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Abstract. We developed a parsimonious topography-based
hydrologic model coupled with a soil biogeochemistry sub-
model in order to improve understanding and prediction
of soluble reactive phosphorus (SRP) transfer in agricul-
tural headwater catchments. The model structure aims to
capture the dominant hydrological and biogeochemical pro-
cesses identified from multiscale observations in a research
catchment (Kervidy–Naizin, 5 km2). Groundwater fluctua-
tions, responsible for the connection of soil SRP production
zones to the stream, were simulated with a fully distributed
hydrologic model at 20 m resolution. The spatial variability
of the soil phosphorus content and the temporal variability
of soil moisture and temperature, which had previously been
identified as key controlling factors of SRP solubilization
in soils, were included as part of an empirical soil biogeo-
chemistry sub-model. The modelling approach included an
analysis of the information contained in the calibration data
and propagation of uncertainty in model predictions using a
generalized likelihood uncertainty estimation (GLUE) “lim-
its of acceptability” framework. Overall, the model appeared
to perform well given the uncertainty in the observational
data, with a Nash–Sutcliffe efficiency on daily SRP loads
between 0.1 and 0.8 for acceptable models. The role of hy-
drological connectivity via groundwater fluctuation and the
role of increased SRP solubilization following dry/hot peri-
ods were captured well. We conclude that in the absence of
near-continuous monitoring, the amount of information con-
tained in the data is limited; hence, parsimonious models are
more relevant than highly parameterized models. An analysis
of uncertainty in the data is recommended for model calibra-
tion in order to provide reliable predictions.

1 Introduction

Excessive phosphorus (P) concentrations in freshwater bod-
ies result in increased eutrophication risk worldwide (Car-
penter et al., 1998; Schindler et al., 2008). Eutrophication
restricts economic use of water and poses a serious hazard
to ecosystems and humans (Serrano et al., 2015). In western
countries, reduction of point-source P emissions in the last
2 decades has resulted in a proportionally increasing contri-
bution of diffuse sources, mainly from agricultural origins
(Alexander et al., 2008; Grizzetti et al., 2012; Dupas et al.,
2015a). Of particular concern are dissolved P forms, often
measured as soluble reactive phosphorus (SRP) because they
are highly bioavailable and therefore a likely contributor to
eutrophication.

To reduce SRP transfer from agricultural soils, it is im-
portant to identify the spatial origin of P sources in agri-
cultural landscapes, the biogeochemical mechanisms causing
SRP solubilization in soils and the dominant transfer path-
ways, as well as the potential P resorption during transit.
Research catchments provide useful data to investigate SRP
transport mechanisms: typically, the temporal variations in
water quality parameters at the outlet, together with hydro-
climatic variables, are investigated to infer spatial origin and
dominant transfer pathways of SRP (Haygarth et al., 2012;
Outram et al., 2014; Dupas et al., 2015b; Mellander et al.,
2015; Perks et al., 2015). Hypotheses drawn from analysis of
water quality time series can be further investigated through
hillslope monitoring and/or laboratory experiments (Heath-
waite and Dils, 2000; Siwek et al., 2013; Dupas et al., 2015c).
When dominant processes are considered reasonably known,
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it is possible to develop computer models, for two main pur-
poses. First, to validate scientific conceptual models one can
test whether model predictions can produce reasonable simu-
lations compared to observations. Of particular interest is the
possibility of testing the capability of a computer model to
upscale P processes observed at fine spatial resolution (soil
column, hillslope) to a whole catchment. Second, if the mod-
els survive such validation tests, they can be useful tools to
simulate the response of a catchment system to a future per-
turbation such as changes in agricultural management and
climate changes.

However, process-based P models generally perform
poorly compared to, for example, nitrogen models (Wade et
al., 2002a; Dean et al., 2009; Jackson-Blake et al., 2015).
This is of major concern because poor model performance
suggests poor knowledge of dominant processes at the catch-
ment scale, and poor reliability of the modelling tools used to
support management. The origin of poor model performance
might be conceptual misrepresentations, structural imperfec-
tion, calibration problems, irrelevant model evaluation cri-
teria and difficulties in properly assessing the information
content of the available data when it is subject to epistemic
error. All five causes of poor model performance are inter-
twined; e.g. model calibration strategy depends on model
performance evaluation criteria, which depend on the way
the information contained in the observation data is assessed
(Beven and Smith, 2015).

A key issue in environmental modelling is the level of
complexity one should seek to incorporate in a model struc-
ture. Several existing P transfer models, such as INCA (Wade
et al., 2002a), SWAT (Arnold et al., 1998) and HYPE (Lind-
strom et al., 2010) seek to simulate many processes, with
the view that complex models are necessary to understand
processes and to predict the likely consequences of land use
or climate changes. However, these complex models include
many parameters that need to be calibrated, while the amount
of data available for calibration is often low. An imbalance
between calibration requirement and the amount of avail-
able observation data can lead to equifinality issues, i.e. when
many model structures or parameter sets lead to acceptable
simulation results (Beven, 2006). A consequence of equifi-
nality is the risk of unreliable prediction when an “optimal”
set of parameters is used (Kirchner, 2006), and large uncer-
tainty intervals when Monte Carlo simulations are performed
(Dean et al., 2009). In this situation, it will be worth ex-
ploring parsimonious models that aim to capture the domi-
nant hydrological and biogeochemical processes controlling
SRP transfer in agricultural catchments. For example, Hahn
et al. (2013) used a soil-type-based rainfall–runoff model
(Lazzarotto et al., 2006) combined with an empirical model
of soil SRP release derived from rainfall simulation experi-
ments over soils with different P content and manure appli-
cation level/timing (Hahn et al., 2012) to simulate daily SRP
load from critical sources areas.

A second key issue, linked to the question of model com-
plexity, concerns model calibration and evaluation. Both cal-
ibration and evaluation require assessing the fit of model out-
puts with observation data. However, observation data are
generally not directly comparable with model outputs, be-
cause of incommensurability issues and/or because they con-
tain errors (Beven, 2006, 2009). Typically, predicted daily
concentrations and/or loads are evaluated against data from
grab samples collected on a daily or weekly basis. The in-
formation content of these data must be carefully evaluated
to propagate uncertainty in the data into model predictions
(Krueger et al., 2012). Uncertainty in grab sample data might
stem from (i) sampling frequency problems or (ii) measure-
ment problems (Lloyd et al., 2016). Grab sample data repre-
sent a specific point in the stream cross section, which can
differ from the cross section mean concentration (Rode and
Suhr, 2007), and a snapshot of the concentration at a given
time of the day, which can differ from the flow-weighted
mean daily concentration (McMillan et al., 2012). This dif-
ference between observation data and simulation output can
be large during storm events in small agricultural catchments,
as P concentrations can vary by several orders of magnitude
during the same day (Heathwaite and Dils, 2000; Sharpley et
al., 2008). Model evaluation can be severely hindered by this
difference, because many popular evaluation criteria such as
the Nash–Sutcliffe efficiency (NSE) are sensitive to extreme
values and errors in timing (Moriasi et al., 2007). During
baseflow periods, it is more likely that grab sample data are
comparable to flow-weighted mean daily concentrations, as
concentrations vary little during the day and they are usu-
ally low in the absence of point sources. However, measure-
ment errors are expected to occur at low concentrations, ei-
ther due to too long storage times or laboratory imprecision
when concentrations come close to detection/quantification
limits (Jarvie et al., 2002; Moore and Locke, 2013). Uncer-
tainty in the data can also relate to discharge measurement
and input data (e.g. maps of soil P content and rainfall data).
In this paper we strive to identify and quantify the different
sources of uncertainty in the data when the required quality
check tests have been performed (on the discharge and SRP
concentration data). A generalized likelihood uncertainty es-
timation (GLUE) “limits of acceptability” approach (Beven,
2006; Beven and Smith, 2015) is used to calibrate/evaluate
the model.

