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The spontaneous drainage of aqueous solutions of salt squeezed between an oil drop and a glass surface is studied experimentally.
The thickness profile of the film is measured in space and time by reflection interference microscopy. As the film thins down,
three regimes are identified: a capillary dominated regime, a mixed capillary and disjoining pressure regime, and a disjoining
pressure dominated regime. These regimes are modeled within the lubrication approximation, and the role of the disjoining
pressure is precisely investigated in the limit of thicknesses smaller than the range of electrostatic interactions. We derive simple
analytical laws describing the drainage dynamics, thus providing tools to uncouple the effect of the film geometry from the effects
of the disjoining or capillary pressures.

1 Introduction

The drainage of a liquid film between two bodies coming into
contact, at least one of them being deformable, is a long stand-
ing problem; it has been widely addressed in the past decades
(see Chan et al.1 for a review) and is relevant to many prac-
tical applications. For instance, the situation of a liquid drop
coming close to a solid surface is encountered in oil recov-
ery processes, whose efficiency in particular depends on the
dynamics of the liquid film in between. From a fundamental
point of view, it is well known that when a drop or a bubble
moves toward a solid surface in a surrounding liquid, it loses
its spherical shape. A situation commonly encountered cor-
responds to a sandwiched liquid film becoming thicker at its
center, forming a so-called dimple2–4 as a result of the spatial
variations of the hydrodynamic pressure. As the liquid film
further drains, different effects are at stake, namely viscous
dissipation and curvature-induced capillary forces as well as
charge-induced and intermolecular interactions for thin films.
The full description of drainage accounting for all these ef-
fects in a general case requires numerical computations.3,4

Most theoretical and experimental studies actually focused on
films of thicknesses limited to a given range, in order to ne-
glect either the capillary5,6 or the disjoining (including both
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charge induced and intermolecular interactions)3,7 pressure
effects. Even though some questions remain - in particular on
the boundary condition at the liquid/liquid interface -, the main
features of the mechanism of film thinning are now well estab-
lished;1 however, in the experimental data it remains difficult
to separate the effects of the different interactions at stake with
purely geometrical parameters, owing to both their strong cou-
pling and lack of analytical descriptions.
Herein we focus on the drainage of an aqueous film formed
between an oil drop and a glass surface, with no added sur-
factant. The solid surface and drop are both immersed in an
aqueous electrolyte, and the drop is initially translated toward
the glass surface and further stopped; we study the relaxation
of the formed dimple toward equilibrium, i.e. toward a flat-
tened film of uniform thickness. Although it has been much
less studied than the case of liquid films between a bubble and
a solid surface,8,9 the drainage of a film between a solid and
a liquid drop has been the object of past studies.2,5,10–14 Two
systems were considered: first, a mercury drop coming closer
to a mica surface in water.5,13,14 Controlled electrostatic sur-
face potential of the drop allowed for a detailed study of the
charge induced interactions between the drop and the solid
surface. The second system studied was an oil drop expanded
in an aqueous electrolyte toward a silica surface, within condi-
tions in which the two surfaces were charged.2,10–12 In partic-
ular, the film drainage while relaxing toward equilibrium was
characterized without added surfactant and for variable ionic
strengths of the electrolyte.2,12 In the latter case, different
regimes were observed for which the dominant effects were
identified and qualitatively discussed. However, no quantita-
tive analysis of the data with respect to the equations describ-
ing the drainage dynamics was provided.
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We shed new light on the dynamics of a similar system by
different means: First, the drop and solid surfaces are both
strongly charged, such that the capillary and disjoining pres-
sure effects are both expected to play a role during drainage,
separately but also concomitantly. Second, based on simple
mathematical laws to describe the measured deformed shape
of the drop, we have developed a theoretical analysis allow-
ing for the derivation of simple analytical laws to describe the
film thinning at the different stages of drainage. As a result,
the actions of the different effects at stake can be decoupled.
In particular, the effect of the geometry of the dimple, which
is set by the experimental initial conditions, can be separated
from the effects of the capillary and disjoining pressures.

More precisely, we recast our problem within the theoreti-
cal background of liquid film thinning: the drainage of a water
film formed between a solid and a liquid/liquid interface can
be modeled within the framework of the augmented Young-
Laplace equation (Eq. 1): within the lubrication approxima-
tion, this equation balances out the capillary pressure due to
the curvature C of the liquid/liquid interface of surface ten-
sion γ , the disjoining pressure Π and the viscous shear stress
within the water film of viscosity η and velocity field vr(z)
mostly oriented in the radial direction and varying with z.

∂

∂ r
(γC −Π) = η

∂ 2vr

∂ z2 (1)

Depending on the relative strength of the capillary term
and the disjoining pressure term of the pressure gradient,
Eq. 1 delineates three regimes: a capillary regime (i), a
disjoining pressure dominated regime (iii), and a mixed
capillary/disjoining pressure regime (ii). We show that
the capillary regime is observed in the early stages of the
drainage while the disjoining pressure regime arises when
film thicknesses have decreased enough to lay within the
range of the long range interactions. Eventually, if long-range
interactions are repulsive and if no dewetting occurs, the
film stabilizes at a uniform thickness for which the Laplace
pressure in the drop balances the disjoining pressure in the
film. A mixed regime (ii) is obtained at mid course, for which
the thinnest part of the film, located at the edge, is dominated
by the disjoining pressure, while the center of the film is thick
enough to be described by the capillary and viscous stresses.

In cylindrical geometry, Eq. 1 can be written as a function
of the film thickness and its derivatives. The full derivation
is detailed in the Appendix. The thickness profile of the film
h(r, t) therefore obeys the following equation:

∂P
∂ r

=
∂

∂ r

(
−γ

(
∂ 2h
∂ r2 +

1
r

∂h
∂ r

)
−Π(h)

)
=
−12qη

(3β −2)
1
h3 (2)

where 2πrq(r, t) is the local outward flow and is related to

the time derivative of h by the mass conservation equation:

∂ rq
∂ r

=−r
∂h
∂ t

(3)

The parameter β sets the boundary condition at the liq-
uid/liquid interface: for a no-slip condition, β = 1, and for
a zero tangential stress condition, β = 2.

