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Controllability and optimal control of the transport equation with a
localized vector field*

Michel Duprez1 and Francesco Rossi2 and Morgan Morancey3

Abstract— We study controllability of a Partial Differential
Equation of transport type, that arises in crowd models. We
are interested in controlling such system with a control being
a Lipschitz vector field on a fixed control set ω.

We prove that, for each initial and final configuration, one
can steer one to another with such class of controls only if the
uncontrolled dynamics allows to cross the control set ω.

We also prove a minimal time result for such systems. We
show that the minimal time to steer one initial configuration to
another is related to the condition of having enough mass in ω
to feed the desired final configuration.

I. INTRODUCTION

In recent years, the study of systems describing a crowd
of interacting autonomous agents has draw a great interest
from the control community (see e.g. the Cucker-Smale
model [4]). A better understanding of such interaction phe-
nomena can have a strong impact in several key applications,
such as road traffic and egress problems for pedestrians.
Beside the description of interaction, it is now relevant to
study problems of control of crowds, i.e. of controlling such
systems by acting on few agents, or with a control localized
in a small subset of the configuration space.

Two main classes are widely used to model crowds of
interacting agents. In microscopic models, the position
of each agent is clearly identified; the crowd dynamics
is described by a large dimensional ordinary differential
equation, in which couplings of terms represent interactions.
In macroscopic models, instead, the idea is to represent the
crowd by the spatial density of agents; in this setting, the
evolution of the density solves a partial differential equation
of transport type. This is an example of a distributed
parameter system. Some nonlocal terms can model the
interactions between the agents. In this article, we focus on
this second approach.

To our knowledge, there exist few studies of control of this
kind of equations. In [7], the authors provide approximate
alignment of a crowd described by the Cucker-Smale model
[4]. The control is the acceleration, and it is localized
in a control region ω which moves in time. In a similar
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3Aix Marseille Université, CNRS, Centrale Marseille, I2M, Marseille,
France. morgan.morancey@univ-amu.fr

situation, a stabilization strategy has been established in [2],
by generalizing the Jurdjevic-Quinn method to distributed
parameter systems.

In this article, we study a partial differential equation of
transport type, that is widely used for modeling of crowds.
Let ω be a nonempty open connected subset of Rd (d ≥ 1),
being the portion of the space on which the control is
allowed to act. Let v : Rd → Rd be a vector field assumed
Lipschitz and uniformly bounded. Consider the following
linear transport equation{

∂tµ+∇ · ((v + 1ωu)µ) = 0 in Rd × R,
µ(·, 0) = µ0 in Rd,

(1)

where µ(t) is the time-evolving measure representing the
crowd density, and µ0 is the initial data. The control function
u : Rd × R → Rd satisfies supp(u) ⊂ ω. The function
v + 1ωu represents the velocity field acting on µ. System
(1) is a first simple approximation for crowd modeling,
since the uncontrolled vector field v is given, and it does
not describe interactions between agents. Nevertheless, it is
necessary to understand controllability properties for such
simple equation. Indeed, the results contained in this article
will be instrumental to a forthcoming paper, where we will
study more complex crowd models, with a non-local term
v[µ].

We now recall the precise notion of approximate control-
lability and exact controllability for System (1). We say that:
• System (1) is approximately controllable from µ0 to
µ1 on the time interval (0, T ) if for each ε > 0 there
exists u with supp(u) ⊂ ω such that the corresponding
solutions to System (1) satisfies Wp(µ(T ), µ1) 6 ε.

• System (1) is exactly controllable from µ0 to µ1 on the
time interval (0, T ) if there exists a control u satisfying
supp(u) ⊂ ω such that the solution to System (1) is
equal to µ1 at time T .

The definition of the Wasserstein distance Wp is recalled in
Section II.

To control System (1), from a geometrical point of view,
the uncontrolled vector field v needs to send the support of
µ0 to ω forward in time and the support of µ1 to ω backward
in time. This idea is formulated in the following Condition:

Condition 1 (Geometrical condition) Let µ0, µ1 be two
probability measures on Rd satisfying:

(i) For all x0 ∈ supp(µ0), there exists t0 > 0 such that
Φvt0(x0) ∈ ω, where Φvt is the flow associated to v, i.e.
the solution to the Cauchy problem{

ẋ(t) = v(x(t)) for a.e. t > 0,

x(0) = x0.



