
HAL Id: hal-01474319
https://hal.science/hal-01474319

Submitted on 27 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Nanoscale Architecture of the Axon Initial Segment
Reveals an Organized and Robust Scaffold

Christophe Leterrier, Jean Potier, Ghislaine Caillol, Claire Debarnot, Fanny
Rueda boroni, Bénédicte Dargent

To cite this version:
Christophe Leterrier, Jean Potier, Ghislaine Caillol, Claire Debarnot, Fanny Rueda boroni, et al..
Nanoscale Architecture of the Axon Initial Segment Reveals an Organized and Robust Scaffold. Cell
Reports, 2015, 13 (12), pp.2781-2793. �10.1016/j.celrep.2015.11.051�. �hal-01474319�

https://hal.science/hal-01474319
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Article
Nanoscale Architecture of
 the Axon Initial Segment
Reveals an Organized and Robust Scaffold
Graphical Abstract
Highlights
d The AIS nanoscale architecture was determined with super-

resolution microscopy

d Head-to-head ßIV-spectrins connect actin rings to form a

periodic submembrane complex

d Ankyrin G C-terminal tail extends �30 nm below the

submembrane complex

d This organized architecture is resistant to cytoskeleton

perturbations
Leterrier et al., 2015, Cell Reports 13, 2781–2793
December 29, 2015 ª2015 The Authors
http://dx.doi.org/10.1016/j.celrep.2015.11.051
Authors

Christophe Leterrier, Jean Potier,

Ghislaine Caillol, Claire Debarnot,

Fanny Rueda Boroni, Bénédicte Dargent

Correspondence
christophe.leterrier@univ-amu.fr

In Brief

To understand how the axon initial

segment (AIS) can control neuronal

excitability andmaintain axonal identity, it

is crucial to know how its components are

arranged at the molecular level. Using

super-resolution microscopy, Leterrier

et al. reveal the highly organized and

robust nature of the AIS architecture.

mailto:christophe.leterrier@univ-amu.fr
http://dx.doi.org/10.1016/j.celrep.2015.11.051
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2015.11.051&domain=pdf


Cell Reports

Article
Nanoscale Architecture of the Axon Initial Segment
Reveals an Organized and Robust Scaffold
Christophe Leterrier,1,* Jean Potier,1 Ghislaine Caillol,1 Claire Debarnot,1 Fanny Rueda Boroni,1 and Bénédicte Dargent1
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SUMMARY

The axon initial segment (AIS), located within the first
30 mm of the axon, has two essential roles in ge-
nerating action potentials and maintaining axonal
identity. AIS assembly depends on a ßIV-spectrin/
ankyrin G scaffold, but its macromolecular arrange-
ment is not well understood. Here, we quantitatively
determined the AIS nanoscale architecture by using
stochastic optical reconstruction microscopy
(STORM). First, we directly demonstrate that the
190-nm periodicity of the AIS submembrane lattice
results from longitudinal, head-to-head ßIV-spectrin
molecules connecting actin rings. Using multicolor
3D-STORM, we resolve the nanoscale organization
of ankyrin G: its amino terminus associates with the
submembrane lattice, whereas the C terminus radi-
ally extends (�32 nm on average) toward the cytosol.
This AIS nano-architecture is highly resistant to cyto-
skeletal perturbations, indicating its role in structural
stabilization. Our findings provide a comprehensive
view of AIS molecular architecture and will help
reveal the crucial physiological functions of this
compartment.

INTRODUCTION

The directional flow of information in the brain is ensured by the

cellular asymmetry of the neuron: the neuronal cell body re-

ceives synaptic inputs, and the axon propagates the action

potential to downstream neurons. Neuronal asymmetry is main-

tained for years or even decades by a combination of passive

(barriers) and active (directed traffic) processes, but the under-

pinning mechanisms remain largely unknown (Kapitein and

Hoogenraad, 2011). Located along the first 20 to 40 mm of

the axon, the axon initial segment (AIS) materializes the separa-

tion between the cell body and the axon. This location allows

for the two main cellular functions of the AIS: the initiation of

action potentials and the maintenance of axonal identity (Leter-

rier and Dargent, 2014).

The AIS ensures the proper generation of action potentials by

concentrating voltage-gated sodium (Nav) and potassium (Kv7)

channels at its surface. Together with specific cell adhesion mol-
Cell Rep
ecules (CAMs) such as 186-kDa neurofascin, these channels are

anchored by an interaction with the specialized AIS scaffold pro-

tein ankyrin G (ankG). AnkG also binds to a submembrane com-

plex of ßIV-spectrin and actin (for reviews, see Bennett and

Lorenzo, 2013; Grubb and Burrone, 2010a; Leterrier and Dar-

gent, 2014; Normand and Rasband, 2015). Furthermore, ankG

links the AIS scaffold to microtubule fascicles via an interaction

with end-binding proteins EB1 and EB3 (Leterrier et al., 2011).