By performing a simple analysis of the augmented Young-
Laplace equation together with mass conservation, we show
in this paper that our experimental results on the spontaneous
drainage of squeezed water films between oil and solid can
be described through simple analytical laws of the time
dependence of the thickness profile which can be separated
into three dynamic regimes. We propose a simple method to
measure the oil/water interface boundary condition and the
disjoining pressure as a function of the thickness.

2 Experimental Section

In this paper, we focus on the spontaneous drainage of a
water or brine film squeezed between an oil drop and a glass
substrate. We chose to approach the oil drop of controlled size
immersed in a water or brine bath towards a glass substrate at
a constant velocity. At a given distance to the substrate, the
drop is stopped and we measure the subsequent characteristics
of the spontaneous drainage of the water or brine squeezed
film.
The experimental setup is schematically depicted in Fig. 1
and is similar to setups existing in the literature.1,2,9,10,15,16

The water bath is filled with a solution of NaCl (Normapur
- purity> 99.5%) in deionized water (resistivity 2.1 MΩ.cm
at 23.1oC - pH=5). An oil drop of dodecane (Sigma Aldrich
- purity > 99%) is formed within the reservoir at the end of
a capillary tube made of inert polymer, of inner diameter
65µm and outer diameter 1.59 mm. Fig. 1a) shows a side
view of the drop. Once the drop filled, a waiting time of
300 seconds was chosen in order to reach an equilibrium at
the oil water interface. Indeed, this time corresponds to the
characteristic time of decay of the dodecane/water surface
tension measured by the pendant drop method (by around
8%). The dodecane/water interfacial tension stabilizes at
γ = 42.5 ± 0.5 mN/m for the next 10 minutes, which is far
larger than the experimental time. This value of the interfacial
tension does not depend on the NaCl concentration.
As glass substrate, we used plano-convex borosilicate lenses
with radius of curvature of 233.4 mm. This borosilicate glass
has an iso-electric point around 3.6.17 As a consequence, in
deionized water at pH 5, the glass/water interface presents a
negative charge: the silanol groups SiOH are partially ionized
into SiO− at the interface. The glass lens is mounted on a
microscope objective (10x, NA=0.3).
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Fig. 1 Experimental setup. (a) Side view of a dodecane drop immersed in water/NaCl solution squeezed against a glass substrate with radius
of curvature R. (b) Top view of the squeezed film by reflection interference microscopy: monochromatic illumination through a x10 objective
and a x4 magnification glass collected by reflection and forms equal thickness fringes between the oil/water and the water/glass interfaces. (c)
The oil drop is formed at the end of an inert polymer tube and placed in the optical axis of the objective, the drop is raised at constant velocity
v, then stopped at time t = 0. (d) Profile of the interference intensity along a diameter of the squeezed film and absolute thickness profile of the
water film. The geometry of the water film is characterized by its thickness at the center h0, its thinnest thickness hmin and its radius rd .

To control the relative position of the drop and the glass
substrate, the tube is attached to the water tank, which is set
to a vertical motorized stage (Fig. 1c). Once at equilibrium
with water, the oil drop is driven toward the solid surface at
a constant velocity ranging between 0.1 and 20 mm/s, and
then stopped. The approach step results into the creation of a
squeezed water film with a structure called dimple:3 the film
is thinner at the edge. The dimple is characterized by three
lengths: the thickness at the center h0, the thickness at the
barrier ring hmin, and the radial distance between those two
thicknesses, the dimple radius rd (Fig. 1e). The dimple profile
is measured over time by an interferometry technique: The
drop is placed in the optical axis of the microscope objective
and observation is made through the glass substrate, using a
magnifying lens (4x). Episcopic monochromatic illumination
(λ = 615nm) is provided by a LED and optical filters. Images
are collected with a fast camera at a speed ranging between
50 and 1000 frames per second for 10 to 40 s. The squeezed
film thickness being in the micrometer range, fringes of
equal thickness form due to interferences between reflected
light at the oil/water and water/glass interfaces, as shown in
the image of Fig. 1b). A typical intensity profile along the
dimple diameter is presented in Fig. 1d). Two successive
intensity minima correspond to a relative thickness variation
of ±λ/2n where n is the water or brine refractive index.
An absolute reference is obtained from the homogeneous
equilibrium thickness heq at the end of the film drainage by

alternatively using three different wavelengths (λ = 615 nm,
530 nm, 445 nm) in the microscope illuminator. In some
cases, the oil wets the glass substrate thus providing a zero
thickness reference. To monitor the pressure into the oil drop
Pdrop, a side view is captured by a CCD camera as shown in
Fig. 1a) from which the radius of curvature R of the drop is
measured. The pressure is computed using the Laplace equa-
tion Pdrop = Pext + 2γR−1 where γ is the oil/brine interfacial
tension and Pext is the reservoir pressure. We performed series
of experiments consisting in approaching drops with radii of
curvature ranging between 0.66 and 1.43 mm to change the
Laplace pressure in the drop.

At the beginning of the spontaneous drainage of the dimple,
defined as initial time t = 0, the characteristic lengths of the
dimple depend on the drop approach velocity and on the final
distance between the capillary tube and the glass substrate.
The faster the approach step, the thicker the dimple, the
larger h0. The shorter the distance between the capillary
tube end and the glass, the wider the dimple, the larger rd .
We performed series of experiments with varied approach
velocity and tube/glass distance. We obtained dimple radii rd
ranging between 60 to 130µm, and initial dimple thicknesses
h0 ranging between 1.4 and 2.4 µm.

Finally, the electrostatic interactions were controlled by us-
ing NaCl aqueous solutions with concentrations ranging be-
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tween 10−6 and 10−1mol.L−1. Away from a charged surface
in aqueous solution, the range of the electrostatic interactions
is set by the Debye length λD given by:

λD =

√
εrε0kBT
∑n jq2

j
(4)

with εr the relative permittivity, ε0 the permittivity of vac-
uum, kB the Boltzmann constant, T the temperature, n j the
density of ionic species j of charge valence q j. To estimate λD
the species accounted for were Na+, Cl−, H3O+, OH− and
HCO−3 .