(ii) For all x1 ∈ supp(µ1), there exists t1 < 0 such that
Φvt1(x1) ∈ ω.

Remark 1 Condition 1 is the minimal one that we can expect
to steer any initial condition to any targets. Indeed, if the first
item of Condition 1 is not satisfied, there exists a whole sub-
population of the measure µ0 that never intersects the control
region. Thus, we cannot act on it, and we cannot steer it to
any desired target.

We denote by U the set of admissible controls, that are
functions u : Rd × R → Rd Lipschitz in space, measurable
in time and uniformly bounded with supp(u) ⊂ ω. If we
impose the classical Carathodory condition of u being in U
then the flow Φv+1ωu

t is an homeomorphism (see [1, Th.
2.1.1]). As a result, one cannot expect exact controllability,
since for general measures there exists no homeomorphism
sending one to another. We then have the following result of
approximate controllability.

Theorem 1 Let µ0, µ1 two probability measures on Rd
with compact support, absolutely continuous with respect
to the Lebesgue measure and satisfying Condition 1. Then
there exists T > 0 such that System (1) is approximately
controllable at time T with a control u in U .

The proof of this result will be given in Section III. After
having proved approximate controllability for (1), we aim
to study the minimal time problem, i.e. the minimal time to
send µ0 to µ1. We have the following result.

Theorem 2 Let µ0, µ1 be two probability measures, with
compact support, absolutely continuous with respect to the
Lebesgue measure and satisfying Condition 1.

Define T ∗ an admissible time if it satisfies

lim
k→∞

[Φθkvt #µ0](ω) > 1− lim
k→∞

[Φθkvt−T∗#µ1](ω), (2)

for a sequence (θk)k of C∞(Ω)-functions equal to 1 in ωc.
Let T0 be the infimum of such T ∗. Then, for all T > T0,

System (1) is approximately controllable at time T .

The proof of this Theorem is given in Section IV.

Remark 2 The meaning of condition (2) is the following:
functions θk are used to store the mass in ω. Thus, condition
(2) means that at each time t there is more mass that has
entered ω that mass that has exited. This is the minimal
condition that we can expect in this setting, since control
can only move masses, without creating them.

This paper is organized as follows. In Section II, we
recall some properties of the continuity equation and the
Wasserstein distance. Sections III and IV are devoted to
prove Theorems 1 and 2, respectively. We conclude with
some numerical examples in Section V.

II. THE CONTINUITY EQUATION AND THE WASSERSTEIN
DISTANCE

In this section, we recall some properties of the continuity
equation (1) and of the Wasserstein distance, which will be
used all along this paper.

We denote by Pc(Rd) the space of probability measures
in Rd with compact support, and by Pacc (Rd) the subset
of Pc(Rd) of measures which are absolutely continuous
with respect to the Lebesgue measure. First of all, we give
the definition of the push-forward of a measure and of the
Wasserstein distance.

Definition 1 Denote by Γ the set of the measurable maps
γ : Rd → Rd. For a γ ∈ Γ, we define the push-forward
γ#µ of a measure µ of Rd as follows:

(γ#µ)(E) := µ(γ−1(E)),

for all Borel sets E.

Definition 2 Let p ∈ [1,∞) and µ, ν ∈ Pacc (Rd). Define

Wp(µ, ν) = inf
γ∈Γ

{(∫
Rd

|γ(x)− x|pdµ
)1/p

: γ#µ = ν

}
.

(3)
Then, Wp is a distance on Pacc (Rd), called the Wasserstein
distance.

Moreover, the Wasserstein distance can be extended to all
pairs of measures µ, ν with the same mass µ(Rd) = ν(Rd),
by the formula

Wp(µ, ν) = |µ|1/pWp

(
µ

|µ|
,
ν

|ν|

)
.

