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Automatic Ground Surface Reconstruction from
Mobile Laser Systemsfor Driving Simulation
Engines

Daniela Craciun- Jean-Emmauel Deschaud* Francois Goulette*

Special IssueDriving Simulation

Abstract Driving simulation engines represeatcost effective solution fowvehicle
development, being employetbr performing feasibility studies, tests failurand for
assessing nefunctionalities. Nevertheless, they require geoivally accurateand realistic
3D modelsin orderto allow drivers training.This paper presentthe Automatic Ground
Surface ReconstructiofAGSR) method,a framework which exploits 3D dataacquired
by Mobile Lasefcanning(MLS) systems.They areparticularly attractive duto their
fastacquisition at terrestrial level.Newertheless, sucha mobile acquisition introduces
several constraint§or the existing 3D surface reconstruction algorithm¥he proposed
surface modeling frameworgroducesa regular surfaceandrecovers sharp depth features
within a scalable and detail-preserving framework. Experimental results real data
acquiredin urbanenvironments allow uso concludeonthe effectivenesef the proposed
method.

Keywords: surface reconstruction LIDAR - drivingsimulator enginesroad
network - mobile lasesystems

1 Introduction

Driving simulation engines require geometrically accuratel aealistic 3D models of
urbanenvironments. Nowadays, sucBD models are computed manuallyby graphic
designers who combinawide variety of data ranging fro@PScarmaps to aeriainages,
passing throughGIS datg1]. However, the resulte@D models lack geometrical accuracy
and photorealismjmiting therefore drivers trainingn realconditions. A more difficult
task isrepreseted by the road modeling process #srequires very accurate geometrical
information inorder to supply drivers perceptiofor cars maneuverability.In order to
overcomethelimitations of theexisting 3D road modeling methods, severaesearh
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projects[2] are directed towards the useMiLS systems whichallow sensingtheenvironmentof

their surroundingswith high sampling ratesat high vehicle velocities.MLS systems provide
geometrically accurat8D measuremds atterrestrial level over large scale distances. Nbedgss,
such mobileacquisitionresultsin a highamountof data whichrequiresa fully automaticroad

surfacereconstructiorframework.

When dealingwith thesurface reconstruction problem usiP point cloudsacquired by
MLS, several key issues must be addressed, such agensaalability whilepreserving sharp depth
changesandgeometrical details, often sensilite smoothingoperations.

The research work reporteth this paper aimsat exploiting 3D dataacquired by a MLS
system for automatic generatiorof geometrically accurate surfacecomstructionin urban
environmentsfor driving simulation enginesin this papeme proposea fully automatic surface
reconstruction framework for roads asitievalks which copesvith the aforementioned constraints
imposedby MLS systemswhile fulfilling the requirementsf driving simulationengines.

The paper is organized as following. Section 2 introducesur method for improving
perceptive realism frorBD data acquiredby MLS systems and themplementationof ground 3D
modelswithin thesimulator softwareThe next sectiopresentstheexisting solutionsfor ground
surface reconstructiofirom 3D pointclouds acquiredy MLS. Section 5 provideanoverview of
our framework which is driven by aground segmentation module presentadSection 6.The
groundpoints are exploited along with a novel surfacenstruction pipeline describeéd Section
7. Section 8 evaluates the performanaekthe proposed frameworkwhile Section 9 presents
quantitative results obtained over large scal@adi®s.Sectionl0 summarizes the obtained results
and presents future extensions of our method.

2 Perceptive Realism from 3D Point Clouds acquirelly MLS Systems

Driving simulation engines represeatost effective alternativéor improving vehicle development
with minimum costs. Such systeraiow thesimulation of awide variety of traffic scenariosvith
visuallyenriched environmentfor deelop- ing vehicle dynamics, driving assistance systems and
car lighting.