3 Film thinning

The drainage dynamics is studied through the time evolution
of the film thickness at the center h0 and at the edge hmin, also
called the barrier ring. A typical example is shown in Fig. 2a).
Similar measurements were reported in the literature.1,2,10,12

At the barrier ring, the thickness is lesser and its thinning rate
is larger that at the center. As a consequence the thickness
at the barrier ring is first to reach its equilibrium thickness.
Eventually, the film comes to an equilibrium state with a uni-
form thickness denoted heq. In Fig. 2b), a log-log plot of the
time variation of the two thicknesses in the early stage of the
drainage evidences a power law dependence of both h0 and
hmin with time. We denote t1 and h1 the time and thickness
at the barrier ring when the measured thickness departs from
this first power law regime. At later times, the thickness dif-
ference h0− hmin decays exponentially over time: in Fig. 2c)
where ln

(
h0−hmin

hmin

)
was plotted versus time, we observe two

exponentially decaying laws with two successive characteris-
tic times. We denote t2 and h2 the time and thickness at the
center for which the crossover between these last two regimes
is measured. Altogether, the drainage dynamics can be sepa-
rated into three different regimes, the crossovers being deter-
mined when, first, the barrier ring (hmin) reaches a crossover
value h1 and second, the center of the dimple (h0) reaches the
crossover value h2. The values of the cross-over thicknesses
are plotted against the Debye length in Fig. 3 for a series of
experiments with drops of similar radius of curvature.

3.1 Equilibrium thickness and disjoining pressure

The equilibrium thickness heq results from an equilibrium be-
tween long range repulsive electrostatic interactions and the
overpressure of the drop. As a consequence, this thickness
depends strongly on the Debye length (Fig. 3): the higher
the concentration, the thinner the equilibrium thickness.2 The
equilibrium thickness may be large compared to the Debye
length. This is due to the very low overpressure applied on the
film, around 100 Pa.
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Fig. 2 (a,b) Time evolution of h0 (red/light curve) and hmin
(black/dark curve) for a NaCl solution of 10−6M (λD = 166 nm).
(a) Linear plot over the whole drainage. (b) Log-log plot of the first
drainage regime. Time t1 and thickness h1 both mark the end of
regime (i) on the hmin(t) curve. (c) Time variation of
ln[(h0−hmin)/hmin] over the whole drainage. Dashed lines delineate
regimes (ii) and (iii). Time t2 and corresponding thickness h2 of h0
define the crossover between regime (ii) and (iii). Initial thickness at
the dimple center is h0(0) = 1.6µm, drop radius of curvature
R = 0.8 mm.
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.

The long range electrostatic interactions are described
through the disjoining pressure Π in the brine film defined as
the derivative of the interaction potential with respect to film
thickness h.

Let us compare the pressure in the film and in the drop: in
the drop, the overpressure compared to the reservoir writes:
Pdrop −Pext = 2γR−1. In the brine film of curvature C , the
overpressure across the oil/brine interface writes γC and fi-
nally, the pressure in the film writes:

P = Pext +2γR−1 + γC −Π (5)

At equilibrium, when the film reaches a uniform thickness
heq, the film curvature C is uniformly zero and the film pres-
sure equilibrates with the external pressure Pext . Altogether,
the disjoining pressure balances the Laplace pressure in the
drop: Π(h = heq) = 2γR−1. Therefore, from the measure-
ments of the equilibrium thickness and the drop radius of
curvature, we can measure the variations of the disjoining
pressure Π with thickness h as done in other studies.5,18 The
results are reported in Fig. 4 for different salt concentrations
of the brine. Measurements of Π(h) found in the literature
are abundant for films squeezed between bubbles or drops in
emulsions,19,20 they are however scarce in liquid/liquid/solid
systems as reported here. Next we compare our measurements

of disjoining pressure with charge induced interactions.
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Fig. 4 Disjoining pressure Π as a function of brine film thickness h
for NaCl solutions with concentration 10−6M, 10−5M, 10−4M from
lighter to darker blue, measured on homogeneous films at
equilibrium obtained with drops of radius of curvature R varying
between 0.6 and 1.4 mm. Markers - experimental data. Lines - fit to
Eq. 6 for an oil/water surface potential ψow of -66mV, and
glass/brine interfacial potential ψ as a fitting parameter.

It has been known for long that oil drops in water can bear
charges according to the pH value.21,22 In a recent study, it
was demonstrated that these charges result from the presence
at the oil/water interface of fatty acids, that are part of the
impurities found in commercial oils.23 For large enough pH
values, the carboxyl groups of the fatty acids ionize and the
oil drops present a surface potential that can reach tens of mil-
livolts. In agreement with those findings, charges on the drop
surface are needed in order to account for the disjoining pres-
sures we measure. Actually, considering only the charge of the
glass surface yields surface potentials close to 1V, which is far
larger than the one expected for glass.24 There is no exact ana-
lytical solutions of the non linear Poisson Boltzmann equation
for two asymmetrically charged surfaces, but an approximate
relation is found in the literature in those conditions.25,26 In
that frame, the variations of the disjoining pressure with aque-
ous film thickness is written as:

Π(h) =
(

64n0kBT tanh
(

eψow

4kBT

)
tanh

(
eψ

4kBT

))
e(−h/λD)

(6)
with kB the Boltzmann constant, T the temperature, λD

the Debye length, n0 the number of ions per volume, e the
elementary charge, ψ the glass/brine interfacial potential and
ψow the oil/water surface potential. To describe the experi-
mental data of Π(h) in Fig. 4, the oil/water interface potential
was estimated from Roger’s paper:23 ψow ∼ −66mV at
[NaCl] = 10−5 mol.L−1. This value is supported by Marinova
et al.21 The experimental data was fitted to Eq. 6 with the
electrostatic potential of glass ψ as a fitting parameter. The
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values we found are in agreement with data from the litera-
ture;24 for instance, a potential ψ ∼−21mV was obtained for
a 10−5M NaCl solution shown in Fig. 4.
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Fig. 5 (a) Thickness profile of a water film h(r) of an aqueous
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the center r. Dash-dotted line: fit to a second order polynomial at
the center. Dashed line: fit to a third order polynomial at the barrier
ring. (b) Radial variations of the viscous contribution to the film
pressure ηIp (to a numerical factor) as defined by Eqs. 9 and 10:
most of the viscous stress gradient is located at the barrier ring.