For more details about the Wasserstein distance, in particular
for its definition on the whole space of measures Pc(Rd), we
refer to [8, Chap. 7].

We now recall a standard result for the continuity equation:

Theorem 3 ([8]) Let T ∈ R, µ0 ∈ Pacc (Rd) and w be
a vector field uniformly bounded, Lipschitz in space and
measurable in time. Then the system{

∂tµ+∇ · (wµ) = 0 in Rd × R,
µ(·, 0) = µ0 in Rd

(4)

admits a unique solution1 µ in C0([0, T ];Pacc (Rd)). More-
over, it holds µ(·, t) = Φwt #µ0 for all t ∈ R, where the flow
Φwt (x0) is the unique solution at time t to{

ẋ(t) = w(t, x(t)) for a.e. t > 0,

x(0) = x0.
(5)

In the rest of the paper, the following properties of the
Wasserstein distance will be helpful.

Property 1 ([6]) Let w : Rd × R → Rd be a vector field
uniformly bounded, Lipschitz in space and measurable in
time. For each t ∈ R, it holds

W p
p (Φwt #µ,Φwt #ν) 6 e(p+1)L|t|W p

p (µ, ν), (6)

where L is the Lipschitz constant of w.

Property 2 Let µ, ν, ρ, η some positive measures satisfying
µ(Rd) = ν(Rd) and ρ(Rd) = η(Rd). It then holds

W p
p (µ+ ρ, ν + η) 6W p

p (µ, ν) +W p
p (ρ, η) (7)

Using the properties of Wasserstein distance given in Section
1 of [6], we can replace Wp by W1 in the definition of the
approximate controllability.

1Here, Pac
c (Rd) is equipped with the weak topology, that coincides with

the topology induced by the Wasserstein distance Wp, see [8, Thm 7.12].



III. PROOF OF THEOREM 1
In this section, we prove approximate controllability of

System (1). The proof is based on three approximation steps,
corresponding to Proposition 1, 2, and 3. The proof is then
given at the end of the section.

In a first step, we suppose that ω contains the support of
both µ0, µ1.

Proposition 1 Let µ0, µ1 ∈ Pacc (Rd) be such that
supp(µ0, µ1) ⊂⊂ ω. Then, for all T > 0, System (1) is
approximately controllable at time T with a control u in U .

Proof: We assume that d := 2, T := 1 and ω = (0, 1)2,
but the reader will see that the proof can be clearly adapted to
any space dimension. Fix n ∈ N∗. Define a0 := 0, b0 := 0
and the points ai, bi for all i ∈ {1, ..., n} by induction as
follows: suppose that for i ∈ {0, ..., n − 1} the points ai
and bi are given, then ai+1 and bi+1 are the smallest values
satisfying∫

(ai,ai+1)×R dµ
0 = 1

n and
∫

(bi,bi+1)×R dµ
1 = 1

n .

Again, for all i ∈ {0, ..., n−1}, we define ai,0 := 0, bi,0 := 0
and supposing that for a j ∈ {0, ..., n − 1} the points ai,j
and bi,j are already defined, ai,j+1 and bi,j+1 is the smallest
values such that∫

Aij
dµ0 = 1

n2 and
∫
Bij

dµ1 = 1
n2 ,

where Aij := (ai, ai+1) × (aij , ai(j+1)) and Bij :=
(bi, bi+1) × (bij , bi(j+1)). Since µ0 and µ1 have a mass
equal to 1 and have support of (0, 1), then an, bn 6 1 and
ai,n, bi,n 6 1 for all i ∈ {0, ..., n− 1}. We give in Figure 1
an example of such decomposition.

x2

x1
a0 a1

a01

a02

...
...

a0(n−2)

a0(n−1)

a0n

a2

a11

a12

...

1
n

· · ·

· · ·

ai

ai1

...

aij

ai(j+1)

...

1/n2

ai(n−1)

ai+1 · · ·

· · ·

an−2
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an−1

...

an

Fig. 1. Example of a decomposition of µ0.