This paper presents a dominant-process model that cou-
ples a topography-based hydrologic model with a soil bio-
geochemistry sub-model able to simulate daily discharge and
SRP loads. The dominant processes included in the hydro-
logic and soil biogeochemistry sub-models have been iden-
tified in previous analyses of multiscale observational data,
which have demonstrated, on the one hand, the control of
groundwater fluctuation on connecting soil SRP production
zones to the stream (Haygarth et al., 2012; Jordan et al.,
2012; Dupas et al., 2015b, d; Mellander et al., 2015), and,
on the other hand, the role of antecedent soil moisture and
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Figure 1. Soil drainage classes in the Kervidy–Naizin catchment (Curmi et al. 1998).

temperature conditions on SRP solubilization in soils (Turner
and Haygarth, 2001; Blackwell et al., 2009; Dupas et al.,
2015c). Model development and application were performed
in the Kervidy–Naizin catchment in western France with the
objectives of (i) testing if the model was capable of captur-
ing daily variation of SRP load, thus confirming hypotheses
on dominant processes; and (ii) developing a methodology
to analyse and propagate uncertainty in the data into model
prediction using a “limits of acceptability” approach.

2 Material and methods

2.1 Study catchment

2.1.1 Site description

Kervidy–Naizin is a small (4.94 km2) agricultural catchment
located in central Brittany, western France (48◦ N, 3◦W). It
belongs to the AgrHyS environmental research observatory
(http://www6.inra.fr/ore_agrhys_eng), which studies the im-
pact of agricultural activities and climate change on water
quality (Molenat et al., 2008; Aubert et al., 2013; Salmon-
Monviola et al., 2013; Humbert et al., 2015). The catch-
ment (Fig. 1) is drained by a stream of second Strahler or-
der, which generally dries up in August and September. The
climate is temperate oceanic, with mean± standard devia-
tions of annual cumulative precipitation and specific dis-
charge of 854± 179 and 290± 106 mm respectively, from
2000 to 2014. Mean annual± standard deviation of temper-
ature is 11.2± 0.6 ◦C. Elevation ranges from 93 to 135 m
above sea level. Topography is gentle, with maximum slopes
not exceeding 5 %. The bedrock consists of impervious, lo-
cally fractured Brioverian schists and is capped by several
metres of unconsolidated weathered material and silty, loamy
soils. The hydrological behaviour is dominated by the de-

velopment of a water table that varies seasonally along the
hillslope. In the upland domain, consisting of well-drained
soils, the water table remains below the soil surface through-
out the year, varying in depth from 1 to > 8 m. In the wet-
land domain, developed near the stream and consisting of
hydromorphic soils, the water table is shallower, remaining
near the soil surface generally from October to April each
year. The land use is mostly agriculture, specifically arable
crops and confined animal production (dairy cows and pigs).
A farm survey conducted in 2013 led to the following land
use subdivisions: 35 % cereal crops, 36 % maize, 16 % grass-
land and 13 % other crops (rapeseed, vegetables). Animal
density was estimated as high as 13 livestock units ha−1 in
2010. Estimated soil P surplus was 13.1 kg P ha−1 yr−1 (Du-
pas et al., 2015b) and soil extractable P in 2013 (Olsen et
al., 1954) was 59± 31 mg P kg−1 (n= 89 samples). A survey
targeting riparian areas highlighted the legacy of high soil
P content in these currently unfertilized areas (Dupas et al.,
2015c). No point-source emissions were recorded, but scat-
tered dwellings with septic tanks were present in the catch-
ment.

2.1.2 Hydroclimatic and chemical monitoring

Kervidy–Naizin was equipped with a weather station (Cimel
Enerco 516i) located 1.1 km from the catchment outlet. It
recorded hourly precipitation, air and soil temperatures, air
humidity, global radiation, wind direction and speed, which
are used to estimate Penman evapotranspiration. Stream
discharge was estimated at the outlet with a rating curve
and stage measurements from a float-operator sensor (Thal-
imèdes OTT) upstream of a rectangular weir.

To record both seasonal and within storm dynamics in
SRP concentration, two monitoring strategies complemented
each other from October 2013 to August 2015: a daily man-
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ual grab sampling at approximately the same time (between
16:00 and 18:00 local time) and automatic high-frequency
sampling during 14 storm events (Teledyne autosampler
ISCO 6712 Full-Size Portable Sampler; 24 1 L bottles filled
every 30 min). The water samples were filtered on-site, im-
mediately after grab sampling and after 1–2 days in the case
of autosampling. They were analysed for SRP (ISO 15681)
within a fortnight. To assess uncertainty in daily SRP concen-
tration related to sampling time, storage and measurement er-
rors, a second grab sample was taken at a different time of the
day (between 11:00 and 15:00 local time) in 36 instances dur-
ing the study period. The second sample was analysed within
24 h with the same method; this second data set is referred to
as verification data set, as opposed to the reference data set.
Among the 36 pairs of comparable daily samples, 12 were
taken during storm events and 24 during baseflow periods.
To assess uncertainty in high-frequency SRP concentration
during storm events due to delayed filtration of autosampler
bottles, five grab samples were taken during the course of
four distinct storms and were filtered immediately. The same
lab procedure was used to analyse SRP.

2.1.3 Identification of dominant processes from
multiscale observations

Observations in the Kervidy–Naizin catchment have high-
lighted that the temporal variability in stream SRP concen-
trations could not be related to the calendar of agricultural
practices but rather to hydrological and biogeochemical pro-
cesses (Dupas et al., 2015b). The primary control of hy-
drology on SRP transfer has also been evidenced in sev-
eral other small agricultural catchments (e.g. Haygarth et al,
2012; Jordan et al., 2012; Mellander et al., 2015). In the
Kervidy–Naizin catchment, the groundwater fluctuation in
valley bottom areas was identified as the main driving fac-
tor of SRP transfer, through the hydrological connectivity it
creates when the saturated zone intercepts shallow soil layers
(Dupas et al., 2015b).

