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Abstract—In this study, the modules TELEMAC-2D and
SISYPHE of the Telemac-Mascaret Modelling System (TMS)
have been used in combination with the OpenTURNS library
(www.openturns.org) to perform an uncertainty quantification
analysis of two-dimensional morphodynamic problems. Open-
TURNS is a scientific library usable as a Python module dedicated
to uncertainties treatment.

A recently implemented API (Application Program Inter-
face) allowed the communication between OpenTURNS and
TELEMAC-2D/SISYPHE, and therefore the efficient implemen-
tation of Monte-Carlo like algorithms. In this problem, each
uncertain sedimentological parameter, e.g. inlet mean diameter,
Shields parameter, etc. has been associated to a statistical dis-
tribution, defined with OpenTURNS. A number of TELEMAC-
2D/SISYPHE simulations has been proposed regarding the pre-
defined random entries in order to guarantee the convergence of
the Monte Carlo-like algorithms.

This work allowed the implementation of uncertainty quan-
tification analysis of computationally intensive morphodynamic
simulations in the TMS. Thanks to the access to computer
resources and optimized software, we were able to perform the
uncertainty quantification analysis with a large set of variables,
and therefore push the study further with the correlations effects
analysis.

Keywords: Uncertainty quantification, Morphodynamic mod-
elling, API, Monte-Carlo like algorithms, Sensitivity analysis

I. INTRODUCTION

Morphodynamic simulations have been increasingly used
in the last few decades to model the bed evolution in rivers,
coasts and estuaries. In this context, most of the equations
are empirical and the parameters involved in the calculations
are generally poorly defined in literature. The impact of the
uncertainties related to those parameters remains unknown.

In order to quantify the impact of inputs uncertainties on
simulations results, an uncertainty study is conducted. Ranking
the variables in terms of influence allows to orientate the
investigations when performing measurements or calibrating
parameters for the simulations. In this study, the uncertainty
quantification is applied to SISYPHE [16], a sediments trans-
port module, coupled with TELEMAC2D [15] for hydrody-

namics, that integrate the TELEMAC-MASCARET modelling
system.

The Monte Carlo method is used to propagate the un-
certainties through SISYPHE. This approach requires random
generation of several configurations of inputs, using their
probability distributions. Successive deterministic model sim-
ulations are then submitted to generate a set of responses that
correspond to the set of inputs.

In order to have total control over the simulation’s pa-
rameters and therefore conduct an efficient uncertainty study,
an API (Application Program Interface) is developed for
SISYPHE. This interface, when coupled with TELEMAC2D’s
available API, makes running hundreds of cases simultane-
ously possible through a cluster, taking total benefit from the
available processors. Running an optimal number of cases
guarantees the statistics convergence.

Finally, The pre-processing of uncertain data, as well as the
post-processing of the results, are done using the OpenTURNS
uncertainty library [2].

This paper is organized as follows: a description of the
context and general goals, followed by the present study
objectives are given. Section III deals with the API’s im-
plementation and coupling with TELEMAC2D. Section V
discusses the uncertainty quantification steps and alternates
theory and results for each of these. In this section, a sen-
sitivity analysis followed by an uncertainty propagation are
investigated. Correlations between variables are also studied
using copulas and an ANCOVA (ANalysis of COVAriance)
sensitivity analysis is applied. In the last section, conclusions
and perspectives are drawn.

II. CONTEXT AND GOALS

This study is set out in the context of EDF numeri-
cal tools development. EDF’s R&D National Laboratory for
Hydraulics and Environment department (LNHE) uses the
TELEMAC-MASCARET system to simulate complex hydro-
environmental phenomenons (such as dam breaks and flooding
risks) in order to anticipate the risks related to electrical
production.

mailto:remsophia.mouradi@gmail.com
www.openturns.org
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TELEMAC-MASCARET results are therefore expected to
produce highly reliable results. However, a great number of pa-
rameters used in these studies, specifically in morphodynamic
simulations, can be set by the user and are uncertain. In order
to determine the uncertain parameters impact on the system’s
result, an uncertainty quantification study is necessary.