If one aims to define a vector field sending each Aij
to Bij , then some shear stress is naturally introduce. To
overcome this problem, we first define sets Ãij ⊂ Aij and
B̃ij ⊂ Bij for all i, j ∈ {0, ..., n−1}. We then send the mass
of µ0 from each Ãij to each B̃ij , while we do not control the
mass in Aij\Ãij . More precisely, for all i, j ∈ {0, ..., n−1},

we define, as in Figure 2, a−i , a
+
i , a

−
ij , a

+
ij the smallest

values such that∫
(ai,a

−
i )×(aij ,ai(j+1))

dµ0 =
∫

(a+i ,ai+1)×(aij ,ai(j+1))
dµ0 = 1

n3 ,

and∫
(a−i ,a

+
i )×(aij ,a

−
ij)
dµ0 =

∫
(a−i ,a

+
i )×(a+ij ,ai(j+1))

dµ0

= 1
n ×

(
1
n2 − 2

n3

)
.

1
n ×

(
1
n2 − 2

n3

)
1
n3

ai a−i a+
i

ai+1

aij

a−ij

a+
ij

ai(j+1)

Fig. 2. Example of cell

We define similarly b+i , b
−
i , b

+
ij , b

−
ij . We finally define

Ãij := [a−i , a
+
i )× [a−ij , a

+
ij) and B̃ij := [b−i , b

+
i )× [b−ij , b

+
ij).

The goal is to build a solution to System (1) such that the
corresponding flow Φut satisfies

ΦuT (Ãij) = B̃ij , (8)

for all i, j ∈ {0, ..., n − 1}. We observe that we do not
take into account the displacement of the mass contained
in Aij\Ãij . We will show that the corresponding term
W1(

∑
ij µ

0
|Aij\Ãij

,
∑
ij µ

1
|Bij\B̃ij

) tends to zero when n

goes to the infinity. The rest of the proof is divided into
two steps. In a first step, we build a flow and a velocity field
such that its flow satisfies (8). In a second step, we compute
the Wasserstein distance between µ1 and µ(T ) showing that
it converges to zero when n goes to infinity.

Step 1: We first build a flow satisfying (8). For all i ∈
{0, ..., n−1}, denote by c−i and c+i the linear functions equal
to a−i and a+

i at time t = 0 and equal to b−i and b+i at time
t = 1, respectively i.e.

c−i (t) = (b−i − a
−
i )t+ a−i and c+i (t) = (b+i − a

+
i )t+ a+

i .

Similarly, for all i, j ∈ {0, ..., n− 1}, denote by c−ij and c+ij
the linear functions equal to a−ij and a+

ij at time t = 0 and
equal to b−ij and b+ij at time t = 1, respectively, i.e.

c−ij(t) = (b−ij − a
−
ij)t+ a−ij and c+ij(t) = (b+ij − a

+
ij)t+ a+

ij .

Consider the flow being the following the linear combina-
tion of c−i , c

+
i and c−ij , c

+
ij , i.e. Φut (x0)1 =

a+i −x
0
1

a+i −a
−
i

c−i (t) +
x0
1−a

−
i

a+i −a
−
i

c+i (t),

Φut (x0)2 =
a+ij−x

0
2

a+ij−a
−
ij

c−ij(t) +
x0
2−a

−
ij

a+ij−a
−
ij

c+ij(t),
(9)

when x0 ∈ Aij . We remark that Φut is piecewise-C1 and it
solution to{

dx1t

dt = αi(t)x1t + βi(t) ∀t ∈ [0, T ],
dx2t

dt = αij(tx2t + βij(t) ∀t ∈ [0, T ],

where for all t ∈ [0, 1] αi(t) =
b+i −b

−
i +a−i −a

+
i

c+i (t)−c−i (t)
, βi(t) =

a+i bi−a
−
i b

+
i

c+i (t)−c−i (t)
,

αij(t) =
b+ij−b

−
ij+a−ij−a

+
ij

c+ij(t)−c−ij(t)
, βij(t) =

a+ijb
−
ij−a

−
ijb

+
ij

c+ij(t)−c−ij(t)
.



