
HAL Id: hal-01474338
https://hal.science/hal-01474338v1

Submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time reduction of the Dynamic Programming
computation in the case of hybrid vehicle

Emmanuel Vinot

To cite this version:
Emmanuel Vinot. Time reduction of the Dynamic Programming computation in the case of hy-
brid vehicle. International Journal of Applied Electromagnetics and Mechanics, 2016, pp. 1-15.
�10.3233/JAE-140163�. �hal-01474338�

https://hal.science/hal-01474338v1
https://hal.archives-ouvertes.fr

1

TIME REDUCTION OF THE DYNAMIC PROGRAMMING
COMPUTATION IN THE CASE OF HYBRID VEHICLE

Emmanuel VINOT*

*IFSTTAR, 25 Avenue François Mitterrand, 69500 Bron, France
 E-mail: emmanuel.vinot@ifsttar.fr

Abstract. Deterministic Dynamic Programming is frequently used to solve the management problem of
hybrid vehicles (choice of mode and power sharing between thermal and electric sources). However, it is
time consuming and thus difficult to use in global sizing optimization or in parametric studies. This paper
presents a comparison between three methods to compute the DDP problems. These methods are applied
on the well known case of the Toyota PRIUS. It proves that a dense matrix method can reduce the
computation time by up to 10 compared to classical solving methods.

Keywords: Deterministic Dynamic Programming, Solving Algorithms, Hybrid Vehicle

1. Introduction

Hybrid vehicles are an effective solution to reduce CO2 and pollutant emissions [1][2][3]. In such
architecture, the electrical driveline provides additional functionality to the drive train. Among these
functionalities, regenerative braking and electrical propulsion mode are the most efficient to improve
systems efficiency. Combined electrical and thermal propulsion and battery recharge by the engine
also allow substantial gain. Finally, as in series parallel hybrid, engine and wheel speed decoupling is
another possibility to reduce fuel consumption.

These different capabilities have to be used in the best manner to reduce fuel consumption as much as
possible. The choice of the operating mode (i.e. the power energy management) is thus a key point of
the efficiency of hybrid architecture [4][5][6]. It has to fix the electric or hybrid mode, the battery
current and the engine operating points.

Moreover, the fuel consumption of an hybrid vehicle can only be announced taking into account the
battery charge or discharge over a driving cycle long enough to be representative of real uses
conditions. Thus, the power management law cannot be simply developed to minimize fuel
consumption on each step of time but has to respect a global amount of charge of the battery.

An optimal method is then very useful to determine the best energy management law over a known in
advance representative driving cycle [4][5][6]. These methods are obviously applied offline as the
drive cycle needs to be known. Optimal off-line management remains nevertheless very useful to
developed efficient online management laws [6], to perform objective comparisons between hybrid
solutions [7], to size components [8][9], and in optimal global design process [10][11] to avoid the
unknown and non-monotonic impact of the management on the fuel economy [9][12].

Two off-line methods are currently used in order to calculate the optimal management; the
Pontryagin’s minimum principle [13] and the Discrete Dynamic Programming (DDP) [14][15]. These
two methods can take a long time to achieve the optimal management over a drive cycle of several
hundreds of seconds. This can be a critical point especially in comparative or parametric studies and
even more critical in a design process [10][11] when fuel consumption of thousands of solutions can
be calculated. It is then a serious issue to reduce the computer effort as much as possible during such
calculation.

In the scope of this paper, the authors focus on DDP [14][15][16][17][18] and investigate the different
possibilities to reduce the calculation time. The DDP principle (section 2) allows to find the optimal

VINOT, Emmanuel, 2016, Time reduction of the Dynamic Programming computation in the case of hybrid vehicle ,
International Journal of Applied Electromagnetics and Mechanics, pp. 1-15, DOI: 10.3233/JAE-140163

2

State of Charge (SOC) trajectory of the battery to minimize the fuel consumption on a drive cycle
known in advance. This is performed in a restrictive SOC versus time meshed area limited by battery
maximum charge and discharge possibilities. Another specification, when applying DDP to hybrid
vehicle is the necessary consideration of the electric mode (discrete state). When sampling the SOC
you have to be sure that one of the samples corresponds to the electric mode with no fuel consumption
associate (section 3).