3.2 Pressure in the film

During the course of drainage, we show next how the space
and time variations of the experimental profiles of the dimple
thickness (Fig. 5a) can be used to measure the overpressure in
the film. On one hand, the pressure at the center of the dimple
P(0) can be written using Eq. 5, noting that the oil/brine inter-
face curvature C (0) =−2( ∂ 2h

∂ r2 )r=0 can be measured from the
radial profiles.

P(0) = Pext +
2γ

R
+ γC (0)−Π(h0) (7)

On the other hand, the pressure gradient in the film is
given by the Stokes equation in the lubrication approxima-
tion (Eq. 2) as a function of the flow rate q. First, q can be
computed from the experimental profiles using the mass con-
servation equation (Eq. 3) and second, the pressure P(r) can
be derived by integration of Eq. 2 between the dimple center
and current position r, yielding:

P(r) = P(0)+
η

(3β −2)
Ip(r) (8)

P(r) = Pext +
2γ

R
+ γC (0)−Π(h0)+

η

(3β −2)
Ip(r) (9)

where the integral Ip writes

Ip(r) = 12
∫ r

0

dr′

r′h(r′)3

∫ r′

0
r′′

∂h(r′′)
∂ t

dr′′ (10)

In Eq. 9, the viscous stress writes η

(3β−2) Ip and Ip can be
determined experimentally from geometrical measurements
only, using the time and space variations of h(r, t). A typical
example is reported in Fig. 5b) where ηIp is plotted as a func-
tion of the radial distance to the film center. We observe that
most of the pressure drop - and thus the viscous dissipation -
is located at the dimple edge, at the barrier ring.

Finally, the film curvature C is measured by fitting the
experimental profile h(r) at the center to a second order
polynomial. At the barrier ring, a third order polynomial is
used to fit the profile (Fig. 5 a).

4 Three drainage regimes

In the following, we describe the three regimes identified
during the drainage dynamics of the dimple. Our hypothesis
is that, in the early times of the drainage for which the
thickness of the film is larger that the crossover thickness
h1, the disjoining pressure can be neglected compared to the
capillary pressure. In the typical example of Fig. 2, using
our measurements of the disjoining pressure versus thickness
at equilibrium, we can check experimentally that, indeed,
Π(h1) calculated through the model Eq. 6 is of the order of
15 Pa, therefore smaller than the capillary pressure gradient
∆(γC ) measured over the same distance to be of 60 Pa.
This defines the capillary regime in which the viscous stress
is balanced by the capillary pressure gradient only. When
the thickness at the barrier ring becomes smaller than h1,
the drainage enters a mixed regime where the film pressure
in the center of the dimple is dominated by the interfacial
tension term, while at the barrier ring, it is controlled by
the competition between disjoining pressure and capillary
pressure. Finally, in the last regime, both the film curvature
and the film thickness have decreased enough so that the film
pressure is controlled by the disjoining pressure only, which is
balanced out by the viscous stress. This defines the disjoining
pressure regime. The crossover between the last two regimes
was observed experimentally at a thickness h2 of the dimple
center (Fig. 2a,c) while the thickness at the barrier ring has
already reached its minimum value: hmin ∼ heq: using again
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the disjoining pressure versus thickness curve (Fig. 4), we
compute the corresponding difference of disjoining pressure:
Π(heq)−Π(h2) ∼ 25 Pa while the capillary pressure differ-
ence is of 15 Pa. We hence verify that the crossover between
regimes (ii) and (iii) is obtained when the capillary term in
the pressure gradient vanishes compared to the disjoining
pressure term.

4.1 Capillary regime
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Fig. 6 (insert) - Time variation of the boundary condition parameter
β (t) over the capillary regime (i) of a drainage experiment with
[NaCl]=10−5M and drop radius R=0.78 mm: no time dependence of
β observed. (main) Boundary condition parameter β as a function
of the current minimum thickness hmin at the barrier ring normalised
by the Debye length λD, for NaCl concentrations varying between
10−6M and 10−1M. Data are collected at mid-course of regime (i)
(time t = t1/2).

In this regime, the disjoining pressure can be neglected
compared to the capillary pressure and Π(h0) ∼ 0. Eq. 9 can
then be evaluated for r = ∞, at which P = Pext , yielding:

0 =
2γ

R
+ γC (0)+

η

(3β −2)
Ip(∞) (11)

Rearranging the latter equation, an expression for the
boundary condition parameter β can be obtained:

β =
1
3

(
2−

η Ip(∞)

2γ/R+ γC (0)

)
(12)