In situ monitoring of soil pore water at four sites (15 and
50 cm depths) in the Kervidy–Naizin catchment has shown
that mean SRP concentration in soils is a linear function
of Olsen P (Olsen et al., 1954). This reflects the current
knowledge that a soil P test, or alternatively estimation of
a degree of P saturation, can be used to assess solubiliza-
tion in soils (Beauchemin and Simard, 1999; McDowell et
al., 2002; Schoumans et al., 2015). This linear relationship
derived from the data contrasts however with other studies,
where threshold values above which SRP solubilization in-
creases greatly have been identified (Heckrath et al., 1995;
Maguire and Sims, 2002).

SRP solubilization in soil varies seasonally according to
antecedent conditions of temperature and soil moisture. Dry
and/or hot conditions are favourable to the accumulation of
mobile P forms in soils, while water-saturated conditions

lead to their flushing (Turner and Haygarth, 2001; Blackwell
et al., 2009; Dupas et al., 2015c).

2.2 Description of the Topography-based Nutrient
Transfer and Transformation – Phosphorus model
(TNT2-P)

TNT2 was originally developed as a process-based and spa-
tially explicit model simulating water and nitrogen fluxes at a
daily time step (Beaujouan et al., 2002) in meso-scale catch-
ments (< 50 km2). TNT2-N has been widely used for opera-
tional objectives, to test the effect of mitigation options pro-
posed by local stakeholders or public policymakers (Moreau
et al., 2012; Durand et al., 2015), on nitrate fluxes and con-
centrations in rivers.

TNT2-P uses a modified version of the hydrological sub-
model in TNT2-N, to which a P biogeochemistry sub-model
was added to simulate SRP solubilization in soils.

2.2.1 Hydrological sub-model

The assumptions in the hydrological sub-model are derived
from TOPMODEL, which has previously been applied to the
Kervidy–Naizin catchment (Bruneau et al., 1995; Franks et
al., 1998). (1) The effective hydraulic gradient of the satu-
rated zone is approximated by the local topographic surface
gradient (tanβ). It is calculated in each cell of a digital el-
evation model (DEM) at the beginning of the simulation.
(2) The effective downslope transmissivity (parameter T ) of
the soil profile in each cell of the DEM is a function of the
soil moisture deficit (Sd). Hydraulic conductivity is assumed
to decrease exponentially with depth (parameter m, Fig. 2).
Hence, water fluxes (q) are computed as

q = T · tanβ · exp(−
Sd

m
). (1)

Based on these assumptions, TNT2 computes an explicit
cell-to-cell routing of fluxes, using a D8 algorithm.

To simulate SRP fluxes, the hydrological sub-model is
used to compute water fluxes from each soil layer by inte-
grating Eq. (1) between the maximum depth of the soil layer
considered and either

– estimated groundwater level, if the groundwater table is
within the soil layer considered,

or

– the minimum depth of the soil layer considered, if the
groundwater table above the soil layer considered.

In this application of the TNT2-P model, five soil layers with
a thickness of 10 cm are considered. Hence, seven flow com-
ponents are computed in the model:

– overland flow on any saturated surfaces;

– five sub-surface flow components, one for each soil
layer;
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Figure 2. Description of soil hydraulic properties and phosphorus
content with depth.

– deep flow, i.e. flow below the five soil layers.

2.2.2 Soil P sub-model

The soil P sub-model is empirically derived from soil pore
water monitoring data (Dupas et al., 2015c), specifically as-
suming that

– the background SRP concentration in the soil pore water
of a given layer is proportional to soil Olsen P;

– seasonal increases in P availability compared to back-
ground conditions are determined by biogeochemical
processes, controlled by antecedent temperature and
soil moisture. Data show that SRP availability in the
soil pore water increases following periods of dry and
hot conditions (Dupas et al., 2015c).

Hence, SRP transfer is modelled with parameters that de-
scribe both mobilization and transfer to the stream. A differ-
ent parameter is used to simulate transfer via overland flow
and sub-surface flow.

FSRP overland = CoefSRP overland · POlsen · qoverland, (2)
FSRP sub-surface = CoefSRP sub-surface · POlsen · qsub-surface, (3)

where FSRP overland and FSRP sub-surface are SRP transfer via
overland flow and sub-surface flow for a given soil layer re-
spectively, qoverland and qsub-surface are water flows from the
same pathways. CoefSRP overland and CoefSRP sub−surface are
coefficients that vary according to antecedent temperature
and soil moisture conditions, such as

CoefSRP = Coefbackground · (1+FT ·FS), (4)

where CoefSRP is either CoefSRP overland or
CoefSRP sub−surface, and FT and FS are temperature and
soil moisture factors, respectively. FT and FS are expressed

as

FT = exp(
mean(temperature, i days)− T 1

T 2
), (5)

FS = 1−
(

mean(water content, i days )
maximum water content

)S1

, (6)

where T 1, T 2 and S1 are parameters to be calibrated. The
antecedent condition time length consists in a period of
i = 100 days. Both soil temperature and soil moisture are es-
timated by the TNT2 soil module (Moreau et al., 2013). Be-
cause soil moisture in the deep soil layers can differ signifi-
cantly from that of shallow soil layers, two values of FS are
calculated for two soil depth ranges: 0–20 and 20–50 cm. The
temperature factor FT was calculated as an average value for
the entire 0–50 cm soil profile. Contrary to the water fluxes,
SRP fluxes are not routed cell-to-cell because we lack knowl-
edge of the rate of SRP re-adsorption in downslope cells and
of the long-term fate of re-adsorbed SRP. Hence, all the SRP
emitted from each cell through overland flow and sub-surface
flow reaches the stream on the same day. For deep flow, only
the immediate riparian flux is used in determining SRP in-
puts to the river.

No long-term depletion of the different P pools was mod-
elled, because annual P export from the catchment was small
compared to the size of soil and sub-soil P pools.

2.2.3 Input data and parameters

Spatial input data required for TNT2-P include

– A DEM in raster format. Here, a 20 m resolution DEM
was used; hence, model calculations were made in
12 348 grid cells covering a 4.94 km2 catchment.

– A map of soil units that could be assumed to have homo-
geneous hydrological parameter values, in raster format.
Here, two soil classes were considered by differentiat-
ing well-drained (86 %) and poorly drained soils (14 %)
according to Curmi et al. (1998) (Fig. 1). Experimental
determination of saturated hydraulic conductivity (29
soil cores) by Curmi et al. (1998) showed significantly
different values for soils classified as well-drained and
poorly drained in the Kervidy–Naizin catchment. The
two units were treated as homogeneous, lacking infor-
mation about the detailed variability in soil hydraulic
characteristics at the model grid scale.