In this context, an uncertainty quantification study is con-
ducted in the morphodynamic simulation module SISYPHE.
To make this study possible, an API (Application Program
Interface) is implemented and coupled to TELEMAC2D, to
guarantee the inter-operability with SISYPHE.

III. API’S DEVELOPMENT

The work here focused on the implementation of
SISYPHE’s API and its coupling to TELEMAC2D’s already
available API via FORTRAN modules. The API’s main goal
is to have control on a simulation while running a case.
For example, it must allow the user to stop the simulation
at any time step, retrieve some variables values and change
them if necessary. SISYPHE’s API is contained in the source
folder of the TMS, as shown in Figure 1, and can therefore
call all SISYPHE’s subroutines to conduct morphodynamic
simulations.

Fig. 1: Extract of TELEMAC-MASCARET sources folders

In order to make this possible, a FORTRAN structure
called instance was developed in the API. It contains a list
of variables declared as pointers (memory addresses [8]) that
are pointing to SISYPHE’s variables. This gives direct access
to the physical memory of variables, and allows therefore to
retrieve their values, and modify them. Furthermore, modifi-
cations have been made in SISYPHE’s main subroutines to
make morphodynamic cases execution possible time step by
time step. Finally, parallel runs have also been treated.

In addition to this, to make running coupled cases via the
API possible, a communication interface is developed in FOR-
TRAN. This interface contains communication subroutines that
send TELEMAC2D’s variables to SISYPHE and vice-versa. It
also contains subroutines that manage coupled cases and take
into consideration the coupling period.

A number of modifications in TELEMAC2D and SISYPHE
sources were necessary. These modifications, along with the
API and the coupling developments, were validated using three
different compilers (NAG, IFORT, GFORTRAN), on classical
SISYPHE cases and coupled TELEMAC2D-SISYPHE cases,
available in the system.

IV. UNCERTAINTY TREATMENT LIBRARY OPENTURNS

OpenTURNS (Open source initiative to Treat Uncertain-
ties, Risks’N Statistics) [2] is an open source C++ Library
for uncertainty treatment used through python scripts. It is co-
developed since 2005 by EADS IW, EDF R&D and PHIMECA
Engineering. Various statistical methods are implemented in
this library and allow to follow the uncertainty study steps [1]
represented in Figure 2.

Fig. 2: Steps for an uncertainty study

V. UNCERTAINTY QUANTIFICATION

A. Problem specification

1) Hydrodynamic model: The hydrodynamic phenomenons
in two-dimensional fields for free-surface and shallow water
flows are modelled using the Saint-Venant equations, which are
an integrated form of Navier Stokes 2D equations [9]. Saint-
Venant equations are the following:
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(1)

Where u and v are the velocity components, h the water
depth, Zs the free surface elevation, Fx and Fy are source
terms (for example the friction) and νt the eddy viscosity.

2) Morphodynamic model: The main goal of a morpho-
dynamic simulation is to predict the bed evolution of a given
domain considering the flow conditions. Two types of sediment
transport exist [6]:
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• Bed-load : sediments are transported without losing
contact with the bed. Their speed is therefore lower
than the flow velocity.

• Suspension : corresponds to sediment transport in the
absence of direct contact with the bottom. Sediments
are here transported with a speed equal to the velocity
of the flow.

In this study, only bed-load uncertain parameters are in-
vestigated. The main equation for this phenomenon is Exner’s
equation 2, that calculates the evolution of the bottom elevation
Zf .

(1− λ)
∂Zf
∂t

+∇ · −→qb = 0 (2)

Where λ is the porosity of the sediment, ∇· the divergence
operator and −→qb = qb × (cosαt

−→ex + sinαt
−→ey), αt being the

angle between the flow direction and the sediment transport
direction and qb the bed-load transport rate per width.

The transport rate qb can be calculated using several
empirical formulas. In this study, we focus on Meyer-Peter
and Müller formula [13], as written below:

qb√
g(s− 1)d3

= αMPM (θ − θc)3/2 (3)

• αMPM being a transport coefficient specified by the
user;

• d the sediments mean diameter;

• s = ρs/ρf the relative density, where ρs is the
sediments density and ρf the fluid density;

• θ and θc resp. the Shields number and its critical value
indicating the movement’s threshold.

