which combines manual analysis with automated
estimates generated via the programming language Quipper and its compiler. Quipper
[14,15] is a domain-specific, higher-order, functional language for quantum compu-
tation, embedded in the host-language Haskell. It allows automated quantum circuit
generation and manipulation; equipped with a gate-count operation, Quipper offers a
universal automated LRE tool. We demonstrate how Quipper’s powerful capabilities
have been exploited for the purpose of this work.

We underline that our research contribution is not merely providing the LRE results,
but also to demonstrate an approach to how a concrete resource estimation can be done
for a quantum algorithm used to solve a practical problem of a large size. Finally, we
would also like to emphasize the modular nature of our approach, which allows to
incorporate future work as well as to assess the impact of prospective advancements
of quantum-computation techniques.

1.2 Context and setting of this work

Our analysis was performed within the scope of a larger context: IARPA Quantum
Computer Science (QCS) program [16], whose goals were to achieve an accurate esti-
mation and moreover a significant reduction of the necessary computational resources
required to implement quantum algorithms for practically relevant problem sizes on a
realistic quantum computer. The work presented here was conducted as part of our gen-
eral approach to tackle the challenges of IARPA QCS program: the PLATO project,2

which stands for “Protocols, Languages and Tools for Resource-efficient Quantum
Computation.”

The QCS program BAA [17] presented a list of seven algorithms to be ana-
lyzed. For the purpose of evaluation of the work, the algorithms were specified
in “government-furnished information” (GFI) using pseudo-code to describe purely
quantum subroutines and explicit oracles supplemented by Python or MATLAB code
to compute parameters or oracle values. While this IARPA QCS program GFI is not

2 The aspect of PLATO most closely aligned with the topic of this paper was the understanding of the
resources required to run a quantum algorithm followed by research into the reduction of those resources.
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available as published material,3 the Quipper code developed as part of the PLATO
project to implement the algorithms and used for our LRE analyses is available as
published library code [18,19]. In our analyses, we found the studied algorithms to
cover a wide range of different quantum-computation techniques. Additionally, with
the algorithm parameters supplied for our analyses, we have seen a wide range of
complexities as measured by the total number of gate operations required, including
some that could not be executed within the expected life of the universe under current
predictions of what a practical quantum computer would be like when it is developed.

This approach is consistent with the one commonly used in computer science for
algorithms analysis. There are at least two reasons for looking at large problem sizes.
First, in classical computing, we have often been wrong in trying to predict how
computing resources will scale across periods of decades. We can expect to make more
accurate predictions in some areas in quantum computing because we are dealing with
basic physical properties that are relatively well studied. However, disruptive changes
may still occur.4 Thus, in computer science, one likes to understand the effect of scale
even when it goes beyond what is currently considered practical. The second reason for
considering very large problem sizes, even those beyond a practical scale, is to develop
the level of abstraction necessary to cope with them. The resulting techniques are not
tied to a particular size or problem and can then be adapted to a wide range of algorithms
and sizes. In practice, some of our original tools and techniques were developed while
expecting smaller algorithm sizes. Developing techniques for enabling us to cope with
large algorithm sizes resulted in speeding up the analysis for small algorithm sizes.

Our focus in this paper is the logical part of the quantum algorithm implementation.
More precisely, here we examine only the algorithmic-level logical resources of QLSA
and do not account for all the physical overhead costs associated with techniques
to enable a fault-tolerant implementation of this algorithm on a realistic quantum
computer under real-world conditions. Such techniques include particularly quantum
control (QC) protocols and quantum error correction (QEC) and/or mitigation codes.
Nor do we take into account quantum communication costs required to establish inter-
actions between two distant qubits so as to implement a two-qubit gate between them.
These additional physical resources will depend on the actual physical realization of
a quantum computer (ion traps, neutral atoms, quantum dots, superconducting qubits,
photonics, etc.) and also include various other costs, such as those due to physical
qubit movements in a given quantum-computer architecture, their storage in quan-
tum memories, etc. The resource estimates provided here are for the abstract logical
quantum circuit of the algorithm, assuming no errors due to real-world imperfections,
no QC or QEC protocols, and no connectivity constraints for a particular physical
implementation.

3 The GFI for QLSA was provided by Clader and Jacobs, the coauthors of the work [5] whose supplementary
material includes a considerable part of that GFI.
4 At the time of ENIAC and other early classical computers, it seems unlikely that considering how the
size of the computer could be reduced and its power increased would make us consider the invention of
the transistor. Instead, we would have considered how vacuum tubes could be designed smaller or could be
made so as to perform more complex operations.
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Determining the algorithmic-level resources is a very important and indispensable
first step toward a complete analysis of the overall resource requirements of each partic-
ular real-world quantum-computer implementation of an algorithm, for the following
reasons. First, it helps to understand the structural features of the algorithm, and to iden-
tify the actual bottlenecks of its quantum-circuit implementation. Second, it helps to
differentiate between the resource costs that are associated with the algorithmic logical-
level implementation (which are estimated here) and the additional overhead costs
associated with physically implementing the computation in a fault-tolerant fashion
including quantum-computer-technology-specific resources. Indeed, the algorithmic-
level LRE constitutes a lower bound on the minimum resource requirements that is
independent of which QEC or QC strategies are employed to establish fault-tolerance,
and independent of the physics details of the quantum-computer technology. For this
reason, it is crucial to develop techniques and tools for resource-efficient quantum
computation even at the logical quantum-circuit level of the algorithm implementa-
tion. The LRE for QLSA provided in this paper will serve as a baseline for research
into the reduction of the algorithmic-level minimum resource requirements.

Finally we emphasize that our LRE analysis only addresses the resource require-
ments for a single run of QLSA, which means that it does not account for the fact
that the algorithm needs to be run many times and followed by sampling in order to
achieve an accurate and reliable result with high probability.

1.3 Review of previous work

The key ideas underlying QLSA [3–5] can be briefly summarized as follows; for a
detailed description, see Sect. 3. The preliminary step consists of converting the given
system of linear equations Ax = b (with x, b ∈ C

N and A a Hermitian N × N matrix
with Ai j ∈ C) into the corresponding quantum-theoretic version A |x〉 = |b〉 over a
Hilbert space H = (C2)⊗n of n = �log2 N� qubits. It is important to formulate the
original problem such that the operator A : H → H is self-adjoint, see footnote 1.

Provided that oracles exist to efficiently compute A and prepare state |b〉, the main
task of QLSA is to solve for |x〉. According to the spectral theorem for self-adjoint oper-
ators, the solution can be formally expressed as |x〉 = A−1 |b〉 = ∑N

j=1 β j/λ j
∣∣u j

〉
,

where λ j and
∣∣u j

〉
are the eigenvalues and eigenvectors of A, respectively, and

|b〉 = ∑N
j=1 β j

∣
∣u j

〉
is the expansion of quantum state |b〉 in terms of these eigen-

vectors. QLSA is designed to implement this representation.
QLSA starts with preparing (in a multiqubit data register) the known quantum state

|b〉 using an oracle for vector b. Next, Hamiltonian evolution exp(−i Aτ/T ) with A
as the Hamilton operator is applied to |b〉. This is accomplished by using an oracle
for matrix A and Hamiltonian Simulation (HS) techniques [8]. The Hamiltonian evo-
lution is part of the well-established technique known as quantum phase estimation
algorithm (QPEA) [6,7], here employed as a subalgorithm of QLSA to acquire infor-
mation about the eigenvalues λ j of A and store them in QPEA’s control register. In
the next step, a single-qubit ancilla starting in state |0〉 is rotated by an angle inversely
proportional to the eigenvalues λ j of A stored in QPEA’s control register. Finally,
the latter are uncomputed by the inverse QPEA yielding a quantum state of the form
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∑N
j=1 β j

√
1 − C2/λ2

j

∣∣u j
〉 ⊗ |0〉 + ∑N

j=1 Cβ j/λ j
∣∣u j

〉 ⊗ |1〉, with the solution |x〉
correlated with the value 1 in the auxiliary single-qubit register. Thus, if the latter is
measured and the value 1 is found, we know with certainty that the desired solution of
the problem is stored in the quantum amplitudes of the multiqubit quantum register in
which |b〉 was initially prepared. The solution can then either be revealed by an ensem-
ble measurement (a statistical process requiring the whole procedure to be run many
times), or useful information can also be obtained by computing its overlap |〈R |x〉|2
with a particular (known) state |R〉 (corresponding to a specific vector R ∈ C

N ) that
has been prepared in a separate quantum register [5].

Harrow, Hassidim and Lloyd (HHL) [3] showed that, given the matrix A is well-
conditioned and sparse or can efficiently be decomposed into a sum of sparse matrices,
and if the elements of matrix A and vector b can be efficiently computed, then QLSA
provides an exponential speedup over the best known classical linear-system-solving
algorithm. The performance of any matrix-inversion algorithm depends crucially on
the condition number κ of the matrix A, i.e., the ratio between A’s largest and smallest
eigenvalues. A large condition number means that A becomes closer to a matrix
which cannot be inverted, referred to as “ill-conditioned”; the lower the value of κ the
more “well-conditioned” is A. Note that κ is a property of the matrix A and not of the
linear-system-solving algorithm. Roughly speaking, κ characterizes the stability of the
solution x with respect to changes in the given vector b. Further important parameters
to be taken into account are the sparseness d (i.e., the maximum number of nonzero
entries per row/column in the matrix A), the size N of the square matrix A, and the
desired precision of the calculation represented by error bound ε.

In [3] it was shown that the number of operations required for QLSA scales as

Õ
(
κ2d2 log(N )/ε

)
, (1)

while the best known classical linear-system-solving algorithm based on conjugate
gradient method [20,21] has the run-time complexity

O (Ndκ log(1/ε)) , (2)

where, compared to O(·), the Õ(·) notation suppresses more slowly growing terms.
Thus, it was concluded in [3] that, in order to achieve an exponential speedup of QLSA
over classical algorithms, κ must scale, in the worst case, as poly log(N ) with the size
of the N × N matrix A.

The original HHL-QLSA [3] has the drawback to be nondeterministic, because
accessing information about the solution is conditional on recording outcome 1 of
a measurement on an auxiliary single-qubit, thus in the worst case requiring many
iterations until a successful measurement event is observed. To substantially increase
the success probability for this measurement event indicating that the inversion A−1

has been successfully performed and the solution |x〉 (up to normalization) has been
successfully computed (i.e., probability that the postselection succeeds), HHL-QLSA
includes a procedure based onquantumamplitude amplification (QAA) [22]. However,
in order to determine the normalization factor of the actual solution vector |x〉, the
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success probability of obtaining 1 must be “measured,” requiring many runs to acquire
sufficient statistics. In addition, because access to the entire solution |x〉 is impractical
as it is a vector in an exponentially large space, HHL suggested that the information
about the solution can be extracted by calculating the expectation value 〈x | M̂ |x〉 of an
arbitrary quantum-mechanical operator M̂ , corresponding to a quadratic form xT Mx
with some M ∈ C

N×N representing the feature of x that one wishes to evaluate. But
such a solution readout is generally also a nontrivial task and typically would require
the whole algorithm to be repeated numerous times.

In a subsequent work, Ambainis [4] proposed using variable-time quantum ampli-
tude amplification to improve the run-time of HHL algorithm from Õ(κ2 log N ) to
Õ(κ log3 κ log N ), thus achieving an almost optimal dependence on the condition
number κ .5 However, the improvement of the dependence of the run-time on κ was
thereby attained at the cost of substantially worsening its scaling in the error bound ε.

The recent QLSA analysis by Clader, Jacobs and Sprouse (CJS) [5] incorporates
useful generalizations to make the original algorithm more practical. In particular, a
general method is provided for efficient preparation of the generic quantum state |b〉
(as well as of |R〉). Moreover, CJS proposed a deterministic version of the algorithm
by removing the postselection step and demonstrating a resolution to the read-out
problem discussed above. This was achieved by introducing several additional single-
qubit ancillae and using the quantum amplitude estimation (QAE) technique [22] to
deterministically estimate the values of the success probabilities of certain ancillae
measurement events in terms of which the overlap |〈R |x〉|2 of the solution |x〉 with
any generic state |R〉 can be expressed after performing a controlled swap operation
between the registers storing these vectors. Finally, CJS also addressed the condition-
number scaling problem and showed how by incorporating matrix preconditioning
into QLSA, the class of problems that can be solved with exponential speedup can be
expanded to worse than κ ∼ poly log(N )-conditioned matrices. With these generaliza-
tions aiming at improving the efficiency and practicality of the algorithm, CJS-QLSA
was shown to have the run-time complexity6

Õ
(
κd7 log(N )/ε2

)
, (3)

5 In [3] it was also shown that the run-time cannot be made poly log(κ), unless BQP = PSPACE, which,
while not yet disproven, is highly unlikely to be true in computational complexity theory. Hence, because
poly log(κ) = o(κε) for all ε > 0, QLSA’s run-time is asymptotically also bounded from below as given
by complexity Ω(κ1−o(1)).
6 But note that, while the CJS run-time complexity [Eq. (3)] scales quadratically better in the condition
number κ than the original HHL complexity [Eq. (1)], the former scales quadratically worse than the latter
with respect to the parameters d and ε. However, the two run-time complexities should not be directly
compared, because the corresponding QLS algorithms achieve somewhat different tasks. Besides, it is our
opinion that the linear scaling of CJS run-time complexity in κ is based on an overoptimistic assumption
in its derivation. Indeed, while CJS removed the QAA step from the HHL algorithm, they replaced it with
the nearly equivalent QAE step, which we believe has a similar resource requirement as the former, and
thus may require up to O(κ/ε) iterations to ensure successful amplitude estimation within multiplicative
accuracy ε, in addition to the factor O(κ/ε) resulting from the totally independent QPEA step. See also our
remark in footnote 11.
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which is quadratically better in κ than in the original HHL-QLSA. To demonstrate
their method, CJS applied QLSA to computing the electromagnetic scattering cross
section of an arbitrary object, using the finite-element method (FEM) to transform
Maxwell’s equations into a sparse linear system [23,24].

1.4 What makes our approach differ from previous work?

In the previous analyses of QLSA [3–5], resource estimation was performed using
“big-O” complexity analysis, which means that it only addressed theasymptotic behav-
ior of the run-time of QLSA, with reference to a similar big-O characterization for
the best known classical linear-system-solving algorithm. Big-O complexity analysis
is a fundamental technique that is widely used in computer science to classify algo-
rithms; indeed, it represents the core characterization of the most significant features
of an algorithm, both in classical and quantum computing. This technique is critical to
understanding how the use of resources and time grows as the inputs to an algorithm
grow. It is particularly useful for comparing algorithms in a way where details, such as
start-up costs, do not eclipse the costs that become important for the larger problems
where resource usage typically matters. However, this analysis assumes that those
constant costs are dwarfed by the asymptotic costs for problems of interest as has typ-
ically proven true for practical classical algorithms. In QCS, we set out to additionally
learn (1) whether this assumption holds true for quantum algorithms, and (2) what the
actual resource requirements would be as part of starting to understand what would
be required for a quantum computer to be a practical quantum computer.

In spite of its key relevance for analyzing algorithmic efficiency, a big-O analysis
is not designed to provide a detailed accounting of the resources required for any
specific problem size. That is not its purpose, rather it is focused on determining the
asymptotic leading-order behavior of a function, and does not account for the constant
factors multiplying the various terms in the function. In contrast, in our case we are
interested, for a specific problem input size, in detailed information on such aspects as
the number of qubits required, the size of the quantum circuit, and run-time required
for the algorithm. These aspects, in turn, are critical to evaluating the practicality of
actually implementing the algorithm on a quantum computer.

Thus, in this work we report a detailed analysis of the number of qubits required,
the quantity of each type of elementary quantum logic gate, the width and depth of the
quantum circuit, and the number of logical timesteps needed to run the algorithm—
all for a realistic set of parameters κ, d, N , and ε. Such a fine-grained approach
to a concrete resource estimation may help to identify the actual bottlenecks in the
computation, which algorithm optimizations should particularly focus on. Note that
this is similar to the practice in classical computing, where we would typically use
techniques like run-time profiling to determine algorithmic bottlenecks for the purpose
of program optimization. It goes without much saying that the big-O analyses in [3–5]
and the more fine-grained LRE analysis approach presented here are both valuable
and complement each other.

Two more differences are worth mentioning. Unlike in previous analyses of
QLSA, our LRE analysis particularly also includes resource requirements of ora-
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cle implementations. Finally, this work leverages the use of novel universal automated
circuit-generation and resource-counting tools (e.g., Quipper) that are currently being
developed for resource-efficient implementations of quantum computation. As such
our work advances efforts and techniques toward practical implementations of QLSA
and other quantum algorithms.

1.5 Main results of this work

We find that surprisingly large logical gate counts and circuit depth would be required
for QLSA to exceed the performance of a classical linear-system-solving algorithm.
Our estimates pertain to the specific problem size N = 332,020,680. This explicit
example problem size has been chosen such that QLSA and the best known classi-
cal linear-system-solving method are expected to require roughly the same number
of operations to solve the problem, assuming equal algorithmic precisions. This is
obtained by comparing the corresponding big-O estimates, Eqs. (3) and (2). Thus,
beyond this “cross-over point” the quantum algorithm is expected to run faster than
any classical linear-system-solving algorithm. Assuming an algorithmic accuracy
ε = 0.01, gate counts and circuit depth of order 1029 or 1025 are found, respectively,
depending on whether we take the resource requirements for oracle implementations
into account or not, while the numbers of qubits used simultaneously amount to 108 or
340, respectively. These numbers are several orders of magnitude larger than we had
initially expected according to the big-O analyses in [3,5], indicating that the constant
factors (which are not included in the asymptotic big-O estimates) must be large. This
indicates that more research is needed about whether asymptotic analysis needs to be
supplemented, particularly in comparing quantum to classical algorithms.

To get an idea of our results’ implications, we note that the practicality of imple-
menting a quantum algorithm can strongly be affected by the number of qubits and
quantum gates required. For example, the algorithm’s run-time crucially depends on
the circuit depth. With circuit depth on the order of 1025, and with gate operation times
of 1 ns (as an example), the computation would take approx. 3 × 108 years. And such
large resource estimates arise for the solely logical part of the algorithm implementa-
tion, i.e., even assuming perfect gate performance and ignoring the additional physical
overhead costs (associated with QEC/QC to achieve fault-tolerance and specifics of
quantum-computer technology). In practice, the full physical resource estimates typ-
ically will be even larger by several orders of magnitude.

One of the main purposes of this paper is to demonstrate how the impressively large
LRE numbers arise and to explain the actual bottlenecks in the computation. We find
that the dominant resource-consuming part of QLSA is Hamiltonian Simulation and
the accompanying quantum-circuit implementations of the oracle queries associated
with Hamiltonian matrix A. Indeed, to be able to accurately implement each run of the
Hamiltonian evolution as part of QPEA, one requires a large time-splitting factor of
order 1012 when utilizing the Suzuki-Higher-Order Integrator method including Trot-
terization [8,25,26]. And each single timestep involves numerous oracle queries for
matrix A, where each query’s quantum-circuit implementation yields a further factor
of several orders of magnitude for gate count. Hence, our LRE results suggest that
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the resource requirements of QLSA are to a large extent dominated by the numerous
oracle A queries and their associated resource demands. Finally, our results also reveal
lack of parallelism; the algorithmic structure of QLSA is such that most gates must
be performed successively rather than in parallel.