– A map of surface Olsen P in raster format and descrip-
tion of decrease in the Olsen P with depth for five soil
layers between 0 and 50 cm. Here, the map of Olsen
P in the 0–15 cm soil layer was obtained from statisti-
cal modelling with the rule-based regression algorithm
CUBIST (Quinlan, 1992) using data from 198 soil sam-
ples (2013) in an area of 12 km2 encompassing the
4.94 km2 catchment (Matos-Moreira et al., 2015). To
describe how Olsen P decreases with depth, land use
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4824 R. Dupas et al.: Phosphorus transfer modelling

information was used. In tilled fields, i.e. all crop rota-
tions including arable crops, Olsen P was assumed to be
constant between 0 and 30 cm and to decrease linearly
with depth between 30 and 50 cm. In no-till fields, i.e.
permanent pasture and woodland, Olsen P was assumed
to decrease linearly with depth between 0 and 50 cm.
An exponential decrease with depth is more commonly
adopted in untilled land (e.g. Haygarth et al., 1998; Page
et al., 2005), but a specific sampling in currently un-
tilled areas in the Kervidy–Naizin catchment (Dupas et
al., 2015c) has shown that a linear function is more ap-
propriate, probably because of these areas having been
ploughed in the past. A previous study has shown that
soil Olsen P was the most important factor controlling
SRP solubilization in soils of the Kervidy–Naizin catch-
ment (see Sect. 2.1.3); therefore, other parameters in the
soil P sub-model (Sect. 2.2.2) were treated as homoge-
neous in the catchment (the soil classification into well-
drained and poorly drained soils only concerned hydro-
logical parameters).

A 20 m resolution was chosen for the DEM and the soil
Olsen P raster map to allow for a detailed representation of
the interaction of the groundwater table (as simulated by the
hydrological model) and the soil Olsen P (as given by the
soil Olsen P map). Indeed the soil saturation and soil Olsen
P can be very different in a narrow zone close to the stream
compared to upslope due to the presence of a 5 to 50 m unfer-
tilized buffer zone with lower Olsen P compared to fertilized
fields. The Olsen P value close to the stream has a determin-
ing influence on SRP transfer, because this area is the most
frequently connected to the stream; therefore, a coarser reso-
lution of the raster maps would degrade representation of the
system.

Climate input data include minimum and maximum air
temperature, precipitation, potential evapotranspiration and
global radiation on a daily basis. The TNT2 model allows
for several climate zones to be considered, in which case a
raster map of climate zones must be provided to the model.
Here, only one climate zone is considered.

In total, the TNT2-P model includes 15 parameters for
each soil type, i.e. 30 parameters in total if two soil drainage
classes are considered. To reduce the number of model runs
necessary to explore the parameter space using Monte Carlo
simulations, several parameters were given fixed values, or a
constant ratio between the two soil types was set (Table 1).
In the hydrological sub-model, the parameters to vary were
identified in a previous sensitivity analysis (Moreau et al.,
2013). In the soil sub-model, all the parameters were varied.

Finally, only 12 parameters were varied independently
(see Table 1). Initial parameter ranges for the hydrological
sub-model were based on values from several previous stud-
ies in western France (Moreau et al., 2013) and those for the
soil sub-model were based on a preliminary manual trial and
error procedure. The SRP concentration for deep flow water

Figure 3. Rating curve in Kervidy–Naizin; acceptability bounds de-
rived from 90 % prediction interval (blue line: fitting regression;
black dashes: 90 % prediction interval). Red dots represent the orig-
inal discharge measurements used to calibrate the stage–discharge
rating curve (Carluer, 1998).

was based on actual measurement of SRP in the weathered
schist (Dupas et al., 2015c). A constant flux value for do-
mestic sources was set at the 1st percentile of the daily flux
between 2007 and 2013 (Dupas et al., 2015b).

2.3 Deriving limits of acceptability from data
uncertainty assessment

The Monte Carlo-based GLUE methodology has been
widely used in hydrology and is described elsewhere (Beven
and Freer, 2001b; Beven, 2006, 2009). Briefly, the rationale
of GLUE is that many model structures and parameter sets
can give “acceptable” results, according to one or several per-
formance measures. Hence, GLUE considers that all models
that give acceptable results should be used for prediction. A
key issue in GLUE is to decide on a performance threshold
to define acceptable models; typically, modellers set a thresh-
old value of a measure such as the Nash–Sutcliffe efficiency
based on their subjective appreciation of data uncertainty or
on previously used values. To allow for a more explicit jus-
tification of the performance threshold values used, the lim-
its of acceptability approach outlined by Beven (2006) relies
on an assessment of uncertainty in the calibration/evaluation
data. According to this approach, all model realizations that
fall within the limits of acceptability are used for prediction,
weighted by a score calculated based on overall performance.

Details on how the limits of acceptability for daily dis-
charge and daily SRP load were derived from uncertainty as-
sessment of the observational data are presented below. In-
put data, such as weather and soil Olsen P data, also con-
tained uncertainties that were not accounted for explicitly in
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Table 1. Initial parameter ranges in the hydrological and soil phosphorus sub-models.

Abbreviation Unit Hydrological (H) or Range poorly Range well-
phosphorus (P) drained soils drained soils
model (min–max) (min–max)

Lateral transmissivity at saturation T m2 day−1 H 4–8 →× 1.5
Exponential decay rate of hydraulic
conductivity with depth

m m2 day−1 H 0.02–0.2 0.02–0.2

Soil depth ho m H 0.3–0.8 →× 1
Drainage porosity of soil po cm3 cm−3 H 0.1–0.4 →× 1
Regolith layer thickness h1 m H 5–10 →× 4
Exponent for evaporation limit A – H 8 (fixed) →× 1
kRC parameter for capillary rise kRC – H 0.001 (fixed) →× 1
n parameter for capillarity rise N – H 2.5 (fixed) →× 1
Drainage porosity of regolith layer p1 cm3 cm−3 H 0.01–0.05 →× 1
Background P release coefficient for
sub-surface flow

CoefSRP overland – P 0–0.015 →× 1

Background P release coefficient for
overland flow

CoefSRP sub-surface – P 0–0.25 →× 1

Temperature coefficient 1 T1 – P 5–10 →× 1
Temperature coefficient 2 T2 – P 2–10 →× 1
Soil moisture coefficient S1 – P 0–2 →× 1
SRP concentration in deep flow SRP_deep mg L−1 P 0–0.007 →× 1

the limits of acceptability due to a lack of data to quantify
them.