For all t ∈ [0, 1], consider the set Cij(t) := [c−i (t), c+i (t)]×
[c−ij(t), c

+
ij(t)]. We remark that Cij(0) = Ãij and Cij(1) =

B̃ij . On Cij := {(x, t) : t ∈ [0, T ], x ∈ Cij(t)}, we then
define the velocity field u by

u1(x, t) = αi(t)x1 +βi(t) and u2(x, t) = αij(t)x2 +βij(t),

for all (x, t) ∈ Cij . If we extend u by a C∞ and uniformly
bounded function outside of ∪ijCij , then u ∈ U . Then,
System (1) admits a unique solution and the flow on Cij
is given by the expression (9).

Step 2: We now prove that the refinement of the grid
provides convergence to the target µ1, i.e.

W1(µ1, µ(1)) −→
n→∞

0. (10)

We remark that∫
B̃ij

dµ(1) =
∫
B̃ij

dµ1 = (n−2)2

n4 .

Hence, by defining R := (0, 1)2 \
⋃
ij

B̃ij , we also have∫
R
dµ(1) =

∫
R
dµ1 = 1− (n−2)2

n2 .

We deduce that
W1(µ1, µ(T )) 6W1(µ1 × 1R, µ(1)× 1R)

+
n∑

i,j=1

W1(µ1 × 1B̃ij
, µ(1)× 1Bij ). (11)

We estimate each term in the right-hand side. Since we
deal with absolutely continuous measures, the infimum in
the definition of the Wasserstein distance is achieved, hence
there exist measurable maps γij : R2 → R2, for all i, j ∈
{0, ..., n− 1}, and γ : R2 → R2 such that

γij#(µ1 × 1B̃ij
) = µ(1)× 1B̃ij

and
γ#(µ1 × 1R) = µ(1)× 1R.

In the first term, for each i, j ∈ {0, ..., n − 1}, observe that
γij moves masses inside Bij only. Thus

W1(µ1 × 1B̃ij
, µ(T )× 1B̃ij

) =
∫
B̃ij
|x− γij(x)|dµ1(x)

6 (b+i − b
−
i + b+ij − b

−
ij)

(n−2)2

n4 .
(12)

For the other term, observe that γ̄ move a small mass in the
bounded set ω. Thus it holds

W1µ
1 × 1R, µ(T )× 1R) 6

∫
R
|x− γ(x)|dµ1(x)

6
√

2
(

1− (n−2)2

n2

)
= 4
√

2n−1
n2 .

(13)

We thus have (10) by combining (11), (12) and (13).
In the rest of the section, we remove the constraint

supp(µ0), supp(µ1) ⊂⊂ ω, now imposing Condition 1. First
of all, we give a consequences of Condition 1.

Lemma 1 If Condition 1 is satisfied, then the following
Condition 2 is satisfied too:

Condition 2 Let µ0, µ1 be two probability measures on Rd.
There exist two real numbers T ∗0 , T ∗1 > 0 such that

(i) For all x0 ∈ supp(µ0), there exists t0 6 T ∗0 such that
Φvt0(x0) ∈ ω, where Φvt is the flow associated to v.

(ii) For all x1 ∈ supp(µ1), there exists t1 ∈ [−T ∗1 , 0) such
that Φvt1(x1) ∈ ω.

Proof: Let us use an compactness argument. Let
µ0 ∈ Pacc (Rd). Assume that Condition 1 holds. Let
x0 ∈ supp(µ0). Using Condition 1, there exists t0(x0)
such that Φvt0(x0)(x

0) ∈ ω. Choose r(x0) > 0 such that
Br(x0)(Φ

v
t0(x0)(x

0)) ∈ ω, that exists since ω is open. By
continuity of the application x1 7→ Φvt0(x0)(x

1) (see [1, Th.
2.1.1]), there exists r̂(x0) such that

x1 ∈ Br̂(x0)(x
0) ⇒ Φvt0(x0)(x

1) ∈ Br(x0)(Φ
v
t0(x0)(x

0)).

Since µ0 is compactly supported, we can find a set
{x0

1, ..., x
0
N} ⊂ supp(µ0) such that

supp(µ0) ⊂
N⋃
i=1

Br̂(x0
i )(x

0
i ).