The Shields number θ is the dimensionless shear stress τ
calculated as in equation 4. The threshold θc is given as a
parameter of the simulation by the user.

θ =
τ

g(ρs − ρ)d
(4)

3) Summary of the uncertain parameters: The porosity λ,
the mean diameter d, the Shields critical parameter θc and five
other parameters, described in [16], are considered as uncertain
for the current study. A summary of these variables and their
definitions are given in Table I Section V-B.

4) Study cases: The uncertainty quantification is conducted
for two distinct cases.

Experimental case - Channel : The channel case is a
numerical reproduction of Ashida and Michiue’s experiment
[18] in which the erosion downstream of a dam is studied.
The case, illustrated in Figure 3, is modelled in 2D with
boundary conditions on flow discharge (Red boundary in
Figure 3 - Q = 0.0314 m2 · s−1) and imposed water depth
(Blue boundary in Figure 3 - H = 0.06 m), as well as walls
on the remaining boundaries. The channel has a 20 m length,
0.8 m width and 0.2 m slope. An experimental duration of
10 hours is simulated using a time step ∆t = 0.1 s within 1
minute of sequential TELEMAC2D/SISYPHE calculations on
an Intel-Xeon(R) 3.40GHz core.

Fig. 3: Ashida et Michiue channel experiment representation

Real case - Bifurcation : A real case of a bifurcation
between the Colastiné river in Argentina and a channel access
to the Santa Fe harbour is also studied [14], as illustrated in
Figure 4. For this case, a flow discharge Q1 = 2416.42 m2 ·
s−1 and two water depths H1 = 13.053 m and H2 = 13 m
are set as boundary conditions. A real duration of 10 days is
simulated, with a time step of ∆t = 20 s, within 1 hour of
sequential calculations on an Intel-Xeon(R) 3.40GHz core.

(a) (b)
Fig. 4: Study domain satellite image (a) and mesh (b)

B. Uncertainty sources quantification

The goal here is to define variation intervals and probability
density functions (PDF) for each uncertain parameters. We
remind that, for a random variable X defined on an interval
[a, b], a PDF f(x) is defined as follows :

P(X ∈ [a, b]) =

∫ b

a

f(x)dx (5)

For all the variables from 2 to 8 defined in Table I, variation
intervals were found in literature, without further information
about their probabilities. Consequently, using the principle of
maximum entropy [3], uniform probability density functions
are chosen for those variables.

For the experimental channel case, only one mean diameter
measure is available and is subject to measurements errors.
The errors interval is considered as a variation interval and
a uniform PDF is applied for the mean diameter on its
measurement interval. For the real bifurcation case, several
samples of sediments are extracted in different sections of
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the river. Different values of the mean diameter are possible.
In order to take all of them into consideration, a PDF that
corresponds to the sample is selected and validated via the
QQ-Plot method [2].

The summarized variables and their probability density
functions are presented in Table I.

Variable Definition PDF

d Sediments mean diameter
Log-Normal(Field Data) /
Uniform(Measure errors)

αMPM

Meyer-Peter and Müller
transport coefficient Uniform[5,15]

θc Shields critical parameter Uniform[0.03,0.06]
λ Porosity Uniform[0.25,0.4]
αS Skin friction coefficient Uniform[1.0,6.6]

ΦS

Angle of repose of the
sediments (Slope effect on

transport direction) Uniform[30,80]

β2

Deviation parameter (Slope
effect on transport amplitude) Uniform[0.1,5.0]

αc

Secondary currents
coefficient Uniform[0.75,1.0]

TABLE I: Uncertain parameters and their PDFs

C. Sensitivity analysis

1) Monte-Carlo Sampling and statistical estimations:
The Monte Carlo method requires random generation
of input variables from their probability distributions.
The resulted sampling of a given size N is a N × V
matrix, V being the number of uncertain parameters.
Each row of the matrix xi = (x1, ..., xV )i represents a
possible configuration for the coupled hydro-morphodynamic
simulation. Corresponding realizations of the output are
generated by successive deterministic simulations with each
configuration of the inputs. Statistical estimators of the
response Y = (Y1, ..., YN ) = (M(xi))i∈{1,...,N} can therefore
be computed from the output as follows :

Mean : E[Y ] = µY =
1

N

N∑
i=1

M(xi) (6)

Variance : V ar(Y ) =
1

N − 1

N∑
i=1

[M(xi)− µY ]2 (7)

Standard deviation : σY =
√
V ar(Y ) (8)

These statistical moments are useful for both the uncertainty
sensitivity analysis and uncertainty propagation.