The parameter β was deduced from the measurements of
the space and time dependent profiles h(r, t), the viscosity
η , and the interfacial tension γ using Eq. 12. As shown
in the insert of Fig. 6, the boundary condition parameter β

was found to be constant over time in the capillary regime.
Figure 6 shows the β values for all experiments: interestingly,
its average value is β = 0.9± 0.1, that is, a value smaller
than 1. The case β = 1 would correspond to a no-slip or tan-
gentially immobile boundary condition, while a liquid/liquid

interface with no shear stress at the interface is described
by β = 2. Therefore, not only the expected liquid/liquid
interface (β = 2) boundary condition is not obtained, but the
solid/liquid boundary condition does not apply neither. In
the literature, the tangentially immobile boundary condition
(β = 1) was found to apply to different fluid interfaces such
as gas bubble/water1,27 or mercury/water.5,28 No reports
of β values smaller than 1 can be found, to the best of our
knowledge. However, values of β were not directly measured
before, instead, theoretical numerical solutions computed
for β = 1 or β = 2 were compared to the experimental
data,15,29 and no values smaller than 1 were ever considered.
In the following, we offer a possible explanation to account
for our result. A boundary condition parameter β smaller
than 1 corresponds to a velocity at the oil/water interface
directed inward, towards the center of the dimple. Both our
measurements of the oil/water interfacial tension (Section 2)
and the oil/water surface potential (Section 3.1) show the
adsorption of traces of contaminants at this interface. When
surface-active molecules (either added surfactants or contam-
inants) are present, even in small quantities, they accumulate
at the interface and Marangoni stresses may develop, render-
ing the interface tangentially immobile, as observed in the
literature, where a variation of interfacial tension as small as
0.1 mN.m−1 along an interface is sufficient to explain the
tangentially immobile boundary condition.27,29 In our case,
an estimate of the interfacial tension variations resulting in
a no-slip boundary condition is provided by balancing the
Marangoni stress ∂γ/∂ r ∼ ∆γ/δ r with the viscous tangential
stress at the interface, where δ r is the radial width over
which the dissipation occurs. It can be estimated from the
Fig. 5b (δ r ∼ 20µm). It yields: ∆γ/δ r ∼ 3

2
∂h0
∂ t

ηδ r
h2

min
and

to an amplitude of the difference of interfacial tension of
∆γ ∼ 0.3 mN.m−1. This value is ten times smaller than the
decrease over time of the oil/water interfacial tension mea-
sured by the tensiometer, validating the onset of Marangoni
stresses at the oil/water interface. Now, recalling that as the
droplet is driven towards the glass surface, the water flow
may drive the surface-active molecules outward, the drop
apex may be initially depleted in surfactants, creating an
interfacial tension gradient before the drainage step itself
starts. For such a Marangoni stress to hold, the timescale
for the surface-active molecules to equilibrate with the bulk
oil must be large compared to the total duration of the drop
approach and of the capillary regime. The latter is of the order
of 2 seconds, while the former is taken from the tensiometry
experiments where the oil/water surface tension decrease
is monitored over time and found to be of 300 seconds.
Therefore, the surface tension gradient created during the
approach phase probably doesn’t have time to relax. During
the drainage, once the drop is stopped, this pre-existing
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interfacial stress generates a counter-flow at the liquid/liquid
interface, directed from the outside to the center of the dim-
ple, consistent with a boundary condition value smaller than 1.

When the interfaces are charged, as considered herein,
charge-induced interfacial effects, namely electro-osmotic
effects,30 could also be expected to contribute to the boundary
condition. The resulting value of β would in that case depend
on the ionic strength of the electrolyte and more precisely
on the ratio of the thickness at the barrier ring to the Debye
length, hmin/λD. We report in Fig. 6 the variations of the
parameter β at midcourse of regime (i) (time t = t1/2) for salt
concentrations ranging from 10−6 to 10−1M and as a function
of hmin/λD. No significant variations of the parameter β is
observed although hmin/λD spans more than two decades.
Therefore, we conclude that the boundary condition we
measure at the oil/water interface does not result from an
electro-osmotic effect, but from Marangoni stresses induced
by the presence of surface-active contaminants and built-up
during the drop approach step.

Special care to keep the surfaces clean and use of purified
dodecane would modify the boundary condition. Using a
2D ideal gas equation to relate the difference in interfacial
tension estimated above, ∆γ ∼0.3 mN.m−1, to the surface
concentration of contaminants Γ: 4γ = kT Γ, the estimated
fraction of contaminant molecules in oil should then be
smaller than approximately 10−5% to avoid this Marangoni
effect, which would require the use of extremely pure oil
together with very clean surfaces and water. These conditions
cannot be fulfilled easily, as far as we know.

In Fig. 7a,b), we report the time variations of h0 and hmin
in the capillary regime (i). Models from the literature,3,7,25 as
our own analysis developed in the Appendix, predict a power
law dependence with time of both the center thickness h0 and
the barrier ring thickness hmin. Our own analysis provides the
following power laws, in the case of β = 1:

h0(t)'
3
4

(
ηr6

d
γR

)1/4

t−1/4 (13)

hmin(t)'
3
4

√
ηRr2

d
γ

t−1/2 (14)

Either from the literature or from our own derivation, the
predicted exponent is µ = 1/4 for the center thickness and
ν = 1/2 for the barrier ring thickness. In Fig. 7a,b), our ex-
perimental data have been fitted to the following power laws:
h0(t) =A0t−µ and hmin(t) =Amint−ν . We find µ = 0.26±0.03
and ν = 0.55± 0.04 in good agreement with the predictions

for the exponents. More controversial are the numerical pref-
actors for the power laws: different expressions were found
in the past, depending on the approximation methods used.
Here, based on our independent measure of the parameter β

we choose to set β to 1. In Fig. 7c) and d), we plot the mea-
sured prefactors A0 and Amin as a function of their theoretical

expression
(

ηr6
d

γR

)1/4

and

√
ηRr2

d
γ

, where the dimple radius rd

and the drop radius R were measured experimentally. The data
were fitted to a line and we experimentally find:

A0 = (0.52±0.02)

(
ηr6

d
γR

)1/4

(15)

Amin = (1.06±0.07)

√
ηRr2

d
γ

(16)

The numerical prefactors we predict are 0.75 for both h0
and hmin, while those predicted by Hartland et al.7 are 0.17
and 0.74, respectively, and those predicted by Frankel and
Mysels3 are 0.44 and 0.49 respectively: they all lay within the
same range of magnitude. Our experimental determination of
the drainage dynamics in the capillary regime (i) is therefore
in good agreement with both our model and models from the
literature. This confirms the relevance of our approach - as
described in Appendix.