Several manners to improve time calculation can then be investigated:
- Reducing the size of the graph as much as possible (section 3)
- Building the graph to ensure that the electrical modes correspond to existing edges

(section 3).
- Using vectorial cost calculation. So that all edge costs of the graph are calculated all at

once before solving the graph (section 5).
- Improving the manner to solve the DDP problem avoiding loops and big matrix (section

4),

In this paper, the authors present the method they used to reduce the DDP calculation time to a handful
of seconds (3 to 30). The four precedent points are treated. Then an example on the well known
Toyota Hybrid PRIUS [19][20] is presented.

2. Dynamic Programming applied to SP_HEV

Regarding hybrid vehicle management, an optimization problem can be formulated to minimize the
global fuel consumption over a global driving cycle respecting a certain amount of battery discharge
[14][15][16][17][18]. The state variable is commonly the state of charge (SOC) defined as:

∫−=
T

t

F
batt

o

o

dttI
C

tSOCTSOC η)(
3600

100
)()(

(1)

Where t0 and T are respectively the initial and final time of a drive cycle, Cbatt is the battery capacity in
Ah.

The global fuel consumption is:

∫=
T

t

SOCf

o

dttmJ),(δ

(2)

Where δSOC is the SOC variation at time t and fm the fuel rate.

The global constraint on SOC variation has to be respected:

KSOCSOCSOC finalinitial =−=∆

(3)

Using discrete dynamic programming principle, the problem formulation is the following:

The time is sample in N steps. The SOC is sample in M step between SOCmin and SOCmax (Fig. 1).

3

Solving this problem using DDP means to find the best SOC trajectory in a SOC versus time area. The
SOC constraint is guaranteed if the limits of the space are built to cross on a specified final state of
charge (Fig. 1, section 3).

To solve this problem an iterative method using Bellman principle [14] is currently used. A cost is
associated to each edge between two consecutive points at time k and k+1 (Fig. 10). The fuel
consumption on a trajectory between two points is simply the sum of the edge cost (fuel rate) on this
trajectory.

Bellman principle stipulates that every sub-trajectory of an optimal trajectory is optimal [14]. It is
therefore easy to find the best trajectory over the cycle using iterative methods.

The edge cost from point (k,i1) to point (k+1,i2) is the instantaneous fuel rate i2))1,+(k i1)((k,fm

which depends on the soc variation between the beginning and the end of the edge δsoc. For instance
we assume that i2))1,+(k i1)((k,fm depends only on the soc variation and vehicle speed, an example

is given in section 5.

Starting at point (1, i0) with a fuel consumption 0*
),1(0

=iJ , the general principle is the following:

At time k for a state SOC(i1), i.e in point (k,i1), the minimum fuel consumption from the beginning to

this point is noted *
),(1ikJ , and is called “cost to go” for the following of this paper. It is known for each

point in the column k (i.e for i1 between ilim_min(k) and ilim_max(k) (Fig. 2)

Using the Bellman principle the cost to go from beginning to a point (k+1,i2) of time k+1 may easily
be determined. The principle is to add the costs of each edge J((k,i1) →(k+1,i2)) reaching the point
(k+1,i2) to the cost to go of the point (k,i1) and take the minimum. Repeating this operation for each
point (k+1,i2) of the column k+1 gives the best trajectories from beginning to time k+1.

The optimal cost to go at time k+1 is thus given by:

)()(

][min],[

2max12min11

*
),(),1(),(1

*
),1(121

2

iiiiifor

JmiJ ikikikf
i

ik
i

+=

+=
+→+

(4)

At each step of time, for each point of the column, the index i1 which minimizes the fuel consumption

is known (4). Thus it is easy, at the end of the process to determine the best trajectory.

Note that point (k+1,i2) can only be reached by a limited number of edges due to system limitation.

The battery has a limited rate of charge or discharge depending on the battery itself and on the system

limitation. Thus the spread of possible edges reaching point i2 is limited between i1min(i2) and i1max(i2).

Section 4 of this paper focuses on different manners to solve the DDP problem and on the most

efficient one in the cases of hybrid vehicle problems.

4

Fig. 1 DDP applied to Hybrid vehicle

Fig. 2 DDP recurrent principle

3. Graph Boundaries

An important point to reduce the computation effort is obviously to restrain the area of study. In our
case, as the state variable is the battery state of charge the area is limited by a maximum discharge
limit and a maximum charge limit Fig. 3.