AnkG is the AIS master organizer: depletion of ankG results in

the absence or disassembly of the whole AIS complex (Hed-

strom et al., 2007, 2008; Jenkins and Bennett, 2001). In ankG-

depleted neurons that lack an AIS, somatodendritic proteins

progressively invade the proximal axon, resulting in the disap-

pearance of microtubule fascicles and the formation of ectopic

post-synapses (Hedstrom et al., 2008; Sobotzik et al., 2009):

this demonstrates the role of the AIS for the maintenance of

axonal identity.

Two proposed cellular processes contribute to this mainte-

nance of axonal identity: a surface diffusion barrier that restricts

the mobility of membrane proteins and lipids (Nakada et al.,

2003; Winckler et al., 1999) and a traffic filter that could regulate

intracellular diffusion and vesicular transport (Song et al., 2009).

The underlying mechanisms are still mysterious, in particular the

nature of the intracellular filter (Petersen et al., 2014; Watanabe

et al., 2012). Our understanding of these processes depends

on a better knowledge of the AIS architecture down to themolec-

ular level. Super-resolution microscopy now allows us to

observe macromolecular complexes in situ with a resolution

down to a few tens of nanometers (Maglione and Sigrist, 2013)

and has recently started to uncover the nanoscale organization

of the AIS and axon. Stochastic optical reconstruction micro-

scopy (STORM) has revealed that axonal actin is organized as

submembrane rings periodically spaced every 190 nm (Xu

et al., 2013), a result recently confirmed in living cells (D’Este

et al., 2015). In the AIS, a periodic arrangement of actin, ßIV-

spectrin, and ankG is also detected (Zhong et al., 2014). How-

ever, the relative arrangement of AIS components resulting in

this regular organization has not been directly addressed.

Furthermore, although electron microscopy recently resolved in-

dividual ankG proteins as 150-nm-long rods (Jones et al., 2014),

the nanoscale organization of this key protein within the AIS scaf-

fold is still elusive. Notably, a connection between the plasma

membrane components and intracellular structures by large iso-

forms of ankG has been proposed (Davis et al., 1996; Leterrier

and Dargent, 2014) but remains hypothetical.
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We set about quantitatively resolving the three-dimensional

architecture of the AIS at the nanoscale level, in particular the

arrangement of the master scaffold protein ankG. Multicolor

2D- and 3D-STORM of endogenous epitopes coupled to exten-

sive quantification procedures allowed us to uncover the intri-

cate ordering of the AIS scaffold. We directly demonstrate that

the submembrane periodic lattice is composed of longitudinal

head-to-head ßIV-spectrin subunits connecting submembrane

actin bands along the AIS. AnkG aminoterminal side is associ-

ated with this lattice, and its C-terminal side extends away

from the plasma membrane, �35 nm deeper in the cytoplasm.

This could allow its interaction with peripheral microtubules,

providing a structural basis for the regulation of vesicular entry

into the axon. Finally, our observations reveal an unexpected

robustness of the AIS scaffold: its ordered arrangement is resis-

tant to pharmacological perturbations of the actin or microtubule

cytoskeleton, and the radial extent of ankG even resists partial

disassembly of the AIS induced by elevated intracellular calcium.

This suggests that the nanoscale organization of AIS compo-

nents is necessary for its integrity, and this structural robustness

may support the AIS role as a gateway to the axon.

RESULTS

Actin and Longitudinal Head-to-Head ßIV-Spectrin
Subunits Form a Periodic Submembrane Complex at
the AIS
To characterize the AIS nano-architecture, we first focused on

the organization of the submembrane actin/ßIV-spectrin com-

plex. At the diffraction-limited level, actin was present, but not

concentrated, in the AIS of mature neurons (15–21 days

in vitro), in contrast to ßIV-spectrin and Nav channels (Figure 1A).