As the film is thinning, the thickness at the barrier ring
comes into the range of electrostatic interactions. As men-
tioned earlier, as the disjoining pressure gradient becomes of
the same order of magnitude as the capillary pressure gradi-
ent, both terms are to be considered in the augmented Young
Laplace equation (Eq. 1). In the following, we discuss the
drainage dynamics within this mixed regime.

4.2 Mixed regime

The drainage dynamics in the mixed regime (ii) was described
within the following approximations, as detailed in the Ap-
pendix: the thickness at the barrier ring is close to its equilib-
rium value heq, and thus set by a balance between the disjoin-
ing pressure and the overpressure in the drop. At the dimple
center, the thickness is large enough for the disjoining pressure
to be vanishing and the oil/brine interface curvature C is small
compared to the overpressure 2γR−1 in the drop. Altogether,
the pressure gradient over the dimple radius, that drives the
flow outwards, can be derived from Eq. 9:

P(0)−P(∞) = P(0)−Pext ∼
2γ

R
(17)

The viscous stress is more difficult to estimate. However,
simple geometrical arguments on the shape of the barrier ring
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Fig. 7 Capillary regime of drainage: dynamics of h0 (a) and hmin (b) for a series of NaCl concentrations (Black: deionized water, and from
darker to lighter [NaCl] = 10−6, 10−5, 10−4, 10−3, 10−2, 10−1M) and varied dimple radii rd and drop radius R. Data for t < t1 only is plotted
here for clarity (a) Dashed line - power law with exponent -1/4. Fit of the data to power law A0t−µ gives µ = 0.26±0.03 (b) Dashed line -
power law with exponent -1/2. Fit of the data to power law Amint−ν gives ν = 0.55±0.04 (c) Experimental prefactor A0 versus prediction(

ηr6
d

γR

)1/4
from Eq. 13. (d) Experimental prefactor Amin versus prediction

√
ηRr2

d
γ

from Eq. 14. (c,d) Dashed line: fit to a line.
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Fig. 8 Mixed and disjoining pressure regimes of the drainage:
characteristic times of drainage for deionised water and NaCl
solutions of concentration 10−6,10−5,10−4 M in (a) Mixed regime
(τmix) as a function of theoretical prediction (Eq. 19) and (b)
Disjoining pressure regime (τdis) as a function of theoretical
prediction (Eq. 20). Dotted lines: fit to a line with numerical
prefactor α as adjustable parameter: we find (a) αmix = 2.2±0.1,
(b) αdis j = 3±1.

allow to derive simple scaling laws presented in the Appendix,
thus providing a relation between the thickness at the center h0
and its time derivative:

2γ

R
=

9ηr2
d

2h2
eq

ḣ0

h0
(18)

Within this approximation, the thickness at the center re-
laxes exponentially over time with a characteristic time equal
to:

τmix =
9
4

ηr2
dR

γh2
eq

(19)

The exponential decay is indeed observed experimentally
as shown in Fig. 2c). The characteristic time of this decay was
measured for a series of experiments with varied salt concen-
tration and drop radii of curvature R. In Fig. 8a) the results are
reported as a log-log plot as a function of the theoretical factor

(
ηr2

dR
γh2

eq

)
without numerical prefactor. The data can be fit to

a line with slope 1 to a very good approximation. Moreover
the numerical prefactor we deduced is 2.2±0.1, and is also in
good agreement with the theoretical one of 9/4. The quantita-
tive agreement between our model and our experiments con-
firms that we have a quantitative understanding of this mixed
regime. The exponential dependence of the drainage and the
qualitative impact of the electrolyte concentration on its char-
acteristic time were evidenced in the past.12 However, the time
scales observed by Goodall et al. are about a hundred times
larger than ours. This huge difference must be due to a differ-
ence in the geometrical lengths rd and R. Indeed, our model
evidences the critical role played by those lengths in the ex-
ponential decay (see Eq. 19). Because the values of rd and
R are not clear in the cited paper, we cannot compare their
time scales with the previsions of our theoretical model. Be-
sides, Goodall et al. conclude from their experiments that the
drainage rate is higher with the decrease of the ionic strength.
However, our model predicts the inverse trend: as heq is de-
creasing with the salt concentration, the higher the concentra-
tion of the salt, the longer the drainage as observed experi-
mentally in the present study. This trend is also supported by
Hewitt et al.25 Altogether, our theoretical model along with
our experimental results evidence the critical role of the dim-
ple geometry and clarify the impact of salt on the drainage
rate.

4.3 Disjoining pressure regime

As the thickness at the dimple center thins even more, the
drainage enters the third regime in which the full film lays
within the range of disjoining pressure effects. In that case, as
detailed in the Appendix, and verified experimentally from the
measurement of the crossover thickness h2, the pressure gra-
dient between the center and the edge of the dimple is dom-
inated by the disjoining pressure gradient. We find that the
thickness at the dimple center h0 relaxes exponentially again,
with a characteristic time τdis given by:

τdis = 2,08
ηr2

d
h3

eq

(
− ∂Π

∂h

∣∣∣∣
heq

)−1

(20)

Our data in the third regime were successfully fit to an ex-
ponentially decaying function of time and the characteristic
time is plotted in Fig. 8b) as a function of the theoretical fac-

tor ηr2
d

h3
eq

(
− ∂Π

∂h |heq

)−1
where the disjoining pressure dependent

quantity was computed from the fit in Fig. 4. The data are
quite noisy, and this is likely due to the irreproducibility of
the disjoining pressure while renewing the solid and liquid in-
terfaces. Indeed, the potential ψ of the glass interface was
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found to vary experimentally and could not be determined for
all drainage experiments. However the order of magnitude is
extremely good. The linear fit to the data provides a numeri-
cal factor of 3± 1 while the theorical prediction is 2.08. The
agreement between our model and our observations confirms
here the relevance of our analysis of this disjoining pressure
regime.