Thus the first item of Lemma 1 is satisfied for

T ∗0 := max{t0(x0
i ) : i ∈ {1, ..., N}}.

The proof of the existence of T ∗1 is similar.
We now prove that we can store nearly the whole mass of
µ0 in ω, under Condition 2.

Proposition 2 Let µ0 ∈ Pacc (Rd) satisfying the first item of
Condition 2. Then, for all δ, ε > 0, there exists a space-
dependent velocity field u Lipschitz and uniformly bounded
such that the corresponding solution to System (1) satisfies

µ(T ∗0 + δ)(ω) > 1− ε. (14)

Proof: Let k ∈ N∗ and define θk ∈ C∞(Ω) a cutoff
function on ω and the sets ωk := {x0 ∈ Rd : d(x0, ωc) >
1/k} satisfying  0 6 θk 6 1,

θk = 1 in ωc,
θk = 0 in ωk.

(15)

Define
uk := (θk − 1)v. (16)

We remark that the support of u is included in ω. Let x0 ∈
supp(µ0). Define

tk(x0) := inf{t ∈ R+ : Φvt (x
0) ∈ ωk}.

Consider the flow y := Φvt (x
0) associated to x0 without

control, i.e. the solution to{
ẏ(t) = v(y(t)),

y(0) = x0

and the flow zk := Φuk+v
t (x0) associated to x0 with the

control uk given in (16), i.e. the solution to{
żk(t) = (v + uk)(zk(t)) = θ(zk(t))× v(zk(t)),

zk(0) = x0.
(17)



Let us prove that the range of zk for t ≥ 0 is included in
the range of y for t ≥ 0. Consider the solution γk to the
following system{

γ̇k(t) = θk(y(γk(t))), t > 0,

γ(0) = 0.
(18)

Since θk and y are Lipschitz, then System (18) admits a
solution defined for all times. We remark that ξk := y ◦ γk
is solution to System (17). Indeed for all t > 0{

ξ̇k(t) = γ̇k(t)× ẏ(γk(t)) = θk(ξk(t))× v(ξk(t)),

ξk(0) = y(γk(0)) = y(0).

By uniqueness of the solution to System (17), we obtain
y(γk(t)) = zk(t) for all t > 0.

Using the fact that 0 6 θ 6 1 and the definition of γk, we
have  γk increasing,

γk(t) 6 t ∀t ∈ [0, tk(x0)],
γk(t) 6 tk(x0) ∀t > tk(x0).

We deduce that, for all x0 ∈ supp(µ0),

{zk(t) : t > 0} ⊂ {y(s) : s ∈ [0, tk(x0)]}.
Thus, for K large enough it holds

µ0(ω\ωK) + µ0(SK) 6 ε,

where
Sk := {x0 ∈ supp(µ0)\ω : ∃s ∈ (t0, tk),Φvs(x

0) 6∈ ω}

and t0(x0) := inf{t ∈ R+ : Φvt (x
0) ∈ ω}. This implies that

for u := uK the solution to System (1) satisfies (14).
The third step of the proof is to restrict a measure

contained in ω to a measure contained in a square S ⊂ ω.

Proposition 3 Let µ0 ∈ Pacc (Rd) satisfying supp(µ0) ⊂⊂
ω. Define S a square strictly included in ω and choose δ > 0.
Then there exists a space-dependent velocity field u, Lipschitz
and uniformly bounded with supp(u) ⊂ ω, such that the
corresponding solution to System (1) satisfies

supp(µ(δ)) ⊂⊂ S.
Proof: From [5, Lemma 1.1, Chap. 1] and [3, Lemma

2.68, Chap. 2], there exists a function η ∈ C2(ω) satisfying

κ0 6 |∇η| 6 κ1 in ω\S, η > 0 in ω and η = 0 on ∂ω,
(19)

with κ0, κ1 > 0. We extend η by zero outside of ω. Let
k ∈ N∗ and the set ωk defined in (15) such that S ⊂⊂ ωk.
We denote by

uk := k∇η − v.
Let x0 ∈ supp(µ0). Consider the flow zk(t) = Φv+uk

t (x0)
associated to x0, i.e. the solution to system{

żk(t) = v(z(t)) + uk(zk(t)) = k∇η(zk(t)), t > 0,

zk(0) = x0.