Our LRE results are intended to serve as a baseline for research into the reduc-
tion of the logical resource requirements of QLSA. Indeed, we anticipate that our
estimates may prove to be conservative as more efficient quantum-computation tech-
niques become available. However, these estimates indicate that, for QLSA to become
practical (i.e., its implementation in real world to be viable for relevant problem sizes),
a resource reduction by many orders of magnitude is necessary (as is, e.g., suggested
by ∼3×108 years for the optimistic estimate of the run-time given current knowledge).

1.6 Outline of the paper

This paper is organized as follows. In Sect. 2 we identify the resources to be estimated
and expand on our goals and techniques used. In Sect. 3 we describe the structure
of QLSA and elaborate on its coarse-grained profiling with respect to resources it
consumes. Section 4 demonstrates our quantum implementation of oracles and the
corresponding automated resource estimation using our quantum programming lan-
guage Quipper (and compiler). Our LRE results are presented in Sect. 5 and further
reviewed in Sect. 6. We conclude with a brief summary and discussion in Sect. 7.

2 Resource estimation

As mentioned previously, the main goal of this work is to find concrete logical resource
estimates of QLSA as accurately as possible, for a problem size for which the quantum
algorithm and the best known classical linear-system-solving algorithm are expected to
require a similar run-time order of magnitude, and beyond which the former provides
an exponential speedup over the latter. An approximation for this specific “cross-
over point” problem size can be derived by comparing the coarse run-time big-O
estimates of the classical and quantum algorithms, provided, respectively, by Eqs. (2)
and (3), assuming the same algorithmic computation precision ε, and the same κ and d
values.7 For instance, choosing the accuracy ε = 0.01 and presuming d ≈ 10, yields
the approximate value Ncross ≈ 4×107 for the cross-over point. The specified example
problem that has been subject to our LRE analysis has the somewhat larger size N =
332,020,680, while the other relevant parameters have the values κ = 104, d = 7,
and ε = 10−2.

Logical resources to be tracked are the overall number of qubits (whereby we track
data qubits and ancilla qubits separately), circuit width (i.e., the max. number of qubits
in use at a time, which also corresponds to the max. number of “wires” in algorithm’s
circuit), circuit depth (i.e., the total number of logical steps specifying the length of
the longest path through the algorithm’s circuit assuming maximum parallelism), the

7 Note that the run-time big-O estimates of the classical [Eq. (2)] and the quantum [Eq. (3)] algorithm both
scale linearly with κ .
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number of elementary (1- and 2-qubit) gate operations (thereby tracking the quantity
of each particular type of gate operation), and “T-depth” (i.e., the total number of logical
steps containing at least one T -gate operation, meaning the total number of T -gate
operations that cannot be performed in parallel but must be implemented successively
in series). While we are not considering the costs of QEC in this paper, it is nevertheless
important to know that, when QEC is considered, the T gate, as a nontransversal gate,
has a much higher per-gate resource cost than the transversal gates X,Y, Z , H, S, and
CNOT, and thus contributes more to algorithm resources relative to the latter. It is for
this reason that we call out the T -depth separately.

Note that the analysis in this paper involves only the abstract algorithmic-level
logical resources; i.e., we ignore all additional costs that must be taken into account
when implementing the algorithm on a fault-tolerant real-world quantum computer,
namely resources associated with techniques to avoid, mitigate, or correct errors which
occur due to decoherence and noise. More specifically, here we omit the overhead
resource costs associated with various QC and QEC strategies. We furthermore assume
no connectivity constraints, thus ignoring resources needed to establish fault-tolerant
quantum communication channels between two distant (physically remotely located)
qubits which need to interact in order to implement a two-qubit gate such as a CNOT
in the course of the algorithm implementation. Besides being an indispensable first
step toward a complete resource analysis of any quantum algorithm, focusing on the
algorithmic-level resources allows setting a lower limit on resource demands which
is independent of the details of QEC approaches and physical implementations, such
as qubit technology.

To be able to represent large circuits and determine estimates of their resource
requirements, we take advantage of repetitive patterns and the hierarchical nature
of circuit decomposition down to elementary quantum gates and its associated
coarse-grained profiling of logical resources. For example, we generate “templates”
representing circuit blocks that are reused frequently, again and again. These tem-
plates capture both the quantum circuits of the corresponding algorithmic building
blocks (subroutines or multiqubit gates) and their associated resource counts. As an
example, it is useful to have a template for Quantum Fourier Transform (or its inverse)
acting on n qubits; for other templates, see Fig. 2 and “Appendix 2.” The cost of a
subroutine may thereby be measured in terms of the number of specified gates, data
qubits, ancilla uses, etc., or/and in addition in terms of calls of lower-level subsubrou-
tines and their associated costs. Furthermore, the cost may vary depending on input
argument value to the subroutine. Many of the intermediate steps represent multiqubit
gates that are frequently used within the overall circuit. Such intermediate represen-
tations can therefore also improve the efficiency of data representation. Accordingly,
each higher-level circuit block is decomposed in a hierarchical fashion, in a series
of steps, down to elementary gates from the standard set {X,Y, Z , H, S, T, CNOT},
using the decomposition rules for circuit templates (see “Appendices 1 and 2” for
details).

Indeed, QLSA works with many repetitive patterns of quantum circuits involving
numerous iterative operations, repeated a large number of times. Repetitive pat-
terns arise from the well-established techniques such as Quantum Phase Estimation,
Quantum Amplitude Estimation, and Hamiltonian Simulation based on Suzuki-
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Higher-Order Integrator decomposition and Trotterization. These techniques involve
large iterative factors, thus contributing many orders of magnitude to resource require-
ments, in particular to the circuit depth. Indeed, these large iterative factors explain
why we get such large gate counts and circuit depth.

It is useful to differentiate between the resources associated with the “bare
algorithm” excluding oracle implementations and those which also include the imple-
mentation of oracles. In order to perform the LRE, we chose an approach which
combines manual analysis for the bare algorithm ignoring the cost of oracle imple-
mentations (see Sect. 3) with automated resource estimates for oracles generated via
the Quipper programming language and compiler (see Sect. 4). Whereas a manual
LRE analysis was feasible for the bare algorithm thus allowing a better understanding
of its structural “profiling” as well as checking the reliability of the automated resource
counts, it was not feasible (or too cumbersome) for the oracle implementations. Hence,
an automated LRE was inevitable for the latter. The Quipper programming language
is thereby demonstrated as a universal automated resource estimation tool.

3 Quantum linear-system algorithm and its profiling

3.1 General remarks

QLSA computes the solution of a system of linear equations, Ax = b, where A is a
Hermitian N ×N matrix over C and x, b ∈ C

N . For this purpose, the (classical) linear
system is converted into the corresponding quantum-theoretic analogue, A |x〉 = |b〉,
where |x〉 , |b〉 are vectors in a Hilbert space H = (C2)⊗n corresponding to n =
�log2 N� qubits and A is a Hermitian operator on H . Note that, if A is not Hermitian,
we can define Ā := ( 0 A

A† 0

)
, b̄ := (b, 0)T , and x̄ := (0, x)T , and restate the problem

as Āx̄ = b̄ with a Hermitian 2N × 2N matrix Ā and x̄, b̄ ∈ C
2N .

The basic idea of QLSA has been outlined in the Introduction. In what follows,
we illustrate the structure of QLSA including the recently proposed generalization [5]
in more detail. In particular, we expand on its coarse-grained profiling with respect
to resources it consumes. Our focus in this section is the implementation of the bare
algorithm, which accounts for oracles only in terms of the number of times they are
queried. The actual quantum-circuit implementation of oracles is presented in Sect. 4.
Our overall LRE results are summarized in Sect. 5.

3.2 Problem specification

We analyze a concrete example which was demonstrated as an important QLSA appli-
cation of high practical relevance in [5]: the linear system Ax = b arising from solving
Maxwell’s equations to determine the electromagnetic scattering cross section of a
specified target object via the Finite-Element Method (FEM) [23]. Applied in sci-
ences and engineering as a numerical technique for finding approximate solutions to
boundary-value problems for differential equations, FEM often yields linear systems
Ax = b with highly sparse matrices—a necessary condition for QLSA. The FEM
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Fig. 1 A 2D toy-problem: scattering of a linearly polarized plane electromagnetic wave off a metallic object
with a 2-dimensional scattering geometry. A simple square was chosen for our example problem, with edges
of length L = 2λ aligned with the Cartesian x–y plane axes, and an incident field with wavelength λ and
wave vector k = (2π/λ)ex propagating toward the square. When interacting with the metallic object the
electromagnetic wave scatters off into all directions. The task consists in computing the far-field radar cross
section using the FEM approach to solve Maxwell’s equations

approach to solving Maxwell’s equations for scattering of electromagnetic waves off
an object, as demonstrated in [5,23,24], introduces a discretization by breaking up the
computational domain into small volume elements and applying boundary conditions
at neighboring elements. Using finite-element edge basis vectors [24], the system of
differential Maxwell’s equations is thereby transformed into a sparse linear system.
The matrix A and vector b comprise information about the scattering object; they
can be derived, and efficiently computed, from a functional that depends only on the
discretization chosen and the boundary conditions which account for the scattering
geometry. For details, see [5] and [23,24] including its supplementary material.

Within the scope of the PLATO project, we analyzed a 2D toy-problem given by
scattering of a linearly polarized plane electromagnetic wave E(x, y) = E0 p exp[i(k ·
r − ωt)], with magnitude E0, frequency ω, wave vector k = k(cos θex + sin θey),
and polarization unit vector p = ez × k/k, while r = xex + yey is the position,
off a metallic object with a 2-dimensional scattering geometry. The scattering region
can have any arbitrary design. A simple square shape was specified for our example
problem, whose edges are parallel (or perpendicular) to the Cartesian x-y plane axes,
and an incident field propagating in x-direction (θ = 0) toward the square, as illustrated
in Fig. 1. The receiver polarization, needed to calculate the far-field radar cross section
of the scattered waves, has been assumed to be parallel to the polarization of the incident
field.

For the sake of simplicity, for FEM analysis we used a two-dimensional uniform
finite-element mesh with square finite elements. Note that QLSA requires the matrix
elements to be efficiently computable, a constraint which restricts the class of FEM
meshes that can be employed. As a result of the local nature of the finite-element
expansion of the scattering problem, the corresponding linear system has a highly
sparse matrix A. For meshes with rectangular finite elements, the maximum number
of nonzero elements in each row of A (i.e., sparseness) is d = 7. Moreover, for regular
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grids, such as used for our analysis, we obtain a banded sparse matrix A, with a total
of Nb = 9 bands.

The actual instructions for computing the elements of the linear system’s matrix
A and vector b, as well as of the vector whose overlap with the solution x is used to
calculate the far-field radar cross section (see Sect. 3.3), are specified in our Quipper
code for QLSA, see [18,19]. The metallic scattering region is thereby given in terms
of an array of scatteringnodes denoted as “scatteringnodes.” Here we briefly
summarize the FEM dimensions and the values of all other system parameters that are
necessary to reproduce the analysis. For all other details, we refer the reader to our
QLSA’s Quipper code and its documentation in [18,19].

The total number of FEM vertices in x and y dimensions were nx = 12,885 and
ny = 12,885, respectively, yielding N = nx (ny − 1) + ny(nx − 1) = 332,020,680
for the total number of FEM edges, which thus determines the number of edge basis
vectors, and hence also the size of the linear system, and in particular the size of the
N × N matrix A. The lengths of FEM edges in x and y dimensions were lx = 0.1m
and ly = 0.1m, respectively. The analyzed 2D scattering object was a square with
edge length L = 2λ, which in our analysis was placed right in the center of the
FEM grid. In our Quipper code for QLSA [18,19] it is represented by the array
“scatteringnodes” containing the corner vertices of the scattering region. The
dimensions of the scattering region can also be expressed in terms of the number of
vertices in x and y directions; using λ = 1m (see below), the scatterer was given
by a 200 × 200 square area of vertices. The incident and scattered field parameters
were specified as follows. The incident field amplitude, wave number and angle of
incidence were set E0 = 1.0 V/m, k = 2π m−1 (implying wavelength λ = 1m)
and θ = 0, respectively. The receiver (for scattered field detection) was assumed
to have the same polarization direction as the incident field and located along the
x-axis (at angle φ = 0). The task of QLSA is to compute the far-field radar cross
section with a precision specified in terms of the multiplicative error bound ε =
0.01.

Finally, we remark that our example analysis does not include matrix precondition-
ing that was also proposed in [5] to expand the number of problems that can achieve
exponential speedup over classical linear-system algorithms. With no precondition-
ing, condition numbers of the linear-system matrices representing a finite-element
discretization of a boundary-value problem typically scale worse than poly-log(N ),
which would be necessary to attain a quantum advantage over classical algorithms.
Indeed, as was rigorously proven in [27,28], FEM matrix condition numbers are gen-
erally bounded from above by O(N 2/n) for n ≥ 3 and by Õ(N ) for n = 2, with n
the number of dimensions of the problem. For regular meshes, the bound O(N 2/n) is
valid for all n ≥ 2. In our 2D toy-problem, n = 2 and the mesh is regular, implying
that the condition number is bounded by O(N ). However, we used the much smaller
value κ = 104 from IARPA GFI to perform our LRE. This “guess” can be motivated
by an estimate for the lower bound of κ that we obtained numerically.8

8 The condition number of a matrix A is defined by κp(A) = ‖A‖p‖A−1‖p , where ‖ · ‖p denotes the
matrix norm that is used to induce a metric. Hence, the condition number is also a function of the norm
which is used. The 1-norm ‖ · ‖1 and 2-norm ‖ · ‖2 are commonly used to define the condition number,
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3.3 QLSA: abstract description

The generalized QLSA [5] is based on two well-known quantum algorithm techniques:
(1)QuantumPhase Estimation Algorithm (QPEA) [6,7], which usesQuantumFourier
Transform (QFT) [1] as well as Hamiltonian Simulation (HS) [8] as quantum compu-
tational primitives, and (2) Quantum Amplitude Estimation Algorithm (QAEA) [22],
which uses Grover’s search-algorithm primitive. The purpose of QPEA, as part of
QLSA, is to gain information about the eigenvalues of the matrix A and move them
into a quantum register. The purpose of the QAEA procedure is to avoid the use of
nondeterministic (nonunitary) measurement and postselection processes by estimat-
ing the quantum amplitudes of the desired parts of quantum states, which occur as
superpositions of a “good” part and a “bad” part.9

QLSA requires several quantum registers of various sizes, which depend on the
problem size N and/or the precision ε to which the solution is to be computed. We
denote the j th quantum register by R j , its size by n j , and the quantum state cor-
responding to register R j by |ψ〉 j (where ψ is a label for the state). The following
Table 1 lists all logical qubit registers that are employed by QLSA, specified by their
size as well as purpose. The register size values chosen (provided in GFI within the
scope of IARPA QCS program) correspond to the problem size N = 332,020,680
and algorithm precision ε = 0.01.

For example, the choice n0 = �log2 M� = 14 for the size of the QAE control
register can be explained as follows. According to the error analysis of Theorem 12
in [22], using QAEA the modulus squared 0 ≤ α ≤ 1 of a quantum amplitude can be
estimated within ±εα of its correct value10 with a probability at least 8/π2 for k = 1
and with a probability greater than 1 − 1

2(k−1)
for k ≥ 2, if the QAE control register’s

Footnote 8 continued
and obviously κ1 �= κ2 in general. But due to ‖A‖1/

√
N ≤ ‖A‖2 ≤ √

N‖A‖1 for N × N matrices A,
knowing the condition number for either of these two norms allows to bound the other. Furthermore, if A
is normal (i.e., diagonalizable and has a spectral decomposition), then κ2 = |λmax|/|λmin|, where λmax and
λmin are the maximum and minimum eigenvalues of A. For a regular mesh of size h, κ2 generally scales as
O(h−2) [27–29]. Hence, because the number of degrees of freedom scales as N = O(h−n), κ2 is bounded
by O(N2/n) (see [27,28] for rigorous proof). In our toy-problem, h ≈ 0.1 whereas N ≈ 3 × 108, thus it is
not evident whether a guess for κ2 should be based on O(h−2) or O(N ), as the two bounds indeed differ
by many orders of magnitude. Besides, as our LRE analysis aims at achieving an optimistic (as opposed
to an overly conservative) resource count for QLSA, it is more sensible to use the lower bound rather than
the upper bound as a guess for κ2. Hence, we attempted to find an actual lower bound for κ2 numerically.
To this end, because an estimate for κ1 can be obtained with much less computational expense than for κ2
for a given matrix of a very large size, we used MATLAB and extrapolation techniques to attain a rough
approximation of κ1 from the given code specifying the matrix of our toy-problem. We found a value
κ1 ≈ 107. This allowed us to infer a rough estimate for the lower bound for κ2. Indeed, using the above
relation between the matrix norms ‖·‖1 and ‖·‖2 for a square matrix and realizing that both ‖A‖1 and ‖A‖2
have values of order O(1), we may conclude that κ2 ≥ κ1/

√
N × O(1), which is of order approximately

103 − 104.
9 Let |ψ〉 = ∣∣ψgood

〉 + ∣∣ψjunk

〉
be a superposition of the good and the junk components of a (normalized)

quantum state |ψ〉. The goal of QAEA [22] is to estimate α := 〈
ψgood

∣
∣ ψgood〉, i.e., the modulus squared of

the amplitude of the desired good component.
10 Note that we hereby use a multiplicative error bound to represent the desired precision of QAEA’s
computation.
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Hilbert space dimension M is chosen such that (see [22])

|α̃ − α| ≤ 2kπ
√

α(1 − α)

M
+ k2π2

M2 ≤ εα, (4)

where α̃ (0 ≤ α̃ ≤ 1) denotes the output of QAEA. Moreover, if α = 0 then α̃ = 0
with certainty, and if α = 1 and M is even, then α̃ = 1 with certainty. Corollary (4)
can be viewed as a requirement used to determine the necessary value of M , yielding
(for α �= 0)

M ≥
⌈

kπ

ε
√

α

(√
1 − α + √

1 − α + ε
)⌉

. (5)

The RHS of this expression is strictly decreasing, tending to kπ√
εα

as α becomes close

to 1, whereas for α � 1 we have M ≥ � kπ
ε
√

α
[(1 − α

2 ) + (1 − α−ε
2 )]� = � 2kπ

ε
√

α
�.