The maximum discharge limit at each time corresponds to the zero emission mode (electric mode).
That means that the vehicle is propelled only by electricity using the energy stocked in the battery. In
the case of regenerative braking, this limit corresponds to recharging the battery only by the wheel (no
energy is added by the engine).

The maximum charge limit at each time is calculated considering that the engine provides all its
possible power, a part is going to the wheel to propel the vehicle, the rest recharges the battery. Note
that this remains true in the limits of systems and components capabilities.

The last limits to be applied are those of the battery SOC itself Fig. 3. On a hybrid vehicle the battery
remains relatively small, thus it may be rapidly completely charged (SOC=100%) or discharged

Battery SOC

vehicle speed

time

Final SOC value

Initial SOC value

maximum charge limit

maximum discharge limit

To be meshed area

driving cycle

Battery SOC

vehicle speed

edge : cost=D(δsoc)

δsoc

1 NTe

1

M

Battery SOC

maximum charge limit

maximum discharge limitk k+1

(k,i1)

(k+1,i2)

i1max(i2)

ilim_min(k+1)

i1min(i2)

ilim_max(k+1)

ilim_max(k)

ilim_min(k)

δsoc
(1,i0)

Spread of possible edge

5

(SOC=0%). Moreover, for battery ageing considerations, a battery management system usually limits
the minimum and maximum value. Common values are (40% and 80 %,[20]).

Fig. 3 Battery SOC limitation

Once the limits of the graph are defined, the graph has to be meshed in the two axes. The easiest way
is to sample the time in N step of Te starting at zero, and the SOC in M step between SOCmin and
SOCmax starting at initial SOC value SOC0, then you obtain a regular mesh (Fig. 5). The drawback of
such a grid is that the electrical mode (corresponding to maximum discharge limits) has virtually no
chance to correspond to an effective edge. In fact, as the soc variation δsocelec of this mode is perfectly
known at each time by the drive cycle, it has few chances to match the SOC variation of an existing
edge. This is of great importance; not considering electrical mode in hybrid vehicles implies great
error on fuel consumption and does not allow making the strategy choice. A solution retained in [16] is
to then consider that the nearest edge is the one corresponding to the electrical mode and to affect a
cost of zero to this edge. Doing this creates errors on the SOC variations (Fig. 4) which are then
cumulated along the whole cycle. Thus the final SOC constraint is not respected.

A solution is to mesh the area in such manner that the electrical mode corresponds to the edges of the
graph (Fig. 5). For that, in each column, the grid starts from the maximum discharge limit (which is
the electrical mode) and goes up. The SOC sample remains the same for each column.

Fig. 4 Regular Grid

Battery SOC

Final SOC value

Initial SOC value

maximum charge limit

maximum discharge limit
electrical mode

To be meshed area

maximum SOC

minimum SOC

Battery SOC

Final SOC value

Initial SOC value

maximum charge limit

maximum discharge limit

Regular grid

"electrical mode" discharge

δsocelec

δsocelec

δsocelec

errorδsoc

6

Fig. 5 Non regular grid

Once the graph boundaries have been constructed to minimize the meshed area (taking into account
systems limitation) and to include all electrical mode, the cost of each edge of the graph has to be
calculated.

4. Solving algorithms

Once the edge cost calculation is performed, the problem is to solve the DDP for a graph with a
weighted oriented edge. Different manners can be imagined to solve this problem, from intuitive
manner to complex matrix manner. The fact is that avoiding loops in the algorithms and too big matrix
may be a good way to improve the algorithm efficiency especially using Matlab software.

This section deals with three different manners to solve the DDP problem:

(i) A first intuitive method (section 4.A) which consists in applying directly the principle
described in section 2, using a loop on each point of a column inside the loop at each time
k.

(ii) A matrix method (section 4.B) which treated each point of a column in a vectorial manner
but used great sparse cost matrix with a lot of non defined elements.

(iii) A third method (section 4.C) based on dense matrix of index of cost and weight.

A. « Point to point » method

This method is one of the more intuitive. The idea, in the iterative principle, is to deal separately
with each point of a column at time k+1. A loop is then used for each point of the column (algorithm
Fig. 7). On a point i2 of column k+1, the cost of each edge (fuel rate) which can reach this point is
added to the cost to go of these points. The trajectory and the corresponding fuel consumption
corresponding to the minimum fuel consumption J*

(k+1,i2) is selected.