2.3.1 Discharge

Error in discharge measurement data was assessed from the
original discharge measurements used to calibrate the stage–
discharge rating curve (Carluer, 1998). The rating curve used
in this study was

Q= a · (h−h0)
b, (7)

where Q is discharge, h is stage reading, h0 is stage reading
at zero discharge, a and b are calibrated coefficients. Limits
of acceptability were defined as the 90 % prediction interval
of log–log linear regression (Fig. 3). The acceptability range
estimated in this way was ±39 % on average. This uncer-
tainty interval is in the higher range of values found in other
studies, e.g. Coxon et al. (2015), who found that mean dis-
charge uncertainty was generally between 20 and 40 % in 500
catchments of the United Kingdom. This relatively large un-
certainty interval is due to the fact that it was derived from a
prediction interval rather than a confidence interval (the 90 %
confidence interval of the log–log linear regression would be
14 % of the mean discharge value during the study period).
A prediction interval is an interval in which future observa-
tions will likely fall, whereas a confidence interval is an in-
terval in which the mean of repeated observation will likely
fall. Because in the TNT2-P model’s evaluation we want each
observation to fall in the acceptability interval (Sect. 2.3.3), a
prediction interval was more appropriate. For daily discharge

values below 2 mm day−1, fixed acceptability limits were set
at the 90 % prediction interval for a stage measurement cor-
responding to 2 mm day−1.

2.3.2 SRP load

Uncertainty in “observed” daily load includes uncertainty in
discharge (see Sect. 2.3.1) and uncertainty in SRP concen-
tration. The acceptability limit for daily load was estimated
by the sum of relative uncertainty assessed for discharge
and SRP concentration (in percentage). Uncertainty in SRP
concentration stems from sampling frequency problems as
one grab sample collected on a specific day is incommen-
surable with the mean daily concentration or load simulated
by the model. Further, measurement errors exist that include
the effect of storage time (Haygarth et al., 1995). During
baseflow periods, measurement error was expected to be the
main source of uncertainty because relative measurement er-
ror was large for low concentrations, especially when sam-
ple storage time exceeded 48 h (Jarvie et al., 2002), whereas
concentrations vary little. During storm events, sampling fre-
quency was expected to be the main source of uncertainty
because SRP concentration can vary by 1 order of magnitude
within a few hours. Therefore, different acceptability limits
were set for both flow conditions. We considered storms as
events with > 20 L s−1 increase in discharge and the follow-
ing 24 h.

During baseflow periods, the acceptability limits were de-
rived from the 90 % prediction interval of a linear regression
model (y = a ·x+b) linking pairs of data points sampled on
the same day (reference sample between 16:00 and 18:00,
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Figure 4. (a) Linear regression model linking the reference data and a verification data set; (b) measurement error as estimated from
a repeatability test performed by the laboratory in charge of producing reference data (blue line: fitting regression; black dashes: 90 %
prediction interval).

verification sample between 11:00 and 15:00) and analysed
independently (within a fortnight for the reference sample
and within 1–2 days for the verification sample). It was as-
sumed that there was no systematic bias between the two
data sets due to different sampling time. The reference SRP
concentrations were on average 13 % lower than the verifica-
tion value but this difference was not statistically significant
(Mann–Whitney rank sum test, p > 0.05). This method en-
compasses all various sources of uncertainty, which results
in prediction intervals much wider than what would result
from a mere repeatability test; at the median concentration
(0.02 mg L−1), the estimated prediction interval was 166 %
with this method vs. 57 % with a repeatability test (Fig. 4).
As for discharge estimates, the high percentage represents a
small absolute value (0.03 mg L−1) during baseflow periods.

During storm events, acceptability limits were derived
from the 90 % prediction interval of concentration discharge
statistical models (C = a ·Qb) using high-frequency au-
tosampler data. Two reasons led us to use a statistical model
(which also implies the assumption that errors are aleatory
and temporally independent): (i) the measurement uncer-
tainty as assessed by the laboratory repetition test was an un-
derestimate of the real uncertainty of autosampler data, be-
cause it does not include other major sources of error such
as delayed filtration and sample decay during storage; (ii) it
was necessary to extrapolate the sub-daily observation to the
daily resolution of the model. The limits of this choice will
be discussed in Sect. 4.3. An empirical model was used to
fit each storm event monitored separately and a delay term
was introduced manually in the empirical model when a time
lag existed between concentration and discharge peaks. The
empirical models were then applied to extrapolate concentra-
tion estimation during 2 days at 10 min resolution, for each
of the 14 storm events monitored. Finally the 2-day mean

Figure 5. Example of an empirical concentration – discharge
model; acceptability bounds derived from 90 % prediction interval.
Red circles represent the SRP measurements.

“observed” load was estimated as the mean of 10 min loads
and uncertainty limits were derived from the 90 % prediction
interval. In model evaluation, the mean of simulated loads
during 2 consecutive days was evaluated against the 2-day
mean “observed” load for which prediction intervals have
been calculated. A 2-day acceptability limit enables all the
storm events to be covered (Fig. 5 and Supplement). A 2-day
aggregation was necessary here because increased SRP load
as a response to each storm event could occur either mainly
during the day of the rainfall (if the rainfall occurred early
in the morning) or mainly during the day following the rain-
fall (if the rainfall occurred late in the evening), and with the
daily resolution of the input data and model simulation, the
information about the timing of the rainfall event was not
available to the model.

When comparing autosampler data with data from imme-
diately filtered samples, the ratio obtained had the range 1–
1.6 (mean= 1.3); hence, autosampler data were underesti-
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Table 2. Starting and ending dates of periods studied.

Name Starting date Ending date

Autumn 2013 1 October 2013 31 December 2013
Winter 2014 1 January 2014 31 March 2014
Spring 2014 1 April 2014 31 July 2014
Autumn 2014 1 October 2014 31 December 2014
Winter 2015 1 January 2015 31 March 2015
Spring 2015 1 April 2015 31 July 2015

mates of the true concentration, arguably through adsorption
or biological consumption. We used the mean ratio to cor-
rect all storm acceptability intervals by 30 % and the range
values to extend the upper limit by 60 %. During days with
a storm event not monitored at high frequency with an au-
tosampler, we considered that the grab sample data did not
contain enough information to derive an acceptability inter-
val for daily SRP load; hence, simulated load was not evalu-
ated for events not monitored at high frequency.

2.3.3 Model runs and selection of acceptable models

To explore the parameter space, 20 000 Monte Carlo realiza-
tions were performed to simulate daily discharge and SRP
load during the water years 2013–2014 and 2014–2015. The
number of Monte Carlo realizations was constrained by the
computation time required to run a spatially explicit model
in this catchment. A 7-month initialization period was run
to reduce the impact of initial conditions on simulated re-
sults during the study period, from 1 October 2013 to 31 July
2015.

To be considered acceptable, model runs must fall within
the acceptability limits defined in Sect. 2.3.1 and 2.3.2. More
specifically, 100 % of simulated daily discharge, 100 % of
simulated baseflow SRP load and 100 % of simulated storm
SRP load have to fall within the acceptability limits. Thus,
572 acceptability tests were performed for discharge, 378 for
baseflow SRP load and 14 for storm SRP loads, i.e. 964 eval-
uation criteria.