We used STORM that provided an �17-nm lateral localization

precision (see Figures S1A–S1C and Supplemental Experi-

mental Procedures) to obtain images of the nanoscale actin

organization. 2D-STORM images revealed the periodic arrange-

ment of AIS actin as regular bands (Figures 1B and 1C), as

described previously (D’Este et al., 2015; Xu et al., 2013). Line

profiles obtained on STORM images exhibited intensity peaks

with a regular spacing of �190 nm (Figure 1D). We quantified

the labeling periodicity by fitting sinusoids on 1-mm-long inten-

sity profiles and fitting of the resulting spacing values histogram

with a Gaussian curve (Figures S1D–S1G). The mean spacing

and its spread were measured at 188 ± 8 nm for actin labeling
Figure 1. Actin and Longitudinal Head-to-Head ßIV-Spectrin Subunits

(A) Epifluorescence image of a neuron labeled for actin (phalloidin, green), ßIV-sp

(B) STORM image of an AIS labeled for actin. The scale bars for (B), (E), (H), (L),

(C) Intensity profile along the yellow line (gray lines are 190 nm apart).

(D) Histogram of the spacing values (n = 72 profiles from N = 3 independent exp

(E–G) Same as (B)–(D) for an AIS labeled for ßIV-spectrin NT (histogram; n = 183

(H–J) Same as (B)–(D) for an AIS labeled for ßIV-spectrin SD (histogram; n = 334

(K) Epifluorescence image of a neuron labeled for actin (green) and ßIV-spectrin

(L and M) Two-color STORM image (L) of the AIS shown in (K); (M) correspondin

(N–P) Same as (K)–(M) for a neuron-labeled (green) and ßIV-spectrin SD (magent

(Q and R) Two-color STORM image (Q) of an AIS labeled live for neurofascin (NF

(S and T) Same as (Q) and (R) for a neuron labeled for Nav channels (green) and

(U) Structural model of the submembrane AIS complex.

See also Figures S1 and S2.
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along the AIS (Table S1). We next assessed the labeling obtained

with anti-ßIV-spectrin antibodies against either its aminotermi-

nus (NT), which binds actin, or its specific domain (SD), close

to the C terminus (CTer). Both ßIV-spectrin NT (Figures 1E and

1F) and ßIV-spectrin SD (Figures 1H and 1I) exhibited a strikingly

periodic labeling pattern, and wemeasured the spacing distribu-

tion at 191 ± 7 nm for ßIV-spectrin NT (Figure 1G) and 188 ± 8 nm

for ßIV-spectrin SD (Figure 1J), in close agreement with values

reported previously (Xu et al., 2013; Zhong et al., 2014). As

observed for actin by us and others (D’Este et al., 2015), AIS of

large diameter showed a more-complex ßIV-spectrin arrange-

ment, with apposed stretches of bands resembling a herring-

bone parquet flooring (see Figure 2C for an example).

We next directly assessed the relative organization of actin

and ßIV-spectrin using two-color STORM of actin together with

ßIV-spectrin NT or SD (Figures 1K–1P). Although diffraction-

limited level images were similar (Figures 1K and 1N), on STORM

images, the periodic ßIV-spectrin NT bands colocalized along

actin bands (Figures 1L and 1M), whereas the ßIV-spectrin SD

bands were alternating with actin bands (Figures 1O and 1P).

This differential position of ßIV-spectrin ends relative to actin

bands directly demonstrates the proposed model of head-to-

head ßIV-spectrin molecules connecting actin bands along the

AIS (Figure 1U). Finally, we visualized the nanoscale distribution

of two AIS membrane proteins shown to localize along the peri-

odic submembrane complex, 186-kDa neurofascin (D’Este et al.,

2015) and Nav channels (Xu et al., 2013). Single-color STORM

images revealed a clustered organization of neurofascin and

Nav channels, and we could detect the presence of some peri-

odicity in the cluster arrangement (Figures S2A, S2B, S2D, and

S2E), although it was quite low, resulting in flattened spacing his-

tograms (190 ± 16 nm and 188 ± 18 nm for neurofascin and Nav

channels, respectively). Two-color STORM revealed that the

neurofascin and Nav clusters localized along ßIV-spectrin SD

bands, confirming their underlying periodicity (Figures 1Q–1T).

Overall, our data validate and extend previous reports (D’Este

et al., 2015; Xu et al., 2013; Zhong et al., 2014) and provide a

comprehensive view for the molecular structure of the AIS sub-

membrane complex (Figure 1U).

The AIS Submembrane Lattice Is Resistant to Actin
Perturbation
The AIS scaffold is remarkably stable over time (Hedstrom

et al., 2008). We wondered whether the ßIV-spectrin periodic
Form a Periodic Submembrane Complex at the AIS

ectrin SD (blue), and Nav channels (red). The scale bar represents 20 mm.

(O), (Q), and (S) represent 2 mm.

eriments).

; N = 3).

; N = 11).

