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Recent advances in macromolecular crystallography have made it practical to

rapidly collect hundreds of sub-data sets consisting of small oscillations of

incomplete data. This approach, generally referred to as serial crystallography,

has many uses, including an increased effective dose per data set, the collection

of data from crystals without harvesting (in situ data collection) and studies of

dynamic events such as catalytic reactions. However, selecting which data sets

from this type of experiment should be merged can be challenging and new

methods are required. Here, it is shown that a genetic algorithm can be used for

this purpose, and five case studies are presented in which the merging statistics

are significantly improved compared with conventional merging of all data.

1. Introduction

The merging of oscillation data from multiple crystals or from

multiple positions on the same crystal can be an effective

method for obtaining complete, high-quality data sets. The

concept of merging data from multiple crystals is not new and

indeed dates back to the early days of macromolecular crys-

tallography. With the advent of microbeams, this concept was

expanded to include multiple sub-data sets collected from a

single crystal (Perrakis et al., 1999). Nonetheless, the collection

of a complete data set from a single crystal over a single

oscillation range is still the dominant approach, largely owing

to the difficulties in merging small sub-data sets, which is

particularly apparent when merging data collected from

multiple crystals. The inherent non-isomorphism between

crystals is thought to often preclude the useful merging of data

sets, thus limiting the use of serial data collection. Recently,

however, there has been renewed interest in these kinds of

experiments, spurred in no small part by the success of sample-

delivery and analysis methods developed at free-electron

lasers (FELs), most notably in the SFX (serial femtosecond

crystallography) method (Boutet et al., 2012; Chapman, 2015).

Indeed, some FEL sample-delivery and data-analysis methods

have recently been adapted and extended for use at

synchrotron sources at both cryogenic and ambient tempera-

tures (Gati et al., 2014; Stellato et al., 2014). One cryogenic

method that takes advantage of the ability to collect small

oscillation ranges from multiple crystals has recently been

described by Zander et al. (2015). In this method, a diffractive

map is first calculated, followed by the collection of ‘sub-data

sets’ at the positions on the sample holder with the best
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diffraction properties. Because oscillation ranges, rather than

still images, are collected using this method, the partiality of

reflections can be determined more easily, reducing the

number of images required to obtain a complete and high-

quality data set. One problem that remains, however, is

treating the non-isomorphism between crystals or between

positions on a single crystal. This is highly dependent not only

on the system being studied but also on the method of cryo-

protection and other factors, including crystal nucleation and

microenvironment growth conditions. In order to address

these challenges, hierarchical cluster analysis has been the

method of choice to select which data sets should be merged.

This method uses some metric of similarity between data sets,

most notably correlation coefficients between data sets, simi-

larity of unit-cell parameters and relative anomalous correla-

tion (Giordano et al., 2012; Liu et al., 2012; Foadi et al., 2013).

With the exception of anomalous correlation, these values are

a proxy for the presumed data quality of the merged data,

which is a severe limitation of this methodology. We therefore

propose a simple method in which the data quality, as assessed

by data metrics such as R values and hI/�(I)i, is directly

optimized. However, for a set of n sub-data sets, the number of

possible combinations is 2n
� 1; thus, an exhaustive search

quickly becomes computationally unfeasible with even a small

number of sub-data sets. In order to address this, we have

therefore chosen to use global optimization as a means of

identifying sets of sub-data sets that can be merged with good

statistics. Genetic algorithms (GAs) are a well known global

optimization method which have previously been used to

address diverse problems in macromolecular crystallography

(Chang & Lewis, 1994; Kissinger et al., 1999; Schneider, 2002;

Uervirojnangkoorn et al., 2013). Here, we show that a GA can

be used to select which sub-data sets can be merged into a high-

quality data set and present test cases as proof of concept.

2. Materials and methods

2.1. Sample preparation

2.1.1. Glucose isomerase. A slurry of glucose isomerase

crystals was purchased from Hampton Research. Crystals

were cryoprotected by dilution of the 5:1 protein:100%

glycerol slurry to a final concentration of 20% glycerol.

2.1.2. Ultralente insulin. Microcrystalline ultralente insulin

was provided by Gerd Schluckebier (Novo Nordisk) and

David Flot (ESRF). The crystal slurry was cryoprotected in

the same manner as glucose isomerase.

2.1.3. Thermolysin. Thermolysin from Bacillus thermo-

proteolyticus (Sigma–Aldrich) was dissolved in 45% DMSO,

0.05 M MES pH 6.0 at a concentration of 100 mg ml�1.

Crystals were grown using the hanging-drop vapour-diffusion

method, where the drops were composed of the protein

solution and a solution consisting of 0.05 M MES pH 6.0, 1 M

NaCl, 45% DMSO in a 1:2 ratio. The reservoir contained 35%

ammonium sulfate. Crystals were cryoprotected by transfer-

ring them for 5 s into a drop containing 6 M trimethylamine

N-oxide.

2.1.4. LUX–DNA complex. The LUX–DNA complex (the

DNA-binding protein LUX ARRHYTHMO from Arabi-

dopsis thaliana in complex with its cognate DNA) was

expressed, purified and crystallized as described in Silva et al.

(2016). LUX–DNA crystals were cryoprotected by adding

approximately 1/10 volume of precipitant solution to the

crystallization drop, followed by harvesting.