Perceptive realism from scanned reality.Driving simulation enginefusevisual, audio
and motion sensewvithin a global architecture composedoly seweral modules. A detailed
description of thefunctional structureof a simulator enginecan be foundin [3]. The spatio-
temporal coherencéen a driving simulation enginds a major concern.lt is related to the
proprioceptie integration,i. e.: humans' sensibility to delay andperception incoherenc@epth,
motion) [4], [5]. If they are not treated accordingly,they can leadto severe misperception,
headaches and acciden&s. major concerrin car manufacturings representedy the useof realistic
data and driving scenarifsr designing adapted functional unifBhisrequires consistent resources
for collecting real-time traffic information such asvibrations, visual databases, soundsand
traffic incidents.As presentedn [6], realistic restitution of longitudinal and lateral acceleration
improves realism during drivingimulation. A criticalcomponentin generatinga suitablevisual
layer for driving simulation
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enginesis representedy therealism of the 3Dmodel which must be correlated both,
cars vibrationg[7] and sounccomponent.

Visual layer from MLS data. The use of GIS (Geographic Information
Systemsyatawithin driving simulatorengines providesan effective testbedor vehicle
developing. The visual layer isomposedytwo main ingredients3D environment models
and the roachetworksuppliedby GISdatasets. Nowadays, susiD models are createby
graphic dsigners through the usd manual frameworkdn presenceof occlusions,missing
data is filled withsynthetic information extracted from similar norchcledareas. Such
workflows do not providea real model, producing drivers' misperceptidn. addition,
continuous changing urban planning requires up-to-d&@® modtls and GlSdatasets.
This calls forautomatic procedures capalite survey andgenerate3D models over large
distancesin a relatively short time.Furthermore,the cost for generating manually3D
models representdn average a third of theoverall expenses requirethy a driving
simulationengine.

From MLS data to scalable road networks via logial description. In
order toovercomethe fastidious processingf manual methodsthe design of automated
3D modeling frameworks becomes must. In addition, with the newadvancementsn
mobile mapping systema, is now possibleto acquire realdata, aterrestrial level while
driving in normal traffic conditionsThis allows acquiring real data angknerating3D
models over large distancesithin a costeffectie methodology. Nevertheless, sueh
mobile acquisition resulti® ahigh amounbf data which requires automat8i modeling
frameworks.

The workflow presenteds paper was developewithin anongoing researb project,
[2] which isfocusing on thegenerationof geo-specific3D modelsfor driving simulation
enginesin order to allow vehicle design andirivers'training with minimal costs.The
project is mainly concernedvith the design of an automatic framework capabléo
generate geometrically accura®® modelsrom MLS data acquired over large distances.
Thereconstructed ground surfacgsneratedoy our algorithm are further exploitedia a
logical description foroadnetworks encodeth different file formats, such a€ityGML
[8] or RoadXML [9] accepted by driving simulation enginesThey arewidely
employedto supply the software of driving simulation enginesA good exampleis

SCANeR™ [10] which providesacompletedescription ofoads networkfor avariety
ofdriving simulationengines.

3 Open Issues for Ground Surface Reconstructiofrom MLS datasets

Mobile mapping systeméMMS) equipped with active 3D sensors are wallapted for
acquiring densely sample8D measurement®f theunderlying surfacewhile driving in
normal traffic conditions. Nevertheless, such discrete represetation must be further
exploitedin orderto build acontinuous surface through mearis3D modeling.

The existing surface reconstruction systems haaehed a maturity levevhen dealingwith
stop-and-go mapping systems. However, wheriripeitdatais a 3D pointloud deliveredby
the latest mobile mapping systems, new key issuastbe addresseéh orderto copewith
several constraints such asobile acquisition,scalability and detail-preserving capabilities
required for the surfageconstruction algorithms.
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The mobile acquisition introduces new challenges the existing surface recaitruction
algorithms. They areepresenteddy internal andexternal calibration stepsthe accuracy of the
sensor localisation and other parameters relétetthe acquisition (distand® the scanned surface,
incident angle, surface geometry, etc.) which mibst carefully identified and modeled
correspndingly

MMS must be embeddedvith 3D modeling frameworks capabléo scale-upover large
distances, while preserving geometrical detailshsassharpfeaturesand depth changeshis is
required by the capacityto processbig data setsn a fully automatic fashionand to design
consistent levelof detail (LOD) for multiresolution mappingof geo-specific3D model data
bases.In addition, scalabilityissues must be addressedorderto dealwith real-time rendering of
big datasetsacquired over largdistances.