NT (magenta). The scale bars for (K) and (N) represent 10 mm.

g intensity profile.

a).

, green) and ßIV-spectrin SD (magenta); (R) corresponding intensity profile.

ßIV-spectrin SD (magenta).
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Figure 2. The AIS Submembrane Lattice Is Resistant to Actin Perturbation

(A–F) STORM images of neurons treated with vehicle (DMSO 0.1%; 1 hr; A, C, and E) or latrunculin A (latA; 5mM; 1 hr; B, D, and F), fixed and labeled for actin (AIS;

A and B), ßIV-spectrin SD (AIS; C and D), or ßII-spectrin (distal axons; E and F). The scale bars for (A)–(F) represent 2 mm.

(G) Intensity profiles along the yellow lines in (A)–(F) for the actin (purple), ßIV-spectrin SD (red), and ßII-spectrin CTer (green) labeling. Intensities have been

processed identically between the vehicle- (left) and latA- (right) -treated conditions.

(H) Histograms of the spacing values for each labeling (n = 44–143 profiles; N = 3 or 4).

(I) Goodness of sinusoid fit (R squared) for each labeling (n = 44–143; N = 3 or 4).

See also Figure S3.
lattice would nonetheless depend on integrity of the actin struc-

ture. To test this hypothesis, we assessed the ßIV-spectrin

nanoscale distribution after actin depolymerization by latruncu-

lin A (latA). Treatment with 5 mM latA for 1 hr disassembled

actin filaments in all compartments, with a near disappearance

of phalloidin labeling on diffraction-limited images and an 85%

drop of labeling intensity at the AIS (Figures S3A–S3C).

Notably, this short-term treatment did not affect the concentra-

tion of AIS components or the AIS length (Figures S3C and

S3D).
2784 Cell Reports 13, 2781–2793, December 29, 2015 ª2015 The Au
STORM images revealed the disorganization of actin in the

AIS, although a faint remnant of actin periodicity could still be de-

tected, suggesting a selective resistance to depolymerization

(Figures 2A, 2B, and 2G). Strikingly, the periodic pattern of the

ßIV-spectrin SD was unaffected by latA treatment (Figures 2C,

2D, and 2G). In the control condition, actin and ßIV-spectrin in

the AIS exhibited an identical spacing of 188 ± 8 nm (Figure 2H).

After latA treatment, the spread of the spacing remained stable

for ßIV-spectrin (190 ± 7 nm). Actin showed a significant drop

in the goodness of sinusoid fit after latA treatment, indicating a
thors



loss of periodicity (from 0.39 ± 0.02 to 0.21 ± 0.01; mean ± SEM),

but the goodness of fit for ßIV-spectrin remained high after actin

depolymerization (0.63 ± 0.01 for vehicle; 0.64 ± 0.01 for latA;

Figure 2I). Thus, periodic actin seems partially resistant to latA,

and ßIV-spectrin periodic organization in the AIS is resistant to

actin perturbation.

To determinewhether this robustness is specific to the AIS, we

assessed the effect of actin disruption on the distal axon actin/

spectrin complex, which forms a similar periodic structure with

ßII-spectrin instead of the AIS-specific ßIV-spectrin (Xu et al.,

2013). Using an antibody against the ßII-spectrin CTer, we

indeed found a highly periodic distribution along distal axons,

with a regular spacing of 188 ± 8 nm (Figures 2E and 2G). ßII-

spectrin was still clustered after LatA treatment, but the regular

spacing was disorganized, with a larger spacing spread (190 ±

22 nm; Figure 2H) and a drop of the R squared from 0.54 ±

0.01 to 0.25 ± 0.01 (Figure 2I), confirming previous results (Xu

et al., 2013; Zhong et al., 2014). In conclusion, we found actin

to be partially resistant to depolymerization in the AIS. In contrast

to the actin/ßII-spectrin complex found in the distal axon, the

ßIV-spectrin periodic lattice is completely resistant to actin

perturbation by latA.

The ankG Spectrin-Binding Domain Associates with the
Periodic Lattice, but Its CTer Part Is Not Periodically
Arranged
What makes the actin/ßIV-spectrin lattice in the AIS more resis-

tant than the ßII-spectrin/actin complex along the distal axon?

Stabilization is likely due to the AIS master organizer ankG that

recruits and maintains ßIV-spectrin at the AIS (Yang et al.,

2007). AnkG present at the AIS is a large 480-kDa protein, with

a shorter 270-kDa isoform being also expressed (Bennett and

Lorenzo, 2013; Jenkins et al., 2015). To characterize the nano-

scale organization of ankG by STORM, we used antibodies

directed against distinct domains of the protein (Figure 3A).