2.1.5. Urease. Sporosarcina pasteurii urease (SPU) was

purified following a previously reported protocol (Mazzei et

al., 2016). Subsequently, 2 ml urease solution was diluted with

2 ml precipitant solution (1.6–2.0 M ammonium sulfate in

50 mM sodium citrate buffer pH 6.3). Crystallization was

performed at 293 K using the hanging-drop method, equili-

brating the drop against 0.5 ml precipitant solution using

Qiagen EasyXtal 15-well plates. Rice-shaped protein crystals

appeared in 1–2 weeks and grew to dimensions of 20 � 20 �

40�70 mm. Crystals were transferred into a cryoprotectant

solution consisting of 20% ethylene glycol and 2.4 M ammo-

nium sulfate in 50 mM sodium citrate buffer pH 6.3.

2.2. Data collection

Following cryoprotection, crystals were harvested in either

nylon loops (glucose isomerase, ultralente insulin) or Kapton

meshes (LUX-DNA, thermolysin, urease; Mitegen, USA) and

flash-cooled in a gaseous nitrogen stream at 100 K. A

diffractive map was first obtained using the MeshAndCollect

workflow (Zander et al., 2015) running within MXCuBE

(Gabadinho et al., 2010). This diffractive map was used as

described by Zander and coworkers to determine the data-

collection parameters for a series of sub-data sets (Table 1).

No attempt was made to control the orientation of crystals in

sample holders, nor was any selection of data sets performed

based on their orientation.

Data for urease crystals were collected on the EMBL P13

beamline at the PETRA III storage ring, c/o DESY, Hamburg,

Germany (Cianci et al., 2016) equipped with an Arinax MD2

running on a 240 Hz CPU for fast grid scanning and a Dectris

Pilatus2 6M. Data for LUX-DNA, glucose isomerase and

ultralente insulin were collected on ESRF beamline ID23-

EH2 equipped with an MD2M and a Dectris Pilatus3 2M (Flot

et al., 2010). Data for thermolysin were collected on ESRF

beamline ID29 equipped with a microdiffractomer and a

Dectris Pilatus2 6M (de Sanctis et al., 2012). Doses were

estimated using RADDOSE-3D (Zeldin et al., 2013).

2.3. Integration

Data were automatically integrated by XDS (Kabsch, 2010)

running within the GreNADES automatic processing system

(Monaco et al., 2013). Where applicable, data sets were re-

indexed for consistency across all sub-data sets using the

REFERENCE_DATA_SET keyword in XDS.

2.4. Urease phasing

Experimental phasing was performed with SHELXC,

SHELXD and SHELXE (Sheldrick, 2010). A partially refined

model was obtained by molecular replacement in Phaser
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(McCoy et al., 2007) using PDB entry 4ceu (Benini et al., 2014),

followed by refinement in phenix.refine (Adams et al., 2010).

Known S-atom positions were obtained using this model and

ANODE (Thorn & Sheldrick, 2011). Phase errors against this

structure were computed in SHELXE.

2.5. Hierarchical cluster analysis (HCA)

The merging of sub-data sets based on hierarchical cluster

analysis was performed as described by Giordano et al. (2012)

using a new GUI (Santoni et al., unpublished work). This

program reads the output of XDS (XDS_ASCII.HKL), calcu-

lates the correlation coefficients between each pair of data sets

and saves them as a distance matrix. From this matrix the

clustering dendrogram is generated and presented in an

interactive GUI. By the selection of different nodes in this

dendrogram, different combinations of data sets are generated

and automatically processed in the background with

XSCALE. The final correlation coefficient cutoffs are speci-

fied in Table 2.

2.6. Paired refinement

Paired refinement was performed as described previously

(Karplus & Diederichs, 2012; Diederichs & Karplus, 2013)

except that resolution increments were selected to keep the

numbers of reflections similar. Refinement of atomic positions

and individual atomic displacement parameters was

performed using phenix.refine, with simulated annealing in the

first round of refinement. Evaluation of R values (without

refinement) was performed using phenix.model_vs_data and

the ‘high_resolution’ keyword (Adams et al., 2010). The same

free reflections were used to calculate Rfree at high and ‘low’

resolution. The starting PDB entries used were 4zb5 (Lobley

et al., 2016), 3tt8 with copper(II) removed (B. Prugovecki & D.

Matkovic-Calogovic, unpublished work) and 5a3y (Zander et

al., 2015) for glucose isomerase, insulin and thermolysin,

respectively. The final optimized resolutions can differ from

the resolution limits used for GA optimization and reported in

Table 2.