Hence, we take M ≥ � 2kπ
ε
√

α
�, so as to account for all possibilities. Moreover, we want

QAEA to succeed with a probability close to 1, allowing failure only with a small
error probability ℘err. According to Theorem 12 in [22], this indeed can be achieved
when 1 − 1

2(k−1)
≥ 1 − ℘err, i.e., for k ≥ �1 + 1

2℘err
�, and thus for

M ≥
⌈

π

ε
√

α

(
2 + 1

℘err

)⌉
. (6)

While we may assume any value for the failure probability, for the sake of simplicity
we here choose ℘err = ε, which is also the desired precision of QLSA. Unless α is
very small, this justifies our choice M = 2�log2(1/ε2)�. A similar requirement for the
value of M was also proposed in the supplementary material of [5]. In our example
computation, ε = 0.01, and so we have n0 = 14. Note that small α values require an
even larger value for the QAE control register size in order to ensure that the estimate α̃

is within ±εα of the actual correct value with a success probability greater than 1 − ε.
As a first step, QLSA prepares the known quantum state |b〉2 = ∑N−1

j=0 b j | j〉2 in a
multiqubit quantum data register R2 consisting of n2 = �log2(2N )� qubits. This step
requires numerous queries (see details below) of an oracle for vector b. Moreover, as
pointed out in [5], efficient quantum state preparation of arbitrary states is in general
not always possible. However, the procedure proposed in [5] can efficiently generate
the state

|bT 〉2,6 = cos(φb)

∣∣∣b̃
〉

2
⊗ |0〉6 + sin(φb) |b〉2 ⊗ |1〉6 , (7)

where the multiqubit data register R2 contains (as a quantum superposition) the desired
arbitrary state |b〉 entangled with a 1 in an auxiliary single-qubit register R6, as well

as a garbage state
∣∣∣b̃

〉
(denoted by the tilde) entangled with a 0 in register R6. To gen-

erate the state (7), in addition to data registers R2 and single-qubit auxiliary register
R6, two further, computational registers R4 and R5 are employed, each consisting
of n4 auxiliary qubits. The latter registers are used to store the magnitude and phase
components, which in [5] are denoted as b j and φ j , respectively, that are computed
each time the oracle b is queried. Which component ( j = 1, 2, 3, . . . ) to query is
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Table 1 QLSA logical qubit registers specified by their size and purpose

Qubit register Size Purpose

R0 n0 = �log2 M� = 14 QAE control register

R1 n1 = �log2 T � = 24 HS control register

R2, R3 n2 = n3 = �log2(2N )� = 30 Quantum data register

R4, R5 n4 = n5 = 65 Computational register

R6, . . . , R10 1 Single-qubit ancilla

R11 n1 = �log2 T � = 24 Auxiliary register for IntegerInverse

R12 n2 = �log2(2N )� = 30 Auxiliary register for HS subroutines

The parameters M and T characterize the precision of the QAE and QPE procedure, respectively. According

to the error analysis in [22], choosing M = 2�log2(1/ε2)� ensures that the modulus squared α of a quantum
amplitude can be estimated by QAEA with a probability greater than 1 − ε within ±εα of its correct value,
with ε specifying the desired precision, which in our analysis is chosen to be 0.01. Registers R2 and R3 are
used for storing and processing the quantum data such as |b〉 , |x〉, and |R〉. Computational registers R4 and
R5 are used to hold signed integer values, where the last bit is the sign bit, with the convention that 0 stands
for a positive number and 1 for a negative number, respectively. Several single-qubit auxiliary (ancilla)
registers R6 . . . , R10 are employed throughout the algorithm. In addition, an n1-qubit ancilla register R11
is needed to store the inverse values λ−1

j of the eigenvalues of matrix A, and a further n2-qubit ancilla
register R12 must be employed as part of HS subroutines

thereby controlled by data register R2. The quantum circuit for state preparation [Eq.
(7)] is shown in Sect. 3.4.3, Fig. 13. Following the oracle b queries, a controlled-phase
gate is applied to the auxiliary single-qubit register R6, controlled by the calculated
value of the phase carried by quantum register R5; in addition, the single-qubit reg-
ister R6 is rotated conditioned on the calculated value of the amplitude carried by
quantum register R4. Uncomputing registers R4 and R5 involves further oracle b

calls, leaving registers R2 and R6 in the state (7) with sin2 φb = C2
b

2N

∑2N−1
j=0 b2

j and

cos2 φb = 1
2N

∑2N−1
j=0

(
1 − C2

bb
2
j

)
, where Cb = 1/max(b j ), cf. [5].

As a second step, QPEA is employed to acquire information about the eigenvalues
λ j of A and store them in a multiqubit control register R1 consisting of n1 = �log2 T �
qubits, where the parameter T characterizes the precision of the QPEA subroutine and
is specified in Table 1. This high-level step consists of several hierarchy levels of lower-
level subroutines decomposing it down to a fine-grained structure involving only ele-
mentary gates. More specifically, controlled Hamiltonian evolution

∑T−1
τ=0 (|τ 〉 〈τ |)1⊗[

exp(−i Aτ t0/T )
]

2 ⊗ 16 with A as the Hamiltonian is applied to quantum state
|φ〉1 ⊗ |bT 〉2,6. Here, similar to the presentation in [3], a time constant t0 such that
t = τ t0/T ≤ t0 has been introduced for the purpose of minimizing the error for a given
condition number κ and matrix norm ‖A‖. As shown in [3], for the QPEA to be accurate
up to error O(ε), we must have t0 ∼ O(κ/ε) if ‖A‖ ∼ O(1). Accordingly, we define
t0 := ‖A‖κ/ε. The application of exp(−i Aτ t0/T ) on the data register R2 is thereby
controlled by n1-qubit control register R1 prepared in state |φ〉1 = H⊗n1 |0〉⊗n1 =

1√
T

∑T−1
τ=0 |τ 〉1 (with H denoting the Hadamard gate). Controlled Hamiltonian evo-

lution is subsequently followed by a QFT of register R1 to complete QPEA.
The Hamiltonian quantum state evolution is accomplished by multiquerying an ora-

cle for matrix A and HS techniques [8], which particularly include the decomposition
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of the Hamiltonian matrix into a sum

A =
m∑

j=1

A j (8)

of submatrices, each of which ought to be 1-sparse, as well as the Suzuki-Higher-Order
Integrator method and Trotterization [25,26]. In the general case, an arbitrary sparse
matrix A with sparseness d can be decomposed into m = 6d2 1-sparse matrices A j

using the graph-coloring method, see [8]. However, a much simpler decomposition
is possible for the toy-problem example considered in this work. Indeed, a uniform
finite-element grid has been used to analyze the problem specified in the GFI. For
uniform finite-element grids the matrix A is banded; furthermore, the number and
location of the bands is given by the geometry of the scattering problem. Hence, to
decompose the Hamiltonian matrix [Eq. (8)], the simplest way do so is to break it up
by band into m = Nb submatrices, with A j denoting the j th nonzero band of matrix
A, and Nb denoting the overall number of its bands. For the square finite-element grid
used in the analyzed example, Nb = 9. Moreover, because the locations of the bands
are known, this decomposition method requires only time of order O(1). Having the
matrix decomposition (8), it is then necessary to implement the application of each
individual one-sparse Hamiltonian from this decomposition to the actual quantum
state of the data register R2. This “Hamiltonian circuit” can be derived by a procedure
resembling the techniques of quantum-random-walk algorithm [30] and is discussed
in more detail in Sect. 3.4.5.

After QPEA has been accomplished including the QFT of register R1, the joined
quantum state of registers R1, R2 and R6 becomes, approximately,

|Ψ 〉1,2,6 =
N∑

j=1

(
cos(φb)β̃ j

∣∣∣λ̃ j

〉

1
⊗ ∣∣u j

〉
2 ⊗ |0〉6

+ sin(φb)β j
∣∣λ j

〉
1 ⊗ ∣∣u j

〉
2 ⊗ |1〉6

)
, (9)

where λ j and
∣∣u j

〉
are the eigenvalues and eigenvectors of A, respectively, and |b〉2 =

∑N
j=1 β j

∣∣u j
〉
2 and

∣∣∣b̃
〉

2
= ∑N

j=1 β̃ j
∣∣u j

〉
2 are the expansions of quantum states |b〉2

and
∣∣
∣b̃

〉

2
, respectively, in terms of these eigenvectors, and λ̃ j := λ j t0/2π .

As a third step, a further single-qubit ancilla in register R7 is employed, initially
prepared in state |0〉7 and then rotated by an angle inversely proportional to the value
stored in register R1, yielding the overall state:

|Ψ 〉1,2,6,7 =
N∑

j=1

(
cos(φb)β̃ j

∣∣∣λ̃ j

〉

1
⊗ ∣∣u j

〉
2 ⊗ |0〉6

+ sin(φb)β j

∣∣∣λ̃ j

〉

1
⊗ ∣∣u j

〉
2 ⊗ |1〉6

)

⊗
(√

1 − C2

λ2
j

|0〉7 + C

λ j
|1〉7

)

, (10)
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where C := 1/κ is chosen such that C/λ j < 1 for all j , because of κ = λmax/λmin.

Finally, the eigenvalues stored in register R1 are uncomputed, by the inverse QFT of
R1, inverse Hamiltonian evolution on R2 and H⊗n1 on R1, leaving registers R1, R2, R6,
and R7 in the state

|Ψ 〉1,2,6,7 → |0〉1 ⊗
N∑

j=1

(
cos(φb)β̃ j

∣∣u j
〉
2 ⊗ |0〉6

+ sin(φb)β j
∣∣u j

〉
2 ⊗ |1〉6

)

⊗
(√

1 − C2

λ2
j

|0〉7 + C

λ j
|1〉7

)

. (11)

Ignoring register R1 and collecting all terms that are not entangled with the term
|1〉6 ⊗ |1〉7 into a “garbage state” |Φ0〉2,6,7, the common quantum state of registers
R2, R6, and R7 can be written as, see [5]:

|Ψ 〉2,6,7 = (1 − sin2(φb) sin2(φx ))
1/2 |Φ0〉2,6,7

+ sin(φb) sin(φx ) |x〉2 ⊗ |1〉6 ⊗ |1〉7 , (12)

where

|x〉2 = 1

sin φx

N∑

j=1

Cβ j

λ j

∣∣u j
〉
2 (13)

is the normalized solution to A |x〉 = |b〉 stored in quantum data register R2 and
sin2 φx := C2 ∑N

j=1 |β j |2/λ2
j . Note that the solution vector [Eq. (13)] in register R2

is correlated with the value 1 in the auxiliary register R7. Hence, if register R7 is
measured and the value 1 is found, we know with certainty that the desired solution
of the problem is stored in the quantum amplitudes of the quantum state of register
R2, which can then either be revealed by an ensemble measurement (a statistical
process requiring the whole procedure to be run many times) or useful information
can also be obtained by computing its overlap |〈R |x〉|2 with a particular (known)
state |R〉 (corresponding to a specific vector R ∈ C

N ) that has been prepared in a
separate quantum register. To avoid nonunitary postselection processes, CJS-QLSA
[5] employs QAEA.11

With respect to the particular application example that has been analyzed here,
namely, solving Maxwell’s equations for a scattering problem using the FEM tech-
nique, we are interested in the radar scattering cross section (RCS) σRCS, which can
be expressed in terms of the modulus squared of a scalar product, σRCS = 1

4π
|R · x|2,

11 Note that 1/λmax ≤ κ sin φx ≤ 1/λmin, which suggests that M ∼ O(κ/ε) would be sufficient to estimate
αx := sin2 φx with multiplicative error ε, see corollary (6). This is a conservative estimate, and the implied
associated cost for the QAE step is indeed by a factor O(κ) higher than that assumed by CJS in deriving
the overall complexity [Eq. (3)].
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where x is the solution of Ax = b and R is an N -dim vector whose components are
computed by a 2D surface integral involving the corresponding edge basis vectors and
the radar polarization, as outlined in detail in [5]. Thus, to obtain the cross section
using QLSA, we must compute | 〈R|x〉 |2, where |R〉 is the quantum-theoretic repre-
sentation of the classical vector R. It is important to note that, whereas |R〉 and |x〉
are normalized to 1, the vectors R and x are in general not normalized and carry units.
Hence, after computing | 〈R|x〉 |2, units must be restored to obtain |R · x|2.

As for |b〉, the preparation of the quantum state |R〉 is imperfect. Employing the
same preparation procedure that has been used to prepare |bT 〉, but with oracle R
instead of oracle b, we can prepare the entangled state

|RT 〉3,8 = cos(φr )

∣∣∣R̃
〉

3
⊗ |0〉8 + sin(φr ) |R〉3 ⊗ |1〉8 , (14)

where the multiqubit quantum data register R3 consisting of n3 = �log2(2N )� qubits
contains (as a quantum superposition) the desired arbitrary state |R〉 entangled with

value 1 in an auxiliary single-qubit register R8, as well as a garbage state
∣∣∣R̃

〉
(denoted

by the tilde) entangled with value 0 in register R8. Moreover, the amplitudes squared

are given as sin2 φr = C2
R

2N

∑2N−1
j=0 R2

j and cos2 φr = 1
2N

∑2N−1
j=0

(
1 − C2

R R
2
j

)
, where

CR = 1/max(R j ), cf. [5]. As outlined in [5], the state (14) is adjoined to state (12)
along with a further ancilla qubit in single-qubit register R9 that has been initialized
to state |0〉9. Then, a Hadamard gate is applied to the ancilla qubit in register R9 and
a controlled swap operation is performed between registers R2 and R3 controlled on
the value of the ancilla qubit in register R9, which finally is followed by a second
Hadamard transformation of the ancilla qubit in register R9. After a few simple clas-
sical transformations, the algorithm can compute the scalar product between |x〉 and
|R〉 as, cf. [5]:

| 〈R|x〉 |2 = P1110 − P1111

sin2 φb sin2 φx sin2 φr
, (15)

where P1110 and P1111 denote the probability of measuring a “1” in the three ancilla
registers R6, R7 and R8 and a “0” or “1” in ancilla register R9, respectively. Finally,
after restoring the units to the normalized output of QLSA, the RCS in terms of
quantities received from the quantum computation is, cf. [5]:

σRCS = 1

4π

N 2

C2
bC

2
r

sin2 φb

sin2 φx
(sin2 φr0 − sin2 φr1), (16)

where sin φr0 := P
1
2

1110 sin φr and sin φr1 := P
1
2

1111 sin φr .
It is important to note that, because all the employed state preparation and linear-

system-solving operations are unitary, the four amplitudes sin φb, sin φx , sin φr0 and
sin φr1 that are needed for the computation of the RCS according to Eq. (16) can be
estimated nearly deterministically (with error ε) using QAEA which allows to avoid
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nested nondeterministic subroutines involving postselection.12 Yet, there is a small
probability of failure, which means that QLSA can occasionally output an estimate
σ̃RCS that is not within the desired precision range of the actual correct value σRCS. The
failure probability is generally always nonzero but can be made negligible.13

3.4 QLSA: algorithm profiling and quantum-circuit implementation

The high-level structure of QLSA [5] is captured by a tree diagram depicted in Fig. 2.
It consists of several high-level subroutines hierarchically comprising (i)‘ ‘Amplitude
Estimation” (first level), (ii) “State Preparation” and “Solve for x” (second level),
(iii) “Hamiltonian Simulation” (third level), and several further sublevel subroutines,
such as “HsimKernel” and “Hmag” that are used as part of HS. Figure 2 illustrates
the coarse-grained profiling of QLSA for the purpose of an accurate LRE of the
algorithm, demonstrating the use of repetitive patterns, i.e., templates representing
algorithmic building blocks that are reused frequently. Representing each algorithmic
building block in terms of a quantum circuit thus yields a step-by-step hierarchical
circuit decomposition of the whole algorithm down to elementary quantum gates and
measurements. The cost of each algorithmic building block is thereby measured in
terms of the number of calls of lower-level subroutines or directly in terms of the
number of specified elementary gates, data qubits, ancilla uses, etc.

To obtain an accurate LRE of QLSA, we thus need to represent each algorithmic
building block in terms of a quantum circuit that then enables us to count elementary
resources. In what follows, we present quantum circuits for selected subroutines of

12 However, it ought to be noted that, by “principle of deferred measurements” (see [1]), for any quan-
tum circuit involving measurements whose results are used to conditionally control subsequent quantum
circuits, the actual measurements can always be deferred to the very end of the entire quantum algorithm,
without in any way affecting the probability distribution of its final outcomes. In other words, measuring
qubits commutes with conditioning on their postselected outcomes. Hence, any quantum circuit involving
postselection can always be included as a subroutine using only pure states as part of a bigger algorithm with
probabilistic outcomes. Nonetheless, in view of the resources used to achieve efficient simulation, measur-
ing qubits as early as possible can potentially reduce the maximum number of simultaneously employed
physical qubit systems enabling the algorithm to be run on a smaller quantum computer. In addition, we
here emphasize that, with a small amount of additional effort, QAEA can be designed such that its final
measurement outcomes nearly deterministically yield the desired estimates. Note that a similar concept also
applies to QAA in HHL-QLSA, which aims at amplifying the success probability.
13 The RCS in Eq. (16) is of the form σRCS = C α1

α2
(α3−α4), whereC is a constant and αi (i = 1, . . . , 4) are

the modulı̄ squared of four different quantum amplitudes to be estimated using QAEA. The QAE control
register size n0 has been chosen such (see Table 1) that, with a success probability greater than 1 − ε,
respectively, the corresponding estimates are within ±εαi of the actual correct values, i.e., α̃i = αi ± εαi .
It is straightforward to show that, with only a single run of each of the four QAEA subroutines, our

estimate σ̃RCS = C α̃1
α̃2

(α̃3 − α̃4) for RCS satisfies σ̃RCS = σRCS ± εσRCS ± εσRCS ± εσRCS + O(ε2),

and hence |σ̃RCS − σRCS| ≤ 3εσRCS, with a probability at least (1 − ε)4 ≈ 1 − 4ε. Note that, to ensure
|σ̃RCS − σRCS| ≤ εσRCS with a probability close to 1, we actually should have chosen an even higher
calculation accuracy for each of the four QAEA subroutines, achieved by using the larger QAE control

register size n′
0 = �log2 M ′�, where M ′ = 2�log2(1/ε′2)�, enabling estimations with the smaller error

ε′ := ε/4. However, we avoided these details in our LRE analysis, which aims at estimating the optimistic
resource requirements that are necessary (not imperatively sufficient) to achieve the calculation accuracy
ε = 0.01 for the whole algorithm.
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Fig. 2 (Color online) Coarse-grained QLSA profiling overview. The high-level structure of QLSA consists
of several high-level subroutines (represented as black-framed boxes) hierarchically comprising (i) “Ampli-
tude Estimation” (first level), (ii) “State Preparation” and “Solve for x” (second level), and (iii) “Hamiltonian
Simulation” (third level), which includes several further sublevel subroutines, such as “HsimKernel” and
“Hmag.” These subroutines are further “partitioned” into more fine-grained repetitive algorithmic build-
ing blocks (such as, e.g., QFT, oracle query implementations, multicontrolled NOTs and multicontrolled
rotations, etc.) that are eventually hierarchically decomposed down to elementary quantum gates and mea-
surements. Among them, well-known library functions, such as QFT, are shown as green-framed boxes;
single-qubit measurements (in computational basis); and well-established composite gates and multiqubit-
controlled gates (such as Toffoli, W-gate and multicontrolled NOTs) are represented by purple-framed
boxes; automated implementations of oracles and the “IntegerInverse” subroutine are illustrated as red-
framed boxes. For multiqubit gates, the number of qubits involved is indicated by a subscript or a prefix
label; for example, a QFT acting on n0 qubits is represented as “QFTn0 ”; a multicontrolled NOT employing
n2 control quits is denoted as “n2-fold CNOT.” The number of calls of each algorithmic building block is
indicated by a labeled arrow. The cost of a subroutine is measured in terms of the number of specified gates,
data qubits, ancilla uses, etc., or/and in terms of calls of lower-level subsubroutines and their associated
costs. Note that the cost may vary depending on input argument value to the subroutine. To obtain the
LRE of the whole algorithm, multiply the number of calls of each lowest-level subroutine with its elemen-
tary resource requirement. The cost of the lowest-level subroutines and oracles is provided in the form of
tables in the “Appendix.” It also becomes apparent how the overall run-time of QLSA accrues through a
series of nested loops consisting of numerous iterative steps that dominate the run-time and others whose
contributions are insignificant and can be neglected. The dominant contributions to run-time are given by
those paths within the tree diagram which include Hamiltonian Simulation as the most resource-demanding
bottleneck, involving Trotterization with r ≈ 1012 time-splitting slices, with each Trotter slice involving
iterating over each matrix band to implement the corresponding part of Hamiltonian state transformation,
which (for each band) requires several oracle A implementations to compute the matrix elements
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QLSA. Well-known circuit decompositions of common multiqubit gates (such as,
e.g., Toffoli gate, multicontrolled NOTs, and W gate) and their associated resource
requirements are discussed in the “Appendix.”