A polyclonal antibody directed against a peptide epitope in the

serine-rich domain (SR) was previously described (Bréchet

et al., 2008), and we mapped the target domains of two mono-

clonal antibodies (anti-ankG clone 106/65 and 106/36) to the

spectrin-binding (SB) and CTer domains, respectively (Fig-

ure S4A). We also used a tail480 antibody recognizing the distal

part of the tail specific to 480-kDa ankG, close to the CTer (Fig-

ure S4B). These antibodies labeled the AIS of hippocampal neu-

rons in a similar fashion at the diffraction-limited level (Figures 3B

and 3C).

At the nanoscale level, we first localized the domain of ankG

that interacts with ßIV-spectrin (the SB domain) together with

ßIV-spectrin SD. Two-color STORM images showed that the

ankG SB clusters localized along ßIV-spectrin bands, resulting

in correlated line profiles (Figures 3D and 3E). We next compared

the periodicity of labeling for four different ankG domains: the SR

domain (localized adjacent to the SB domain); the distal tail

domain (tail480 antibody); or the CTer domain (formed by the

last 300 residues of the protein; Figure 3A). On single-color

STORM images, the regular spacing of ankG SB clusters was

clearly detected (Figures 3G and 3H), as reflected by periodicity

measurements (spacing 188 ± 13 nm; Figure 3I; Table S1). Peri-

odicity was similar for the adjacent SR domain (Figures 3J and
Cell Rep
3K), with a spacing of 188 ± 14 nm (Figure 3L). Both the distal

tail and the CTer domain exhibited a clustered distribution, but

periodic patterns were difficult to discern (Figures 3M, 3N, 3P,

and 3Q), and the spacing histograms exhibited a significantly

higher spread (182 ± 27 and 184 ± 20 nm for the distal tail and

CTer, respectively; Figures 3O–3R). Accordingly, the goodness

of sinusoid fit (R squared) dropped from 0.34 ± 0.01 for the

ankG SB domain to 0.26 ± 0.01 for the SR, 0.20 ± 0.01 for the

distal tail, and 0.22 ± 0.01 for the CTer domain (Table S1). This

gradual loss of periodic distribution between the ankG SB and

CTer domains validates and extends a recent observation

(Zhong et al., 2014). In conclusion, ankG exhibits a periodic

arrangement of its aminoterminal side that interacts with ßIV-

spectrin, but downstream domains, closer to its CTer, progres-

sively lose this periodicity and become more disordered.

The ankG CTer Domain Extends Radially below the
Submembrane Lattice
Why does the CTer part of ankG show a disorganized nanoscale

distribution? We hypothesized it could extend away from the pe-

riodic submembrane lattice, deeper in the axoplasm, where it

could reach intracellular partners (see Figure 4O). To test this,

we resolved the transverse organization of the AIS using

3D-STORM, which attained an axial localization precision of

�33 nm (see Figures S5A–S5C and Supplemental Experimental

Procedures). To map the radial position of AIS components, we

performed two-color 3D-STORM with different epitopes co-

labeled with ßIV-spectrin SD as a reference (Figures 4A–4J).

We first validated our method by imaging intracellular microtu-

bules together with submembrane ßIV-spectrin SD (Figure 4A).

Although a-tubulin labeling was not resolved as continuous

microtubules due to the fixation protocol used in these experi-

ments (compare with Figure 5G), intracellular labeling was never-

theless clear on transverse sections and radial profiles, with the

ßIV-spectrin lattice encasing the a-tubulin labeling (Figures 4A

and 4B). Next, we assessed the radial position of AIS membrane

proteins: neurofascin using an antibody against an extracellular

epitope (Figures 4C and 4D) and Nav channels using an antibody

against an intracellular loop (Figures 4E and 4F). On YZ trans-

verse sections, both neurofascin and Nav channels were found

at the periphery of the ßIV-spectrin submembrane lattice (Fig-

ures 4C and 4E), as confirmed by line profiles across transverse

sections (Figures 4D and 4F).

We then assessed the transverse arrangement of ankG by im-

aging the two domains on opposite sides of the protein (SB and

CTer domains), together with ßIV-spectrin SD (Figures 4G–4J).

The ankG SB domain colocalized with the submembrane ßIV-

spectrin lattice on transverse sections (Figures 4G and 4H).