The convergence order of the Monte-Carlo sampling
method is given by the Central Limit Theorem [7] as

O
(

1√
N

)
. The estimated statistics are also random quanti-

ties and are impacted by estimation uncertainties. Confidence
intervals on estimators should therefore be calculated. The
non-parametric "bootstrap" method provides information about
the statistics uncertainties given few hypothesis [11]. Let
x = (x1, ..., xN ) denote a sample of N independent and
identically distributed realizations according to a probability
density function f(x). The statistical moment θ = T (F )
(mean, variance, etc.), is estimated by θ̂ = T (F̂ ), where F̂

is the empirical cumulative density function that gives equal

probability
1

N
to each observed value xi defined by :

F̂ (x) =
1

d

N∑
i=1

1xi≤x (9)

The idea of the non-parametric bootstrap is to simulate data
from the empirical cumulative density function. Given that F̂ is
build upon equal probability for the observations (x1, ..., xN ),
a sample of same size N from F̂ would simply be a selec-
tion from (x1, ..., xN ) with repeated values. A number of B
samples are generated following this strategy, and estimators
properties can therefore be deduced as shown in Figure 5.

Fig. 5: Bootstrap algorithm [11]

The confidence interval Iθ is then estimated as follows :

Iθ = [0.025− qθ̂b , 0.975− qθ̂b ] (10)

Where α− qX is the α-quantile of a variable X defined as :

P(X ≤ qX(α)) = α ∀α ∈ [0, 1] (11)

2) Analysis of variance: The main goal of a sensitivity
analysis is to rank the uncertain parameters according to their
influence. In order to do so, a definition of ranking indices is
necessary. The indices used here are called Sobol Indices [10].

The definition of Sobol Indices is a result of the ANOVA
(Analysis Of VAriance) variance decomposition. In fact,
given a set of V independent uncertain parameters X =
(X1, ..., XV ), the variance of a response Y = M(X) can be
calculated, using the total variance theorem [4], as follows
[10]:

V ar[Y ] =

V∑
i=1

Vi(Y ) +
∑
i<j

Vij(Y ) + ...+ V12..V (Y ) (12)

Where Vi(Y ) = V ar[E(Y |Xi)] and Vij(Y ) =
V ar[E(Y |XiXj)]− Vi(Y )− Vj(Y ), etc.
E(Y |Xi) is Y ’s conditional expectation with the condition
that Xi remains constant.

One can therefore calculate first order sensitivity indices
that estimate the influence of a variable Xi without its inter-
actions with other variables:

Si =
Vi(Y )

V ar[Y ]
=
V ar(E[Y |Xi])

V ar[Y ]
(13)

And total indices that estimate the global influence of a
variable (including interactions):

STi = Si+
∑
j 6=i

Sij+
∑

j 6=i,k 6=i,j<k

Sijk+... = 1−V−i(Y )

V ar[Y ]
(14)
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V−i(Y ) being conditional expectations variances that do not
involve Xi.

There are two ways to estimate the Sobol indices defined
in equations 13 and 14 :

SALTELLI method [7]: Step 1: Two independent samples
A and B of size N are generated for the V uncertain variables.
For example, sample A can be written as follows:

A =


xA,11 xA,12 ... xA,1V

xA,21 xA,22 ... xA,2V

...
...

. . .
...

xA,N1 xA,N2 ... xA,NV

 (15)

A new sample C is created using columns of B except for
column i that is replaced with data from A:

C =


xB,11 ... xA,1i ... xB,1V

xB,21 ... xA,2i ... xB,2V

...
...