To evaluate the model performance in more detail, nor-
malized scores were calculated during six periods (Table 2).
To calculate the scores, a difference was calculated between
each of the daily simulated discharge, baseflow SRP load and
2-day storm SRP loads and the corresponding observation.
This difference was then normalized by the width of the ac-
ceptability limit defined for that day; therefore, the score has
a value of 0 in the case of a perfect match with observation,
−1 at the lower limit and +1 at the upper limit (Fig. 6a). Fi-
nally, the median of this ratio was calculated for each of the
six periods to investigate whether the model tended to un-
derestimate or overestimate discharge and loads at different
moments of the year and between the two years.

Model runs were successively evaluated for discharge,
baseflow SRP load and storm SRP load. To use the models

Table 3. Sensitivity analysis of the model to 18 model parameters
(insignificant “.”, important “∗”, critical “∗∗∗”). Parameters signifi-
cations are detailed in Table 1.

Discharge Baseflow Storm
SRP load SRP load

T (poorly drained soils) . ∗∗∗ ∗∗∗

m (poorly drained soils) ∗∗∗ ∗∗∗ ∗∗∗

ho (poorly drained soils) ∗∗∗ ∗∗∗ .
po (poorly drained soils) ∗∗∗ ∗∗∗ ∗∗∗

h1 (poorly drained soils) ∗∗∗ ∗∗∗ .
p1 (poorly drained soils) ∗∗∗ ∗∗∗ ∗∗∗

T (well-drained soils) . ∗∗∗ ∗∗∗

m (well-drained soils) ∗∗∗ ∗∗∗ ∗∗∗

ho (well-drained soils) ∗∗∗ ∗∗∗ .
po (well-drained soils) ∗∗∗ ∗∗∗ ∗∗∗

h1 (well-drained soils) ∗∗∗ ∗∗∗ .
p1 (well-drained soils) ∗∗∗ ∗∗∗ ∗∗∗

Coef_sub-surface . ∗∗∗ .
Coef_overland . ∗∗∗ ∗∗∗

SRP_deep . . .
S1 . ∗∗∗ ∗∗∗

T 1 . ∗∗∗ ∗∗∗

T 2 . ∗∗∗ ∗∗∗

Figure 6. Normalized scores (a) and weighting function (b).

for prediction, each accepted model was given a likelihood
weight according to how well it has performed for each of the
964 evaluation criteria. Here the statistical deviation weight
was used (truncated to 90 % prediction interval) (Fig. 6b). To
“combine” the weights derived from the rating curve and the
SRP concentration statistical models, a kernel density esti-
mate (with Gaussian smoothing kernel) was computed to fit
10 000 realizations of the multiplied error models. Calculated
weights were then averaged for discharge, baseflow SRP load
and storm SRP load respectively, and the final likelihood was
calculated as the product of all three averages.
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The model’s sensitivity to each hydrological and soil
parameter was performed with a Hornberger–Spear–Young
Generalized Sensitivity Analysis (HSY GSA; Whitehead and
Young, 1979; Hornberger and Spear, 1981). For each eval-
uation criteria (daily discharge, daily baseflow SRP load
and 2-day storm SRP load), the model runs were split
into acceptable and non-acceptable runs according to the
above-mentioned acceptability limits. Then a Kolmogorov–
Smirnov test was performed to assess whether the distribu-
tion of each of the three evaluation criteria differs between
acceptable and non-acceptable models for each parameter.
Because the Kolmogorov–Smirnov test might suggest that
small differences in distribution are very significant when
there are larger number of runs, this method is a qualitative
guide to relative sensitivity. The p value of the Kolmogorov–
Smirnov test is used to discriminate whether the model is
critically sensitive (p < 0.01, “∗∗∗”), importantly sensitive
(p < 0.1, “∗”) or insignificantly sensitive (p > 0.1, “.”) to each
parameter and for each of the three evaluation criteria.

In addition to the acceptability limit approach, a NSE (Mo-
riasi et al., 2007) was calculated for daily discharge and daily
load and concentration to allow for a comparison with other
modelling studies where it has been taken as an evaluation
criterion.

3 Results

3.1 Presentation of observation data and calculation of
acceptability limits

The two water years studied were highly contrasted in terms
of hydrology and SRP loads. The water year 2013–2014
was the wettest in the last 10 years, with cumulative rain-
fall of 1289 mm and cumulative runoff of 716 mm. The
water year 2014–2015 was an average year (fifth wettest
in the last 10 years), with cumulative rainfall of 677 mm
and cumulative runoff of 383 mm. Annual SRP load was
0.35 kg P ha−1 yr−1 in 2013–2014 and 0.17 kg P ha−1 yr−1 in
2014–2015, i.e. a difference 10 % higher than that of dis-
charge. Observed mean SRP concentration during the study
period was 0.024 mg L−1.

Figure 7a and b show acceptability limits for daily dis-
charge and daily SRP loads. Note that acceptability limits for
discharge were calculated every day, while the acceptability
limits for SRP load was calculated on a daily basis during
baseflow periods and on a 2-day basis during storm events
monitored at high frequency. No SRP load acceptability limit
was calculated during storm events when no high-frequency
autosampler data were available.

3.2 Model evaluation

First, model runs were evaluated against acceptability limits
defined for discharge (Fig. 7c). A total of 5479 out of 20 000
models fulfilled the selection criterion for discharge; i.e. they

had 100 % of simulated daily discharge within the accept-
ability limits. The NSE estimated for these models ranged
from 0.75 to 0.93. The normalized scores calculated season-
ally (Fig. 8a) show that simulated discharge is often overes-
timated in autumn and spring, and underestimated in winter.

Then, model runs were evaluated against acceptability
limits defined for SRP loads (Fig. 7d). During baseflow pe-
riods, 4964 out of 20 000 models fulfilled the selection cri-
terion for SRP loads; i.e. they had 100 % of simulated daily
SRP load within the acceptability limits. Among them, 1595
also fulfilled the previous selection criterion for discharge.
Normalized scores for baseflow SRP load showed the same
trend as for discharge (Fig. 8b), i.e. overestimation in autumn
and spring, and underestimation in winter. During storm
events, only seven models fulfilled the selection criterion for
SRP loads; i.e. they had 14 out of 14 of simulated 2-day
storm SRP loads within the acceptability limits, but none of
them fulfilled the selection criteria for discharge and base-
flow SRP loads. Two storm events were particularly difficult
to simulate (number 2 and number 9, Fig. 8c), probably be-
cause their acceptability interval was very narrow as a re-
sult of only small changes in discharge and concentration.
To obtain a reasonable number of acceptable models, we re-
laxed the selection criterion so that the acceptable models
had to simulate 12 out of 14 of storm loads within the ac-
ceptability limits, in addition to the selection criteria defined
for discharge and baseflow SRP load; 539 models were then
accepted. Estimated NSE of these 539 models ranged from
0.09 to 0.81 for daily load and from negative values to 0.53
for daily concentrations (this includes all data from the regu-
lar sampling).