This paper is concerned with the ground surface recactin problemwhich in man-made
outdoors environments correspontts the road, sidewalk andamp access areas. These are
structured areas, including sharp depth chaageigeometrical details, which nedd be preserved
in order to cope with the accuracyequired by the visual layer of drivingimulation engines.
This requires noisesmoothing procedures abte deal with MLS datasetsn order to eliminate
noise while preserving sharpnesshis is anopen issue which must be addressadorder to
provide a highlyaccurate surfacef road borders, ramp accemsd othegeometricdetails.

This paper presenta fully automatic algorithm designed for supplyinground surface
reconstruction fromMLS datasets. The proposed framework address¢éhe aforementioned
constraints, being abl® preserve geometric details, whiteeingscalable over largdistances.

4 State-of-the-Art on Ground Surface ReconstructiorSystems

Existing systemson ground surface reconstruction can be classifiedh respect toground
modeling andsurface reconstruction algorithm¥his section reviews main methods belongig
eachclass.

Groundmodeling systems proceed eithey first building amesh and thensegmentingthe
ground from themesh basedn different criterions,or by firstextractingtheground fromthe
pointcloud andthen reconstructhesurface.ln [11], the ground is segmented from the reconstdict
meshbased on @roximity criterion applied over the trianglds. [12], auhors propos&ground
modeling procedure for indoor environments whatows floor, wall and ceilingsegmentation
basedon planaclustering procedureThe aforementioned methods procebgt meshingtheentire
pointcloud, resultingin extra-time computatioffior reconstructinghenon-ground objectsind for
eliminating them. When only the grouigrequired,it is more efficientto first extractthe ground
and therto buildthe mesh.

Theground surface reconstruction workflow presentedhis paper separatdirst the ground
from the non-ground objects and procebgigeconstructingthe 3D pointloud belongingto the
ground. This allows to apply adapted surface reconstruction frameworkasistentwith planar
(road, floor)ornon-planarconplex) objects.
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The state of the art oground modeling systemsan be roughly classified insemi-
automatic [13]Jand automatic frameworksin [13], authors introduce a high-resolution surface
reconstruction algorithm for roareasselectedby human operatorWhile improving the state of
the art with a highlyaccurate ground reconstruction methalde proposed frameworks not
adaptedor automatic processing over large scale distarldesh-based methodeported in[11],
[14] presentthe advantageof beingautomatic and thus adapted for on-line data adgprisiand
processing ovelargedistances. Nevertheless, sevekalyissuesof theexisting techniques starid
the capabilityto reconstruct sharp depth features and geometritailsiewhile beingscalable over
long distances.

The second main processiriglock required by aground modeling systeris representedoy
surface reconstruction methdr which reported frameworksan be classifiedin two major
classesimplicit and explicitmethods.The first class ofilgorithms [15] [16] proceed by
polynomialfitting, while the second class [1718] reconstructhe surface by triangulating directly
the 3D points, resultingn a surface verglose tahe acquiredD point cloud.

In this research work we are interestadjeneratingatriangular mesh aslose apossibleto the
scanned surfacandthus, an explicitmethod is more adapted to ouapplication. The results
obtained are compare two well known surfacereconstruction methods belonging to each class:
Poisson[19] andGreedy projectiof20] techniques.