...
xB,N1 ... xA,Ni ... xB,NV

 (16)

Simulations using the samples A, B and C result with :
yAk = M((xA,k1 , ..., xA,kV )) k = {1, N}
yBk = M((xB,k1 , ..., xB,kV )) k = {1, N}
yCk = M((xC,k1 , ..., xC,kV )) k = {1, N}

(17)

Which can be used to estimate Sobol indices as follows:

Si =
1
N

∑N
k=1 y

A
k y

C
k − (µY A)2

σ2
Y A

(18)

STi = 1−
1
N

∑N
k=1 y

B
k y

C
k − (µY B )2

σ2
Y B

(19)

Overall, for a given sample size N , (V + 2)×N simulations
are necessary to estimate the first order and total Sobol indices
for each variable Xi.

Polynomial chaos method (PCE): The models response
can be approached by an analytical function :

M(X) = M0 +

V∑
i=1

Mi(Xi) +
∑

1≤i<j≤V

Mi,j(Xi, Xj)

+ ... +M1,...,V (X1, ..., XV ) (20)

Mi(Xi) represents the variable Xi’s contribution to the result
of the simulation. The variance can therefore be calculated as
follows [4]:

V ar[Y ] =
∑

u⊆{1,...,V }

[V ar[Mu(Xu)]+

∑
v⊆{1,...,V },v∩u=∅

Cov [Mv(Xv),Mu(Xu)]] (21)

In this particular case of independent variables, the covariance
term Cov [Mv(Xv),Mu(Xu)] vanishes, and the decompo-
sition becomes then equal to ANOVA. Sobol indices can
therefore be estimated as:

Si =
V ar [Mi(Xi)]

V ar[Y ]
(22)

STi =

∑
u⊆{1,...,V },i∈u V ar [Mu(Xu)]

V ar[Y ]
(23)

The contributions Mi(Xi) can be calculated by estimating the
models response using a polynomial chaos expansion, which
can, in a simplified way, be written as:

M(X) =
∑
|α|≤P

aαΨα(X) (24)

Where {Ψα, α ∈ NV } is a multivariate polynomial basis and
aα adequate coefficients for the estimation of the model’s
response, that can be determined using projection methods [4].

The Xi-univariate polynomials shares are the exact contri-
bution of Xi to the polynomial expansion, and are therefore
an estimation of Mi(Xi).

3) Results:

Channel’s results: For a sample of size N = 30000, a
number of (2+8)×30000 simulations are necessary to estimate
Sobol indices via a SALTELLI method. Up to 500 cores are
used to launch the simulations, for a calculation time of 20
hours overall. The observed variances of Zf in m2 and some
interest points (1, 86 and 150) are given in Figure 6.

Fig. 6: Channel case - Zf variances implied by 8 uncertain
parameters

First order and total Sobol indices are therefore calculated
using the SALTELLI method, and their confidence intervals
estimated via Bootstrap. The results are given for the point 86
in Figure 7. Similar results are observed for the other interest
points.

Fig. 7: Channel case - Sobol indices for Point 86

The skin rugosity coefficient αS is by far the most influ-
encing variable, followed by θc the Shields critical parameter.
The influence of other variables can be considered negligible.

The SALTELLI method and the PCE method for the
estimation of Sobol indices are compared in the interest points
for the same sample size N = 30000, as shown in Figure 8.
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Fig. 8: Channel case - Comparison of Sobol indices calculation
using SALTELLI and PCE methods for Point 1

Both methods give equal estimations of Sobol indices for
N = 30000. Given that the PCE method needs a total of N
runs to estimate Sobol indices, which is 10 times less than the
cost of SALTELLI method, it will be used from now on.

Bifurcation’s results: For the bifurcation application, a
sample of size N = 12800 is used . An overall 19 hours
of simulation using 800 cores is necessary. The observed
variances are given in Figure 9.

Fig. 9: Bifurcation - Variances of Zf

Sobol indices are estimated in interest points like 317
(Figure 9) using the PCE method, as shown in Figure 10.