The different conditions in (19) imply that n · ∇η < 0 on
∂ω0, where n represents that exterior normal vector to ∂ω0.
Thus zk(t) ∈ ω for all t > 0.

We now prove that there exists K and t ∈ [0, δ] such that
zK(t) belongs to the square S for all x0 ∈ supp(µ0). By

contradiction, assume that for all k ∈ N∗ and t ∈ [0, δ] there
exists x0 ∈ supp(µ0) such that

zk(t) ∈ Sc. (20)
Consider the function fk defined for all t ∈ [0, δ] by

fk(t) := η(zk(t)).

Its time derivative is given by

ḟk(t) = żk(t)×∇η(z(t)) = k|∇η(z(t))|2.
Then, using (20) and the property (19) of η, it holds

fk(δ) > kκ2δ,

which is in contradiction with the fact that

fk(δ) 6 ‖η‖∞.

Thus we deduce that, for a K ∈ N∗ and a t ∈ [0, δ],
Φv+uK
t (x0) belongs to S for all x0 ∈ supp(µ0). We conclude

applying Proposition 2, replacing ω by S and v by v + uK .

We now have all the tools to prove Theorem 1. The idea
is the following: we first send µ0 inside ω with a control
u1, then from ω to a square S with a control u2. On the
other side, we send µ1 inside ω backward in time with a
control u5, then from ω to S with a control u4. When both
the source and the target are in S, we send one to the other
with a control u3.

Proof of Theorem 1: Consider µ0, µ1 satisfying Condition
1. Then, by Lemma 1, there exist T ∗0 , T

∗
1 for which µ0, µ1

satisfy Condition 2. Define T := T ∗0 + T ∗1 .
Choose δ, ε > 0 and denote by T1 := T ∗0 + δ/5,

T2 := T ∗0 + 2δ/5, T5 := T ∗1 + δ/5 and T4 := T ∗1 + 2δ/5.
Using Propositions 2 and 3, there exists some controls
u1, u2, u4, u5 Lipschitz and uniformly bounded and a
square S ⊂ ω such that the solutions to

∂tρ0 +∇ · ((v + 1ωu
1)ρ0) = 0 in Rd × [0, T1],

∂tρ0 +∇ · ((v + 1ωu
2)ρ0) = 0 in Rd × [T1, T2],

ρ0(0) = µ0 in Rd
(21)

and
∂tρ1 +∇ · ((v + 1ωu

5)ρ1) = 0 in Rd × [−T5, 0],

∂tρ1 +∇ · ((v + 1ωu
4)ρ1) = 0 in Rd × [−T4,−T5],

ρ1(0) = µ1 in Rd,
(22)

satisfy supp(ui) ⊂ ω, ρ0(T ∗0 + 2δ/5)(S) > 1 − ε and
ρ1(−T ∗1 − 2δ/5)(S) > 1− ε.

We now apply Proposition 1 to steer ρ0(T ∗0 + 2δ/5) to
ρ1(−T ∗1 −2δ/5) inside S: this gives a control u3 on the time
interval [0, δ5 ]. Thus, concatenating u1, u2, u3, u4, u5 on the
time interval [0, T + δ], we approximately steer µ0 to µ1.

IV. PROOF OF THEOREM 2

In this section, we prove Theorem 2 about minimal time.
To achieve controllability in this setting, one needs to store
the mass coming from µ0 in ω and to send it out with a rate
adapted to approximate µ1.

Let T ∗ be the infimum satisfying Condition (2), and fix
s > 0. We now prove that System (1) is approximately



controllable at time T := T ∗ + s. Consider N ∈ N∗,
τ := T ∗/N , δ < τ , ξ := τ − δ and τi := i × τ . Define{

Ai := {x0 ∈ supp(µ0) : t0(x0) ∈ [0, τi)},
Bi := {x1 ∈ supp(µ1) : T − t1(x1) ∈ [τi, τi+1)},

where {
t0(x0) := inf{t ∈ R+ : Φvt (x

0) ∈ ω},
t1(x1) := inf{t ∈ R+ : Φv−t(x

1) ∈ ω}.