The ankG CTer domain was found to be more intracellular than

ßIV-spectrin: ankG CTer labeling was consistently found lining

the intracellular side of the ßIV-spectrin lattice (Figure 4I). On

radial profiles, this resulted in the ankG CTer intensity peaks be-

ing shifted toward the axoplasm compared to the ßIV-spectrin

peaks (Figure 4J). As different AISs exhibit large variations in

shapes (length, diameter, and roundness), we devised a method

to precisely quantify the radial arrangement of epitopes indepen-

dently of these variations. A Gaussian curve was fitted on radial

profiles, and the distance between the Gaussian maxima for the
orts 13, 2781–2793, December 29, 2015 ª2015 The Authors 2785



Figure 3. The ankG Spectrin-Binding Domain Associates with the Periodic Lattice, but Its CTer Part Is Not Periodically Arranged

(A) Cartoon of the ankG domains, with the target domains of the four anti-ankG antibodies used.

(B) Epifluorescence image showing the AIS of a neuron labeled for ankG SB (red), ankG SR (green), and ankG CTer (blue).

(C) Epifluorescence image showing the AIS of a neuron labeled for ankG tail480 (red), ankG CTer (green), and map2 (blue). The scale bars on (B) and (C)

represent 5 mm.

(D) STORM image of an AIS labeled for ankG SB (green) and ßIV-spectrin SD (magenta). The scale bars for (D), (G), (J), (M), and (P) represent 2 mm.

(E) Intensity profiles for each channel along the yellow line.

(F) Histogram of the spacing values for the ßIV-spectrin SD labeling (same data as in Figure 1J).

(G–I) STORM image (G) of an AIS labeled for ankG SB; (H) corresponding intensity profile; (I) histogram of spacing values (n = 161 profiles; N = 6).

(J–L) Same as (G)–(I) for an AIS labeled for ankG SR (histogram; n = 107; N = 3).

(M–O) Same as (G)–(I) for an AIS labeled for ankG tail480 (histogram; n = 34; N = 2).

(P–R) Same as (G)–(I) for an AIS labeled for ankG CTer (histogram; n = 102; N = 4).

See also Figure S4.
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two channels was measured, providing the distance value rela-

tive to the ßIV-spectrin SD reference (Figures S5C–S5F). We

determined the mean distance from the ßIV-spectrin SD to the

extracellular epitope of neurofascin to be 17 ± 1 nm and to the

Nav intracellular loop to be 8 ± 1 nm (mean ± SEM; positive

distance toward the axolemma; Figure 4M; Table S2). a-tubulin

localization was broadly intracellular with a mean depth of

�85 ± 4 nm (negative distance toward the axoplasm). The

ankG SB domain was located just above ßIV-spectrin, with a

mean distance of 6 ± 1 nm. The CTer domain of ankG was signif-

icantly more intracellular, with a mean distance of �26 ± 1 nm to

ßIV-spectrin (Figure 4M). From these measurements, we deter-

mined ankG average radial extent: its CTer domain is on average

32 ± 1 nm deeper than its SB domain. We also mapped the po-

sition of the distal 480-kDa ankG tail relative to the ankG CTer

(we could not use a ßIV-spectrin SD reference due to antibody

host species issues). The two epitopes were colocalized on YZ

sections (Figures 4K and 4L), showing that the distal tail localizes

at the same depth as the CTer, with a relative distance close to

zero (�2 ± 2 nm; Figure 4N). In conclusion, we have showed

that the AIS is organized transversally, with the ankG CTer ex-

tending below the submembrane complex toward the axoplasm

(Figure 4O).

The Radial Extent of ankG Is Resistant to Actin or
Microtubule Perturbation
AnkG can be considered as a scaffold linker that binds both to

actin via ßIV-spectrin and tomicrotubules via EB1/3 proteins (Le-

terrier et al., 2011). Thus, we wondered whether the ankG radial

extent was dependent on the actin or microtubule cytoskeleton

integrity. First, we used latA to acutely perturb actin and

measured the radial distance between the ankG CTer domain

and the ßIV-spectrin SD. LatA treatment (5 mM; 1 hr) did not

modify ankG arrangement: the ankGCTer domain was still found

deeper than ßIV-spectrin (Figures 5A–5D), with a distance of

�26 ± 2 nm after treatment, compared to �24 ± 1 nm for vehicle

(Figure 5E; Table S2). Thus, ankG radial extent does not depend

on actin integrity.