3.4.1 The “main” function QLSA_main

The task of the main algorithm “QLSA_main” is to estimate the radar cross section for
a FEM scattering problem specified in GFI using the quantum amplitude estimation
subalgorithms “AmpEst_φb,” “AmpEst_φx” and “AmpEst_φr” to approximately com-
pute the angles corresponding to the probability amplitudes sin(φb), sin(φx ), sin(φr0)

and sin(φr1):

φb ← AmpEst_φb(Oracle_b)

φx ← AmpEst_φx (Oracle_A, Oracle_b)

φr0 ← AmpEst_φr (Oracle_A, Oracle_b, Oracle_R, 0)

φr1 ← AmpEst_φr (Oracle_A, Oracle_b, Oracle_R, 1)

where in the last two lines “0” and “1” refer to the probability of measuring value 0 or
1 on ancilla qubit in register R9, respectively. It then uses these probability amplitudes
(or rather their corresponding probabilities) to calculate an estimate of the radar cross
section σRCS = σRCS(φb, φx , φr0, φr1) according to Eq. (16), whereby this part uses only
classical computation. The result of the whole computation ought to be as precise as
specified by the multiplicative error term ±εσRCS, where the desired (given) accuracy
parameter in our analysis has the value ε = 0.01. The LRE of the complete QLS
algorithm is thus obtained as the sum of the LREs of the four calls of the quantum
amplitude estimation subalgorithms, respectively, that are employed by QLSA_main.

3.4.2 Amplitude estimation subroutines

In this subsection we present the quantum circuits of the three Amplitude Estima-
tion subroutines “AmpEst_φb,” “AmpEst_φx” and “AmpEst_φr ,” which are called by
“QLSA_main” to compute estimates of the angles φb, φx , φr0 and φr1 that are needed
to obtain an estimate for the RCS σRCS.

Subroutine AmpEst_φb This subroutine computes an estimate for the angle φb,
which determines the probability amplitude of success sin(φb) for the preparation of
the quantum state |b〉 in register R2, see Eq. (7). Its algorithmic structure is represented
by the circuits depicted in Figs. 3, 4 and 5. It employs subroutine “StatePrep_b,” which
prepares the state [Eq. (7)], and a Grover iterator whose construction is illustrated by
the circuit in Fig. 5.

Subroutine AmpEst_φx This subroutine computes an estimate for the angle φx ,
which, together with the previously computed angle φb, determines the probability
amplitude of success, sin(φb) sin(φx ), of computing the solution state |x〉 in register R2,
see Eq. (12). Its algorithmic structure is represented by the circuits depicted in Figs. 6,
7 and 8. It involves subroutine “StatePrep_b,” which prepares the quantum state (7),
the subroutine “Solve_x ,” which implements the actual “solve-for-x” procedure that
incorporates all required lower-level subroutines such as those needed for Hamiltonian
Simulation, and a Grover iterator whose construction is given in Fig. 8.
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Fig. 3 Circuit to implement subroutine “AmpEst_φb ,” which computes an estimate for angle φb . The
unitary transformations Ub and Ug are explained in Figs. 4 and 5. The amplitude estimation subroutine is
completed by a QFT of the QAE control register R0 (here represented by wires |g0〉 , . . . ,

∣∣gn0−1
〉
) and

measuring it in the computational basis. The measurement result g = (g[0], . . . , g[n0 − 1]) is recorded,
y ← g, and used to compute the estimate φb = (πy/M), cf. [22]

Fig. 4 Unitary transformation
Ub is an abbreviation for
subroutine “StatePrep_b,”
whose circuit representation is
discussed in Sect. 3.4.3

Subroutine AmpEst_φr This subroutine computes an estimate for the angle φr0 or
φr1, respectively, which, together with the previously computed angles φb and φx ,
determine the probability amplitude of successfully computing the overlap integral
〈R|x〉. Its algorithmic structure is represented by the circuits depicted in Figs. 9, 10,
11 and 12. It involves subroutines “StatePrep_b” and “StatePrep_R,” which prepare the
quantum states (7) and (14), respectively, the subroutine “Solve_x ,” which implements
the actual “solve-for-x” procedure, and furthermore a swapp protocol that is required
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Fig. 5 Quantum circuit of the (unitary) Grover iterator Ug employed by subroutine AmpEst_φb; its action
is to be controlled by control-register qubit g[ j]

Fig. 6 Circuit to implement subroutine “AmpEst_φx ,” which computes an estimate for angle φx . The
unitary transformations Ubx and Vg are explained in Figs. 7 and 8. The amplitude estimation subroutine
is completed by a QFT of the QAE control register R0 (here represented by wires |g0〉 , . . . ,

∣
∣gn0−1

〉
) and

measuring it in the computational basis. The measurement outcome g = (g[0], . . . , g[n0 − 1]) is recorded,
y ← g, and used to compute the estimate φx = (πy/M), cf. [22]
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Fig. 7 Unitary transformation
Ubx consists of two subroutines:
“StatePrep_b” followed by
“Solve_x ,” whose circuit
representations are discussed in
Sects. 3.4.3 and 3.4.4

Fig. 8 Quantum circuit of the (unitary) Grover iterator Vg employed by subroutine “AmpEst_φx ”; its
action is to be controlled by control-register qubit g[ j]

for computing an estimate of 〈R|x〉, and finally a Grover iterator whose construction
is given by the quantum circuit in Fig. 12.

3.4.3 State preparation subroutine

The state preparation subroutine “StatePrep” is used to generate the quantum states
|bT 〉 and |RT 〉 in Eqs. (7) and (14) from given classical vectors b and R using the cor-
responding oracles and controlled-phase and rotation gates. The circuit for generating
|bT 〉 is depicted in Fig. 13. A similar circuit is used to generate |RT 〉, by replacing the
Oracle b by Oracle R. The subroutines “C-Phase” and “C-RotY” and their associated
resource counts are discussed in Appendix “Controlled phase: C-Phase(c;φ0, f )” and
“Controlled-RotY: C-RotY(c, t;φ0, f ),” respectively. The implementation of Oracles
b and R is analyzed in Sect. 4.

3.4.4 Solve_x subroutine

Subroutine “Solve_x(x, s; Oracle_A)” is the actual linear-system-solving procedure,
i.e., it implements the “solve-for-x”) transformation. More concretely, it takes as input
the state |bT 〉2,6 (see Eq. (7)) that has been prepared in registers R2, R6, and computes
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Fig. 9 Quantum circuit to implement subroutine “AmpEst_φr ,” which computes an estimate for the angle
φr0 or φr1, respectively, which, together with the previously computed angles φb and φx , are needed to
calculate an estimate of RCS according to Eq. (16). The unitary transformationsUr and Qg are explained in
Figs. 10 and 12. The amplitude estimation subroutine is completed by a QFT of the QAE control register R0
(represented by wires |g0〉 , . . . ,

∣∣gn0−1
〉
) and measuring it in the computational basis. The measurement

result g = (g[0], . . . , g[n0 − 1]) is recorded, y ← g, and used to compute the estimate φr f = (πy/M),
cf. [22], depending on the value of the flag f ∈ {0, 1} used by unitary Qg , see Fig. 12

the state given in Eq. (12) which contains the solution state |x〉2 = A−1 |b〉2 in
register R2 with success-probability amplitude sin(φb) sin(φx ). The arguments of this
subroutine are x and s corresponding to the input states in data register R2 and single-
qubit ancilla register R7; furthermore, Oracle_A occurs in the argument list to indicate
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Fig. 10 Unitary transformation
Ur is an abbreviation for the
subroutine “Solve_xr ,” whose
circuit representation is provided
in Fig. 11

Fig. 11 Definition of subroutine “Solve_xr” that is shown in Fig. 10 to define the unitary transformation
Ur . This subroutine starts with implementing the preparation of quantum states (7) and (14) in registers
R2, R6 and R3, R8 (here given as |x0〉 , . . . ,

∣
∣xn2−1

〉
, |b〉 and |y0〉 , . . . ,

∣
∣yn2−1

〉
, |r〉), respectively; then it

employs subroutine “Solve_x ,” which implements the actual “solve-for-x” procedure; finally, a Hadamard
gate is applied to the ancilla qubit in register R9 (here labeled as |c〉) and a controlled swap protocol is
performed between registers R2 and R3 controlled on the value of the ancilla qubit in register R9, which
finally is followed by a second Hadamard gate on the ancilla qubit in register R9. The swap protocol is
required for computing an estimate of the overlap 〈R|x〉
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Fig. 12 Quantum circuit of the (unitary) Grover iterator Qg employed by subroutine “AmpEst_φr ”; its
action is to be controlled by control-register qubit g[ j]. The value of the flag f ∈ {0, 1} determines whether
the angle φr0 or φr1 is to be estimated, respectively

Fig. 13 Quantum circuit to implement the subroutine “StatePrep(x, q; Oracle b, 1/bmax),” which generates
the quantum state |bT 〉2,6 in Eq. (7). In addition to the data register R2 (function argument x; here represented
by wires x[0], . . . , x[n2−1]) and single-qubit ancilla register R6 (here represented by wire q), the procedure
involves two further, auxiliary computational registers R4 and R5, each consisting of n4 ancilla qubits (here
represented by wires m[0], . . . ,m[n4 − 1] and p[0], . . . , p[n4 − 1]), respectively. The latter two registers
m and p are used to store the magnitude and phase components, b j and φ j , respectively. Following the
Oracle b queries, a controlled-phase gate is applied to the auxiliary single-qubit register q, controlled
by the calculated value of the phase carried by n4-qubit ancilla register p; in addition, the single-qubit
register q is rotated conditioned on the calculated value of the amplitude (magnitude) carried by the n4-
qubit ancilla register m. Uncomputing registers m and p involves further oracle b calls. The subroutine
“StatePrep(y, r; Oracle r, 1/Rmax)” generating the quantum state |RT 〉 is implemented by a similar circuit,
with Oracle r instead of Oracle b
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Fig. 14 Quantum circuit to implement subroutine “Solve_x(x, s; OracleA).” Register R2 (here represented
by wires labeled as |x0〉 , . . . ,

∣∣xn2−1
〉
) carries the input state |bT 〉2,6 defined in Eq. (7); the register R6

is ignored here, as Solve_x does not act on the latter. The output state of Solve_x is stored in register
R2; it contains the solution |x〉2 = A−1 |b〉2 with success-probability amplitude sin(φb) sin(φx ) (see
Eq. (12). Quantum register R1 (here represented by wires |t0〉 , . . . ,

∣∣tn1−1
〉
) is the control register for

the HS procedure, which is represented by the unitary transformation UHS that is defined in Fig. 15 and

elaborated on below. UHS and its Hermitian conjugate U†
HS act on register R2, with the action being

controlled by |t〉R1 that has been initialized to state |φ〉1 := H⊗n1 |0〉⊗n1 . Following UHS , QFT is
performed on register R1 to complete the implementation of QPEA and so acquire information about the
eigenvalues of A and store them in register R1. A local auxiliary n1-qubit register R11 is employed (here
represented by wires | f0〉 , . . . ,

∣∣ fn1−1
〉
) that has been initialized to state |0〉11 ≡ |0〉⊗n1 . By subroutine

“IntegerInverse”:|t〉1 ⊗ |0〉11 → |t〉1 ⊗ |1/t〉11, whose implementation is discussed in Sect. 4, ancilla
register R11 obtains the inverse value λ−1

j of the eigenvalue λ j stored in HS control register R1. Next, the
controlled rotation “C-RotY” (see Appendix “Controlled-RotY: C-RotY(c, t; φ0, f )” for details) rotates the
quantum state of single-qubit register R7 (here labeled as |s〉) by an angle proportional to the value stored
in register R11, i.e., inversely proportional to the eigenvalue stored in register R1; this step implements
the transformation yielding the quantum state in Eq. (10). Finally, registers R1 and R11 are uncomputed
and terminated by the inverse operation of IntegerInverse on R1 and R11, inverse QFT of R1, inverse
Hamiltonian evolution of R2, applying H⊗n1 on R1 and measuring the value “0” in all corresponding
qubits; this step yields the common quantum state (11) for registers R1, R2, R6, and R7

that it is called by Solve_x to implement the HS lower-level subroutines. Note that
“Solve_x” does not act on register R6.

The quantum circuit for “Solve_x” is shown in Fig. 14. It involves lower-level
subroutines “HamiltonianSimulation” (see Fig. 15), QFT, “IntegerInverse,” and their
Hermitian conjugates, respectively, and the controlled rotation “C-RotY,” which is
defined and analyzed in Appendix “Controlled-RotY: C-RotY(c, t;φ0, f ).”

3.4.5 Hamiltonian Simulation subroutines

Hamiltonian Simulation subroutines implement, as part of QPEA, the unitary trans-
formation exp(−i Aτ t0/T ), which is to be applied to register R2, which together with
register R6 has been prepared in quantum state |bT 〉2,6, whereby this Hamiltonian evo-
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Fig. 15 Unitary transformation
UHS is an abbreviation for the
“HamiltonianSimulation(x, t; OracleA)”
subroutine, whose
quantum-circuit implementation
is given below

lution is to be controlled by HS control register R1 and the Hamiltonian is specified
by Oracle A.

For a thorough HS analysis, see [8] and further references therein. The decomposi-
tion of the banded matrix A by band into a sum of submatrices, according to Eq. (8),
and the Suzuki-Higher-Order Integrator method [26] with order k = 2 and Trotteriza-
tion [25] are all accomplished by subroutine “HamiltonianSimulation(x, t; OracleA),”
whose implementation is illustrated in Figs. 16 and 17. The Suzuki-Trotter time-
splitting factor, here denoted by r , can be determined by the formula, cf. [8]:

r = �5k−1/2(2Nb‖A‖t)1+1/2k/ε1/2k�, (17)

where t = τ t0/T ≤ t0 is the length of time the Hamiltonian evolution must be
simulated, and ‖A‖ is the norm of the Hamiltonian matrix. As was shown in [3], to
ensure algorithmic accuracy up to error bound ε for subalgorithm “Solve_x,” we must
have t0 ∼ O(κ/ε). In our analysis, the time constant for Hamiltonian Simulation
was set t0 = 7κ/ε, as suggested by the problem specification in the IARPA GFI.
Inserting the values k = 2, Nb = 9, ε = 0.01 and ‖A‖t � 7 × 106 into Eq. (17)
yields the approximate value r � 8 × 1011. However, to ensure accuracy ε not only
for the Hamiltonian-evolution simulation but also for each of the three Amplitude
Estimation subroutines that employ subalgorithm “Solve_x” in (2n0+1 − 1) calls,
respectively, see Fig. 2, we would typically require a much smaller target accuracy for
the implementation of the Hamiltonian evolution. Assuming errors always adding up,
an obvious choice would be ε′ = ε/(2n0+1 −1), which, when inserted into Eq. (17) in
place of ε, yields r ≈ 6.35×1012. This is a fairly conservative and unnecessarily large
estimate, though. Following the suggestions in the GFI, for the purpose of our LRE
analysis, we have used the somewhat smaller (average) value r = 2.5 × 1012, which
is roughly obtained by using the average Hamiltonian-evolution time t0/2 rather than
the maximum HS time t0 in Eq. (17).

Furthermore, the application of a controlled one-sparse Hamiltonian transformation
to any arbitrary input state in register R2 uses techniques resembling a general-
ization of the quantum-random-walk algorithm [30]. Its implementation is the task
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Fig. 16 Quantum circuit to implement subroutine “HamiltonianSimulation(x, t; OracleA)” which uses
HS control register R1 (function argument t; represented by wires labeled as |t0〉 , . . . ,

∣
∣tn1−1

〉
) to apply

a Hamiltonian transformation of register R2 (function argument x; represented by wires labeled as
|x0〉 , . . . ,

∣∣xn2−1
〉
), with the Hamiltonian specified by Oracle A. This subroutine comprises the Suzuki-

Higher-Order Integrator method with order k = 2 and Trotter time-splitting factor r ; the value r = 2.5×1012

has been used for our LRE. The unitary transformations Uz(t1) and Uz(t2) are defined in Fig. 17

Fig. 17 Definition of the unitary transformation “Uz (timestep)” for two different timesteps timestep ∈
{t1, t2}, which are determined by Suzuki-Integrator constant p2 and Trotter time-splitting factor r . Uz(t1)

and Uz(t2) are used to implement the Suzuki-Higher-Order Integrator [26] as part of the task of the higher-
level subroutine “HamiltonianSimulation(x, t; OracleA),” see Fig. 16. The implementation of the lower-
level subroutine “HsimKernel(t, x, band, timestep, OracleA)” is presented in Fig. 18

of the two lower-level subroutines “HsimKernel(t, x, band, timestep, OracleA)” and
“Hmag(x, y, m, φ0),” which are represented and illustrated by circuits in Figs. 18 and
19, respectively.
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Fig. 18 Quantum circuit to implement the subroutine “HsimKernel(t, x, band, timestep, OracleA),” whose
task is to apply a 1-sparse Hamiltonian to the input state in register R2 (function argument x; here represented
by wires x[0], . . . , x[n2 − 1]), whereby the Hamiltonian transformation is to be controlled by HS control
register R1 (function argument t; represented by wires t[0], . . . , t[n1 − 1]) and Oracle A is used to specify
the Hamiltonian. The argument “band” is an integer to denote the Hamiltonian band that is to be applied.
The argument “timestep” is a real timescale factor, which can have two values timestep ∈ {t1, t2} (see
Fig. 17). Oracle A is a function “Oracle_A(x, y, z; band, argflag)” that accesses Hamiltonian bands and,
depending on the value of the integer flag argflag ∈ {0, 1}, computes the corresponding magnitude or phase
value, respectively, and stores them in an n4-qubit register z ∈ {m, p}. Here, y is an n2-qubit ancilla register
R12 to hold the connected Hamiltonian node index, and the auxiliary n4-qubit registers m and p are used
to store the Hamiltonian magnitude and phase value, respectively. These ancilla registers are initialized and
terminated to states |0〉⊗n2 and |0〉⊗n4 , respectively. The controlled subroutine M :=Hmag(x, y, m, φ0) is
defined in Fig. 19, and the controlled subroutine “C-Phase(c; φ0, f )” is discussed in Appendix “Controlled
phase: C-Phase(c; φ0, f )” and illustrated in Fig. 38

3.4.6 Oracle subroutines

A quantum oracle is commonly considered a unitary “black box” labeled asU f which,
given the value x of an n-qubit input register R1, efficiently and unitarily computes
the value of a function f : {0, 1}n → {0, 1}m and stores it in an m-qubit auxiliary
register R2 that has initially been prepared in state |0〉⊗m :

U f : |x〉1 ⊗ |0〉2 → |x〉1 ⊗ | f (x)〉2 . (18)

In our analysis, oracles must be employed for the purpose of state preparation (Oracle
b or Oracle R) and Hamiltonian Simulation (Oracle A); they need to be constructed
from mappings between the FEM global edge indices and the quantities defining the
linear system, matrix A and vector b, as well as the “measurement vector” R that is
used to compute the RCS.