5 Overview of the Automatic Ground Surface Reconatction (AGSR)
Algorithm

The proposed framework does not exploit any assoemplor the acquisitionsetup,being therefore
suitable for 3D pointclouds acquiredy alarge varietyof MMS [21]. Thealgorithm presenteih

this paper was tested owvarious datasets suppliedy two different MLS systems whichare
illustrated in Figure 1. The proposed ground surface reconstruction algorithnmemtogether
with aparallel scheme designed for supplying massive 8Dtpcloud processingcquired by MLS
systems. Figure 2 depicts the global architectithe AGSR method.

The main input is a massive 3D point cloud whicfiri sliced into 3Dchunks, withN Mpts
(Million points) perchunk. Thelength of a 3Dchunk varieswith thevehicle speedin Figure3
(a) it carbe observecanexampleof a 3D chunlextracted fromasurvey performedver arurban
area locatedn Paris, France.

In this research work,the surface reconstruction method explois 3D point cloud
segmentation and classification algorithm [ 2 fb} theground extraction phas&his procedure
assigns semantic labet® each 3D measurment, providing a classificationoutput withdifferent
classes: groundcomposedby the road, sidewalks and ramp access), buildingbarurfurniture and
cars. Such asemantic labeling scheme provides two advantafjest gives the possibility to
parallelize the surface reconstructiorat class level, whiladapting the surfaceeconstruction
method with respect to its geometric propertiesyii) in dynamic environments, when similar
objects are detected, the already computed nmezatebe insertedwithin aglobal reference scene.
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Fig. 1 Mobile mapping systems employed in thespnt research work: (a) L3D2 MMS
prototyped by the Robotic Lab of the Mines Piath [30], equipped with a Velodyne 3D sensing
device, (b) STEREOPOLIS prototype designed byRnench Mapping Agency [29].
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Fig. 2 The global architecture of the AGSR hoetand its integration within a parallel
computation scheme dedicated to massive 3D ptootl processing. On the right side are
illustrated the outputs corresponding to thmecedures composing the workflow: ground
extraction - green, surface reconstruction - ogangerged decimated meshes - blue.

The second phase of the algorithm exploits the ®tpcloud correspondingo the groundto
build atriangular meshThealgorithm startdy aplanarDelaunaytriangulation process whicts
followed by a smoothing phasén order to reducenoise, generating thuaregular and drivable
ground surface. In orddo cope with scalability issues over large scale distan@slecimation
stage is applied to the



AGSR from MLS for Driving Simulatior Engine: 7

smoothed mesh.In a final step, a global referential frameis updated with each mesh
correspondingto each 3D chunk. The proposed workflowis designedto be appliedin parallelto

each3D chunk. Thefollowing two sections are dedicatetb adetailed descriptiorof the two
main processing blockef the AGSR framework: the automatic grourelxtractionstep and the
surface reconstructiophase.

6 Automatic Ground Extraction

This section describes ground extraction procedure whigbresents the firsstep in the 3D
modeling procesdn thiswork we employthesegmentatioralgorithmproposedn [22]. It exploits
elevation images alongriith Mathematical Morphology [23P4] tools. Thealgorithmis composed
of three processing blocks: the first aaeedicatedo the projectionof the 3D pointcloud ontoan
elevation imageln a second step, ground anobject segmentationis processedby analyzing
discontinuities ovetheelevation imagesracadesegmentations performedby identifying highest
vertical structuresThe finalprocedure back-projects eaglixel of theelevation imageo the 3D
space. Each 3D point labelled, allowingto recover 3D pointscorrespondingto the ground.

Figure 3(b) presents the segmentation and classification resuliespndingto the input
point clouddepictedin Figure3 (a). Figure3 (c) depictsthe 3Dpoint cloud representing the
ground composed by roads, sidewalks andessibilityramps.For acomplete descriptiorof the 3D
pointcloud classification predure the reader may refdp [22]. The 3Dpoints belongingo the
ground are identified with respet the labeling providedy the classificationprocedure and
exploited alongwith the surface reconstruction procesghich is describedin the following
section.