 The advantage of this method is that only the values of “valid” edges are considered. The main
drawback is the loop on i2 included in the time main loop on k (algorithm Fig. 7), and the presences of
a call to a minimum function inside the loop. The computer effort used by this algorithm is detailed
Table 3 and Table 4. An idea to reduce the computer effort consists in avoiding calling minimum
function in the loop on i2. For that, a matrix containing all the possible weights of each point of the
column is built (section 4.B).

Battery SOC

Final SOC value

Initial SOC value

maximum charge limit

maximum discharge limit

"electrical mode" discharge

Non Regular grid

δsocelec

7

Fig. 6 Point to point method

end

end

JmindexJ

iiifor

kkfor

J

iiii
iikikiikfikik

kk

ik

]min[],[

index) ingcorrespond theand go cost to thecalculate(

 value)state (gridde

step) time(2

*
):,(),1():,(),1(

*
),1(

)1max(lim_)1min(lim_2

max

*
):1,1(

)2sup(_1)2inf(_12)2sup(_1)2inf(_122

max_2

+=

→=
→=

∞=

+→++

++

+

Fig. 7 Algorithm use in a point to point method

B. Matrix method

This method Fig. 8 is based on an M*M matrix calculation [21] with M the maximum point numbers
in a column of the graph. The principle is at each time (k+1) to add the cost to go at time k to the cost
of each edge from time k to time k+1. If the edge between two points is not possible (due to the
systems operation) an infinite weight is applied. The advantages of this method are its simplicity and
you obtain in one operation the best cost and the index of the best trajectory (Fig. 9). For that you only
have to add the cost matrix C to the cost to go matrix J*

k (composed of the best previous fuel
consumption at time k, and take the minimum of each lines of this matrix in one call to a minimum
function with a matrix on argument (Fig. 9).

The drawbacks are the size of the matrix, typically 10002 to 50002 elements. This implies great
computer efforts to create the matrix and performed operation on it (Fig. 9). Moreover you still need a
loop on i2 inside the main loop to build the cost matrix C which is extracted of the global cost matrix
Cm.

Battery SOC

maximum charge limit

maximum discharge limit

k k+1

i2

i1_sup(i2)

ilim_min(k+1)

i1_inf(i2)

ilim_max(k+1)

i0

i1_inf(i2)

i1_sup(i2)

i2

8

Using such a method leads to a highly sparse matrix (20 defined values on the diagonal on a
1000*1000 matrix for example). Thus another method using as much as possible dense smaller matrix
is presented section 4.C.

Fig. 8 Matrix method

end

CJindexJ

end

kiiCiiiC

iiifor

kkfor

kMkMk

ieiemii

kk

]min[],[

index) ingcorrespond theand column, theofpoint allfor go cost to the(calculate

),:(),:(

)Cmatrix cost thebuilding(

) valuestate (gridded

step) (time2

*
):1,1(

*
):1,1(

)sup(_)inf(_2)sup(_1)inf(_1

)max(lim_)min(lim_2

max

2222

+=

=

→=
→=

++

Fig. 9 Algorithm use in a matrix method

C. Index matrix method

The idea is instead of using sparse M*M matrix (section 4.B), using a smaller dense cost

matrix. This matrix contains quite only defined value (Fig. 10) and has a size max(Smax(k)* M. In fact,
the lines are only composed of the defined values of the spread of edge to reach points (k+1,i2). I.e
only the edges with effective fuel rate are considered. “Impossible” edges due to system capabilities
and limitations are ignored. The key point is then to build the cost plus cost to go matrix (C+J*

k+1) in
an efficient manner (algo Fig. 11) and then take the minimums of each lines. Two index matrix indexW
and indexC are built.

IndexW (Fig. 10) contains on each line the indexes of the previous points at column k reaching
a point i2 of column k+1. Each line starts at the first defined value and is completed by non defined
values if needed.

Battery SOC

SOC max

k k+1

i2

i1_sup(i2)

ilim_min(k+1)

ilim_max(k+1)

i1_inf(i2)

i1_sup(i2)

i2

SOC min 1

M

∞

∞

J*
k+C

9

The matrix indexC contains on each line the indexes in the spread of cost which reach point i2.
Note that the spread of cost is in fact the column k of a cost matrix Cm containing all costs of the
graph.