2.7. Genetic algorithm

GAs apply concepts of biological natural selection to

maximize or minimize a target function. The problem being

optimized is encoded into one or more chromosomes, which

are contained in a population of randomly initialized indivi-

duals. Diversity is introduced into the population via random

mutation and crossover events. As a proof of concept, a GA

for the grouping of sets of data sets has been implemented in a

Python script. The DEAP package (https://github.com/deap/

deap) offers a complete set of tools for the facile development

of a GA and has therefore been used. Furthermore, the

SCOOP package (https://github.com/soravux/scoop/) has been

used for thread-level and host-level parallelization. In our

implementation, a chromosome is an array of integers of

length n, where n is the number of sub-data sets (Fig. 1). Each

integer specifies which merging group each sub-data set

belongs to. Thus, the range of each integer is limited to 1 . . . g,

where g is the number of possible merging groups (three

groups and g = 3 by default). A chromosome therefore simply

describes how all of the sub-data sets should be divided into

groups. Note that this encoding of data-set grouping implies

no overlap between merging groups (one sub-data set cannot

belong to more than one group). The algorithm proceeds as

follows: a population of individuals, each containing a single

chromosome, is first randomly initialized (Fig. 1) and then

undergoes cycles of GA optimization by repeated selection,

crossover between individuals, mutations and evaluations of

fitness. The DEAP EASimple pre-built algorithm was used for

this purpose, using uniform crossover (p = 0.05), uniform

mutation (p = 0.05) and tournament selection (tournament

size = 3) methods. Crossover and mutation probabilities can

be user-specified and default to 0.3 and 0.6, respectively. The

evaluation of individuals is performed by first scaling together

all of the sub-data sets in the chromosome with the same

group number (g) with XSCALE (Kabsch, 2010). Because the
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Table 1
Crystal and data-collection parameters.

Macromolecule Glucose isomerase Ultralente insulin Thermolysin LUX–DNA Urease

Space group I222 H3 P6122 P1 P6322
Unit-cell parameters (Å, �) a = 93.1, b = 99.5,

c = 102.4
a = 82.2, b = 82.2,

c = 33.8
a = 92.9, b = 92.9,

c = 129.5
a = 32.9, b = 70.9,

c = 67.0, � = 103.9,
� = 92.4, � = 91.0

a = b = 132.43,
c = 190.6,

Beamline ID23-EH2, ESRF ID23-EH2, ESRF ID29, ESRF ID23-EH2, ESRF P13, PETRA III
Wavelength (Å) 0.8731 0.8731 1.280 0.8731 2.0664
Beam size (H � V or diameter) (mm) 9 � 5 9 � 5 10 � 10 9 � 5 30
Crystal size range (mm) 10 � 10 � 10–

30 � 30 � 30
5 � 5 � 5–

15 � 15 � 15
20 � 20 � 100 25 � 5 � 5–

100 � 5 � 5
20 � 20 � 40–

20 � 20 � 70
Photon flux (photons s�1) 1.6 � 1011 7.0 � 1010 4.1 � 1011, 8.4 � 1011 4.4 � 1010 3.4 � 1011

Exposure per image (s) 0.1 0.25 0.037 0.1 0.04
No. of images per sub-data set 140 100 100 100 300
Dose per sub-data set (average

diffraction-weighted dose) (MGy)
6.0–7.3 5.3–7.5 3.0–6.2 1.67 0.48

Dose per sub-data set (average
dose exposed region) (MGy)

1.1–7.8 2.96–10.5 4.2–8.7 0.20–0.63 0.82

Oscillation range (�) 0.1 0.1 0.1 0.1 0.1
Total angular range per sub-data set (�) 14 10 10 10 30



statistics are highly dependent on the binning of the data,

resolution limits are user-selectable, either by specifying the

maximum resolution or directly supplying a list of resolution

shells which will be passed on to XSCALE via the RESO-

LUTION_SHELLS keyword. By default, the binning is

automatically determined by XSCALE. After XSCALE has

been executed, data-quality statistics are parsed from the

XSCALE.LP file and a fitness is calculated, which is derived

from the merging statistics. This fitness is a combination of the

inner-shell Rmeas value, the inner-shell hI/�(I)i, the outer-shell

CC1/2, the overall completeness and the overall multiplicity.

In cases where anomalous signal is present, a term for the

anomalous signal can also be included in the scoring function,

which is the addition of the inner-shell mean anomalous

differences in standard deviations above the mean (SigAno in

XSCALE/XDS). A second option for anomalous optimization

exists, which is the resolution at which the SigAno remains

above 1.0 and the anomalous correlation (‘% of correlation

between random half sets of anomalous intensity differences’;

XSCALE output) remains above 30%. The DEAP pre-built
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Table 2
Grouping and merging statistics.

Three columns are used for each system, with the first listing data resulting from merging all sub-data sets, the next from the best GA run and the last from the best
HCA cluster. Note that for average sub-data-set parameters, not all sub-data sets contained enough reflections to calculate merging statistics [Rmeas and hI/�(I)i].

Glucose isomerase Ultralente insulin Thermolysin

All GA HCA All GA HCA All GA HCA

No. of sub-data sets 30 21 20 53 30 19 206 8 36
HCA CC cutoff — — 0.98 — — 0.97 — — 0.93
GA population size — 20 — — 25 — — 20 —
GA generations — 300 — — 300 — — 60 —
GA R weight — 0.5 — — 4 — — 8 —
GA I weight — 1.5 — — 4 — — 1 —
GA CC1/2 weight — 2 — — 5 — — —
GA groups — 3 — — 3 — — 8 —
Data sets in common

between GA and HCA
— 19 — — 15 — — 0 —

Sub data-set Rmeas,inner† 20.6 (22.9) 9.0 (3.9) 9.8 (3.9) 9.7 (6.5) 8.5 (5.7) 9.4 (5.1) 27.2 (27.8) 5.6 (2.3) 10.2 (3.8)
Sub data-set hI/�(I)iinner† 7.6 (4.6) 9.7 (3.7) 9.8 (3.9) 14.8 (8.5) 15.4(8.2) 17.6 (8.9) 7.2 (5.8) 15.4 (4.8) 9.2 (4.5)
Sub data-set completeness† (%) 23.8 (1.4) 24.4 (0.8) 24.4 (0.8) 13.9 (0.7) 13.9 (0.8) 14.0 (0.6) 44.8 (4.4) 46.1 (3.8) 43.9 (3.3)
Resolution range (Å)