3.3 Sensitivity analysis and prediction results

According to the HSY generalized sensitivity analysis, sim-
ulated discharge was critically sensitive to 10 out of the 12
hydrological parameters varied (Table 3). Simulated SRP
load was critically sensitive to the sub-surface and overland
flow parameters during baseflow periods and to the overland
flow parameter during storm events. During baseflow peri-
ods, SRP load was insignificantly sensitive to the parame-
ter associated with deep flow load. Both baseflow and storm
SRP loads were critically sensitive to the parameter related
to soil moisture and soil temperature-dependent SRP solubi-
lization (S1, T 1 and T 2), in addition to 12 and 8 hydrolog-
ical parameters respectively. This identification of sensitive
parameters can be used in future application of the TNT2-
P model in the study catchment, as suggested by Whitehead
and Hornberger (1984) and Wade et al. (2002b).

Figure 9 shows the daily discharge, SRP load and con-
centration as simulated by the acceptable models. Simulated
SRP load during the water year 2013–2014 ranged from 0.81
to 3.25 kg P ha−1 yr−1 (median= 1.68 kg P ha−1 yr−1);
simulated SRP load during the water year 2014–
2015 ranged from 0.14 to 0.73 kg P ha−1 yr−1 (me-
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Figure 7. Acceptability limits for daily discharge (a) and SRP load (b). Blue lines represent best estimates; black lines represent the accept-
ability limits. Storm loads acceptability limits are represented by vertical blue lines. An example of 50 model runs simulating discharge (c) and
daily load (d). Black vertical lines represent the starting and ending dates for each season (Table 2).

dian= 0.34 kg P ha−1 yr−1). Best estimate of SRP load
according to observation data was 0.35 kg P ha−1 yr−1 in
2013–2014 and 0.17 kg P ha−1 yr−1 in 2014–2015. Ac-
cording to the model, 49–55 % (median= 52 %) of water
discharge and 66–70 % (median= 67 %) of SRP load oc-
curred during storm events. Mean SRP concentrations during
the two water years ranged from 0.014 to 0.044 mg L−1

(median= 0.029 mg L−1), whereas mean observed SRP
concentration was 0.024 mg L−1.

4 Discussion

4.1 Role of hydrology and biogeochemistry in
determining SRP transfer

The fairly good performance of TNT2-P at simulating SRP
loads provides further support that the hydrological and bio-
geochemical processes included into the model are dominant
controlling factors in the Kervidy–Naizin catchment (i.e. the
modelling hypotheses could not be rejected based on these
results, except for two storm events). The primary control
of hydrology in controlling connectivity between soils and
streams has been highlighted by many studies analysing wa-
ter quality time series at the outlet of agricultural catchments
(Haygarth et al., 2012; Jordan et al., 2012; Dupas et al.,
2015c; Mellander et al., 2015). This modelling exercise also

provides further support that SRP solubility can be satisfac-
torily represented by the soil Olsen P content and could vary
according to temperature and moisture conditions. The un-
derlying processes have not been identified precisely in the
Kervidy–Naizin catchment; independent laboratory experi-
ments have shown that microbial cell lysis resulting from al-
ternating dry and water-saturated periods in the soil could be
the cause of increased SRP mobility (Turner and Haygarth,
2001; Blackwell et al., 2009). This could explain the mois-
ture dependence of SRP solubility in the model. Furthermore,
net mineralization of soil organic phosphorus could explain
the temperature dependence of SRP solubility in the model.
These two hypotheses may explain increased SRP solubility
in soils in periods of dry and hot conditions and will be fur-
ther explored by incubation experiment with soils from the
Kervidy–Naizin catchments.

4.2 Potential improvements to the model structure
according to modelling purpose

The TNT2-P model was designed to test hypotheses about
dominant processes and for this purpose, a parsimonious
model structure was chosen to include only the processes that
were to be tested. This parsimonious model structure might
contain some conceptual misrepresentations due to oversim-
plification, and it might not include all the processes nec-
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Figure 8. Normalized score for daily discharge (a), baseflow SRP load (b) and storm SRP load (c).

essary for the purpose of evaluating management scenarios.
This section discusses whether the simplifications made are
acceptable in the context of different catchment types, and
to which conditions the model could be made more complex
by including additional routines for the purpose of evaluating
management scenarios.

From a conceptual point of view, the lack of cell-to-cell
routing of SRP fluxes might result in erroneous results in
some contexts. The fact that all the SRP emitted from each
cell through overland flow and sub-surface flow reaches the
stream on the same day is generally acceptable for the catch-
ment studied, because groundwater interception of shallow

soil layers occurs in the riparian zone only; hence, the signal
of SRP mobilization in these soils is generally transmitted to
the stream (Dupas et al., 2015c). This simplification, how-
ever, does not seem to be acceptable for all the storm events
in the study catchment, as the SRP load evaluation criteria
had to be relaxed to obtain acceptable model results. It would
also not be acceptable in catchments where soil–groundwater
interactions are taking place throughout the landscape, e.g.
due to topographic depressions or poorly drained soils. In
the latter type of catchment, transmission of the SRP mobi-
lization signal to the stream is more complex (Haygarth et
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Figure 9. Median and 95 % credibility interval for daily discharge (a), SRP load (b) and SRP concentration (c). Red circles represent
observational data.

al., 2012); hence, a more complex model structure would be
required.

The reason for this simplification was that we lacked
knowledge of SRP re-adsorption in downslope cells (or on
suspended sediments in the stream network) and on the long-
term fate of re-adsorbed SRP. For a more physically realistic
representation of processes, it is likely that an explicit rep-
resentation of flow velocities and pathways would be nec-
essary, along with an explicit representation of several soil
P pools. However, such an explicit representation of pro-
cesses contradicts the idea of a parsimonious model, which
was adopted here for the purpose of identifying dominant
processes. In this respect, TNT2-P is an aggregative model
rather than a fully distributed model although it is based on a
fully distributed hydrological model (Beaujouan et al., 2002).
The current spatial distribution allows for finer representation
of soil–groundwater interactions (i.e. the time-varying ex-
tent of the riparian wetland area) than semi-distributed mod-