Next, we used nocodazole at a high concentration (20 mM for

3 hr) to acutely perturb microtubules (Jaworski et al., 2009). At

the diffraction-limited level, microtubules disassembly was

observed after nocodazole treatment using an extraction/fixa-

tion procedure optimized for microtubule preservation (Fig-

ure S6A). A few filamentous structures were still brightly labeled,

leading to a partial 55% decrease in labeling intensity at the AIS

(Figure S6B). However, STORM imaging showed that these re-

maining microtubules were running along, but not inside the

AIS, likely belonging to distal axons (Figures 5F–5I). In both

vehicle- and nocodazole-treated neurons, periodicity measure-

ment of the microtubule labeling along the AIS led to a flattened

spacing histogram (190 ± 29 nm and 156 ± 32 nm, respectively)

and low R-squared values (0.18 ± 0.09 and 0.17 ± 0.11, respec-

tively), providing a baseline for our measurement procedure (Fig-

ures S6C–S6J).

AIS components were barely affected by the nocodazole

treatment at the diffraction level (12% drop in ankG concentra-

tion; no significant change for ßIV-spectrin or AIS length; Figures

S6K–S6M). At the nanoscale level, the periodic ßIV-spectrin lat-
Cell Rep
tice was not perturbed by nocodazole treatment (Figures S6N–

S6S), with no change in spacing spread for the ßIV-spectrin SD

labeling (187 ± 8 nm for both vehicle and nocodazole; Figures

S6P and S6S). This is in contrast with the partial disassembly

of ßII-spectrin rings recently observed after nocodazole treat-

ment (Zhong et al., 2014), confirming the specific robustness

of the AIS scaffold. Finally, we mapped the radial organization

of ankG after nocodazole treatment (Figures 5J–5N). The locali-

zation of the ankG CTer domain was unaffected by nocodazole

treatment: the ankG CTer domain distance to ßIV-spectrin

was�24 ± 1 nm for vehicle and�25 ± 1 nm for nocodazole (Fig-

ure 5N). The radial arrangement of ankG, as well as the longitu-

dinal periodicity of the ßIV-spectrin lattice, thus resists to actin

filaments or microtubules perturbation.

Elevated K+ Partially Disassembles the AIS and Impairs
the Periodic Lattice, but Not the ankG Radial Extent
To further probe the robustness of the AIS scaffold organization

at the nanoscale, we used a treatment that would affect the AIS

morphology without completely disassembling it. Increase in

intracellular calcium concentration has been implicated in the

AIS morphological plasticity (Grubb and Burrone, 2010b) and

shown to trigger AIS disassembly in ischemic injury (Schafer

et al., 2009). We incubated neurons in the presence of 45 mM

KCl for 3 hr (Redmond et al., 2002) to acutely increase intracel-

lular calcium concentration. First, we measured the effect of

these treatments on the overall morphology of the AIS at the

diffraction-limited level (Figures 6A and 6B): high KCl treatment

resulted in partial disassembly of the AIS, with an �30% drop

in ßIV-spectrin and ankG-labeling intensity (Figure 6C) and a

slight AIS shortening compared to the control condition (stan-

dard culture medium containing 5mMKCl; Figure 6D). KCl treat-

ment had a strong effect on the periodicity of the submembrane

lattice (Figures 6E–6H), with the ßIV-spectrin SD labeling exhib-

iting a flattened 189 ± 18-nm spacing distribution and a good-

ness of fit dropping from 0.58 ± 0.01 to 0.27 ± 0.01 (Figure 6I).

In contrast, KCl treatments did not perturb the radial orientation

of ankG (Figures 6J–6N), with an average distance of ankG CTer

to ßIV-spectrin SD at�24 ± 1 nm and�22 ± 2 nm for control and

KCl treatments, respectively (Figure 6N). In conclusion, the range

of perturbation performed (cytoskeleton and intracellular cal-

cium) shows that the AIS nano-architecture is robust, with partial

alterations appearing only when significant disassembly occurs

for the whole AIS.

DISCUSSION

In this work, we have determined the nanoscale architecture of

the AIS using super-resolution microscopy. STORM allowed us

to quantitatively localize epitopes corresponding to known do-

mains of AIS proteins and infer the precise arrangement of the

AIS scaffold. First, we directly demonstrate that the previously

described �190-nm periodic lattice along the AIS is formed by

submembrane actin bands connected by longitudinal head-to-

head ßIV-spectrin subunits. Furthermore, we reveal the specific

resistance of this actin/ßIV-spectrin lattice against actin pertur-

bation, compared to the ßII-spectrin-based lattice found along

the distal axon. We characterized the yet unknown arrangement
orts 13, 2781–2793, December 29, 2015 ª2015 The Authors 2787



Figure 4. The ankG CTer Domain Extends Radially below the Submembrane Lattice

(A) 3D-STORM image of an AIS labeled for a-tubulin (green) and ßIV-spectrin SD (magenta).