Fig. 3 Ground extraction results: (a) exampl@bfchunk acquired over Assas road located
in Paris (France): approximative length 82m, with= 3 Mpts, color coded with respect to

elevation values, (b) 3D point cloud segmentatiod classification results: facades - dark
blue, road, sidewalks and ramp access - blagksgnound objects - light blue, (c) the 3D

point cloud corresponding to the ground: 1.27Mp
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7 Automatic, Scalable and Detail-Preserving Ground Stiace
Reconstruction

The ground surface reconstruction module transform8D pointcloud labelled agyround (
illustrated in Figure3 (c)), into a continuousandscalable surface representatiofhe proposed
framework is composedby several steps whickareillustratedin Figure 2 and described through
the following sectiong=irst,the 3D point cloud representing the grouistriangulatedn the (x, y)
plane usinga Ddaunay triangulation algorithrf25] which provides pointsconnectivty. Then, we
apply amesh cleaning processeliminate long triangles. In ordép provide a continuous and regular
surface model of the road, we apply the SiMindowedsmoothing algorithm [26] which eliminates
high frequencies, while preserving sharp depthufeatandavoiding surface shrinkagén a final
step, a progressive decimator [ 2 7,]28] is appliedto the smoothed mesim order to cope with
scalability constraints wheperforming surface reconstruction over large sdditances.The
decimation phasprovidessurface representatiowith low memory usage, enabling efficiedata
transmision and visualizationln addition, thedecimation procedure enables progressindering
in order to deal with real-time constraints imposedtying simulation engines.

7.1 Point Cloud Triangulation

Let us note withP = {X;, yi, zfi =1,.., No} the 3D point cloudorrespndingto theground,
where Np  denotesthe number of points. We apply the Trianglelgorithm  [25] to the 3D point
cloud P to generate a planatonstraintDelaunay triangulatiorwith anglesno smaller than30°.
Let usnotewith Mp the resulting ground mesh, which Hals =~ 2Np triangles.

7.2 Long Triangles Elimination

In order to eliminate long triangles from non-umifo boundary points, wperformstatistics over
theedge lengthsand identifythose with maximum length,notedemax. We identified thatlong
edges correspondo emax = de, wheree denotesthe mean length computed ovell edgesej
belonging to the meshMp, i.e. over all triangles t e MpT,j =1, .., Nt and for its
corresponding edgaé .1 ={1,2,3}. Thetermd denotesa proportionality fastor A triangle t!

is eliminatedif any of itsedgese! > emax i = {1,2,3}. This criterion ensurethat only long
triangles belonging to the boundary are eliminated; moreover, since sniéingles arenot
eliminated, holecan notbe generatedvithin themesh.In practice,for severaldatasets acquired
in urbanareasby different MLS systems [29’][30], we found that acoefficient 5 = 20 results
in acleaned mesh, i.e. without long triangles, whichnete M.
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7.3 Building a Regular Surface

As illustratedin Figures 4 (a) and (b), the triangulation of noidy Mieasuremds resultsin high
frequency peaks. Since we wantinject the ground surfageodel in drivingsimulator enginesan
important issue which neetis be addresseds thegeometrical accuracyThe 3Dmodel must be
distortion-free andregular. In order to obtain a regular surface, the Sinc Windbwenoothing
procedure26] is applied which approximates low-pass filtdsg polyhedronsin order toeliminate
highfrequency peaks. Figures (¢) and (d)illustrate the resultedmoothed mesh, notdls; it
can be observed that the Sinc Windowsahcothing technique providesa regular surface, while
preserving roads and sidewdilorders sharpness.

Fig. 4 The resultof the Sinc windowed smoothing procedure [26] obtained dataset
Cassetteacquiredover the Cassetteoad situatedin Paris, France(a) the outputof the
Delaung triangulation procedurgb) zoom-in view on the areaelectedin the rectangle
illustratedin Figure (a), (c) smoothedmesh output, (d) zoom-in view on the areaelected
in the bluerectangle illustratedh Figure (c).