els such as SWAT (Arnold et al., 1998), INCA-P (Wade et
al., 2002a) and HYPE (Lindstrom et al., 2010) but at higher
computational cost. It would be interesting to test to what ex-
tent moving from an aggregative model with fully distributed
information to a semi-distributed model would degrade the
model performance while reducing computational cost. This
could be achieved by grouping cells according to a hydro-
logical similarity criterion like in the Dynamic TOPMODEL
(Beven and Freer, 2001a; Metcalfe et al., 2015) and do the
same for similarity in soil P content. Reducing computation
time is critical in the context of a GLUE analysis because
this method requires the parameter space to be sampled ade-
quately to identify those models to be considered acceptable.
This is debatable here because 12 parameters were varied and
only 20 000 model runs were performed. It is therefore possi-
ble that some regions of the parameter space with acceptable
models might not have been sampled.
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If reducing the number of calculation units proved to re-
duce computational cost without degrading quality of predic-
tion, it would be possible to include more parameters in the
model, for example to simulate SRP re-absorption in downs-
lope cells or include routines to simulate the evolution of soil
P content under different management scenarios (Vadas et
al., 2012), and still perform a Monte Carlo-based analysis of
uncertainty. The question of coupling or not coupling such
a soil P routine with the current TNT2-P model will depend
on available data and on the length of available time series;
studying the evolution of the soil P content requires at least
a decade of soil observation data (Ringeval et al., 2014) and
probably a longer period of stream data to account for the
time delay for a perturbation in the catchment to become
visible in the stream (Wall et al., 2013). Thus, the 2 years
of daily stream SRP in the Kervidy–Naizin catchment are
not enough to build a coupled soil–hydrology model with an
elaborate soil P routine. Therefore, as things stand, it is more
reasonable to generate new soil Olsen P maps with a separate
model such as the APLE model (Vadas et al., 2012; Benskin
et al., 2014) or the “soil P decline” model used by Wall et
al. (2013), and use these maps as input to TNT2-P.

Because the current model can simulate response to rain-
fall, soil moisture and temperature, it could be used to test
the effect of climate scenarios on SRP transfer. In western
France, and more generally in western Europe, the climate
for the next few decades is expected to consist of hotter,
drier summers and warmer, wetter winters (Jacob et al., 2007;
Macleod et al., 2012; Salmon-Monviola et al., 2013) with
increased frequency of high-intensity rainfall events (De-
qué, 2007). In these conditions, SRP concentrations and load
will seemingly increase compared to today’s climate as a
result of both an increase in SRP solubility in soil due to
higher temperatures and more severe drought, and an in-
crease in transfer due to wetter winters and more frequent
high-intensity rainfall events. TNT2-P could be used to con-
firm and quantify the expected increase in SRP transfer from
diffuse sources in future climate scenarios, and to determine
whether those predicted changes are significant relative to the
uncertainty in predictions under current climate variability.

4.3 Improving information content in the data

Despite relatively large uncertainty in the data used in this
study, it was possible to build a parsimonious catchment
model of SRP transfer for the purpose of testing hypothe-
ses about dominant processes, namely the role of hydrology
in controlling connectivity between soils and streams and the
role of temperature and moisture conditions in controlling
soil SRP solubilization. However, the large uncertainties in
the calibration data lead to large prediction uncertainty. For
example, the SRP load estimated by the behavioural models
from 2013 to 2015 ranged from 0.48 to 1.99 kg P ha−1 yr−1;
hence, the width of the credibility interval was 150 % of the
median (1.0 kg P ha−1 yr−1). Similarly, the mean SRP con-

centration estimated by the behavioural models from 2013
to 2015 ranged from 0.014 to 0.044 mg L−1; hence, the
width of the credibility interval was 102 % of the median
(0.029 mg L−1). The large uncertainty in the calibration data,
along with a lack of long-term information, also prevents in-
cluding more detailed processes in the soil routine.

To reduce uncertainty in prediction and to build more com-
plex models, several options exist to improve information
content in the data. As stated by Jackson-Blake and Star-
rfelt (2015), “the key to obtaining a realistic model simula-
tion is ensuring that the natural variability in water chemistry
is well represented by the monitoring data”. The monitor-
ing strategy adopted in the Kervidy–Naizin catchment should
theoretically enable one to capture the natural variability in
stream SRP concentration, because sampling took place dur-
ing two contrasting water years, during different seasons and
at a high frequency during 14 storm events. The analysis
of uncertainty in the data shows that a large part of uncer-
tainty in “observed” SRP concentration originates from sam-
ple storage, both unfiltered between the time of autosam-
pling and manual filtration and between filtration and anal-
ysis. This is due to SRP being non-conservative. Thus, there
is room for improvement in reducing storage time, without
further increasing the monitoring frequency. In this respect,
the primary interest of investing in high-frequency bankside
analysers would lie in their ability to analyse water samples
immediately in addition to providing near-continuous data.
Because bankside analysers perform measurements in rela-
tively homogeneous conditions, unlike the manual and au-
tosampler data for which storage time of filtered and unfil-
tered samples vary, a finer quantification of uncertainty in
the measurement data would be possible (e.g. Lloyd et al.,
2016).

Finally, alternative methods to statistical models could be
used to derive acceptability limits (in this study three statis-
tical models are used: the rating curve, the SRP concentra-
tion uncertainty during baseflow periods and the storm event
interpolation model) because statistical models have at least
three shortcomings: (i) they lump the uncertainty linked to
the timing of sampling, the immediate or delayed filtration of
the samples, the storage time and the analytical error; (ii) the
formula chosen adds error to the already existing measure-
ment errors because empirical models are not perfect repre-
sentations of the system dynamics; (iii) they assume a para-
metric distribution and temporally independent errors, which
are not always verified in practice. As an alternative, non-
parametric methods could be used, but these methods gener-
ally require a large number of data points and they are not
suitable for extrapolation to extreme values.

5 Conclusion

The TNT2-P model was capable of capturing daily variation
of SRP loads, thus confirming the dominant processes identi-
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fied in previous analyses of observation data in the Kervidy–
Naizin catchment. The role of hydrology in controlling con-
nectivity between soils and streams, and the role of soil Olsen
P, soil moisture and temperature in controlling SRP solubil-
ity have been confirmed. The lack of any representation of
the short-term effect of management practices did not seem
to reduce the model’s performance. Their long-term effect
on the soil Olsen P could be simulated with an independent
model or through an additional sub-model if a longer period
of data was available to calibrate it. The modelling approach
presented in this paper included an assessment of the infor-
mation content in the data, and propagation of uncertainty in
the model’s prediction. The information content of the data
was sufficient to explore dominant processes, but the rela-
tively large uncertainty in SRP concentrations would seem-
ingly limit the possibility for including more detailed pro-
cesses into the model. Data from the near-continuous bank-
side analyser will probably allow for calibrating more de-
tailed models in the near future.

6 Data availability

Data of “ORE AgrHyS” can be downloaded from http://
www6.inra.fr/ore_agrhys/Donnees (ORE AgrHyS, 2015).

The Supplement related to this article is available online
at doi:10.5194/hess-20-4819-2016-supplement.
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