Theoretically, oracle implementations are usually not specified. The efficiency of
oracular algorithms is commonly characterized in terms of their query complexity,
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Fig. 19 Quantum circuit to implement the subroutine M :=Hmag(x, y, m, φ0), whose application is to be
controlled by a single-qubit t[ j] that is part of the n1-qubit HS control register t. Its task is to apply the
coupling elements’ magnitude component of a 1-sparse Hamiltonian operation; the circuit implementation
resembles a generalized quantum walk. Here, x and y are n2-qubit index registers (represented by wires
x[0], . . . , x[n2 − 1] and y[0], . . . , y[n2 − 1]), respectively, and m is an n4-qubit register (represented
by wires m[0], . . . ,m[n4 − 1]), which holds the Hamiltonian magnitude value. The angle φ0 denotes
the minimum resolvable phase shift. The W gate and the controlled-phase gate P(2φ0t) are specified in
Appendix “W-gate” and “Controlled phase: C-Phase(c; φ0, f ),” respectively

assuming each query is given by an efficiently computable function. However, in
practice oracle implementations must be accounted for. Our analysis aims at compris-
ing all resources, including those which are needed to implement the required oracles.
Their automated implementation using the programming language Quipper and its
compiler is elaborated on in Sect. 4. Here we briefly discuss the high-level tasks of
these oracle functions. Their resource estimates are presented in “Appendix 3.”

Oracle b is used to prepare quantum state |bT 〉2,6, see Eq. (7) and Fig. 13. Its
task is accomplished by subroutine “Oracle_b(x, m, p),” which takes as input the
quantum state of the n2-qubit register R2 (argument x; spanning the linear-system
global edge indices), computes the corresponding magnitude value b j and phase value
φ j , and stores them in the two auxiliary computational registers R4 and R5 (labeled
by arguments m and p), each consisting of n4 ancilla qubits and initialized (and later
terminated) to states |0〉⊗n4 , respectively.

Oracle R is used to prepare quantum state |RT 〉3,8 in Eq. (14). Its task is accom-
plished by subroutine “Oracle_R(x, m, p)” which takes as input the quantum state of
the n2-qubit register R3 (argument x; spanning the FEM global edge indices), com-
putes the corresponding magnitude value r j and phase value φ

(r)
j , and stores them in

the two n4-qubit auxiliary computational registers R4 and R5, (labeled by arguments
m and p), each initialized (and later terminated) to states |0〉⊗n4 , respectively.

Oracle A is needed to compute the matrix A of the linear system; it is
employed as part of the HS subroutine “HsimKernel” to specify the 1-sparse
Hamiltonian that is to be applied. This high-level task is accomplished by the
“Oracle_A(x, y, z; band, argflag)” subroutine, which takes as input the quantum state
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of the n2-qubit register R2 (argument x; spanning the linear-system global edge
indices) and returns the connected Hamiltonian node index storing it in an n2-qubit
ancilla register R12 (labeled by argument y); furthermore, it accesses Hamiltonian
bands through the integer argument “band” and, depending on the value of the inte-
ger variable argflag ∈ {0, 1}, computes the corresponding Hamiltonian magnitude or
phase value, respectively, and stores it in the corresponding auxiliary n4-qubit register
z ∈ {m, p}.

4 Automated resource analysis of oracles via the programming language
Quipper

The logical circuits required to implement the Oracles A, b, and R were generated
using the quantum programming language Quipper and its compiler. Quipper is also
equipped with a gate-count operation, which enables performing automated LRE of
the oracle implementations.

Our approach is briefly outlined as follows. Oracles A, b and R were provided to
us in the IARPA QCS program GFI in terms of MATLAB functions, which return
matrix and vector elements defining the original linear-system problem. The task was
to implement them as unitary quantum circuits. We used an approach that combines
“Template Haskell” and the “classical-to-reversible” functionality of Quipper, which
are explained below. This approach offers a general and automated mechanism for con-
verting classical Haskell functions into their corresponding reversible unitary quantum
gates by automatically generating their inverse functions and using them to uncompute
ancilla qubits.

This Section starts with a short elementary introduction to Quipper. We then proceed
with demonstrating how Quipper allows automated quantum-circuit generation and
manipulation and indeed offers a universal automated LRE tool. We finally discuss
how Quipper’s powerful capabilities have been exploited for the purpose of this work,
namely achieving automated LRE of the oracles’ circuit implementations.

4.1 Quipper and the circuit model

The programming language Quipper [14,15] is a domain-specific, higher-order, func-
tional language for quantum computation. A snippet of Quipper code is essentially the
formal description of a circuit construction. Being higher-order, it permits the manip-
ulation of circuits as first-class citizens. Quipper is embedded in the host-language
Haskell and builds upon the work of [31–35].

In Quipper, a circuit is given as a typed procedure with an input type and an output
type. For example, the Hadamard and the NOT gates are typed with

hadamard :: Qubit -> Circ Qubit
qNOT :: Qubit -> Circ Qubit

They input a qubit and output a qubit. The keyword Circ is of importance: it says
that when executed, the function will construct a circuit (in this case, a trivial circuit
with only one gate).
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Quantum data-types in Quipper are recursively generated: Qubit is the type of
quantum bits; (A,B) is a pair of an element of type A and an element of type B;
(A,B,C) is a 3-tuple; () is the unit-type: the type of the empty tuple; [A] is a list
of elements of type A.

If a program has multiple inputs, we can either place them in a tuple or use the
curry notation (→). For instance, the program

prog :: (A,B,C) -> Circ D

takes three inputs of type A, B and C and outputs a result of type D, while at the
same time producing a circuit. Using the curry notation, the same program can also
be written as

prog :: A -> B -> C -> Circ D

where D is the type of the output. We use the program by placing the inputs on the
right, in order:

prog a b c

The meaning is the following: prog a is a function of type B -> C -> Circ D,
waiting for the rest of the arguments; prog a b is a function of type C -> Circ
D, waiting for the last argument; finally, prog a b c is the fully applied program.
If a program has no input, it has simply the type Circ B if B is the type of its output.

Using the introduced notation, we can type the controlled-NOT gate:

controlled_NOT ::
Qubit -> Qubit -> Circ (Qubit,Qubit)

and initialization and measure:

qinit :: Bool -> Circ Qubit
measure :: Qubit -> Circ Bit

To illustrate explicitly how quantum circuits are generated with Quipper, let us
use a well-known example: the EPR-pair generation, defined by the transformation
|0〉 ⊗ |0〉 → 1/

√
2 (|0〉 ⊗ |0〉 + |1〉 ⊗ |1〉). The Quipper code which creates such an

EPR pair can be written as follows:

1 epr :: Circ (Qubit,Qubit)
2 epr = do
3 q1 <- qinit False
4 q2 <- qinit False
5 q2 <- hadamard q2
6 controlled_NOT q1 q2
7 return (q1,q2)

The generated circuit is presented in Fig. 20, and each line is shown with its corre-
sponding action. Line 1 defines the type of the piece of code: Circ means that the
program generates a circuit, and (Qubit,Qubit) indicates that two quantum bits
are going to be returned. Line 2 starts the actual coding of the program. Lines 3 to 6
are the instructions generating new quantum bits and performing gate operations on
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Fig. 20 EPR-pair creation;
circuit generated with Quipper

Line numbers: 3 4 5 6 7

Circuit: 0 ⊕ q1

0 H • q2

them, while Line 7 states that the newly created quantum bits q1 and q2 are returned
to the user.

Quipper is a higher-order language, that is, functions can be inputs and outputs
of other functions. This allows one to build quantum-specific circuit-manipulation
operators. For example,

controlled: (Circ A) -> Qubit -> Circ A

inputs a circuit, a qubit, and output the same circuit controlled with the qubit. It fails
at run-time if some noncontrollable gates were used. So the following two lines are
equivalent:

controlled (qNOT x) y
controlled_NOT x y

The functionclassical_to_reversible, presented in Section 4.4, is another
example of high-level operator.

The last feature of Quipper useful for automated generation of oracles is the sub-
routine (or box) feature. The operator box allows macros at the circuit level: it allows
re-use of the same piece of code several times in the same circuit, without having
to write down the list of gates each time. When a particular piece of circuit is used
several times, it makes the representation of the circuit in the memory more compact,
therefore more manageable, in particular for resource estimation.

4.2 Quipper-generated resource estimation

The previous section showed how a program in Quipper is essentially a description
of a circuit. The execution of a given program will generate a circuit, and performing
logical resource estimation is simply achieved by completing the program with a gate-
count operation at the end of the circuit-generation process. Instead of, say, sending
the gates to a quantum co-processor, the program merely counts them out. Quipper
comes equipped with this functionality.

4.3 Regular versus reversible computation

An oracle in quantum computation is a description of a classical structure on which
the algorithm acts: a graph, a matrix, etc. An oracle is then usually presented in the
form of a regular, classical function f from n to m bits encoding the problem. It is left
to the reader to make this function into the unitary of Fig. 21 acting on quantum bits.

Provided that the function f is given as a procedure and not as a mere truth table,
there is a known efficient strategy to build U f out of the description of f [36].
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Fig. 21 General form of the
oracle for a function f Ufy

x
y+ f (x)
x

Fig. 22 Circuit T f . Note that
the middle set of inputs are
ancilla qubits Tf

|0
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Fig. 23 Composing two oracles
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Fig. 24 Making an oracle
reversible

Tf

|0

x

•

x

|0 · · ·0 T -1
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z ⊕ z+ f (x)

⎫⎬
⎭

back to
state |0

The strategy consists in two steps. First, construct the circuit T f of Fig. 22. Such
a circuit can be built in a compositional manner as follows. Suppose that f is given
in term of g and h: f (x) = h(g(x)). Then, provided that Tg and Th are already built,
T f is the circuit in Fig. 23. NOT and AND are enough to write any Boolean function
f : these are the base cases of the construction. The gate TNOT is the controlled-NOT,
and the gate TAND is the Toffoli gate.

Once the circuit T f is built, the circuit U f , shown in Fig. 24 is simply the compo-
sition of T f , a fanout, followed with the inverse of T f . At the end of the computation,
all the ancillas are back to 0: they are not entangled anymore and can be discarded
without jeopardizing the overall unitarity of U f .

4.4 Quipper and template Haskell

As the transformation sending a procedure f to a circuit T f is compositional, it
can be automated. We are using a feature of the host-language Haskell to perform
this transformation automatically: Template Haskell. In a nutshell, it allows one to
manipulate a piece of code within the language, produce a new piece of code and
inject it in the program code. Another (slightly misleading) way of saying it is that it is
a type-safe method for macros. Regardless, it allows one to do exactly what we showed
in the previous section: function composition is transformed into circuit composition,

123



Concrete resource analysis of the quantum linear-system… Page 39 of 65 60

Fig. 25 Circuit mechanically
generated
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in[0]
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0 0

0
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in[1]

in[2]
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Fig. 26 Circuit made reversible

and every subfunction f : A → B is replaced with its corresponding circuit, whose
type14 is A → Circ B: a function that inputs an object of type A, builds a (piece of)
circuit, and outputs B. For example, the code

my_and :: (Bool,Bool,Bool) -> Bool
my_and (x,y,z) = x && (y && z)

computing the conjunction of the three input variables x, y and z is turned into a
function

template_my_and ::
(Qubit,Qubit,Qubit) -> Circ Qubit

computing the circuit in Fig. 25. Notice how the input wires are not touched and how
the result is just one among many output wires. One can as easily encode the addition
using binary integer.

As Quipper is a high-level language, it flawlessly allows circuit manipulation.
In particular, one can perform the meta-operation classical_to_reversible
sending the circuit T f to U f , of type

(A → Circ B) → (A, B) → Circ (A, B),

provided that A and B are essentially lists of qubits, and that T f only consists of
classical reversible gates: NOTs, c-NOTs, cc-NOTs, etc.

In the case of our my_and function, it produces the circuit in Fig. 26 of the correct
shape. One can easily check that the wire out is correctly set.

14 Technically, the type is Circ(A → Circ B). But this is only an artifact of the mechanical encoding.
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calcRweights y nx ny lx ly k theta phi =
let (xc’,yc’) = edgetoxy y nx ny in
let xc = (xc’-1.0)*lx - ((fromIntegral nx)-1.0)*lx/2.0 in
let yc = (yc’-1.0)*ly - ((fromIntegral ny)-1.0)*ly/2.0 in
let (xg,yg) = itoxy y nx ny in
if (xg == nx) then

let i = (mkPolar ly (k*xc*(cos phi)))*(mkPolar 1.0 (k*yc*(sin phi)))*
((sinc (k*ly*(sin phi)/2.0)) :+ 0.0) in

let r = ( cos(phi) :+ k*lx )*((cos (theta - phi))/lx :+ 0.0) in i * r
else if (xg==2*nx-1) then

let i = (mkPolar ly (k*xc*cos(phi)))*(mkPolar 1.0 (k*yc*sin(phi)))*
((sinc (k*ly*sin(phi)/2.0)) :+ 0.0) in

let r = ( cos(phi) :+ (- k*lx))*((cos (theta - phi))/lx :+ 0.0) in i * r
else if ( (yg==1) && (xg<nx) ) then

let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in

let r = ( (- sin phi) :+ k*ly )*((cos(theta - phi))/ly :+ 0.0) in i * r
else if ( (yg==ny) && (xg<nx) ) then

let i = (mkPolar lx (k*yc*sin(phi)))*(mkPolar 1.0 (k*xc*cos(phi)))*
((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in

let r = ( (- sin phi) :+ (- k*ly) )*((cos(theta - phi)/ly) :+ 0.0) in i * r
else 0.0 :+ 0.0

Fig. 27 Small piece of oracle R code

4.5 Encoding oracles

The oracles of QLSA were given to us as a set of MATLAB functions as part of the
IARPA QCS program GFI. These functions computed the matrix A and the vectors b
and R of [5]. They were not using any particular library: directly translating them into
Haskell was a straightforward operation. As the MATLAB code came with a few tests
to validate the implementation, by running them in Haskell we were able to validate
our translation.

The main difficulty was not to translate the MATLAB code into Quipper, but rather
to encode by hand the real arithmetic and analytic functions that were used. Fig-
ure 27 shows a snippet of translated Haskell code: it is a nontrivial operation using
trigonometric functions. Another part of the oracle is also using arctan.

To be able to be processed through Template Haskell, all the arithmetic and analytic
operations had to be written from scratch on integers encoded as lists of Bool. We
used an encoding on fixed-point arithmetic. Integers were coded as 32-bit plus one bit
for the sign, and real numbers as 32-bit integer part and 32-bit mantissa, plus one bit
for the sign. We could have chosen to use floating-point arithmetic, but the operations
would have been much more involved: the corresponding generated circuit would have
been even bigger.

We made heavy use of the subroutine facility of Quipper: All of the major oper-
ations are boxed, that is, appear only once in the internal structure representing the
circuit. This allows manageable processing (e.g., printing, or resource counting). As
an example, the circuit for Oracle R of QLSA is shown in Fig. 28.

4.6 Compactness of the generated oracles

Our strategy for generating circuits with Template Haskell is efficient in the following
sense: the size of the generated quantum circuit is exactly the same as the number of
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Fig. 28 Oracle R, automatically generated. In the on-line version of the paper the reader can magnify the
PDF image to see the details of the circuit. For display purposes, in this figure we use one wire for integers
and two wires for real numbers. Only the main structure is shown: all operations such as tests, arithmetic,
and analytic operations only appear as named boxes

steps in the classical program. For example, if the classical computation consists of
n conjunctions and m negations, the generated quantum circuit consists of n Toffoli
gates and m CNOT gates.

The advantage of this technique is that it is fully general: with this procedure, any
classical computation can be turned into an oracle in an efficient manner.

Optimizing oracle sizes As we show in this paper, the sizes of the generated oracles
are quite impressive. In the current state of our investigations, we believe that, even
with hand-coding, these numbers could only be improved upon by a factor of 5, or
perhaps at most a factor of 10. We think that accomplishing a greater reduction beyond
these moderate factors would require a drastic change in the generation approach and
techniques.

The reason why we think it is possible to achieve the mentioned moderate opti-
mization is the following. Although the oracles we deal with in this work are specified
and tailored to the particular problem we have been analyzing, they are also general in
the sense that they are made of smaller algorithms (e.g., adders, multipliers …). The
reversible versions of these algorithms have been studied for a long time, and quite
efficient proposals have been made. An analysis of the involved resources shows that
for the addition of n-bit integers, the number of gates involved in the automatically
generated adder gate T f is � 25n and the number of ancillas is � 8n. A hand-made
reversible adder can be constructed [37] with, respectively, � 5n gates and ≤ n ancil-
las. If one found a way to reuse these circuits in place of our automatically generated
adders, it would reduce the oracle sizes. However, it could only do so by a relatively
small factor; the total number of gates would still be daunting.

Despite this drawback, our method is versatile and able to provide circuits for any
desired function f without further elaborate analysis.

5 Results

Our LRE for QLSA for problem size N = 332,020,680 is summarized in Table 2.
The following comments explain this table and our assumptions.
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Table 2 Resource requirements of QLSA for the problem size N = 332,020,680 and algorithmic accuracy
ε = 0.01

Resources Incl. oracles Excl. oracles

Max. overall number of qubits in use at a time 3 × 108 341

Max. number of data qubits at a time 60 60

Max. number of ancilla qubits in use at a time 3 × 108 281

Overall number of ancilla generation-use-termination cycles 2.8 × 1027 8.2 × 1021

Total number of gates 2.37 × 1029 3.34 × 1025

# H gates 2.7 × 1028 1.20 × 1025

# S gates 1.4 × 1028 6.3 × 1024

# T gates 9.5 × 1028 1.29 × 1025

# X gates 1.6 × 1028 2.0 × 1023

# Z gates 2.4 × 1023 2.4 × 1023

# CNOT gates 8.5 × 1028 1.7 × 1024

Circuit width 3 × 108 341

Circuit depth 1.8 × 1029 3.30 × 1025

T-Depth 8.2 × 1028 1.28 × 1025

Measurements 2.8 × 1027 8.23 × 1021

Unlike with QEC protocols where the distinction between “data qubits” and “ancilla
qubits” is clear, here this distinction is somewhat ambiguous; indeed, all qubits
involved in the algorithm are initially prepared in state |0〉, and some qubits that
we called ancilla qubits exist from the start to the end of a full quantum-computation
part (such as e.g., single-qubit registers R6, R8). We regard qubits which carry the
data of the linear-system problem and store its solution at the end of the quantum
computation as data qubits; they constitute the quantum data registers R2 and R3, see
Table 1. All other qubits, including those of QAE and HS control registers R0 and R1
as well as of the computational registers R4 and R5, are considered ancilla qubits.

It is important to note that the overall QLS algorithm consists of four independent
quantum-computation parts, namely the four calls of “AmpEst” subalgorithms, see
Fig. 2, while the top-level function “QLSA_main” performs a classical calculation
of the RCS (by Eq. (16)) using the results φb, φx , φr0, φr1 of its four quantum-
computation parts. These four independent “AmpEst” subalgorithms can either be
performed in parallel or sequentially, and the actual choice should be subject to any
time/space trade-off considerations. Here we assume a sequential implementation,
so that data and ancilla qubits can be reused by the four amplitude estimation parts.
Hence, the qubit counts provided in Table 2 represent the maximum number of qubits
in use at a time required by the most demanding of the four independent “AmpEst”
subalgorithms. The maximum overall number of qubits (data and ancilla) in use at a
time is also the definition for circuit width. While with a sequential implementation we
aim at minimizing the circuit width (space consumption), we can do so only at the cost
of increasing the circuit depth (time consumption). The overall circuit depth is the sum
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of the depths of the four “AmpEst” subalgorithms. By a brief look at Fig. 2 it is clear
that the circuit depths are similarly large for “AmpEst_φx” and “AmpEst_φr” (where
the latter is called twice), whereas compared to these the circuit depth of “AmpEst_φb”
is negligible. Hence the overall circuit depth is roughly three times the circuit depth of
subalgorithm “AmpEst_φr .” We could just as well assume a parallel implementation
of the four “AmpEst” calls. In this case the overall circuit depth would be by a factor
1/3 smaller than in the former case. However, this circuit depth decrease can only be
achieved at the cost of incurring a circuit-width increase. We would need up to four
copies of the quantum registers listed in Table 1, and the required number of data and
ancilla qubits in use at a time would be larger by a factor that is somewhat smaller
than four.