Once these two indexes matrix are built (using a loop) the corresponding cost Cm(indexC) and
previous best fuel consumption J*

k(indexW) are added. The minimum of the lines of the resulting
matrix gives the best fuel consumption at instant k J*

(k,1:M) and the best trajectories index (Fig. 11).
Such a method allows working with small dense matrix which leads to a computer effort gain

in building matrix and matrix operations.
Note that an additional gain in computer effort can be performed building the indexes matrix

column by column and not line by line. Thus the loop to construct it is smaller (Smax iteration instead
of M), typically 20 operations instead of 1000. For simplicity reasons the algorithm is presented line
by line but the computer effort is indicated using the column by column method.

Fig. 10 index matrix method principle

end

indexindexindex

indexCindexJindexJ

end

iiiiindex

iiiiindex

iiifor

C

kkfor

WMk

CmWkMk

iiisW

isisisC

kk

)(

index) ingcorrespond the(determine

)]()(min[],[

column) theofpoint each for go cost to the(calculate

:),:1(

:),:1(

matrix)indexbuilding(

step) time(2

min):1,1(

*
min

*
):1,1(

)sup(_1)inf(_12)sup(_

)sup(_)inf(_2)sup(_

)max(lim_)min(lim_2

max

222

222

=

+=

=

=

→=
∞=

→=

+

+

Fig. 11 index matrix method algorithm

Three methods to solve the DDP problems in the case of HEV have been developed using Matlab
Software: a first intuitive one, an intuitive matrix method and a method using dense matrix. To provide

Battery SOC

SOC max

k k+1

i2

i1_sup(i2)

ilim_min(k+1)

ilim_max(k+1)

i1_inf(i2)

i1_sup(i2)

i2

SOC min
1

M

J*k+C

∞
Smax

1

i1_inf(i2)

is_inf(i2)

Smax

1

i1_sup(i2)

1

is_sup(i2)

M

Smax

10

effective comparison of the computer effort, the example of the well known Toyota PRIUS is
presented in the following of the paper.

5. Application on the Toyota PRIUS-II

The DDP have been applied to different types of hybrid architectures [6][16][17] including different
SP_HEV architectures [18]. In the scope of this paper, to provide data on computer effort during the
process of optimisation, the well known Toyota PRIUS is chosen as an example.

The Toyota PRIUS II on sale since 2004 has been tested in our labs. Then the car and component
characteristic have been inserted in our library of hybrid vehicle simulation [22][23] and presented a
good set of parameters in the scope of this paper.

In the following, the Toyota Hybrid system architecture used in the PRIUS and the manner to
calculate the cost is briefly remind. Thus the computer effort is detailed for each previous method and
for different graph sampling.

A. THS architecture

The considered topology is that presented in Fig. 12. It is composed of one engine (ICE) and two
electrical machines, one called EM1 and the other called EM2 fed by two electrical inverters (INV1
and INV 2) linked to a battery. A final axle and gear (FG) are linked to the wheels. A planetary gear
(PG) enables to split the ICE energy mechanically to the electrical machine EM1 and to the wheels.
The ICE is linked to the Planet carrier, the rotor of the electrical machine EM2 to the sun gear. The
shaft of the FG ix connected both to the ring of the PG and to the rotor of EM1.

Fig. 12 THS architecture

B. Edges costs calculation

In DDP formulation, the cost of the edges, i.e. the fuel rate is performed using a backward
approach Fig. 13, [18]. This is based on the knowledge of the driving cycle and the vehicle
characteristics (inertia and resistant forces). Then one can easily calculate the wheel torque Tr with the
vehicle speed (wheel speed, ωr) and acceleration, and go upstream from the wheels to battery and
engine.

The vehicle model is an energetic model based on the VEHLIB library [22],[23].

ICE
EM1

INV2

Battery

FG

EM2

INV1

PG

11

The electrical machines are modelled with efficiency maps and the engine with fuel consumption
maps. The battery model is a resistive model with parameters dependant on SOC and current.

Fig. 13: Backward approach of THS architecture

On each edge of the graph, Ibat, Tr and ωr are known. The equation of each component of the
system has then to be used to calculate the engine operating point and thus its fuel consumption.

From the wheel torque and speed constraints (Tr,ωr), one can easily deduce:

f
r

vehr T
dt

d
JT +=

ω
 (5)

Where Tr is the wheel torque, Tf is the load torque calculated from the resistant forces, Jveh is the
overall inertia of the vehicle brought back to the wheels and ωr is the wheel speed.