Overall 46.6–1.53 46.6–1.53 46.6–1.53 41.13–1.50 41.13–1.50 41.13–1.50 46.5–1.65 46.5–1.65 46.5–1.65
Outer shell 1.57–1.53 1.57–1.53 1.57–1.53 1.54–1.50 1.54–1.50 1.54–1.50 1.69–1.65 1.69–1.65 1.69–1.65

Total No. of reflections
Overall 1111281 784525 751377 2019411 114748 72438 8387107 322089 152135
Outer shell 77220 54777 52212 14256 8106 5326 958429 24310 103756

No. of unique reflections
Overall 71803 71520 72007 13640 13631 13547 40366 39986 40387
Outer shell 5281 5243 5316 1005 1004 1037 2758 2943 2756

Completeness (%)
Inner shell 99.3 98.9 98.9 98.7 99.3 99.3 99.8 99.3 99.5
Outer shell 100.0 99.8 99.9 100.0 99.9 99.7 100.0 100.0 100.0
Overall 100.0 99.9 99.6 100.0 99.9 99.5 100.0 99.0 100.0

Multiplicity
Inner shell 14.8 10.4 10.0 16.1 9.2 5.8 192.1 7.3 34.3
Outer shell 14.6 10.4 9.8 14.2 8.1 5.1 205.7 8.3 37.6
Overall 15.5 10.9 10.4 14.8 8.4 5.3 207.7 8.0 37.7

R factor (%)
Inner shell 14.7 9.4 8.0 43.4 6.8 7.0 39.0 8.7 11.8
Outer shell 249.1 153.8 170.0 108.1 85.4 74.5 379.0 171.2 119.7
Overall 33.9 20.4 21.3 34.0 9.1 9.2 91.3 27.4 25.2

Rmeas (%)
Inner shell 15.2 9.9 8.4 44.8 7.2 7.6 39.2 9.4 12.0
Outer shell 258.1 161.5 179.1 112.1 91.2 82.9 380.7 182.5 121.3
Overall 35.1 21.4 22.3 35.3 9.7 10.2 91.6 29.5 25.5
hI/�(I)i

Inner shell 27.9 27.1 26.8 31.9 33.4 23.4 66.2 99.4 27.3
Outer shell 2.5 2.5 2.4 2.6 2.4 1.9 1.4 1.6 4.1
Overall 10.7 10.6 10.3 13.3 12.9 9.7 15.2 17.0 12.9

SigAno
Inner shell — — — — — — — — —
Outer shell — — — — — — — — —
Overall — — — — — — — — —

CC1/2(%)
Inner shell 97.9 99.5 99.5 99.7 99.8 99.7 97.7 98.2 99.5
Outer shell 68.0 70.8 66.6 77.4 79.1 67.3 69.7 55.3 91.5
Overall 99.2 99.5 99.5 99.3 99.8 99.7 99.1 91.7 99.7



EASimple algorithm has been configured to maximize the

fitness function. All components of the scoring function are

therefore consistent with this (i.e. higher values are better)

except for the second anomalous method and Rmeas. The Rmeas

term is therefore modified to be 100 � (Rmeas) (default) or

1/Rmeas. Each individual term also has a user-specified weight

associated with it. All terms are then summed to produce a

single score for each group in the individual. These statistics

can be calculated for the inner resolution shell, the outer

resolution shell or all of the data. Because the low-resolution

bins contain the strongest data and are less influenced by the

uneven distribution of multiplicity than the overall data

(Karplus & Diederichs, 2015), we have

chosen to use this resolution shell,

except in the cases of multiplicity,

completeness and CC1/2. Specifically,

multiplicity and completeness use the

overall statistics and CC1/2 uses the

outer-shell statistics. Once each group in

an individual has been scored, there are

two options for how these group scores

are converted into a fitness for the

individual: the score from the best

group or a combination of all of the

group scores is used as the fitness of the

individual. In the case where there is a

single major dominant species, the two

options should produce identical results.

However, in cases in which there are

multiple non-isomorphic groups, and

the goal is to segregate these groups,

scoring an individual by combining the

scores across all groups is most appro-

priate. In this study, none of the test

cases showed evidence of having several

non-isomorphic groups, so we have

focused on scoring from the best group.

2.8. Parameterization

As with other optimization algo-

rithms, finding an appropriate balance

between weighting terms can in prin-

ciple be problematic. In our GA

implementation, there are two cate-

gories of parameters, all of which are

available from the command line: algo-

rithmic parameters such as population

size, number of generations and cross-

over/mutation probabilities and para-

meters related to the scoring such as R

weight, completeness weight and CC1/2

weight. In practice, we have found that

the default GA parameters generally

produce excellent results. However, if

specific metrics appear to be sub-

optimal, the GA formulation makes it

straightforward to improve other metrics by simply changing

the respective weights, lending additional versatility to the

method.