QLSA has numerous iterative operations (in particular due to Suzuki-Higher-
Order Integrator method with Trotterization) involving ancilla-qubit “generation-use-
termination” cycles, which are repeated, over and over again, while computation is
performed on the same end-to-end data qubits. Table 2 provides an estimate for both
the number of ancilla qubits employed at a time and for the overall number of ancilla
generation-use-termination cycles executed during the implementation of all the four
“AmpEst” subalgorithms. To illustrate the difference we note that, for some quantum-
computer realizations, the physical information carriers (carrying the ancilla qubits)
can be reused, for others however, such as photon-based quantum-computer realiza-
tions, the information carriers are lost and have to be created anew.

Furthermore, the gate counts actually mean the number of elementary logical gate
operations, independent of whether these operations are performed using the same
physical resources (lasers, interaction region, etc.) or not. The huge number of mea-
surements results from the vast overall number of ancilla-qubit uses; after each use
an ancilla has to be uncomputed and eventually terminated to ensure reversibility of
the circuit. Finally, Table 2 distinguishes between the overall LRE that includes the
oracle implementation and the LRE for the bare algorithm with oracle calls regarded
as “for free” (excluding their resource requirements).

6 Discussion

6.1 Understanding the resource demands

Our LRE results shown in Table 2 suggest that the resource requirements of QLSA are
to a large extent dominated by the quantum-circuit implementation of the numerous
oracle A queries and their associated resource demands. Indeed, accounting for oracle
implementation costs yields resource counts which are by several orders of magnitude
larger than those if oracle costs are excluded. While Oracle A queries have only slightly
lower implementation costs than Oracle b and Oracle R queries, it is the number of
queries that makes a substantial difference. As clearly illustrated in Fig. 2, Oracle A
(required to implement the Hamiltonian transformation ei At with t ≤ t0 ∼ O(κ/ε))
is queried by many orders of magnitude more frequently than Oracles b and R, which
are needed only for preparation of the quantum states |b〉 and |R〉 corresponding to
the column vectors b, R ∈ C

N . Hence, the overall LRE of the algorithm depends
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very strongly on the Oracle A implementation. However, note that Oracles b and R
contribute most to circuit width due to the vast number of ancilla qubits (∼3×108)
they employ at a time, see Table 10 in “Appendix 3.”

The LRE for the bare algorithm, i.e., with oracle queries and “IntegerInverse”
function regarded as “for free” (excluding their resource costs), amounts to the order
of magnitude 1025 for gate count and circuit depth—still a surprisingly high number.
In what follows, we explain how these large numbers arise, expanding on all the factors
in more detail that yield a significant contribution to resource demands. To do so, we
make use of Fig. 2.

QLSA’s LRE is dominated by series of nested loops consisting of numerous iterative
operations, see Fig. 2. The major iteration of circuits with similar resource demands
occurs due to the Suzuki-Higher-Order Integrator method including a Trotterization
with a large time-splitting factor of order 1012 to accurately implement each run
of the HS as part of QPEA. Indeed, each single call of “HamiltonianSimulation”
yields the iteration factor r = 2.5 × 1012. This subroutine is called twice during
the “Solve_x” procedure, and the latter is furthermore employed twice within the
(controlled) Grover iterators in three of the four QAEAs. There are

∑n0−1
j=0 2 j =

2n0 − 1 = 16,383 controlled Grover iterators employed within each of the four
QAEAs. Hence, the “HamiltonianSimulation” subroutine is employed (2n0 − 1) ×
4 × 3 = 196,596 ≈ 2 × 105 number of times altogether. Because each of its calls
uses Trotterization with time-splitting factor 2.5 × 1012 and a Suzuki-Higher-Order
Integrator decomposition with order k = 2 involving a further additional factor 5,
we already get the factor ∼2.5×1018. Moreover, the lowest-order Suzuki operator is a
product of 2×Nb = 18 one-sparse Hamiltonian propagator terms (where Nb = 9 is the
number of bands in matrix A); each such term calls the “HsimKernel” function, with
“band” and “timestep” as its runtime parameters. In addition, each call of HsimKernel
employs Oracle A six times and furthermore involves 24 applications of the procedure
“Hmag” controlled by the time register R1. Thus, in total QLSA involves 6 × 18 ×
2.5 × 1018 ≈ 2.7 × 1020 Oracle A queries and 24 × 18 × 2.5 × 1018 ≈ 1021 calls
of controlled Hmag. Hence, even if subroutine Hmag consisted of a single gate and
oracle A queries were for free, we would already have approx. 1021 for gate count and
circuit depth.

However, Hmag is a subalgorithm consisting of further subcircuits to implement
the application of the magnitude component of a particular one-sparse Hamiltonian
term to an arbitrary state. It consists of several W gates, Toffolis and controlled rota-
tions. Hence, a further increase of the order of magnitude is incurred by various
decompositions of multicontrolled gates and/or rotation gates into the elementary set
of fault-tolerant gates {H, S, T, X, Z , CNOT}, using the well-known decomposition
rules outlined in “Appendix 2” (e.g., optimal-depth decompositions for Toffoli [38]
and for controlled single-qubit rotations [39–42]). In our analysis, this yields a further
factor ∼104. Thus, even if we exclude oracle costs, we have 1021 × 104 = 1025 for
gate count and circuit depth for the bare algorithm, simply because of a large number
of iterative processes (due to Trotterization and Grover-iterate-based QAE) combined
with decompositions of higher-level circuits (such as multicontrolled NOTs) into ele-
mentary gates and single-qubit rotation decompositions (factors ∼102–104).
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If we include the oracle implementation costs, the dominant contribution to LRE is
that of Oracle A calls, because oracle A is queried by a factor ∼1015 more frequently
than Oracle b and even by a larger factor than Oracle R. Each Oracle A query’s
circuit implementation has a gate count and circuit depth of order ∼2.5×108, see
“Appendix 3.” Having approx. 2.7 × 1020 Oracle A queries, the LRE thus amounts to
the order of magnitude ∼1029.

Let us briefly summarize the nested loops of QLSA that dominate the resource
demands, while other computational components have negligible contributions. The
dominant contributions result from those series of nested loops which include Hamil-
tonian Simulation as the most resource-demanding bottleneck. The outer loops in these
series are the first-level QAEA subroutines to find estimates for φx , φr0 and φr1, each
involving 2n0 −1 = 16,383 controlled Grover iterators. Each Grover iterator involves
several implementations of Hamiltonian Simulation based on Suzuki-Higher-Order
Integrator decomposition and Trotterization with r ≈ 1012 time-splitting slices. Each
Trotter slice involves iterating over each matrix band whereby the corresponding part
of Hamiltonian evolution is applied to the input state. Finally, for each band several ora-
cle A implementations are required to compute the corresponding matrix elements,
which moreover employs several arithmetic operations, each of which themselves
require loops with computational effort scaling polynomially with the number of bits
in precision.

6.2 Comparison with previous “big-O” estimations

As pointed out in the Introduction, we provide the first concrete resource estimation
for QLSA in contrast to the previous analyses [3,5] which estimated the run-time of
QLSA only in terms of its asymptotic behavior using the “big-O” characterization. As
the latter is supposed to give some hints on how the size of the circuit evolves with
growing parameters, it is interesting to compare our concrete results for gate count and
circuit depth with what one would expect according to the rough estimate suggested
by the big-O (complexity) analysis. The big-O estimations proposed by Harrow et al.
[3] and Clader et al. [5] have been briefly discussed in the Introduction and are given
in Eqs. (1) and (3), respectively.

Complexity-wise, the parameters taken into account in the big-O estimations are
the size N of the square matrix A, the condition number κ of A, the sparseness d which
is the number of nonzero entries per row/column in A, and the desired algorithmic
accuracy given as error bound ε. The choice of parameters made in this paper fixes
these values to N = 332,020,680, κ = 104, d = 7, and ε = 10−2. If one plugs them
into Eqs. (1) and (3), one gets, respectively, ∼4×1012 and ∼2×1012.

Although these numbers are large, they are not even close to compare with our
estimates. This is due to the way a big-O estimate is constructed: it only focuses on a
certain set of parameters, the other ones being roughly independent of the chosen set.
Indeed, the “function” provided as big-O estimate is only giving a trend on how the
estimated quantity behaves as the chosen set of parameters goes to infinity (or to zero,
in the case of ε). Hence, only the limiting behavior of the estimate can be predicted
with high accuracy, when the chosen relevant parameters it depends on tend toward
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particular values or infinity, while the estimate is very rough for other values of these
parameter. In particular, a big-O estimate is hiding a set of constant factors, which
are unknown. In the case of QLSA, our LRE analysis does not reveal a trend, it only
gives one point. Nonetheless, it shows that these factors are extremely large, and that
they must be carefully analyzed and otherwise taken into account for any potentially
practical use of the algorithm.

Although the (unknown) constant factors implied by big-O complexity cannot be
inferred from our LRE results obtained for just a single problem size, we can neverthe-
less consider which steps in the algorithm are likely to contribute most to these factors.
With our fine-grained approach we found that, if excluding the oracle A resources, the
accrued circuit depth ∼1025 is roughly equal to 3×(2n0 −1) Grover iterations (as part
of amplitude estimation loops for φx , φr0 and φr1) times 4 × (2Nb) × 5 × 2.5 × 1012

for the number of exponentials needed to implement the Suzuki-Trotter expansion (as
part of implementing HS, which is employed twice in Solve_x that is again employed
twice in each Grover iterator) times a factor ∼24×104 coming about from the circuits
to implement, for each particular A j in the decomposition [Eq. (8)], the corresponding
part of Hamiltonian state transformation. In terms of CJS big-O complexity the circuit
depth is Õ

(
κd7 log(N )/ε2

)
, which comes from Õ (1/ε) QAE Grover iterations,15

times Õ
(
d4κ/ε

)
exponential operator applications to implement the Suzuki-Trotter

expansion,16 times O (log N ) oracle A queries to simulate each query to any A j in
the decomposition [Eq. (8)], times the overhead of O(d3) computational steps includ-
ing O(d2) Oracle A queries to estimating the preconditioner M of the linear system
in order to prepare the preconditioned state M |b〉, see [5]. Here it is appropriate to
note though that the HHL and CJS runtime complexities given in Eqs. (1) and (3),
respectively, neglect more slowly growing terms, as indicated by the tilde notation
Õ(·). However, in a comparison with our empirical gate counts we ought to also
take those slowly growing terms into account. For instance, there is another factor
of (κd2/ε2)1/4 ≈ 3 × 102 contributing to the number of Suzuki-Trotter expansion
slices, which was ignored in the Õ notation for HHL and CJS complexities, while
it was accounted for in our LRE. By inspecting and comparing (CJS big-O vs. our
LRE) the orders of magnitude of the various contributing terms, we conclude that the
big-O complexity is roughly two orders of magnitude off (smaller) from our empirical
counts for the Suzuki-Trotter expansion step. As for the QAE steps, our LRE count is
∼5×104, which is roughly two orders of magnitude higher than O(1/ε) and smaller
than O(κ/ε), suggesting that O(1/ε) is too optimistic while O(κ/ε) is too conser-
vative. Finally, the big-O complexity misses roughly 5 orders of magnitude that our
fine-grained approach reveals for the circuit implementation of the Hamiltonian state
transformation for each A j at the lowest algorithmic level.

15 However, see our remarks in footnotes 6 and 11 in which we pointed out that O(κ/ε) may be a more
appropriate estimate for the complexity of the QAE loops.
16 For a d-sparse A, simulating exp(i At) with additive error ε using HS techniques [8] requires a runtime

proportional to d4t (t/ε)o(1) ≡ Õ
(
d4t

)
, see [3,8]. It is performing the phase estimation (as part of

“Solve_x”), which is the dominant source of error, that requires to take t0 = O(κ/ε) for the various times
t = τ t0/T defining the HS control register in order to achieve a final error smaller than ε, see [3].
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In order to understand what caused such large constant factors, we estimated the
resources needed to run QLSA for a smaller problem size17 while keeping the same
precision (and therefore the same size for the registers holding the computed values).
Specifically, we chose N = 24, while we kept the condition number and the error
bound at the same values κ = 104 and ε = 10−2, respectively. Despite the fact that
the matrix A lost several orders of magnitude in size, the circuit width and depth ended
up being of roughly the same order of magnitude as of Table 2.

What our results suggest is that the large constant factors arise as a consequence of
the desired precision forcing us into choosing large sizes for the registers, whereas the
LRE is not notably impacted by a change in problem size N . This can intuitively be
understood as follows. First, the total number of gates required for QLSA’s nonoracle
part scales as O(log N ), cf. Eq. (3); hence, using N = 24 in place of N = 332,020,680
suggests an LRE reduction only by a moderate factor ∼5. Secondly, what matters for
the LRE of oracles is also mostly determined by the desired accuracy ε. Each oracle
query essentially computes a single (complex) value corresponding to a particular
input from the set of all inputs. The oracles are oblivious to the problem size and to
the actual value of each of their inputs. While oracles obtain actual input data from the
data register R2 or R3, whose size n2 = n3 = log2(2N ) clearly depends on N , these
are not the ones that crucially determine the oracles’ sizes. What virtually matters for
the size of the generated quantum circuit implementing an oracle query, is the size
of the computational registers R4 and R5 used to compute and hold the output value
of each particular oracle query. In our analysis, these registers have size n4 = 65, cf.
Table 1; they were kept at the same size when computing QLSA’s LRE for the smaller
problem size N = 24.

6.3 Lack of parallelism

Comparing the estimates for the total number of gates and circuit depth reveals a
distinct lack of parallelism18 in the design of QLSA. As explained earlier, due to the

17 A smaller problem size is obtained by reducing the spatial domain size of the electromagnetic scattering
FEM simulation, via reductions in parameters nx and ny which represent the number of FEM vertices in
x and y dimensions. The immediate consequence is a reduction of the common length of quantum data
registers R2 and R3, i.e., n2 = �log2(2N )�, where N = nx (ny − 1) + (nx − 1)ny . Such register-length
reduction is expected to affect the resource requirements for all oracles as well as all subroutines that involve
the data registers R2 and R3. In fact, the input registers to all oracles are of length n2, and shortening them
has the potential of reducing the oracle sizes. However, we recounted oracles’ resources using Quipper,
with n2 = 6 in place of n2 = 30, and found that the only difference involves the number of ancillas
and measurements required. When checking the resource change of the entire QLSA circuit, we found
negligible difference. Indeed, changes in n2 have a relatively little effect on resources of the bare algorithm
(excluding oracle costs), because the dominant contribution to resources in the nonoracle part is given by
the time-splitting factor imposed by Hamiltonian-evolution simulation, which does not directly depend on
n2. Besides, since the total number of operations required for QLSA’s nonoracle part has a complexity that
scales logarithmically in N , see Eqs. (1) and (3), the resources for n2 = 6 in place of n2 = 30 are expected
to diminish by just a relatively small factor ∼5.
18 One can get a sense of the amount of parallelism of the overall circuit by comparing the total number
of gates of an algorithm to its circuit depth. In our analysis, they only differ by a factor of ∼1.33 if oracles
are included, and by a factor of ∼1.01 if oracles are excluded, thus most of the gates must be being applied
sequentially.
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highly repetitive structures of the algorithm primitives used, most of the gates have
to be performed sequentially. Indeed, QLSA involves numerous iterative operations.
The major iteration of circuits with similar resource requirements occurs due to the
Suzuki-Higher-Order Integrator method that also involves Trotterization, which uses
a large time-splitting factor of order 1012 to accurately implement each run of the
Hamiltonian-evolution simulation. In fact, the iteration factor imposed by Trotteriza-
tion of the Hamiltonian propagator is currently a hard bound on the overall circuit
depth and even the total LRE of QLSA, and it crucially depends on the aimed algo-
rithmic precision ε. The remarks in the following paragraph expand on this issue in
more detail.

6.4 Hamiltonian-evolution simulation as the actual bottleneck and recent
advancements

It is worth emphasizing that the quantum-circuit implementation of the Hamiltonian
transformation ei At using well-established HS techniques [8] constitutes the actual
bottleneck of QLSA. Indeed, this step implies the largest contribution to the overall
circuit depth; it is given by the factor r×5k−1 ×(2Nb), see Fig. 2, which is imposed by
the Suzuki-Higher-Order Integrator method together with Trotterization. According
to Eq. (17) and the discussion following it, r ∼ O

(
(Nbκ)1+1/2k/ε1+1/k

)
. Thus, the

key dependence of the time-splitting factor r is on the condition number κ and the
error bound ε rather than on problem size N . The dependence on the latter enters only
through the number of bands Nb (in the general case, the number m of submatrices
in the decomposition [Eq. (8)]), which can be small even for large matrix sizes, as is
the case in our example. This feature explains why we can get similar LRE results for
N = 332,020,680 and N = 24 if κ and ε are kept at the same values for both cases
and the number of bands Nb is small (see above).

It is also important to note that there has been significant recent progress on improv-
ing HS techniques. Berry et al. [43] provide a method for simulating Hamiltonian
evolution with complexity polynomial in log(1/ε) (with ε the allowable error). Even
more recent works by Berry et al. [44,45] improve upon results in [43] providing a
quantum algorithm for simulating the dynamics of sparse Hamiltonians with com-
plexity sublogarithmic in the inverse error. Compared to [44], the analysis in [45]
yields a near-linear instead of superquadratic dependence on the sparsity d. Moreover,
unlike the approach [43], the query complexities derived in [44,45] are shown to be
independent of the number of qubits acted on. Most importantly, all three approaches
[43–45] provide an exponential improvement upon the well-established method [8]
that our analysis is based on.19 To account for these recent achievements, we estimate
the impact they may have with reference to the baseline imposed by our LRE results.
The modular nature of our LRE approach allows us to do this estimation. The fol-
lowing back-of-the-envelope evaluation shows that, for ε = 0.01, the advanced HS

19 The recently published advanced HS approaches [43–45] that promise more resource-efficient compu-
tation were not available at the time when our detailed implementation of QLSA and the corresponding
LRE analysis (for which we used the previously published HS techniques [8]) were performed.
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approaches [43], [44] and [45] may offer a potential reduction of circuit depth and
overall gate count by orders of magnitude 101, ∼104 and ∼105, respectively.

Indeed, let us compare the scalings of the total number of one-sparse Hamiltonian-
evolution terms required to approximate ei At to within error bound ε = 0.01 for the
prior approach [8] (used here) and the recent methods [43,45]. In doing so, we arrive
at contrasting

8m52k−3/2(m‖A‖t)1+1/2k/ε1/2k (19)

vs. O
(
[d2‖A‖t + log(1/ε)] log3[d‖A‖t/ε]nc

)
(20)

or O

(
d‖A‖t log(d‖A‖t/ε)

log log(d‖A‖t/ε)
)

(21)

for the three approaches [8], [43] and [45], respectively. In the first term,m denotes the
number of submatrices in the decomposition [Eq. (8)]; in the general case, m = 6d2,
in our toy-problem analysis, m = Nb. In the second and third term, d is the sparsity of
A, and n is the number of qubits acted on, while c is a constant. In all three expressions,
‖A‖ is the spectral norm of the Hamiltonian A, which in our toy-problem example
is time-independent. As stated in Sect. 3.4.5, for QLSA to be accurate within error
bound ε, we must have ‖A‖t ∼ O(κ/ε), cf. [3]. Using ‖A‖t ≤ ‖A‖t0 = 7 × κ/ε

and the parameter values m = Nb = 9, k = 2, d = 7, n = n2 = 30 and c ≥ 1,
expression (19) yields ∼7×1013, whereas the query complexity estimates (20) and
(21) yield �5×1012 and ∼5×108, respectively. Hence, notably the advanced results
in [45] imply that an improvement of our LRE by order of magnitude ∼105 seems
feasible.