5 Conclusion

In this paper, we present the drainage of a water thin film be-
tween an oil drop and a borosilicate glass focusing on the time
evolution of the thicknesses at the center h0 and at the barrier
ring hmin, both experimentally and theoretically. We exper-
imentally highlight three different regimes of drainage. We
model the first two regimes by considering that the viscous
dissipation is located at the barrier ring. The first regime is
driven by the oil/brine interfacial tension and exhibits a power
law dependence of both thicknesses with time. The second
one presents a barrier ring thickness controlled by the disjoin-
ing pressure. The modeling of the third one is based on a
pressure gradient across the film described by the disjoining
pressure only. The second and third regimes exhibit drainage
dynamics with thicknesses exponentially decaying over time
with a characteristic time we predict.
The regime changes correspond to thicknesses hmin or h0, de-
pending on the considered regimes, becoming small enough
for disjoining pressure effects to become non negligible com-
pared to the capillary pressure at the barrier ring or at the cen-
ter respectively.
This approach allows for the derivation of simple laws for
thickness variations in the three regimes. The scaling laws
obtained in the first regime are in agreement with previous
works. The variation laws in the two subsequent regimes, in
which disjoining pressure effects are at stake, have not been
established before. Our experimental data is very good agree-
ment with our models. Since the simple laws we provide
do not assume any specific form for the disjoining pressure,
they constitute a new and general framework to analyse the
drainage dynamics of a liquid film squeezed between a solid
surface and either a drop or a bubble. In particular, they allow
for the decoupling of capillary and disjoining pressure effects
from geometrical effects and should help to improve the gen-
eral understanding of the phenomena at stake.

6 Appendix

With typical thickness h ∼ 1µm and diameter 2rd ∼ 100µm,
the aspect ratio of the film h/rd is of order 102 and the lu-
brication approximation holds. The lubrication assumes that
the radial velocity has a parabolic profile. And the velocity

Fig. 9 Geometrical parameters characterizing the radial film
thickness profiles h(r): h0: thickness at the center; hmin: minimum
thickness at the barrier ring, which corresponds to a radial distance
rd ; the dimple center area is fit to a second order polynomial (hd ,
Eq. 27, dotted line); and the barrier ring to a third order polynomial
(hb, Eq. 26, dashed line) with radius of curvature ρ (dash-dotted
line). The two polynomials connect at r = rc.

vanishes at the solid interface, at z = 0. The velocity profile
writes:

vr =
6q

3β −2
z(βh− z)

h3 (21)

where q is the radial water flux per unit of perimeter and β is
a parameter related to boundary condition at the liquid/liquid
interface: if the tangential stress vanishes at this interface, β =
2; if the tangential velocity cancels, β = 1. Thus in the frame
of the lubrication approximation, the Stokes equation (Eq. 1)
combined with the velocity profile (Eq. 21) reduces to:

∂P
∂ r

=−η
12q

(3β −2)h3 (22)

The pressure can be written as the sum of the opposite of the
disjoining pressure Π and the capillary pressure, for which the
oil/water interface curvature can be written from h and its ra-
dial derivatives. The general expression of the pressure gives:

P = Pext +2γR−1− γ

(
∂ 2h
∂ r2 +

1
r

∂h
∂ r

)
−Π (23)

Finally, the flux q depends on r and is related to the mo-
tion of the liquid/liquid interface by the volume conservation
equation:

∂ rq
∂ r

=−r
∂h
∂ t

(24)

The combination of Eqs. 22, 23 and 24 gives the governing
equation (Eq. 2) for the space and time variations of the film
thickness h, that cannot however be solved analytically. We
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present here a novel scaling analysis that allows to capture the
main features of the dimple relaxation. We will assume for the
sake of simplicity that β = 1 as observed experimentally, but
the general case can be easily derived.

6.1 Capillary driven regime

We assume that the barrier ring is immobile at a radial distance
rd and that the pressure gradient is dominated by the interfa-
cial tension term: the gradient of disjoining pressure is negli-
gible. Finally the curvature of the interface simply writes ∂ 2h

∂ r2

because the problem is quasi one-dimensional. Eq. 2 reduces
to:

12qbη

h3
min

= γ
∂ 3h
∂ r3 |rd (25)

where qb is the flux at the barrier ring located at radius rd .
At the barrier ring, the height h presents a minimum, and can
be expanded in terms of r−rd . This expansion has to include a
third order term, because Eq. 25 contains a third order deriva-
tive of h. Indeed, taking into account this third order terms
is the main originality of our present calculation. To the third
order, the shape of the barrier ring writes, for r close to rd :

hb(r)' hmin +
(r− rd)

2

2ρb
+

(r− rd)
3

6G2 (26)

where ρb is the radius of curvature at the barrier ring and
G is a parameter related to the barrier ring asymmetry. The
barrier ring shape has to be connected to the dimple center. At
the center, the dimple shape is approximatively parabolic and
thus writes:

hd(r)' h0

(
1− r2

(rd−δ r)2

)
(27)

where (rd − δ r) is defined in Fig. 9 as the radius for which
the parabolic shape hd is null. To connect the center hd and
the barrier ring hb, we write that at a given value of r, that we
will call rc, the height h as well as its first and second deriva-
tives are continuous, i.e. hd(rc) = hb(rc), h′d(rc) = h′b(rc) and
h′′d(rc) = h′′b(rc). These three equations lead after some calcu-
lations, and in the limit where δ r� rd , and h0 � rd , to the
following geometrical relations:

G' 2ρb

√
h0

rd
(28)

ρb '
3
8

hminr2
d

h2
0

(29)

rd− rc '
G2

ρb
' 3

2
hminrd

h0
(30)

Our model equations (Eqs. 26 and 27) of the film geometry
were successfully fit to actual film profiles (see Fig. 5a),
showing the relevance of our description. Futhermore, the
adjustable parameter G, ρb and rc obtained from these fits
were found to compare well with the numerical evaluations of
Eqs. 28, 29, 30 using our measurements of the other relevant
lengths (h0,hmin,rd). This validates the present description.