7.4 Scalability

The smoothed mesh haa high numberof triangles, being redundant amé&using highmemory
usage. Moreoverjn order to merge several mesh segmeit$o aglobal scenethemesh resolution
must be drastically reducedo thisend, we apply theprogressive decimation method [2,728],

mainly the default implementation availabla the VTK library [31]. The mesh resolution
r(Mp) is controlled by thereduction factornoted fp.



10 Daniele Craciur et al.

(d)

Fig. 5 The decimation results obtainddr the datase®ssas: (a)smoothednesh: Ny = 2.54

Mpts, (b) zoom-in view in of the aremelectedin the bluerectangle depictedh Figure (a),
(c) decimatedmesh, wire-frameview: decimation factofp = 90%, NP : 254 kTriangles, (d)
zoom-in view of the areaelectedby the bluerectangle illustratedh Figure(c).

Thealgorithm proceeds as follows: first, each verisxlassifiedand inserted in a priority
queuefor further processingThe priority is setirorder to minimize thedistanceto theoriginal
mesh causedly thevertex eliminationand by thee-triangulationof theresulting hole As stated
in [27], following thevertex type (simple, interior, boundary, et@)different distancecriterion
is computed (distancéo plane, distanceo edge).Let us notewith M the decimated mesh, and

withN P the corresponding numbef triangles.

Figure5 illustrates theresult obtainedfor the input pointloud depictedin Figure3 (c)
reducingfp = 90% of theentire meshThe remaining numbenf triangles corresponde amesh

resolution of r(Mp) =10% of the originalmesh.

It can be observedhatthe decimation algorithm preservdge reconstructiorof the road,
sidewalk borderandaccessibility rampdn orderto emphasizehe detail-preservingcapability of
the decimation algorithm,Figure6 illustrate the speed bumpreconstructionafterapplying a
maximal mesh reductiofactor of fp =90%.

Accuracy of the decimated meshAs in [32]we evaliate the accuracegf the decimated
mesh by measuring the distance betwetime original point cloudP and the vertices of the
decimated meshVip. We chooseto compute the Hausdorff distance [38}e study both, the mean
and the roomean squaredRM S ) distance for different mesh resolutions(Mp ). We
observedthat themeanis less sensibleo thedecimation process, whilthe RM S varies witha
higher amplitude, although negligit#10~3m ). This let usconclude that the memory usage can be
reduced by a maximal factor dio =90%,without sacrificing the accura@fthe model.
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(b)

Fig.6 The finaloutputof the proposed surface reconstruction method obtaametihe dataset
Cassettewith 51 mlength.(a) Google Maps view of thsurveyed aregb) Np = 1.01 Mpts,
Nt = 2.026 MTriangles, decimatedhesh with fp = 90%, NP = 203 kTriangles.

Table 1 Accuracy evaluatiorof the ground surface reconstructionith respectto ground
truth (GT) datdor Urban#2, (acquiredover Cassetteoad situatedn Paris, France) illustrated
in Figure 6.

\

| Dataset Urban2 Hramp ~ Wioad |

Hsidevalk

\ \
\ \
GT | 105(cm) | 25 (cm)} 3.5 (m) }
Reconstruction 10.1(cm) 2.3 (cm) | 3.514 (m)

8 Performance Evaluation

We evaluatethe performancesof theproposed frameworkn terms of accuracymemory usage and
computationtime.

Accuracy evaluation. We quantify the accuracyf the reconstructed surfacgith respectto
several groundruth measurements which were performetanually on sitéCassette road, situated
in Paris,France),mainly: theheight of thesidewalk bordertheheight of theaccessand the road
width, noted Hgjgewalk: Hramp andW, g, respectively. Tablel illustrates theground truth
and thereconstructed dimension®r dataset Cassette (Urbaf2) illustrated in Figure 6.It can be
observed the reachable accurasyetter tharl.5 cm.