7 Conclusion

A key research topic of quantum-computer science is to understand what computa-
tional resources would actually be required to implement a given quantum algorithm
on a realistic quantum computer, for the large problem sizes for which a quantum
advantage would be attainable. Traditional algorithm analyses based on big-O com-
plexity characterize algorithmic efficiency in terms of the asymptotic leading-order
behavior and therefore do not provide a detailed accounting of the concrete resources
required for any given specific problem size, which however is critical to evaluating
the practicality of implementing the algorithm on a quantum computer. In this paper,
we have demonstrated an approach to how such a concrete resource estimation can be
performed.

We have provided a detailed estimate for the logical resource requirements of the
quantum linear-system algorithm, which under certain conditions solves a linear sys-
tem of equations, Ax = b, exponentially faster than the best known classical method.
Our estimates correspond to the explicit example problem size beyond which the quan-
tum linear-system algorithm is expected to run faster than the best known classical
linear-system solving algorithm. Our results have been obtained by a combination
of manual analysis for the bare algorithm and automated resource estimates for ora-
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cles generated via the quantum programming language Quipper and its compiler. Our
analysis shows that for a desired calculation precision accuracy ε = 0.01, an approx-
imate circuit width 340 and circuit depth of order 1025 are required if oracle costs are
excluded, and a circuit width and circuit depth of order 108 and 1029, respectively,
if the resource requirements of oracles are taken into account, showing that the latter
are substantial. We stress once again that our estimates pertain only to the resource
requirements of a single run of the complete algorithm, while actually multiple runs
of the algorithm are necessary (followed by sampling) to produce a reliable accurate
outcome.

Our LRE results for QLSA are based on well-established quantum computation
techniques and primitives [1,6–8,22] as well as our approach to implement oracles
using Quipper. Hence, our estimates strongly rely on the efficiency of the applied
methods and chosen approach. Improvement upon our estimates can only be achieved
by advancements enabling more efficient implementations of the utilized quantum-
computation primitives and/or oracles. For example, as pointed out in Sect. 6, most
recent advancements of Hamiltonian-evolution simulation techniques [45] suggest that
a substantial reduction of circuit depth and overall gate count by order of magnitude
∼105 seems feasible. Likewise, more sophisticated methods to generate quantum-
circuit implementations of oracles more efficiently may become available. We think
though that significant improvements are going to come from inventing a better QLS
algorithm, or more resource-efficient Hamiltonian-evolution simulation approaches,
rather than from improvements to Quipper. While we believe that our estimates may
prove to be conservative, they yet provide a well-founded “baseline” for research into
the reduction of the algorithmic-level minimum resource requirements, showing that a
reduction by many orders of magnitude is necessary for the algorithm to become prac-
tical. Our modular approach to analysis of extremely large quantum circuits reduces
the cost of updating the analysis when improved quantum-computation techniques are
discovered.

To give an idea of how long the algorithm would have to run at a minimum, let us
suppose that, in the ideal case, all logic gates take the same amount of time τ , and
have perfect performance thus eliminating the need for QC and/or QEC. Then for any
assumed gate time τ , one can calculate a lower limit on the amount of time required
for the overall implementation of the algorithm. For example, if τ = 1ns (which is a
rather optimistic assumption; for other gate duration assumptions, one can then plug
in one’s own assumptions), a circuit depth of order 1025 (1029) would correspond to a
run-time approx. 3 × 108 (3 × 1012) years, which apparently compares with or even
exceeds the age of the Universe (estimated to be approx. 13.8 × 109 years). Even
with the mentioned promising improvements by a factor ∼105 for the Hamiltonian-
evolution simulation and by a factor ∼10 for the oracle implementations, we would
still deal with run-times approx. 3 × 102 (3 × 106) years.

Although our results are surprising when compared to a naive analysis of the pre-
vious big-O estimations of the algorithm [3,5], the difference can be explained by the
factors hidden in the big-O estimation analyses: we infer that these factors come for
the most part from the large register sizes, chosen because of the desired precision.

The moral of this analysis is that quantum algorithms are not typically designed with
implementation in mind. Considering only the overall coarse complexity of a given
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algorithm does not make it automatically feasible. In particular, our analysis shows
that book-keeping parameters such as the size of registers have to be considered.

Our analysis highlights an avenue for future research: quantum programming
languages and formal methods. In computer science, mature techniques have been
developed for decades, and we ought to adapt and implement them for a fine-grained
analysis of quantum algorithms to pinpoint the various parameters in play and their
relationships. In particular, these techniques may also allow to explicitly identify the
actual bottlenecks of a particular implementation and provide useful insights on what
to focus on for optimizations: in the case of QLSA, for instance, the Hamiltonian-
evolution simulation and oracle implementations. Combining a fine-grained approach
with asymptotic big-O analysis, a much fuller understanding of the bottlenecks in
quantum algorithms emerges enabling focused research on improved algorithmic tech-
niques.
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Appendix 1: Single-qubit unitaries in terms of pre-specified elementary
gates

Implementation according to work by A. Fowler

To convert any single-qubit unitary to a circuit in terms of a pre-specified set of gates
{X,Y, Z , H, S, T }, we could use the famous Solovay–Kitaev algorithm, see, e.g., [1]
and references therein. However, this work can result in unnecessarily long global
phase correct approximating sequences, since the trace-norm used in the Solovay–
Kitaev theorem does not ignore global phases. Some optimizations of the Solovay–
Kitaev algorithm are possible, see e.g., [46]. For the single-qubit rotation gates, we base
our estimates on work by A. Fowler (see [39], p. 125 and [40]). This work constructs
optimal fault-tolerant approximations of single-qubit phase rotation gates

Rπ/2d :=
(

1 0

0 eiπ/2d

)
. (22)

Fowler shows that a phase rotation by an angle of π/128 can be approximated by a
sequence of fault-tolerant gates with a distance measure
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dist(Rπ/128,U46) :=

√√√√m −
∣∣∣Tr(R†

π/128U46)

∣∣∣

m
≈ 7.5 × 10−4 < 0.01 (23)

by choosing U46 as follows:

U46 = HT HT HT (SH)T HT (SH)T (SH)T (SH)T HT

(SH)T (SH)T HT HT (SH)T (SH)T HT (SH)T

(SH)T (SH)T HT (SH)T HT (HS†)T (24)

This sequence contains 23 H gates, 23 T (π/8) gates and 13 S or S† gates. In gen-
eral, the approximating sequence is of the form GiTG j T . . . , where Gi ,G j ∈ G ,
a precomputed set of gates, which together with the Identity gate I form a group
under multiplication {I,G1,G2, . . . ,G23}. Here, G1 = H,G2 = X,G3 = Z ,G4
= S,G5 = S†,G6 = XH,G7 = ZH,G8 = SH,G9 = S†H,G10 = Z X,G11
= SX,G12 = S†X,G13 = HS,G14 = HS†,G15 = Z XH,G16 = SXH,G17
= S†XH,G18 = HSH,G19 = HS†H,G20 = HSX,G21 = HS†X,G22 =
S†HS,G23 = SHS†. To represent the complete set of approximating sequences,
Fowler includes G24 = T .

The sequence given in Eq. (24) contains 46 G j gates. The number of T gates is 23,
or half the length of the approximating sequence in terms of G j gates. The number of
H gates in this particular sequence is also 23, and the rest of the 59 elementary gates
are S (or S†) gates.

Fowler also investigated the approximation of arbitrary single-qubit gates

U =
(

cos(θ/2)ei(α+β)/2 sin(θ/2)ei(α−β)/2

− sin(θ/2)ei(−α+β)/2 cos(θ/2)ei(α+β)/2

)
(25)

by sequences of gates from the groupG . 1000 random matrices were chosen, with α, β

and θ chosen uniformly in [0, 2π). Optimal approximations Ul were constructed for
each random matrix, and a line was fitted to the average distance dist(U,Ul) plotted
for each l. Fowler obtained the following fit for the average number l of single-qubit
fault-tolerant gates required to obtain a fault-tolerant approximation of an arbitrary
single-qubit unitary to within the distance:

δ = dist(U,Ul) = 0.292 × 10−0.0511·l . (26)

In other words, to obtain a distance δ on average, we need on average l = log10(δ/0.292)

−0.0511
gates. For δ = 7.5×10−4, we obtain l = 50.69. Compare this to the exact result l = 46
for Rπ/128. Also, we note that 46 G j gates correspond to 59 elementary gates, of which
23 are T gates. For 51 G j gates, we would get 26 T gates, 26 H gates and 14 S gates
by extrapolation, for a total of 65 gates.
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Plato implementation of gate sequence approximations

We have implemented a combination of Fowler’s method and the more recent single-
qubit “normal form” representation by Matsumoto and Amano [41,42] in Haskell,
to find approximating sequences. With this Haskell implementation, for example, we
found an approximating sequence for Rπ/256 with distance δ = 3.6 × 10−4, and with
sequence length 74:

Rπ/256 ≈ SHT HT HT SHT HT SHT HT SHT SHT SHT

×HT HT HT SHT SHT SHT HT SHT HT SH

×T HT SHT SHT SHT HT HT HT SHT HSS. (27)

This sequence consists of 28 (37.8%) T gates, 29 (39.2%) H gates, and 17 (23%) S
gates. Smaller rotations tend to need longer sequences to reach the distance threshold
δ and/or improve on the identity as best approximation. Because our search algorithm
used to find the approximating sequences, like Fowler’s method, has exponential run-
ning time, finding a specific sequence to approximate a specific arbitrary rotation is
not always feasible. Recent progress on this topic aiming at optimal-depth single-
qubit rotation decompositions [47–52] highlights the importance of this problem for
quantum computing.

For our QLSA LRE we have made the following simple (and rather pessimistic)
assumption: namely, that any arbitrary single-qubit rotation gate (a large number of
such gates, with various angles of rotation, occurs in the implementation of QLSA)
can be approximated using approx. 100 fault-tolerant gates from the standard set
{X,Y, Z , H, S, T } while also achieving the desired level of algorithmic accuracy
(ε = 0.01). This approximation turned out to be indeed fairly conservative for all
rotation gates we had found specific sequences for. Following the above stable relative
fractions of approximately 40% T gates, 40% H gates, and 20% S gates in the
approximating sequences found, we roughly assume that, on average, each arbitrary
rotation in fact consists of 40 T gates, 40 H gates and 20 S gates.

Taking an implementation accuracy ε = 0.01 for each single-qubit rotation gate is
not sufficient to guarantee accuracy ε = 0.01 for the entire algorithm. To achieve the
latter, we would typically require a much smaller target accuracy for the implementa-
tion of single-qubit rotation gates. If the entire algorithm consists of nR single-qubit
rotations, requiring a target accuracy ε′ = ε/nR for each rotation would be an obvious
choice. This is a fairly conservative error bound though, presuming that all rotations are
performed in a sequence, with errors in different rotations adding up, never canceling
each other out, and disregarding any parallelism in their implementations. However,
errors may cancel each other out during the mostly sequential implementation of the
gates. The LRE analysis of the bare algorithm excluding oracle resources revealed
roughly nR ≈ 1023 single-qubit rotations (with nontrivial angles of rotation), most of
which have to be performed sequentially, as implied by the distinct lack of parallelism
in the design of QLSA. According to Fowler’s analysis, the number of standard gates
needed on average to implement (decompose) a single-qubit rotation with accuracy
ε′ = ε/nR is approximately: l = log10(ε/nR)/0.292

−0.051 , cf. Eq. (26). Inserting the values
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Fig. 29 Controlled-Z gate in
terms of standard gates

Fig. 30 Implementation of controlled-H gate in terms of CNOTs and single-qubit rotations

nR ≈ 1023 and ε = 0.01 yields l ≈ 480, which is less than by a factor 5 larger than
what we assumed for our LRE analysis. Hence, while our LRE results in Table 2 pro-
vide gate counts for what is necessary (not sufficient) to achieve an accuracy ε = 0.01
for the entire algorithm, the more conservative error bound ε′ = ε/nR for the target
rotation accuracy (to guarantee the accuracy ε for the whole algorithm) would yield
estimates for H, S, and T gates as well as T -depth that are only by a factor ∼5 larger.
The overall gate count and overall circuit depth would also be increased by a slightly
smaller factor close to 5.

Appendix 2: Circuits and resource estimates of lower-level subroutines
and multiqubit gates employed by QLSA

Here we review some well-known circuit decompositions of various multiqubit gates
in terms of the standard set of elementary gates {X,Y, Z , H, S, T, CNOT} and their
associated resource counts that have been used for our QLSA LRE analysis.

Controlled-Z gate

Controlled-Z gate can be decomposed into two H gates and one CNOT according to
Fig. 29.

Controlled-H gate

Controlled-H gate can be implemented in terms of standard gates by using the circuit
equality given in Fig. 30: The single-qubit rotations employed in this implementa-
tion can be further decomposed into sequences consisting only of T, S and H gates:
Rz(π) = T 4 = S2 = Z , Rz(−π) = S†2 = Z , Ry(π/4) = SHT SHXZS and
Ry(−π/4) = S†Z XHS†T †HS†.

W-gate

“W -gate” is a two-qubit gate whose action as well as its implementation in terms of
standard gates is illustrated in Fig. 31. As described above for the “controlled-H” gate,
the single-qubit rotations Rz(π), Rz(−π), Ry(π/4) and Ry(−π/4) can be further
decomposed in terms of sequences consisting only of T, S and H gates.
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Fig. 31 Definition of the two-qubit “W -gate” and its implementation in terms of CNOTs and single-qubit
rotations

Fig. 32 Implementation of
controlled single-qubit rotation
Rz(θ) in terms of unconditional
single-qubit rotations and
CNOTs

Fig. 33 Implementation of controlled single-qubit rotation Ry(θ) in terms of controlled single-qubit rota-
tion Rz(θ) and standard single-qubit gates

Fig. 34 Implementation of doubly controlled single-qubit rotation Rz(θ) in terms of Toffolis, CNOTs, and
unconditional single-qubit rotations

Controlled rotations

Controlled single-qubit rotations Rz(θ) can be implemented in terms of CNOTs and
unconditional single-qubit rotations according to circuit equality provided in Fig. 32.
In the case of controlled single-qubit rotations Ry(θ) we can use the circuit identity
shown in Fig. 33. A similar implementation can be derived for controlled single-qubit
rotations Rx (θ). Moreover, doubly controlled rotations can be implemented in terms of
Toffolis, CNOTs, and unconditional single-qubit rotations according to circuit equality
given in Fig. 34.

Toffoli gate

Toffoli gate (essentially a CCNOT) can be implemented (cf., e.g., [1]) by a circuit
using 6 CNOT gates, 1 S gate, 7 T (or T †) gates and 2 Hadamard gates, and having
circuit depth 12, see Fig. 35.

Fig. 35 Decomposition of
Toffoli gate in terms of standard
set of gates
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Table 3 Resource requirement
of multicontrolled NOT
employing n control qubits and a
single target qubit

Elementary resource Resource count

Ancilla qubits n − 2

H gates 2(2n − 3)

S gates (2n − 3)

T gates 7(2n − 3)

CNOT gates 6(2n − 3)

Circuit width n + 1

Circuit depth 12(2n − 3)

T -depth 6(2n − 3)

Measurements (n − 2)

Fig. 36 Quantum circuit to implement QFT−1 acting on b qubits, where Rk := diag
(

1, e2π i/2k
)

Multicontrolled NOT

A multifold CNOT that is controlled by n ≥ 3 qubits can be implemented by 2(n −
2) + 1 Toffoli gates, which must be performed sequentially, and employing (n − 2)

additional ancilla qubits [38]. Using the resources needed for Toffoli gates, we can
infer the resource count of any multicontrolled NOT employing an arbitrary number
of control qubits and a single target qubit, see Table 3.

Quantum Fourier Transform (QFT)

Both Quantum Fourier Transform (QFT) and its inverse QFT−1 are employed in the
implementation of QLSA. QFT and its representation in terms of a quantum circuit
are discussed in most introductory textbooks on quantum computation, see e.g., [1].
A circuit implementation of QFT−1 is shown in Fig. 36, where we use the definition
Rk := ( 1 0

0 exp(2π i/2k )

)
.

Here we expand on elementary resource requirements of QFT (and its inverse
QFT−1). Let b ≥ 2 be the number of qubits the QFT (or its inverse) acts on, as in
Fig. 36. Using the circuit decomposition rule for controlled rotations discussed in
Appendix “Controlled rotations,” we can derive the circuit identity shown in Fig. 37.
Using this circuit identity rule, we can express the logical resource requirements in
terms of standard gates and unconditional Rk gates, see Table 4. The latter can then
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Fig. 37 Implementing
controlled-Rk gates from circuit
in Fig. 36 in terms of CNOT’s
and unconditional Rk gates

Table 4 Resource requirement of QFT (or its inverse transformation QFT−1) in terms of standard gates
and unconditional Rk gates

Elementary resource Resource count

H gates b

Unconditional Rk (or R−1
k ) where k = 3, . . . , b + 1

and Rk := ( 1 0
0 exp(2π i/2k )

)
3(b − k + 2) for particular k

3
2 b(b − 1) in total

CNOT gates b(b − 1)

Circuit width b

Circuit depth b2 + 2
∑b+1

j=3
∑ j

k=3 c-depth(Rk )

T -depth 2
∑b+1

j=3
∑ j

k=3 T-depth(Rk )

The number of qubits involved in the transformation is denoted by b. The unconditional Rk (or R−1
k ) gates

can be approximated by sequences consisting only of fault-tolerant gates T, S and H

be implemented in terms of approximating sequences consisting only of fault-tolerant
gates from the set {X,Y, Z , H, S, T }, as discussed in “Appendix 1.”

Controlled phase: C-Phase(c;φ0, f )

The task of the controlled-phase C-Phase(c;φ0, f ), which is a lower-level algo-
rithmic building block used in the implementations of the higher-level subroutines
“StatePrep_b,” “StatePrep_R” and “HamiltonianSimulation” (see Fig. 2), is to apply
a phase shift to a signedn-qubit input register c, whereby the applied phase is controlled
by c itself:

|c〉 → e−(−i) f θ Z/2 |c〉 , with θ =
n−2∑

i=0

2iφ0δc[i],1. (28)

Note, that the first c-register qubit c[0] signifies the least significant bit corresponding
to the minimum phase shift φ0, whereas the qubit c[n − 2] determines the most
significant bit. Moreover, the last c-register qubit c[n − 1] controls the sign of the
applied phase. To implement inverse operations, it is conditionally flipped by a classical
integer flag f ∈ {0, 1}; for f = 1 the phase should be inverted. The quantum circuit
is provided in Fig. 38.