Fig. 10: Bifurcation - Sobol indices for point 317

For this case, the observed variances seem to result only
from the diameters uncertainty. All the other uncertain vari-
ables seem to be none influencing.

D. Uncertainty propagation

In this section, the impact of the parameters uncertainty
on the model’s response will be investigated using statistics
defined in section V-C1, like the mean and the variance.

1) Channel’s results: The sensitivity analysis has shown a
great difference between the observed results for an experimen-
tal and a real case. In fact, for a real case, the mean diameter
of sediments seems to be the only influencing parameter, while
it is nearly meaningless for an experimental case. In order to
investigate the influence of the sediment diameter, a new set
of N = 30000 uncertainty runs is launched, considering as an
only uncertain parameter the mean diameter (other parameters
are constant). The observed statistics (mean in m and variance
in m2) are given in Figure 11.

Fig. 11: Channel case - Statistics of Zf for N = 30000

Uncertainties seem to be more important in the upstream
direction, which corresponds to a higher erosion upstream
and therefore bigger chances of bottom variations. This could
also be confirmed through comparing the statistical mean of
the final bottom elevations to a deterministic result with the
statistical mean of sediment diameters on the channel’s center
line, as shown in Figure 12. The statistical mean of final
bottom elevation is closer to the final deterministic result in
the downstream direction.

Fig. 12: Evolution of the bottom in the channel’s center line
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To quantify the uncertainty propagation, a statistical num-
ber called variation coefficient is defined in equation 25.

cv(Zf ) =

√
V ar(Zf )

µ(Zf )
=
σ(Zf )

µ(Zf )
(25)

Variation coefficients cv are evaluated in interest points
with high and low variances (points 86 and 150 in Figure 11),
and their convergence investigated with the Bootstrap method,
as shown in Figures 13 and 14.

Fig. 13: Variation coefficient for point 86

Fig. 14: Variation coefficient for point 150

In comparison with a variation coefficient of cv = 0.07
for the diameter’s sample, the uncertainty seems to be highly
propagated in some interest points as point 86. This in fact
confirms that even if the diameter seems to be none influencing
while conducting the sensitivity analysis, its uncertainty is
still propagated. In other interest points like 150, the variation
coefficient of the output is lower than that of the input. In both
cases (low and high cv) the results have converged at about
N = 16000. The confidence interval (INF and SUP in Figures
13 and 14) for cv = 0.36 is ±0.005 and for cv = 0.06 is
±0.001. The convergence of the statistical estimations and the
narrow confidence intervals indicate that our calculations can
be trusted for the chosen size N = 30000.

2) Bifurcation’s results: For the Bifurcation case, there
is no need to investigate the diameter as an only uncertain

parameter, as it is influencing the result at about 100%. The
same calculations as in sensitivity analysis have been exploited
to estimate the statistics in Figure 15.

Fig. 15: Bifurcation - Statistics for Zf - N = 12800

The highest variances seem to be concentrated in specific
areas (for example, interest points 317 and 313 in Figure 15).
This could be interpreted as the result of higher movements in
this areas, which is demonstrated in Figure 16, where the initial
and final bottom elevations have been shown for point 317 with
a diameter of d = 0.149mm. This diameter corresponds to the
minimum value of the studied sample. For the maximum value,
no bed evolution has been observed.

(a) (b)
Fig. 16: Zf in point 317 for d=0.149mm - First (a) and last
iteration (b)

This difference of movement is explained by the threshold
defined by the Shields parameter, which most certainly doesn’t
allow the maximum diameters sediments to be transported.
For d = 0.149mm, a sedimentation area around point 317 is
observed, which is confirmed by the bottom elevation values,
going from Zf = −1.68m in the beginning of simulation to
Zf = 6.27m at the end.

Nevertheless, interpreting the variances using its minimum-
maximum scale can give a false idea about where variances
shall appear. In fact, one can interpret that there are no other
variances areas than close to points 317 and 313, which is not
true and can be proved with rescaling the variances as shown
in Figure 17.