Computation time. We evaluate our algorithm on a 64b Linuxmachine, equippegtith 32
Gb of RAM memory andanintel Corei7 runningat 3.40 GHz. Our method is implementedin
C/C++ andexploits PCL [34]and VTK [31] libraries. Table2 illustrates the computi@n time
obtainedfor the dataset Urba2. We can observehatthe decimationstep is themost expensive
phase, being relatetb thedecimation factorfp. In thisexampleaamaximum decimator factor was
usedfp =90% for ameshwith 2 MTriangles, which resulii 9 secof computation time.

Memory usage.Table3 illustrates the memory usafyer each surfacgecorstruction steplt can

be observedthat themesh representatiois more efficient than the point-based one, allowirtg
reduce the memory usage 3 times for th# resolution mestand20 times for aresolution meslof
r(Mg) = 10%. These mults show that the proposed surface reconstrudiamework providesa
memoryefficient surface representation, while presengegmetricdetails.
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Table 2. Computationtime for dataset Urbary? illustrated in Figure 6 where Pg
denoteghe point cloud segmentatiophase for theground extractioneach columngives the
runtime correspondingo each step of thalgorithm.The overall computationtime is about
17s for Np=1.01 Mptsand N¢=203 kTriangles.

Steps PS MDT MC MS MD
[CPL(s) [ 2 | 214 Joae| 3 [ 9 |

Visual rendering. The frame frequency, measurgdframes per secon@FPS), allows to
quantify thequality of a 3Dmodelwith respectto the visual renderingapability. Thesecond row
of Table3 illustrates the frame frequency, noteghte and measured usinGloud Compare [35]
for different surface representations (discrete and continuolistan be observethatthe point-
based representation detains faster rendering tgipabthan the full resolutiomesh, whichdoes
not cope with real-time rendering requirementin contrast, thelecimated mesh exhibits real-
time frame rates, while providing continuousurfacerepresentation.

Table 3 Memoryusage and framdrequency measures correspondingthe input chunkP
and to the mainoutputsof the algorithmfor dataset Urbam? illustratedin Figure 6.

Urban#2 P MpT Mg Mp

Memory (Mb) 14.856 81.61 37.600 3.7
viate (FPS  267.74 10.273 12.448 131.96

Although the decimation stdp the most computationally expensipeocessng block of the
proposed surface reconstruction framewdtkgnables real-time rendering afcontinuous surface
over large scale scenes, while preserving gedmeetails.

Ground surface comparison.We evaluate the resultsf the proposed framework, entitled
Automatic Ground Surface ReconstructihGSR), withtwo well known surface reconstruction
techniquesThe firstmethodis basedon implicit functions [19] while thesecondis an explicit
method [20] which proceeddy agreedy projection. Figuré’ and Table 4llustrate the results
obtained by applying each reconstruction algorithto the point cloud P correspondingto the
ground depictedn Figure 3 (c), acquired over Assesad(Paris,France),noted dataset Urba#t.

Table 4. Comparison between surface reconstruction meth@dsilts obtainedy running

the algorithmson the dataset Urbanil illustratedin Figure3 (c): N°“tand N°Ut denote the
p t

numberof verticesand the numberof triangles corresponding eachoutput,respectiely.

Dataset Urbarl Poisson Greedy AGSR

Nout 748 k 1.28 M 127 k
p 15M 2764 M 254 k
nout 133 422 26
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(e)

Fig. 7 Comparisonof surface reconstruction results obtairfed the datasetAssas (Urban
#1): (a) Poisson techniqudb) zoom-in view of therectangulamrea selectedn Figure(a), (c)
Greedy projection techniquéd) zoom-in view of therectangulatarea selectedn Figure (c),
(e) proposedAGSRtechnique(f) zoom-in view of therectangulagrea selectedn Figure (e).