Fig. 14 Planetary gear connexions

Considering Fig. 13 and Fig. 14 the torque relation on the ring and EM1 shaft is:

trans
Tsign

r
emring

R

T
TT

rr)(1 ωη ⋅
=+ (6)

Where Tring is the torque on the planetary gear ring, Tem1 is the torque on the EM1 shaft, η is the
efficiency of the transmission (axle plus gear), Rtrans is the transmission ratio, Sign(Tr,ωr) is the sign of
the wheel power. Thus the wheel torque is divided or multiplied by the gear efficiency depending on
the direction of the wheel power. Note that the electrical machine and planetary ring revolution is the
same.

The Willis relation in the planetary gear imposes:

iceringem kk ωωω)1(2 −+= (7)

Battery

0

Strategy

VsChassis
model

0 2000 4000 6000 8000 10000 12000

-80

-60

-40

-20

0

20

40

60

80

Regime moteur electrique en Tr/mn

C
o
u
p
le

 s
u
r

l
a
rb

re
 e

n
 N

m

4
6

4
6

4
6

6
0

6
0

6
0

60
60

7
2

7
2

72

72 72

81

81

81
81

81 81

86

86
86

86

86
86

90

90

90 90

90

92

92

0 1000 2000 3000 4000 5000 6000

-20

0

20

40

60

80

100

120

140

Regime moteur thermique en Tr/mn

C
o
u
p
le

 s
u
r

l
a
rb

re
 e

n
 N

m

250

27
5

27
5

275

3
0

0

300

3
0

0

4
0

0

400
400

Axle
+ gear 0 2000 4000 6000 8000 10000 12000

-80

-60

-40

-20

0

20

40

60

80

Regime moteur electrique en Tr/mn

C
o
u
p
le

 s
u
r

l
a
rb

re
 e

n
 N

m

4
6

4
6

4
6

6
0

6
0

6
0

60
60

7
2

72

72

72 72

81

81

81
81

81 81

86

86
86

86

86
86

90

90

90 90

90

92

92

J(Tice,ωice)

Ibat Iem1

Iem2

Tr,ωr

Tem1,ωring

Tring,ωring

Tice,ωice

Tem2,ωem2

SOC

Planetary
gear

EM2

EM1

ICE

UbatEbat

Ibatt Rbat

ICE
EM1

EM2

PG

ring

planet carrier

sun

Tring Tring+ Tem1

12

Where ωem2, ωring and ωice are respectively the speeds of the electrical machine EM2 (sun gear), the
planetary ring (electrical machine EM1) and the engine (planet carrier). k is the planetary gear ratio
(k=-Nteeth_ring/Nteeth_sun).

The torque relations on the planetary gear give:

)1(2 kTT iceem −−= (8)

)(2 kTT planringem η−= (9)

Where Tice is the ICE torque and ηplan is the efficiency of the planetary gear.

O the electrical node between the electrical machines and the battery:

021 =−+ batemem III (10)

Where Iem1, Iem2 and Ibat are respectively the DC current in electrical inverters of the EM1 and EM2
electrical machines (considered as receptors) and in battery (considered as a generator).

And finally the relations on the electrical machines impose:

),()(111111 emememememembat TPtTIRIE ωω +=− (11)

),()(222212 emememememembat TPtTIRIE ωω +=− (12)

Where Ptem1 and Ptem2 are the losses in the electrical machines and inverters, E is the open circuit
voltage of the battey and R is the internal battery resistance which depends only on SOC. Note that
ωem1 is the speed of the common shaft to EM1 and planetary ring and is known using final gear
relation:

rtransringem R ωωω ==1
(13)

Considering (4) to (10), and Ibat fixed (on an edge) we obtain 7 equations and 8 unknown variables
(ωem2, ωice, Tem2, Tice, Tring, Tem1, Iem2, Iem1). That means one degree of freedom to be fixed. This degree
of freedom allows choosing, for example, the engine speed to minimize the fuel consumption for a
given edge (Ibat, Tr and ωr imposed), [18].

The process of cost calculation is totally independent on the solving of the graph. And is performed
once and for all edge of the graph before the DDP process. The computer effort for the calculation of
the edges costs and graph solving is then easy to determine separately.