We remark that µ0×1Ai
represents the mass of µ0 which has

entered ω at time τi and µ1×1Bi the mass of µ1 which need
to exit ω in the time interval (τi, τi+1). Then, by hypothesis
of the Theorem, there exists K such that

(ΦθKvτi #(µ0×1A0
i
))(ω) > 1−(ΦθKvτi−T#(µ1×1A1

i
))(ω)−ε.

The function θK can be then used to store the mass of µ0 in
ω. The meaning of the previous equation is that the stored
mass is sufficient to fill the required mass for µ1.

We now define the control achieving approximate control-
lability at time T ∗+s as follows: First of all, using the same
strategy as in the Proof of Theorem 1, we can send a part
of φθKvs−ξ#(µ0 × 1A0

) approximately to φθKv−T∗#(µ1 × 1B0
)

during the time interval (s−ξ, s) More precisely, we replace
T ∗0 and T ∗1 by s− ξ and ξ in the proof of Theorem 1. Thus,
we send the mass of µ0 contained A0 near to the mass of µ1

contained in B0. We repeat this process on each time interval
(τi, τi+1) for Ai to Bi. Thus, the mass of µ0 is globally sent
close to contained in Ai in time T ∗ + s.

V. EXAMPLE OF MINIMAL TIME PROBLEM

In this section, we give explicit controls realizing the
approximate minimal time in one simple example. The
interest of such example is to show that the minimal time can
be realized by non-Lipschitz controls, that are unfeasible.

We study an example on the real line. We consider a
constant initial data µ0 = 1[0,1] and a constant uncontrolled
vector field v = 1. The control set is ω = [2, 3]. Our first
target is the measure µ1 = 1

2χ[4,6]. We now consider the
following control strategy:

u(t, x) =



0 t ∈ [0 4
3 ),

ψ(2 + (t− 4
3 ), 7

3 + 2(t− 4
3 )) t ∈ [ 4

3 ,
5
3 ),

ψ(2 + (t− 5
3 ), 7

3 + 2(t− 5
3 )) t ∈ [ 5

3 , 2),

ψ(2 + (t− 2), 7
3 + 2(t− 2)) t ∈ [2, 7

3 ),

0 t ∈ [ 7
3 ,

13
3 ],

(23)
where ψ(a, b) is defined as follows:

ψ(a, b)(x) =

{
x−a
b−a x ∈ [a, b],

0 x 6∈ [a, b].
(24)

The choice of ψ(a, b) given above has the following mean-
ing: the vector field ψ(a, b) is linearly increasing on the in-
terval, thus an initial measure with constant density kχ[α0,β0]

with a ≤ α0 ≤ β0 ≤ b will be transformed to a measure with
constant density, supported in [α(t), β(t)], where α(t) is the
unique solution of the ODE{

ẋ = v + u,

x(0) = α0,

Fig. 3. Blue: density of the measure. Red: control vector field.

and similarly for β(t). As a consequence, we can easily
describe the solution µ(t) of (1) with control (23) and
initial data µ0. For simplicity, we only describe the measure
evolution and the vector field on the time interval [1, 4

3 ] in
Figure 3. One can observe that the linearly increasing time-
varying control allows to rarefy the mass.

Two remarks are crucial:
• The vector field v+ψ(a, b) is not Lipschitz, since it is

discontinuous. Thus, one needs to regularize such vector
field with a Lipschitz mollificator. As a consequence,
the final state does not coincide with µ1, but it can be
chosen arbitrarily close to it;

• The strategy presented here cuts the measure in three
slices of mass 1

3 , and rarefying each of them separately.
Its total time is 4 + 1

3 . One can apply the same strategy
with a larger number n of slices, and rarefying the mass
in [2, 2 + 1

n ] by choosing the control ψ(2 + t, 2 + 1
n +

2t). With this method, one can reduce the total time to
4 + 1

n , then being approximately close to the minimal
time T0 = 4 given by Theorem 2.
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