Combining Eqs. 25 and 26, we obtain:

12qbη

h3
min

=
γ

G2 (31)

Combined with Eq. 30, this sets all the geometrical param-
eters for a given value of the flux. From Eqs. 28, 29, 31, we
can eliminate G and ρb and get a relation between the gap hmin
and the flux qb at the barrier ring:

hmin =
27qbηr3

d

4γh3
0

(32)

Now, the flux and the geometry can be related in two ways.
One originates simply from volume conservation while the
second is related to the pressure drop between the dimple and
the reservoir. Assuming the dimple center remains parabolic,
and the radius at the barrier ring remains constant lead to the
following relation in the dimple:

q(r)+
ḣ0r
2

(
1− 1

2

(
r
rd

)2
)
' 0 (33)

where ḣ0 is the time derivative of h0(t). The flux at the barrier
ring can therefore be estimated by:

qb ∼=−
ḣ0rd

4
(34)

The pressure drop across the dimple, which is equal to the
difference between the capillary pressure in and out of the
dimple, can be approximated in the capillary regime to 2γ/R.
This pressure drop is given by the integration over r of Eq. 22
that will be next approximated. Most of the pressure drop is
localized within the barrier ring, so that:

∆P = P(0)−Pext =
∫

∞

0
η

12q(r)
h(r)3 dr '

∫ rd

rc

η
12qb

hb(r)3 dr (35)

One also have to note that the barrier ring is strongly asym-
metric as emphasized by the third order term of hb(r) in
(r− rd)

3/6G′2 (see Eq. 26). This term actually dominates the
pressure drop ∆P. Indeed one can note that h(rc) ∼= 3hmin.
Thus the pressure drop is asymmetric at the barrier ring and lo-
calized mostly between the connection to the parabolic dimple
rc and the barrier ring itself at rd as can be seen in Fig. 5b). We
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will simply assume that the film shape is nearly flat between
rc and rd , and that the integral 35 can be estimated to:

∆P∼=
12qbη(rd− rc)

h3
min

(36)

Indeed the two approximations - the one of Eq. 35, and
the approximation of a flat barrier ring between rc and rd
- respectively underestimate and overestimate the pressure
drop. As a result, the approximation is indeed very good. As
explained in the article body, our model gives satisfactory
descriptions of the whole phenomenon.

Combining the previous expressions, we recover the two
relations for the time dependence of h0 and hmin found in the
literature,3,7 with different prefactors:

h0(t)'
3
4

(
ηr6

d
γR

)1/4

t−1/4 (37)

hmin(t)'
3
4

√
ηRr2

d
γ

t−1/2 (38)

Thus thanks to our analysis, we are able to recover these scal-
ing laws given by other means. This allows us to address the
second regime, where the disjoining pressure acts on the bar-
rier ring but not on the dimple.

6.2 Mixed regime

In the mixed regime, the barrier ring height hmin has nearly its
asymptotic value heq: indeed, experimentally, in regime (ii),
hmin varies between twice heq and heq as exemplified in Fig. 2.
The thickness at the barrier ring is therefore set by the disjoin-
ing pressure. On the other hand, the film drainage is set by the
pressure gradient, so that we shall compare the relative contri-
butions to the pressure gradient of the disjoining and capillary
contributions in Eq. 23. Similarly to the derivation of Eq. 25,
the capillary term writes γ

∂ 3h
∂ r3 and provides a zero order term

in r− rd to the pressure gradient. The disjoining pressure gra-
dient writes: ∂Π

∂ r = dΠ

dh
∂h
∂ r . As the barrier ring corresponds to

a minimum of the thickness profile, the expansion of h about
hmin (Eq. 26) has no first order term and the disjoining pres-
sure gradient is therefore a higher order term in r− rd . As
such, the disjoining pressure gradient across the barrier ring
is negligible compared to the capillary pressure gradient. Fi-
nally, the capillary pressure gradient must be compared to the
term 2γR−1. Experimentally, the latter is always dominating
the former. Therefore, the pressure gradient across the barrier
ring of length (rc−rc) writes: 2γR−1(rd−rc)

−1. From Eq. 22,
the flux at the barrier ring qb can be derived:

2γ

R(rd− rc)
=

12qbη

h3
eq

(39)

The main difference with the capillary driven regime (i) lays
in the height at the barrier ring being set by disjoining pressure
rather that the viscous lift. Expliciting the flux from Eq. 34,
and rd− rc from Eq. 30, we obtain:

2γ

R
=−

9ηr2
d

2h2
eq

ḣ0

h0
(40)

The relaxation of the dimple center of thickness h0(t) is ex-
ponential, with a relaxation time equal to:

τmix =
9ηr2

dR
4γh2

eq
(41)

6.3 Disjoining pressure regime

For this regime, the film is not far from equilibrium for which
P(r) = Pext . Observing that the film is almost flat, we can
assume that the capillary pressure gradient is negligible com-
pared to the disjoining pressure gradient across the film. From
Eqs. 22, 23, 24:

∂h
∂ t

+
1
r

∂

∂ r

(
r

1
12

h3

η

∂Π

∂ r

)
= 0 (42)

Linearizing this equation about h = heq, leads to:

ḣ+

(
1
12

h3
eq

η

∂Π

∂h

∣∣∣∣
heq

)
1
r

∂

∂ r
r

∂h
∂ r

= 0 (43)

The solution of this equation can be written as h = heq +

∑aτ,ke−
t
τ J0(kr) where J0 is the Bessel function, aτ,k is the

amplitude of the (τ,k) mode for which the relation between τ

and k is given by:

−

(
1

12
h3

eq

η

∂Π

∂h

∣∣∣∣
heq

)
k2

τ = 1 (44)

In this last regime, hmin at the barrier ring is set to heq. In
other words, the profiles are pinned to the boundary condition:
h(r = rd) = heq so that k obeys J0(krd) = 0. Therefore, the
slowest mode is given by the first zero of the Bessel function
i.e. for krd = 2.40. Finally, the film profile h(r, t) relaxes to
the equilibrium thickness heq within a characteristic time τdis
given by:

τdis ∼−
12

(2.40)2
ηr2

d
h3

eq

(
∂Π

∂h

∣∣∣∣
heq

)−1

(45)
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