C. Computer effort

This part presents the computer effort to solve DDP for the three previously presented methods. The
computer effort is indicated in second and is calculated using the Matlab instruction “cputime”. The
simulations are performed on cpu with the characteristic presented Table 1. The bogomips calculated
by Linux give a good indication of the potential million of instructions per second using this
processor. This can allow a comparison with other types of processors.

The computer effort is presented Table 3 and Table 4 for different driving cycles representing urban,
road and highway driving condition. The NEDC normalized European driving cycle is also presented.

13

It is noted that the memory used with the different methods remains small (less than 2Go) and well
under the capacity of the cpu.

Two different graph precisions are used. It represents the SOC difference in % between two
consecutive points in a column. The time sample is fixed to 1s to each cycle.

Table 3 and Table 4 shows that the third method is the most efficient to solve DDP applied to the
hybrid vehicle. In fact the time to solve the DDP can be divided by a factor two to six depending on
the cycle and the precision. A method using “full” matrix (method B), can improve the time
calculation compared to point to point method (method A) if the graph precision is not too high but
became definitely too expensive in computer effort as the size of the matrix (graph precision)
increases. It is also noted that an increase of the graph precision below 0.01% does not change
significantly the fuel consumption. Using such precision, the total time calculation of DDP (edge cost
calculation and DDP solving) does not exceed 10 s and can be reduced to 2 s in small cycle. It is then
possible to use DDP as a tool to determine fuel consumption in more a complex process [11].

Table 1 Cpu characteristic

Model name Intel Xeon X5650
Cpu MHz 2660
Cache size 12.3 KB
Memory 24 GB

bogomips 5320

Table 2 Graph information

SOC max 80 %
SOC min 20 %
Speed engine sample 50.π/30 rad/s
Torque engine sample 5 Nm

Table 3 Computer effort for different driving cycle with a graph precision of 0.05%

Table 4 Computer effort for different driving cycle with a graph precision of 0.01%

URBAN ROAD HIGHWAY NEDC
graph precision

time of cycle in s 560 843 1805 1181
million of edge 3.5 6.3 18 7.9

time of edge cost calculation in s 1 1.9 5.1 2.5
fuel consumption in l/100 km 3.772 4.124 5.309 3.720

A: point to point method 3.8 7.2 18.7 10.4
B: Matrix method 3.0 4.9 13.5 6.9

C: Index matrix method 0.6 1.2 4.6 1.9

drive cycle

-0.05

time to solve DP in s

14

6. Conclusion

Different methods to solve dynamic programming applied to hybrid vehicle have been studied; an
intuitive method using a “point to point” approach, a matrix based method easy to implement but
using full sparse matrix and a method based on dense matrix.

The last method takes advantage of one particularity of DDP applied to the hybrid vehicle: the spread
of possible edge from one point of a column to the next column is highly limited by the system
capacities. The number of edges from one point is thus small compared to the number of points in a
column.

The last method is then the most efficient in terms of computer effort. In fact it allows to use small
index matrix (compared to method 2), and avoid to call a minimum function in loops (column loops
inserted in time loops).

The tool developed to calculate the fuel consumption by means of DDP has been used and is currently
used in more complex studies. With a global time calculation less than 30s (usually less than 5s) it can
be used in comparative hybrid architecture studies and even in global optimal design architecture
process.

8. References

[1] I. Husain, Electric and hybrid vehicles: design fundamentals, CRC press, 2011.

[2] C. Chan, «The state of the art of electric and hybrid vehicles,» Proceedings of the IEEE, vol. 90, n° 12, pp.
247-275, 2002.

[3] J. M. Miller, Propulsion systems for hybrid vehicles, vol. 45, Iet, 2004.

[4] K. Chau et Y. Wong, «Overview of power management in hybrid electric vehicles,» Energy conversion and
management, vol. 43, n° 115, pp. 1953-1968, 2002.

[5] A. Sciarretta et L. Guzzella, «Control of hybrid electric vehicles,» Control systems, IEEE, vol. 27, n° 12,
pp. 60-70, 2007.

[6] M. Koot, J. Kessels, B. de Jager, W. Heemels, P. Van den Bosch et M. Steinbuch, «Energy management
strategies for vehicular electric power systems,» Vehicular Technology, IEEE Transactions on, vol. 54,
n° 13, pp. 771-782, 2005.