By visually inspecting Figures 7 (a) and 7 (b)can be observed thaithoughPoissonmethod
providesawatertight surfacdf resultsin mesh shrinkageroundthe sidewalk borders. Moreovet,
reduces the number of points considerabhtroducing thus inaccuracies between theint cloud
geometry and thefinal surface. In contrast, the Greedy projection method keemsl the
measurementprovided by theacquisition. Neverthelesst results in discontinuity and high
frequencypeaks. The thirdrow of Table4 illustrates thecomputation time obtainedsing PCL
implementations.It canbe observedthat theproposed method increastfse performancesnot
only in terms of accuracy,asshowedin Figure7, but also intermsof computation timeMore
precisely,it allows to decrease the runtimefnes when comparetb Poissonmethod, and 16 times
with respectto the Greedy projection technique.Both methods, Poisson and Greedy, are
computationally expensive dueto the normal computation step. When comparing finallis, it
canbe observedthat, although the proposed technique includea computationallyexpensive
decimation phase, besidie detail-preserving rendering capabilityf features real-time surface
reconstructiononparallel processingnits.

9 Scaling-Up Detail-Preserved 3D Ground Meshes

The proposed surface reconstructed algorithm was testedeveral datasetacquired by two
different MMS: Stereopolis [2 9] and L3D2 [30]equippedwith Riegland Velodyne sensing
devicesrespdively. Following the3D sensor device, different smoothing parameters weed.
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Two examplesof thesurface reconstruction result obtainfm several datasets are depiciedrigure 8.

For the dataset Cassette, the computation timerferchunck with 3 Mpts acquired along 50 m,
the algorithm performs the surface reconstructiombout 17 s. For 100 chunks, the algorithm
processes 100 Mpts representing the ground in ab®unin. When applied to long distance
surveys, for 100 km non-stop driving and data-asitjah, the MMS acquires 6 Billion points and
the ground surface reconstruction can be computetbdut 10h. In this research work, we focus
mainly on providing an accurate and scalable sarfaconstruction algorithm, time scalability
being beyond the scope of the paper. Neverthedgssipgrade of computational resources by a
factor of 10, results in real-time surface recamgion capabilities. When such an upgrading
scheme is adopted, the algorithm can deliver ttieearad network for 10000 km length in about
5 days, non-stop driving, data acquisition and gssing at 90 km/h.
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Fig. 8 Surface reconstruction results obtairfed several dataset¢a) Google Maps vievof
two areas surveyedby the SterepolisMMS: Assas road(Paris, France)indicatedby the green
arrow, Cassetteoad (Paris, France) indicatedby the redarrow, (b) surface reconstruction
results obtainedor 5 scanssegmentspverall length: 319 m, (c) zoom-in view of thdlue
rectangulararea presentedn Figure (b), illustrating the accuracyof the reconstructed ramp
access andsidewalks,(d) surface reconstruction results obtairfed 4 chunks, overall length:
217 m, (e) zoom-in view of the blueectangulamrea presentedn Figure(d), illustrating the
accuracyof the reconstructed rampaccess andsidewvalks.

10 Conclusions and Research Perspectives

Thepresent research work introduces the AutomaticuGdoSurface Reconstrtion algorithm designedo
supplyscalableanddetail-preserving groungurfacereconstructiorin a fully automatic fashioriThe
proposed technique generatasurate3D modelsof outdoor environments adaptédr driving simulator
engine
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or for being embedded onboard mobile platefofimsautonomous navigatioapplications.

Thereported technique addresses several open isdibe currentlyexistingsurface reconstruction
techniques, such as: accurate reconstruction afpsldepth featuresin presenceof noisy datasets,
scalability and memorysage.

Research perspectivesf the present research work are focusiog the photaealist surface
reconstruction problem throughe jointlyuse of laser reflectancand RGB camerasA second research
perspectiveis related to thefacade surfacereconstruction and ground-faade merginghin a global
referentialframe.
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