3. Results and discussion

3.1. Glucose isomerase

Glucose isomerase crystals were used for initial testing of

the GA. A small set of data sets (30 sub-data sets) were

collected and merged (Tables 1 and 2). This yielded an

acceptable merging Rmeas,inner of 15.2% and hI/�(I)iinner of

27.9. However, the overall Rmeas of 35.1% was quite high. We
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LUX–DNA Urease

All GA HCA All GA HCA

No. of sub-data sets 204 36 77 127 39 79
HCA CC cutoff — — 0.75 — — 0.8
GA population size — 25 — — 20 —
GA generations — 300 — — 250 —
GA R weight — 1 — — 1 —
GA I weight — 2.5 — — 3 —
GA CC1/2 weight — 1 — — 2 —
GA groups — 3 — — 3 —
Data sets in common

between GA and HCA
— 26 — — 34 —

Sub data-set Rmeas,inner† §† §† §† 15.3 (18.9) 5.2 (3.0) 6.5 (3.4)
Sub data-set hI/�(I)iinner† §† §† §† 10.9 (6.7) 16.6 (6.2) 14.1 (5.8)
Sub data-set completeness† (%) 5.4 (1.2) 5.7 (0.9) 5.8 (0.8) 42.9 (4.9) 43.9 (2.3) 43.5 (3.1)
Resolution range (Å)

Overall 68.86–2.80 68.86–2.80 68.86–2.80 98.38–2.09 98.38–2.09 98.38–2.09
Outer shell 2.87–2.80 2.87–2.80 2.87–2.80 2.14–2.09 2.14–2.09 2.14–2.09

Total No. of reflections
Overall 292976 70083 118205 20341640 5794906 12815153
Outer shell 16922 4231 7949 749997 182806 608053

No. of unique reflections
Overall 14499 14224 14024 107644 107603 105577
Outer shell 1039 928 1000 7320 7016 7173

Completeness (%)
Inner shell 100.0 94.5 96.2 99.9 99.9 100.0
Outer shell 100.1 89.3 99.5 100.0 87.5 100.0
Overall 99.9 98.0 99.4 100.0 99.1 100.0

Multiplicity
Inner shell 22.6 5.3 9.0 224.3 66.9 146.0
Outer shell 16.3 4.1 7.9 102.4 22.8 84.8
Overall 20.2 4.8 8.4 189.0 53.4 121.4

R factor (%)
Inner shell 71.0 17.0 32.6 93.5 6.7 8.4
Outer shell 187.0 83.2 141.3 157.8 128.8 145.0
Overall 74.5 37.0 50.3 86.0 29.8 32.0

Rmeas (%)
Inner shell 72.7 18.8 35.1 93.6 6.7 8.4
Outer shell 192.6 93.5 151.2 158.6 131.3 145.8
Overall 76.1 41.0 52.9 86.2 30.1 32.2
hI/�(I)i

Inner shell 11.8 16.3 11.3 101.1 121.4 102.9
Outer shell 3.7 5.0 4.8 3.4 2.4 4.2
Overall 7.8 9.9 7.5 24.9 23.3 25.8

SigAno
Inner shell — — — 3.16 3.79 3.27
Outer shell — — — 0.73 0.76 0.73
Overall — — — 0.99 1.05 1.00

CC1/2 (%)
Inner shell 93.7 95.0 98.1 99.9 99.6 99.9
Outer shell 68.1 59.6 44.9 80.5 66.6 92.8
Overall 94.4 94.3 97.0 99.9 99.8 99.9

† Average values; standard deviations are given in parentheses. §† Insufficient reflections in the sub-data sets to obtain
statistics.

Table 2 (continued)



were initially concerned that the strong correlation between

various metrics could cause instability or nonconvergence of

the GA, but found that this was not the case: submitting the

sub-data sets to the GA for optimization showed a rapid

improvement and convergence of the best fitness, with

concomitant improvement of merging statistics (Fig. 2).

Indeed, Rmeas,overall was improved to 21.4%. Similarly,

Rmeas,inner was improved from 15.2% for all data to 9.9%.

Finally, the CC1/2 values for the overall data set (CC1/2,outer =

68.0%, CC1/2,overall = 99.2%) were also improved using the GA

(CC1/2,outer = 70.8%, CC1/2,overall = 99.5%). The hI/�(I)i values,

however, were not improved. Removing individual terms from

the fitness function did not strongly affect the convergence

rate of the GA. Thus, the GA appears to be effective in

improving various metrics of data quality. Since the current

standard for selective merging of sub-data sets is hierarchical

cluster analysis (HCA), we also compared the overall data and

GA-derived data with HCA data. This analysis showed that, as

with GA, the hI/�(I)i values were not significantly improved,

but significant improvements to the Rmeas could be made.

Similar improvements of the CC1/2 to those with the GA could

be made with HCA, although the outer CC1/2 value was

slightly lower for HCA than for both all merged data and GA-

optimized merged data. Although exploring the relationship

between merging statistics and model quality was not the goal

of this study, and indeed has been well studied by Karplus &

Diederichs (2012), we nevertheless evaluated the downstream

effects of these different merging methods using the paired

refinement protocol. In this method, the high-resolution cutoff

is incremented to include higher resolution data, followed by

conventional refinement and finally evaluation of the resultant

model against lower resolution data (Karplus & Diederichs,

2012). We found that the highest resolution shells in which the

overall free R value decreased when evaluated against the

previous resolution cutoffs were 1.87, 1.90 and 2.26 Å for the

GA, HCA and all data sets, respectively. This suggests that the

merging statistics are indeed indicative of improvements to

the model quality.