Furthermore, the variation coefficients cv have also been
estimated for this case in low and high variance points and
their convergence studied. The same conclusions can be drawn.
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Fig. 17: Bifurcation - reduced scale of variations for Zf

For a variation coefficient of the diameter being cv = 0.42,
uncertainty is more or less propagated in different points.
For example, in point 317 (Figure 18), cv = 1.879 which
corresponds to a high uncertainty propagation. For point 55
(Figure 19), cv = 0.137 which is far less than the variation
coefficient of the diameter’s sample and corresponds to an
uncertainty that is not propagated.

Fig. 18: Bifurcation -Variation coefficient point 317

The variation coefficients converge at about N = 8000 for
both cases, which signifies that the results of this study can be

Fig. 19: Bifurcation -Variation coefficient point 55

trusted as N = 12800. Furthermore, the confidence intervals
are ±0.1 for cv = 1.879 and ±0.002 for cv = 0.137 and are
tightening with the increasing sample size.

E. Correlations impact

Several physical relationships can exist between the con-
sidered uncertain parameters. These correlations between the
variables can impact the uncertainty study, given that the
parameters are no longer sampled independently. In order to
model the correlations, copulas are introduced in section V-E1.
For the sensitivity study, the ANOVA method can no longer
be used, because of the independent parameters hypothesis
it implies. A new method called ANCOVA (ANalysis of
COVAriance) is introduced in section V-E2. The uncertainty
study is conducted with the correlations consideration on
the channel’s case. In fact, given that the only influencing
parameter in the Bifurcation is the diameter, it has been
concluded that the correlation study for this case would be
useless.

1) Copulas for correlations modelling: A copula is a
function that defines a dependency structure between a set
of variables [5]. In fact, it links the multivariate probability
density function of random set of variables (X1, ..., XV ) to
their univariate probability density functions.

A copula is a V-dimensional function C defined on [0, 1]V

that verifies:

• ∀u ∈ [0, 1]V ∀i ∈ [|1 : V |], if ui = 0 then C(u) = 0

• ∀i ∈ [|1 : V |] and ui ∈ [0, 1], C(1, ..., 1, ui, 1, ..., 1) =
ui

• ∀u, v ∈ [0, 1]V verifying ∀i ∈ [|1 : V |] ui ≤ vi then
VC([u, v]) ≥ 0

Where VC([u, v]) is the C-volume of the space [u1, v1]⊗ . . .⊗
[uV , vV ] defined as follows :

VC([u, v]) = ∆vV
uV
...∆v1

u1
C(w)

∆vi
ui

being the ith finite differential:

∆vi
ui
C(w) = C(w1, ...wi, vi, wi+1, ..., wV )

−C(w1, ...wi, ui, wi+1, ..., wV )

The Sklar theorem [5] allows to define a relation between
the multivariate PDF fX of the set X = (X1, ..., XV ) and the
univariate probability density functions fi of Xi as follows :

fX(x1, ..., xV ) = c(F1(x1), ..., FV (xV ))×
V∏
i=1

fi(xi) (26)

Where Fi are the univariate cumulative distribution functions
of Xi associated to the probability density functions fi. On the
other hand, c is the probability density function of the copula
C defined as follows:

∀u ∈ [0, 1]V c(u1, ..., uV ) =
∂V C

∂u1...∂uV
(u1, ..., uV ) (27)

In this study, a classical Gaussian copula is used [2]. It
requires the calculation of a correlation Matrix using Spearman
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indices [2] from the relationships between variables. The
relationships modelled here are the following:

• The empirical relation between the Meyer-Peter and
Müller coefficient and the Shields number, that was
introduced by Wiberg and Smith [17] as follows:

αMPM = 9.64× θ0.166 (28)

Which implies a correlation between αMPM , αS and
d.

• The relationship between the Shields critical parame-
ter and the dimensionless sediments diameter [16].