When employed as part of the subroutine M = Hmag(x, y, m, φ0), the controlled-
phase C-Phase(c;φ0, f ) is in addition to be controlled by a single-qubit t[ j] that
is part of the n1-qubit HS control register t, see Figs. 19 and 39. For the LREs of
C-Phase(c;φ0, f ) and C-Phase that is further controlled by a single-qubit t[ j], we
utilized the circuit decomposition rules discussed in the previous appendix sections.
In particular, we used the rough (and rather conservative) assumption that, on average,
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Fig. 38 Quantum circuit to implement the controlled phase subroutine C-Phase(c; φ0, f )

Fig. 39 Quantum circuit to implement the controlled-phase subroutine C-Phase(c; φ0, f ), that is in addi-
tion further controlled by a single-qubit control register t[ j]

Table 5 Resource estimates for
the unconditional
C-Phase(c; φ0, f ) subroutine
implemented by circuit given in
Fig. 38, where c is an n-qubit
register with n ∈ N, and
f ∈ {0, 1} a classical integer flag

Elementary resource Resource count

Ancilla qubits 1

H gates 80(n − 1)

S gates 40(n − 1)

T gates 80(n − 1)

X gates 4 + 2 f

CNOT gates 2n

Circuit width n + 1

Circuit depth 202(n − 1) + 6

T -depth 80(n − 1)

Measurements 1

every (unconditional) single-qubit rotation gate can be approximated by sequences of
approx. 100 fault-tolerant gates with each sequence roughly consisting of 40 T gates,
40 H gates and 20 S gates, see “Appendix 1.” The LREs of unconditional C-Phase and
conditional C-Phase are summarized in Tables 5 and 6.

Controlled-RotY: C-RotY(c, t;φ0, f )

The task of the subroutine C-RotY(c, t;φ0, f ), which is used in the implementation
of higher-level subroutines “StatePrep_b,” “StatePrep_R” and “Solve_x,” is to apply
a single-qubit rotation Ry(θ) to a single-qubit target register t, where the angle of
rotation θ is controlled by a signed n-qubit input register c:
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Table 6 Resource estimates for
the conditional
C-Phase(c; φ0, f ) subroutine
implemented by circuit in
Fig. 39, where c is an n-qubit
register with n ∈ N, and
f ∈ {0, 1} a classical integer flag

Elementary resource Resource count

Ancilla qubits 1

H gates 164(n − 1)

S gates 82(n − 1)

T gates 174(n − 1)

X gates 4 + 2 f

CNOT gates 16(n − 1) + 2

Circuit width n + 2

Circuit depth 436(n − 1) + 6

T -depth 174(n − 1)

Measurements 1

Fig. 40 Quantum circuit to implement the subroutine C-RotY(c, t;φ0, f ), employing an n-qubit con-
trol register c and a single-qubit target register t. The classical integer flag f ∈ {0, 1} facilitates inverse
transformations

|t〉 → e−(−i) f θY/2 |t〉 with θ =
n−2∑

i=0

2iφ0δc[i],1. (29)

The first c-register qubit c[0] signifies the least significant bit corresponding to the
minimum angle of rotation φ0, whereas the qubit c[n − 2] determines the most sig-
nificant bit. The sign of the applied rotation is controlled by the last c-register qubit
c[n−1]. In addition, it is conditionally flipped by a classical integer flag f ∈ {0, 1} to
enable straightforward inverse operations. The quantum circuit is provided in Fig. 40.
For the LRE of subroutine C-RotY(c, t;φ0, f ), we utilized the circuit decomposition
rules discussed in the previous appendix sections; our estimates are summarized in
Table 7.

Appendix 3: Resource estimates for the oracles

Below we report our LRE results for some representative oracle queries; all other ora-
cle queries have similar resource counts. These results depend on several choices: the

123



60 Page 60 of 65 A. Scherer et al.

Table 7 Resource estimates for
C-RotY(c, t;φ0, f ) subroutine,
whose quantum circuit is shown
in Fig. 40, where c is an n-qubit
input register with n ∈ N, and
f ∈ {0, 1}

Elementary resource Resource count

Ancilla qubits 0

H gates 84(n − 1)

S gates 42(n − 1)

T gates 80(n − 1)

X gates 2 f

CNOT gates 2n

Circuit width n + 1

Circuit depth 202(n − 1) + 2 f

T -depth 80(n − 1)

Measurements 1

internal representation for real and integer numbers, the details of the linear-system
problem definition, and the method for generating oracles. As for the internal represen-
tation of numbers, since every single operation had to be built from scratch, we used
fixed-point representation. Compared to a floating-point representation, it is simpler
and therefore generates smaller circuits. Regarding the details of the linear-system
problem definition, they constitute the core data of this particular implementation of
QLSA; provided in the GFI, we made no effort to modify them. Finally, the oracles
were generated with an automated tool, turning a classical description of an algorithm
into a reversible quantum circuit. We made this choice because we felt that it was the
most natural (and practical) solution for the particular kind of oracles we were dealing
with: general functions over real and complex numbers.

Quipper automatically generates recursive decompositions of oracles down to the
level of gates such as initialization, termination, etc. and controlled-NOTs (by at most
one or two wires, each on either true or false). The rules for decomposing these
gates into the standard-basis gates H, S, T , and X , and calculating circuit depths and
T -depths are included manually. Our rules for the depths are very conservative: we
assume sequential executions unless we know better strategies. Indeed, optimal-depth
decompositions are known only for fairly small gates, such as e.g., the Toffoli gate.
Hence we expect over-estimates both for circuit- and T -depths.20 These recursive gate-
decomposition rules are coded in the symbolic programming software Mathematica
for computing the final estimates.

Oracle A returns either the magnitude (argflag=False) or the phase
(argflag=True) of the coupling weight and the connected node index at the
chosen matrix-decomposition-band index (from 1 to Nb = 9). As there are many
combinations, we will show a representative sample and will draw conclusions
from them. As is evident from Table 8 that the estimates for different bands in the

20 As discussed previously, our circuit implementations of oracles are essentially the trace of execution of a
classical program of an algorithm. Because the algorithms we used are purely sequential, the corresponding
quantum circuits are not easily parallelizable on a global scale. The only possible optimizations are purely
local. We therefore conclude that our computed circuit- and T -depth values are over-estimates by some
unknown small factor wrt. optimal-depth values.
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Table 9 Representative resource estimation for Oracle A withargflag=False andargflag=True

Elementary resource argFlag=False argFlag=True

Ancilla qubits 4.78 × 106 1.29 × 107

H gates 3.62 × 107 1.33 × 108

S gates 1.81 × 107 6.66 × 107

T gates 1.27 × 108 4.66 × 108

X gates 2.43 × 107 7.64 × 107

CNOT gates 1.16 × 108 4.13 × 108

Circuit depth 2.48 × 108 8.87 × 108

T -depth 1.09 × 108 4.0 × 108

Measurements 4.78 × 106 12.9 × 106

Table 10 Resource estimation for Oracle b and Oracle R

Elementary resource Resource count, Oracle b Resource count, Oracle R

Ancilla qubits 204,765,119 � 2.1 × 108 110,576,558 � 1.1 × 108

H gates 1,641,762,800 � 1.6 × 109 888,704,520 � 8.9 × 108

S gates 820,881,400 � 8.2 × 108 444,352,260 � 4.4 × 108

T gates 5,746,169,800 � 5.7 × 109 3,110,465,820 � 3.1 × 109

X gates 1,075,933,016 � 1.1 × 109 582,282,144 � 5.8 × 108

CNOT gates 5,241,180,190 � 5.2 × 109 2,836,515,650 � 2.8 × 109

Circuit depth 11,192,585,310 � 11 × 109 6,057,980,506 � 6.06 × 109

T -depth 4,925,288,400 � 4.9 × 109 2,666,113,560 � 2.67 × 109

Measurements 204,765,119 � 2.0 × 108 110,576,558 � 1.1 × 108

argflag=False cases all agree to the subone-percent level, or to three signifi-
cant figures, with the exception of the number of qubits which only agree to within
about three percents of each other, or to two significant figures. Therefore anyone of
them can be taken as a representative for all argflag=False Oracle A resource
estimates and a representative table is also presented. Similar phenomenon is true for
all the argflag=True cases and only a representative table is presented for them.
As gate decompositions used are to the basis-gate level, the number of ancillas and
measurements should agree in every case, each with individual band index and argflag.
This is indeed true in all cases for which we have performed resource counting. The
two representative tables for argflag=False and argflag=True are pre-
sented in Table 9. Finally, the resource counts for Oracle r and for Oracle b are done
similarly: Quipper gives logical resource estimates, then recursive gate-decomposition
rules are coded in the symbolic computing software Mathematica for computing the
final estimates presented in Table 10.
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One may wonder why our oracle implementations require such a huge number of
auxiliary qubits and measurements—namely, up to ∼108 ancilla qubits and measure-
ments for a problem size N ≈ 3 × 108. This indeed is a feature of our low-level
implementation of the irreversible-to-reversible transformations that is similar to the
way “logical reversibility of computation” was proposed by Bennett in [53]. In essence,
to ensure that the run of the entire computation can be unwound, the result of each of its
elementary subcomputations is stored in an auxiliary qubit. When the final result has
been computed, it is copied into a fresh quantum register, and the entire computation
is reversed, with every subcomputation undone along the way, and the initial values
“0” of the intermediate auxiliary qubits restored and verified by a measurement. The
number of auxiliary qubits required is therefore directly proportional to the number
of elementary computational steps, and thus to the number of gates in the oracle. And
the number of measurements needed to ensure reversibility of computation equals the
number of ancilla qubits. One might argue that such an implementation is unnecessar-
ily verbose. While we agree that there may be more efficient implementations (e.g., by
using some known efficient adders when performing addition), our proposed imple-
mentation is arguably not so inefficient, in the sense that the size of the circuit (and
therefore also the number of auxiliary qubits) is directly proportional (and not, say,
exponential) to the length of the classical computation that would compute the data.
In particular, the size of the circuit for the oracle computing an element of the matrix
A is linear in the number of bits required to store the size of the matrix. Hence, the
Bennett construction we follow for our oracle implementations has good “theoretic
properties” in the worst case. However, the overhead for the implementation of an
arbitrary oracle is still considerable. Yet it is very useful as a first baseline resource
estimate. There is scope for improvement, both from software tools and from better
algorithm design using reversible gates.
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6. Luis, A., Peřina, J.: Optimum phase-shift estimation and the quantum description of the phase differ-

ence. Phys. Rev. A 54, 4564 (1996)
7. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum Algorithms Revisited.

arXiv:quant-ph/9708016 (1997)
8. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse

Hamiltonians. Commun. Math. Phys. 270(2), 359 (2007)
9. Wiebe, N., Braun, D., Lloyd, S.: Quantum Data Fitting. Phys. Rev. Lett. 109, 050505 (2012)

10. Berry, D.W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A Math.
Theor. 47, 105301 (2014)

11. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine
learning. arXiv:1307.0411 (2013)

123

http://math.nist.gov/quantum/zoo/
http://arxiv.org/abs/1010.4458
http://arxiv.org/abs/quant-ph/9708016
http://arxiv.org/abs/1307.0411


60 Page 64 of 65 A. Scherer et al.

12. Barz, S., Kassal, I., Ringbauer, M., Lipp, Y., Dakic, B., Aspuru-Guzik, A., Walther, P.: Solving systems
of linear equations on a quantum computer. Sci. Rep. 4, 6115 (2014). doi:10.1038/srep06115

13. Cai, X.D., Weedbrook, C., Su, Z.E., Chen, M.C., Gu, M.J.Z.M., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.:
Experimental quantum computing to solve systems of linear equations. Phys. Rev. Lett. 110, 230501
(2013)

14. Green, A., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: Quipper: a scalable quantum program-
ming language. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI’13, pp. 333–342 (2013)

15. Green, A., Lumsdaine, P.L., Ross, N.J., Selinger, P., Valiron, B.: An introduction to quantum program-
ming in Quipper. In: Proceedings of the 5th International Conference on Reversible Computation,
Lecture Notes in Computer Science, vol. 7948 , Lecture Notes in Computer Science, vol. 7948, pp.
110–124 (2013)

16. Intelligence Advanced Research Projects Activity (IARPA). Quantum Computer Science (QCS) Pro-
gram (2010). URL http://www.iarpa.gov/index.php/research-programs/qcs

17. Intelligence Advanced Research Projects Activity (IARPA). Quantum Computer Science (QCS)
Program Broad Agency Announcement (BAA) (April 2010). URL http://www.iarpa.gov/index.php/
research-programs/qcs/baa

18. The Quipper Language (2013). URL http://www.mathstat.dal.ca/~selinger/quipper/
19. The Quipper System (2013). URL http://www.mathstat.dal.ca/~selinger/quipper/doc/
20. Shewchuk, J.R.: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. (Tech-

nical Report CMU-CS-94-125 School of Computer Science, Carnegie Mellon University, Pittsburgh,
Pennsylvania (1994))

21. Saad, Y.: Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied Mathematics,
Philadelphia (2003)

22. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In:
Quantum Computation and Quantum Information, vol. 305 (AMS Contemporary Mathematics, 2002),
pp. 53–74 (2002)

23. Jin, J.M.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)
24. Chatterjee, A., Jin, J.M., Volakis, J.L.: Edge-based finite elements and vector ABCs applied to 3D

scattering. IEEE Trans. Antennas Propagat. 41, 221 (1993)
25. Trotter, H.: On the product of semi-groups of operators. In: Proceedings of the American Mathematical

Society, vol. 10, pp. 545–551 (1959)
26. Suzuki, M.: Fractal decomposition of exponential operators with applications to many-body theories

and Monte-Carlo simulations. Phys. Lett. A 146, 319 (1990)
27. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York

(2008)
28. Bank, R.E., Scott, L.R.: On the conditioning of finite element equations with highly refined meshes.

SIAM J. Numer. Anal. 26(6), 1383 (1989)
29. Layton, W.: High-accuracy finite-element methods for positive symmetric systems. Comput. Math.

Appl. 12A(4/5), 565 (1986)
30. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic

speedup by a quantum walk. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory
of Computing, STOC’03 (New York, NY, USA, 2003), pp. 59–68 (2003)

31. Ömer, B.: Quantum Programming in QCL. Master’s thesis, Institute of Information Systems, Technical
University of Vienna (2000)

32. Claessen, K.: Embedded Languages for Describing and Verifying Hardware. Ph.D. thesis, Chalmers
University of Technology and Göteborg University (2001)

33. Altenkirch, T., Green, A.S.: The quantum IO monad. In: Gay, S., Mackie, I. (eds.) Semantic Techniques
in Quantum Computation, pp. 173–205. Cambridge University Press, Cambridge (2009)

34. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Math.
Struct. Comput. Sci. 16(3), 527 (2006)

35. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Gay, S., Mackie, I. (eds.) Semantic Techniques
in Quantum Computation, pp. 135–172. Cambridge University Press, Cambridge (2009)

36. Laundauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 261
(1961)

37. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum carry-lookahead
adder. Quantum Inf. Comput. 6, 351 (2006)

123

http://dx.doi.org/10.1038/srep06115
http://www.iarpa.gov/index.php/research-programs/qcs
http://www.iarpa.gov/index.php/research-programs/qcs/baa
http://www.iarpa.gov/index.php/research-programs/qcs/baa
http://www.mathstat.dal.ca/~selinger/quipper/
http://www.mathstat.dal.ca/~selinger/quipper/doc/


Concrete resource analysis of the quantum linear-system… Page 65 of 65 60

38. Mermin, N.D.: Quantum Computer Science: An Introduction. Cambridge University Press, Cambridge
(2007)

39. Fowler, A.G.: Towards Large-Scale Quantum Computation. Ph.D. thesis, arXiv:quant-ph/0506126
(2005)

40. Fowler, A.G.: Constructing arbitrary Steane code single logical qubit fault-tolerant gates. Quantum
Inf. Comput. 11, 867 (2011)

41. Matsumoto, K., Amano, K.: Representation of Quantum Circuits with Clifford and π/8 Gates.
arXiv:0806.3834 (2008)

42. Giles, B., Selinger, P.: Remarks on Matsumoto and Amano’s normal form for single-qubit Clifford+T
operators. arXiv:1312.6584 (2013)

43. Berry, D.W., Cleve, R., Somma, R.D.: Exponential improvement in precision for Hamiltonian-evolution
simulation. arXiv:1308.5424v3 (2013)

44. Berry, D.W., Childs, A.M., Cleve, R., Kothari, R., Somma, R.D.: Exponential improvement in precision
for simulating sparse Hamiltonians. In: Proceedings of the 46th ACM Symposium on Theory of
Computing (STOC 2014), pp. 283–292 (2014)

45. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on
all parameters. In: Proceedings of the 56th IEEE Symposium on Foundations of Computer Science
(FOCS 2015), pp. 792-809 (2015)

46. Pham, T.T., Meter, R.V., Horsman, C.: Optimization of the Solovay–Kitaev algorithm. Phys. Rev. A
87, 052332 (2013)

47. Giles, B., Selinger, P.: Exact synthesis of multiqubit Clifford+T circuits. Phys. Rev. A 87, 032332
(2013)

48. Bocharov, A., Gurevich, Y., Svore, K.M.: Efficient decomposition of single-qubit gates into V basis
circuits. Phys. Rev. A 88(012313), 13 (2013)

49. Selinger, P.: Optimal ancilla-free Clifford+T approximation of Z -rotations. arXiv:1403.2975 (2014)
50. Kliuchnikov, V., Maslov, D., Mosca, M.: Asymptotically optimal approximation of single qubit

unitaries by Clifford and T circuits using a constant number of ancillary qubits. Phys. Rev. Lett.
110(190502), 5 (2013)

51. Kliuchnikov, V., Maslov, D., Mosca, M.: Fast and efficient exact synthesis of single qubit unitaries
generated by Clifford and T gates. Quantum Inf. Comput. 13(7–8), 607 (2013)

52. Selinger, P.: Efficient Clifford+T approximation of single-qubit operators. arXiv:1212.6253 (2012)
53. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525 (1973)

123

http://arxiv.org/abs/quant-ph/0506126
http://arxiv.org/abs/0806.3834
http://arxiv.org/abs/1312.6584
http://arxiv.org/abs/1308.5424v3
http://arxiv.org/abs/1403.2975
http://arxiv.org/abs/1212.6253

	Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target
	Abstract
	1 Introduction
	1.1 Objective of this work
	1.2 Context and setting of this work
	1.3 Review of previous work
	1.4 What makes our approach differ from previous work?
	1.5 Main results of this work
	1.6 Outline of the paper

	2 Resource estimation
	3 Quantum linear-system algorithm and its profiling
	3.1 General remarks
	3.2 Problem specification
	3.3 QLSA: abstract description
	3.4 QLSA: algorithm profiling and quantum-circuit implementation
	3.4.1 The ``main'' function QLSA_main
	3.4.2 Amplitude estimation subroutines
	3.4.3 State preparation subroutine
	3.4.4 Solve_x subroutine
	3.4.5 Hamiltonian Simulation subroutines
	3.4.6 Oracle subroutines


	4 Automated resource analysis of oracles via the programming language Quipper
	4.1 Quipper and the circuit model
	4.2 Quipper-generated resource estimation
	4.3 Regular versus reversible computation
	4.4 Quipper and template Haskell
	4.5 Encoding oracles
	4.6 Compactness of the generated oracles

	5 Results
	6 Discussion
	6.1 Understanding the resource demands
	6.2 Comparison with previous ``big-O'' estimations
	6.3 Lack of parallelism
	6.4 Hamiltonian-evolution simulation as the actual bottleneck and recent advancements

	7 Conclusion
	Acknowledgements
	Appendix 1: Single-qubit unitaries in terms of pre-specified elementary gates
	Implementation according to work by A. Fowler
	Plato implementation of gate sequence approximations

	Appendix 2: Circuits and resource estimates of lower-level subroutines and multiqubit gates employed by QLSA
	Controlled-Z gate
	Controlled-H gate
	W-gate
	Controlled rotations
	Toffoli gate
	Multicontrolled NOT
	Quantum Fourier Transform (QFT)
	Controlled phase: C-Phase(c; φ0,f)
	Controlled-RotY: C-RotY(c, t; φ0, f)

	Appendix 3: Resource estimates for the oracles
	References