3.2. Ultralente insulin

Microcrystalline ultralente insulin is an excellent test system

for serial crystallography and microcrystallography because of

its stability, ease of cryoprotection and high-resolution
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Figure 1
Schematic diagram of the genetic algorithm steps. In this example there
are four individuals, with nine sub-data sets to be segregated into three
groups. The individuals are first initialized randomly; the nine sub-data
sets are assigned randomly to group 1, 2 or 3. Within an individual, three
scaling runs in XSCALE are then performed, one for each group. The
merging statistics are then converted to fitness scores, and the individual
receives the fitness for the highest group (it is also possible to use the
average fitness). In this case, individual 4 is removed from the population
because of lower fitness (fitness values are not shown) and replaced with a
new individual. The DEAP built-in mutation and crossover genetic
modifiers are then applied, followed by cycling back to the scoring step.
The background colour indicates the source of the chromosome. For
example, after the crossover step between individuals 1 and 2, two ‘new’
individuals are created consisting of (i) the group assignments of sub-data
sets 1–4 from individual 1 and the group assignments of sub-data sets 5–9
from individual 2 and (ii) the group assignments of sub-data sets 5–9 from
individual 1 and the group assignments of sub-data sets 1–4 from
individual 2. After crossover, mutations are randomly introduced as
shown (yellow circles).



diffraction. It is also useful for testing the global optimization

approach because the crystals generally do not merge well

together. 53 sub-data sets were collected from ultralente

insulin crystals in a nylon loop (Tables 1 and 2). The Rmeas

from merging all data is particularly poor, with inner-shell and

overall values of 44.8 and 35.3%, respectively. HCA identified

a set of 19 sub-data sets from this pool with a significantly

better Rmeas values of 7.6 and 10.2% for the inner shell and

overall, respectively. The hI/�(I)i for the inner shell and

overall were, however, lower than those on merging all data.

The GA also selected a set of sub-data sets with considerably

improved Rmeas and signal to noise. The Rmeas for the GA

demonstrated an improvement over both merging all data and

the HCA set, with an inner-shell value of 7.2% and an overall

value of 9.7%. In contrast to the HCA set, the GA retained an

inner-shell and overall hI/�(I)i of comparable strength to

merging all the data, and indeed showed somewhat higher

values in the low-resolution bin. The CC1/2 values for merging

all data were already very good, with CC1/2,outer and

CC1/2,overall values of 77.4 and 99.3%, respectively. This was

actually better in the outer shell than the HCA set (77.4%

versus 67.3%). The GA produced CC1/2,outer and CC1/2,overall

values that were better in both the outer and overall shells

compared with merging all data and

with the HCA (CC1/2,outer = 79.1% and

CC1/2,overall = 99.8%). Despite the

significant improvements to Rmeas,inner,

paired refinement saw very modest

differences in the high-resolution cutoff:

1.48, 1.52 and 1.52 Å for the GA, HCA

and overall data, respectively. This

result is consistent with the smaller

improvements seen in CC1/2 and

hI/�(I)i, lending further credence to the

idea that these latter metrics are more

useful than R values, as suggested

previously (Karplus & Diederichs,

2015).

3.3. Thermolysin

To test a case in which strong non-

isomorphism was present, we collected

data from three different sets of ther-

molysin crystals to give a total of 206

sub-data sets (Tables 1 and 2). These

data surprisingly yielded a quite strong

hI/�(I)i for the overall and the inner

resolution shells (15.3 and 66.2, respec-

tively). Rmeas, however, was extremely

poor for both the inner shell and overall

(39.2 and 91.6%, respectively). HCA

produced a data set with a significantly

improved Rmeas (Rmeas,inner = 12.0%,

Rmeas,overall = 25.5%), but possibly

because of reduced multiplicity the

hI/�(I)i was significantly worse in both

the inner shell and overall [hI/�(I)iinner = 27.3 and hI/�(I)ioverall

= 12.9]. Using default values, the GA initially produced a data

set composed of 66 sub-data sets with extremely high hI/�(I)i

values [hI/�(I)iinner = 192.8 and hI/�(I)ioverall = 20.1]. The

Rmeas, while an improvement over that on merging all the data,

was rather high (Rmeas,inner = 25.4%, Rmeas,overall = 98.3%). By

increasing the number of groups to eight from the default of

three, and down-weighting the multiplicity term by 3, the

merging statistics were dramatically improved, with Rmeas,inner

= 9.4%, hI/�(I)iinner = 99.4 and hI/�(I)ioverall = 17.0. The

hI/�(I)i was dramatically higher for GA versus HCA, while

the overall Rmeas was slightly higher than for the HCA data

set, but was still a significant improvement over that on

merging all data. The CC1/2 values, in contrast, were somewhat

lower than for both HCA and overall data, although

increasing the weight for the CC1/2 term could produce a data

set with an overall CC1/2 of 98.8% and an even higher hI/�(I)i

[hI/�(I)iinner = 211.94 and hI/�(I)ioverall = 31.79], but at the

expense of a higher Rmeas (Rmeas,inner = 14.1%, Rmeas,overall =

65.6%). This data set shows that in cases of high non-

isomorphism it can be helpful to increase the number of

merging groups and/or sacrifice multiplicity in order to

improve hI/�(I)i and Rmeas. Paired refinement revealed that
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Figure 2
Improvement of data statistics. The horizontal axis represents progress of the algorithm. Upper
panel: GA fitness is improved by the algorithm. Lower panel: the inner-shell hI/�(I)i segregates into
individuals with optimized values and suboptimal values.



the resolution of the GA data and HCA were both higher than

the overall data, with values of 1.60, 1.65 and 1.76 Å, respec-

tively.