[7] E. Vinot, R. Trigui, B. Jeanneret, J. Scordia et F. Badin, «HEVs comparison and components sizing using
dynamic programming,» chez Vehicle Power and Propulsion Conference, 2007. VPPC 2007. IEEE, 2007.

[8] C. R. Akli, B. Sareni, X. Roboam et A. Jeunesse, «Integrated optimal design of a hybrid locomotive with

URBAN ROAD HIGHWAY NEDC
graph precision

time of cycle in s 560 843 1805 1181
million of edge 86 151 435 194

time of edge cost calculation in s 4.5 9.3 25 11.6
fuel consumption in l/100 km 3.768 4.118 5.299 3.714

A: point to point method 20.3 38.9 104.0 54.0
B: Matrix method 68.0 106.1 248.0 149.0

C: Index matrix method 7.9 19.8 62.6 23.6

-0.01

time to solve DP in s

drive cycle

15

multiobjective genetic algorithms,» International Journal of Applied Electromagnetics and Mechanics, vol.
30, n° 13, pp. 151-162, 2009.

[9] M.-J. Kim et H. Peng, «Power management and design optimization of fuel cell/battery hybrid vehicles,»
Journal of Power Sources, vol. 165, n° 12, pp. 819-832, 2007.

[10] C. Romaus, K. Gathmann et J. Bocker, «Optimal energy management for a hybrid energy storage system
for electric vehicles based on stochastic dynamic programming,» Vehicle Power and Propulsion
Conference (VPPC), 2010 IEEE, 2010.

[11] V. Reinbold, E. Vinot et L. Gerbaud, «Global optimization of a parallel hybrid vehicle using optimal energy
management,» International Journal of Applied Electromagnetics and Mechanics, vol. 43, n° 11, pp. 115-
126, 2013.

[12] C. Desai et S. S. Williamson, «Optimal design of a parallel Hybrid Electric Vehicle using multi-objective
genetic algorithms,» chez Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE, 2009.

[13] S. Delprat, J. Lauber, T.-M. Guerra et J. Rimaux, «Control of a parallel hybrid powertrain: optimal control,»
Vehicular Technology, IEEE Transactions on, vol. 53, n° 13, pp. 872-881, 2004.

[14] R. Bellman, Dynamic Programming, Princeton University Press, 1957.

[15] D. E. Kirk, Optimal control theory, Dover publications Inc, 2012.

[16] J. Scordia, M. Desbois-Renaudin, R. Trigui, B. Jeanneret, F. Badin et C. Plasse, «Global optimisation of
energy management laws in hybrid vehicles using dynamic programming,» International journal of vehicle
design, vol. 39, n° 14, pp. 349-367, 2005.

[17] L. V. Perez, G. R. Bossio, D. Moitre et G. O. Garcia, «Optimization of power management in an hybrid
electric vehicle using dynamic programming,» Mathematics and Computers in Simulation, vol. 73, n° 11,
pp. 244-254, 2006.

[18] E. Vinot, R. Trigui, Y. Cheng, C. Espanet, A. Bouscayrol et V. Reinbold, «Improvement of an EVT-based
HEV using dynamic programming,» IEEE Transactions on Vehicular Technology, vol. 63, n° 11, pp. 40-50,
2014.

[19] M. Kamiya, «Development of traction drive motors for the Toyota hybrid system,» IEEJ TRANSACTIONS
ON INDUSTRY APPLICATIONS D, vol. 126, n° 14, p. 473, 2006.

[20] E. Vinot, J. Scordia, R. Trigui, B. Jeanneret et F. Badin, «Model simulation, validation and case study of the
2004 THS of Toyota Prius,» International Journal of Vehicle Systems Modelling and Testing, vol. 3, n° 13,
pp. 139-167, 2008.

[21] F. Mensing, R. Trigui et E. Bideaux, «Vehicle trajectory optimization for application in ECO-driving,» chez
Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE, 2011.

[22] B. Jeanneret, R. Trigui, F. Badin et F. Harel, «New Hybrid concept simulation tools, evaluation on the
Toyota Prius car,» chez 16th International electric vehicle symposium, Beijing, China, 1999, China, 1999.

[23] R. Trigui, M. Desbois-Renaudin et B. Jeanneret, «Global Forward-Bacward Approach for a Systematic
Analysis and Implementation,» EET2004, march 18-20 th, Estoril, Protugal, 2004.