• The modified Komura porosity formula [19]:

λ = 0.13 +
0.21

(d+ 0.002)0.21
(29)

• The following relationship between the deviation pa-
rameter and the sediments diameter [12]:

β2 = 9

(
d

H

)0.3

(30)

2) Analysis of covariance: For dependent variables, it is
possible to calculate the variance with the ANCOVA decom-
position as follows:

V ar[Y ] =
∑

u⊆{1,...,V }

[V ar[Mu(Xu)]

+
∑

v⊆{1,...,V },v∩u=∅

Cov [Mv(Xv),Mu(Xu)]] (31)

New sensitivity indices can be defined as:

SUi =
V ar [Mi(Xi)]

V ar[Y ]

SCi =
Cov

[
Mi(Xi),

∑
v⊆{1,...,V },v∩{i}=∅Mv(Xv)

]
V ar[Y ]

Si = SUi + SCi =
Cov [Mi(Xi), Y ]

V ar[Y ]
(32)

Where Si is the total influence of the variable Xi, SUi the
uncorrelated part of influence and SCi the correlated part.

ANCOVA indices can be negative because of the covari-
ance term. In order to interpret the signification of negative
indices, their absolute values are compared. In fact, if |SCi | has
a high value, this means that SUi is close to Si, which signifies
that correlations of the variable Xi have weak influence on
the result. Inversely, if it has a high value, this means that
correlations of Xi have great impact on the simulation’s result.

Lastly, as show in section V-C2, the terms Mi(Xi) can
be estimated via the polynomial chaos expansion. However,
in order to guarantee the orthogonality of the polynomial
chaos basis, it is necessary to estimate the coefficients of the
expansion using uncorrelated entries X . The Mi terms are
estimated afterwards using the correlated values of the entries.

3) Results: The ANCOVA indices are compared to the
Sobol (ANOVA) ones in order to quantify the impact of
correlations on the sensitivity analysis, as shown in Figure 20.
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Fig. 20: Sensitivity indices for point 86

In this case, the global order of influence doesn’t change.
The gap between the variables in terms of influence is re-
duced, for example between the variables αMPM and θC .
Furthermore, some of the variables that seemed to be of
weak influence at first are now considerably influencing, for
example αMPM . Other variables for which no correlation was
considered didn’t change their sensitivity indices (eg. αC). In
order to estimate the part of the correlations influence in the
total ANCOVA influence, the comparative Figure 21 is drawn.

Fig. 21: ANCOVA Indices Vs correlated ANCOVA indices

It can be observed that variables for which the sensitivity
indices have considerably increased (d and αMPM ) owe all
their new influence to the correlations.

Other variables that were initially influencing also have part
of their influence that is due to the correlations (θC and αS).

Furthermore, the variances with independent uncertain pa-
rameters and correlated uncertain parameters are compared as
shown in Figure 22.

It is clearly noticed that variances considerably increase
when adding correlations in this case. It can be explained by
observing the new variation interval of αMPM for example.
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(a)

(b)

Fig. 22: Uncertainty propagation without (a) and with (b)
correlations for the channel’s case

In fact, the transport coefficient of the Meyer-Peter and Müller
formula initially varies between the values 5 and 15. When
correlations are added, αMPM varies between 9.5 and 11,
which implies that we statistically observe more movement
(erosion) as compared to cases with no correlations.

VI. CONCLUSION AND PERSPECTIVES

In this study, an uncertainty quantification of a morphody-
namic problem has been proposed.

In a sensitivity analysis step, differences were observed
between a real case and an experimental case. In fact, for the
real bifurcation case, the diameter was the only influencing
parameter, which is not the same for the channel.

In order to analyse the influence of sediments diameter on
the model’s response, an uncertainty propagation study was
conducted, considering as an only uncertain parameter the
sediments diameter. This study has shown that the diameter has
highly propagated uncertainties where there is movement. In
fact, high variances were observed in maximum erosion points
for the channel, and in a deposition zone for the bifurcation.

Finally, correlations were added and increased the vari-
ances significantly. An ANCOVA method was implemented in
order to conduct a sensitivity analysis. The gap between the
variables’ influences decreased and variables that seemed first
none-influencing (sediments diameter and transport coefficient
of the Meyer-Peter and Müller formula) became of consider-
able influence when adding correlations.

This study can be generalized to other applications, such
as the use of different sediment transport formulas, the study
of suspended sediment transport or the influence of different
physical phenomenons, for example waves (TOMAWAC mod-
ule in the TELEMAC-MASCARET system).
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