3.4. LUX–DNA complex

Lack of completeness can be of particular concern in SX

experiments, owing to the fact that many sample-delivery

techniques can favour specific orientations of crystals. One of

the best-known examples of this is the alignment of rod-

shaped crystals in a liquid jet. This problem is exacerbated in

low-symmetry space groups, which require greater angular

ranges for complete data sets. We therefore performed a

MeshAndCollect SX experiment on the DNA-binding domain

(AT3G46640.1, residues 139–200) of the LUX protein in

complex with DNA, which crystallizes in space group P1

(Tables 1 and 2). 204 sub-data sets were collected, which when

merged produced a complete and high-multiplicity data set.

However, the merging statistics were extremely poor, with an

Rmeas of 72.7% in the low-resolution shell and of 76.1% overall

as well as an hI/�(I)i of 11.8 in the low-resolution shell and 7.8

overall. We wondered whether enough completeness and/or

multiplicity could be sacrificed in order to improve both the

Rmeas and signal to noise, and whether there was a selection

that could yield acceptable values for all parameters. The GA

selected a set of data with significantly improved merging

statistics. Rmeas,inner was improved to 18.8%, hI/�(I)iinner was

increased to 16.3, hI/�(I)ioverall was improved to 9.9 from 7.8

and the overall completeness was still quite acceptable at

98.0% (compared with 99.9% for all data). As with the GA,

HCA also improved the Rmeas values compared with the

overall data set, but not as significantly as with the GA, with

Rmeas,inner = 35.1%. While the GA improved the CC1/2 of the

inner shell and that for the outer shell was worse than for the

overall data, the HCA data set had an improved CC1/2 for both

the inner shell and overall data. However, the hI/�(I)i in the

inner and overall shells actually decreased slightly compared

with the overall data, with hI/�(I)iinner = 11.3 and hI/�(I)ioverall

= 7.5. Thus, the GA can produce high-quality results even in

low-symmetry systems. A fully refined model was not available

for paired refinement of this system, but the partially refined

model (Rwork = 0.26, Rfree = 0.36, r.m.s.d. bond lengths =

0.011 Å, r.m.s.d. angles = 1.261�) was used to obtain resolu-

tions of 2.76, 2.87 and 3.01 Å for GA, HCA and overall,

respectively.

3.5. Urease

A set of sub-data sets were collected at low energy from

crystals of urease (Tables 1 and 2). The goal of this experiment

was de novo phasing using endogenous S atoms and bound

Ni2+ ions (there are 31 S atoms and two Ni2+ ions in the

asymmetric unit and 799 amino acids). To this end, the

anomalous signal was also included in the GA scoring func-

tion. Merging all data yielded very good hI/�(I)i values overall

and in the inner and outer resolution shells (24.9, 101.1 and

3.4, respectively) as well as excellent CC1/2 values of CC1/2,outer

= 80.5% and CC1/2,overall = 99.9%. The mean anomalous

differences divided by their standard deviation (SigAno in

XSCALE) indicated the presence of anomalous signal with a

low-resolution bin value of 3.16. Despite these generally

favourable metrics, Rmeas,inner was extremely poor (93.6%), as

was Rmeas,overall (86.2%). It is perhaps not surprising that

phasing was unsuccessful using these data. In challenging SAD

cases, it is frequently the substructure-determination step that

prevents successful phasing of the data. We therefore tested

whether it would be possible to determine interpretable

phases starting from the known correct S-atom substructure.

This was not possible, with a best weighted mean phase error

(wMPE) of 83� and a CC of the partial model in SHELXE of

9.5%. We therefore applied the GA to these data. The best

data set from the GA had CC1/2 values that were slightly lower

than those for the overall data (CC1/2,outer = 66.6% and

CC1/2,overall = 99.8%). However, the inner-shell hI/�(I)i was

significantly higher from the GA (121.4), while the overall

value was slightly lower (23.3 versus 24.9). The SigAno was

significantly higher than the overall data, with a SigAnoinner of

3.79. Finally, the Rmeas values were dramatically improved

(Rmeas,inner = 6.7% and Rmeas,overall = 30.1%). This set of data,

despite having considerably better merging statistics, was still

not of adequate quality for de novo phasing in SHELX

(Sheldrick, 2010), AUTOSHARP (Vonrhein et al., 2007),

CRANK2 (Pannu et al., 2011) or PHENIX (Bunkóczi et al.,

2015). However, as with the overall data, we were interested in

whether the merged data were of adequate quality to produce

interpretable phases starting with the known sulfur substruc-

ture. In this case, phasing was successful, with 590 of 799 amino

acids automatically built, a wMPE of 34� and a CC of the

partial model of 34.2%. Interestingly, despite the significantly

better Rmeas,inner of the GA data compared with the HCA

merged data of 6.7 and 8.4%, respectively, as well as a larger

SigAnoinner (3.79 versus 3.27), phasing from the known

structure was similarly successful with the HCA.

4. Summary and future outlook

In recent years, considerable effort has gone into the analysis

of which merging statistics are linked to model quality and

phasing success (Karplus & Diederichs, 2012, 2015; Diederichs

& Karplus, 2013; Diederichs, 2016). Although some metrics

such as CC1/2 and CC* appear to be much more generally

useful than, for example, the classic merging R value, the

specific combination of metrics that one uses is likely to be

dependent on the downstream application. Here, we have

shown that a GA can be used to select subsets of data that

have improved merging statistics compared with merging all

data. Indeed, in all of the test cases studied, significant

improvements to the GA-derived statistics compared with

merging all data have been observed. This can be performed

automatically with minimal user intervention and is therefore

suitable for inclusion in automatic pipelines. We feel that as

the popularity of methods, including SX, that produce

hundreds of sub-data sets increases, such an automatic tool

will be extremely useful, especially in the not uncommon case

where there is non-isomorphism between crystals. It is worth
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noting that other global optimization algorithms such as

simulated-annealing and Monte Carlo methods could also be

effective in this goal.

We have focused on obtaining a single high-quality data set

in this work. In other words, optimization of the best single

group is the goal. However, the encoding of chromosomes in

our GA approach also supports the somewhat different aim of

identifying multiple mutually non-isomorphous groups. This

can be addressed by making the fitness proportional to, for

example, the average fitness across all groups for a particular

individual. In cases of multiple non-isomorphous groups,

where the non-isomorphism can be distinguished via merging

statistics, this would likely be a more appropriate approach.

However, small changes such as slightly different ligand-

binding modes or changes in loop conformations are unlikely

to be distinguishable by such an approach. The serial data-

collection approach offers the opportunity for a systematic

analysis of the limits of these changes.

While we have compared the results of the GA with HCA

analysis, the two approaches can be combined. For example,

HCA can be used as an initial pre-selection, followed by GA

optimization. This would take advantage of the sensitivity of

HCA to outliers and could be performed in a fully automatic

manner, setting a very strict similarity threshold in the HCA.

Normally, the threshold used for HCA may require optimi-

zation by inspection of a cluster dendrogram, and this manual

intervention step would be obviated if the initial threshold for

HCA were set to a very high value. This approach would take

advantage of the speed of the HCA and the ability of the GA

to identify combinations of data sets that are not apparent

based on CC or unit-cell parameters (for example if the

number of reflections in sub-data sets is very low). Similarly,

in cases where the sub-data sets have an adequate number of

reflections, pre-screening can be performed based on the

statistics within these sub-data sets. It is, however, worth

noting that for all of the cases discussed here such an approach

on its own (i.e. without GA) produced inferior data sets to

HCA and GA.

The completeness of the sub-data sets in our study varied

from very low (�5% for LUX) to quite high (46% for ther-

molysin). Indeed, for LUX the number of reflections present

in each sub-data set was so low that no meaningful merging

statistics were produced by XDS/XSCALE. While high-

quality data sets could still be obtained in this challenging

case, it is likely that with even smaller wedges scaling could

become impossible using standard methods, and techniques

similar to those used for merging single images from serial

femtosecond crystallographic experiments might become

necessary.

As with HCA, the GA has parameters that can be changed,

such as mutation and crossover probabilities. These can, in

principle, affect the success and convergence rate. In practice,

changing these values has rarely been necessary. Crystallo-

graphic parameters are also parameterized, but we view this as

an advantage, since one can directly select which metric or

metrics are the most important. This is in most cases more

intuitive than setting a correlation coefficient cutoff, a unit-cell

similarity cutoff or a linkage method since the quantitative

relationship between these parameters and the merging

statistics, while directly related, is less obvious.

Several improvements to the GA implementation are

envisioned, including the use of a faster (but possibly less

robust) step for the determination of merging statistics.

Although mitigated by the parallelization within XSCALE as

well as the host-level and thread-level parallelization in the

GA, because of the typically large number of sub-data sets and

reflections XSCALE is currently the rate-limiting step. Run

times are typically on the order of an hour on a 12-core

2.8 GHz Intel Xeon machine with data on a network disk

(uncached I/O read and write speeds of roughly 100 MB s�1).

However, in extreme cases such as with the urease, which has a

total of 20 million reflections, run times were routinely 12 h.

Therefore, a faster step for the generation of merging statistics

would significantly reduce the generation time and total run

time of the program. While we have not employed such a

concept in this initial study, we are also looking into the use of

a ‘free’ set of reflections similar to Rfree (Brünger, 1992) or

CCfree (Karplus & Diederichs, 2012). Finally, it might also be

possible to use the GA approach to optimize the merging of

still diffraction frames generated by XFEL data collections.

Thus, there are numerous improvements envisioned for this

approach based on this proof of concept. However, even in

this initial state, the GA is a promising technique for treating

SX data and offers a complementary approach to existing

methods for treating SX data.
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