(B) Intensity profiles for each channel (filled curves) and Gaussian fits used to calculate radial distances. For (A), (C), (E), (G), (I), and (K), profiles are taken along the

yellow line on the corresponding transverse section shown; scale bars represent 2 mm for XY image and 500 nm for YZ section.

(C and D) Same as (A) and (B) for an AIS labeled for neurofascin (green) and ßIV-spectrin SD (magenta).

(legend continued on next page)
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of the AIS master scaffolding protein ankG: the aminoterminal

part of ankG associates with membrane proteins and ßIV-spec-

trin in the submembrane lattice, resulting in a periodic distribu-

tion. In contrast, the CTer part does not exhibit this periodicity:

we explain this by demonstrating that the CTer of ankG localizes

deeper in the axoplasm, below the submembrane lattice. Thanks

to 3D-STORM, we measured a 32-nm radial extent between

ankG SB and CTer domains. Finally, we showed that the lattice

periodicity, as well as the radial extent of ankG, is resistant to a

range of perturbations, revealing that this nanoscale organiza-

tion is a robust and structural feature of the AIS.

Longitudinal Organization: Periodic Submembrane
Actin/ßIV-Spectrin Lattice
The first striking feature of the AIS nano-architecture is the peri-

odic arrangement of its submembrane scaffold. We observed a

regular distribution of actin and ßIV-spectrin extremities every

�190 nm along the AIS, confirming the periodic organization

recently described (D’Este et al., 2015; Xu et al., 2013; Zhong

et al., 2014). Purified brain spectrins have a length of �195 nm

(Bennett et al., 1982), suggesting a structural model where

head-to-head ßIV-spectrin subunits connect to actin bands at

their NT extremities and to ankG/Nav channels complexes near

their SD domain (Figure 1U). Using two-color STORM, we could

detect correlated bands for actin/ßIV-spectrin NT and anti-corre-

lated ones for actin/ßIV-spectrin SD, directly demonstrating the

validity of this model. Interestingly, two isoforms of ßIV-spectrin

exist at the AIS: the 289-kDa ßIV
P

1, and the �160 kDa ßIV
P

6

that lacks the aminoterminal part of ßIV
P

1 (Lacas-Gervais

et al., 2004; Uemoto et al., 2007). ßIV
P

1 binds both actin and

ankG and is likely to form the basis of the �190-nm periodic lat-

tice, in contrast to ßIV
P

6, which does not bind actin. The detec-

tion of the two isoforms by the SD antibody could explain the

higher localization counts and the larger individual bands

compared to the NT antibody that only recognize ßIV
P

1.

Recent work showed that a periodic lattice of ßII-spectrin first

appears along the whole axon, before being replaced at the AIS

by ßIV-spectrin in the mature neurons used in our study (Zhong

et al., 2014). Furthermore, we found the AIS ßIV-spectrin organi-

zation to be resistant to actin perturbation by latA (actin itself be-

ing partially stabilized at the AIS), as well as microtubule pertur-

bation by nocodazole. It is likely that, in the AIS, the ßIV-spectrin/

actin complex is stabilized by the ankG/Nav channels complex.

In the distal axon, the periodic ßII-spectrin lattice does not

depend on the presence of its ankyrin B partner (Lorenzo et al.,

2014), and this could explain why it is sensitive to cytoskeleton

perturbation (Zhong et al., 2014). Ankyrin B presence is rather

required for ßII-spectrin preferential concentration into the
(E and F) Same as (A) and (B) for an AIS labeled for Nav channels (green) and ßIV

(G and H) Same as (A) and (B) for an AIS labeled for ankG SB (green) and ßIV-sp

(I and J) Same as (A) and (B) for an AIS labeled for ankG CTer (green) and ßIV-sp

(K and L) Same as (A) and (B) for an AIS labeled for ankG tail480 (green) and ank

(M) Radial distance to ßIV-spectrin SD for the a-tubulin, neurofascin, Nav, ankG S

284–832 profiles; N = 2–9).

(N) Radial distance between the ankG CTer and the ankG tail480 labeling (shifte

(O) Structural model of the AIS radial organization.

See also Figure S5.
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axon (Zhong et al., 2014), supporting a function in axonal trans-

port rather than membrane structuration (Lorenzo et al., 2014).

Transverse Organization: Radial Extent of ankG
The second striking feature of the AIS nano-architecture is the

radial arrangement of ankG. We demonstrate that the CTer

part of ankG departs from the submembrane periodic lattice

and is found deeper in the axoplasm. 3D-STORMand quantifica-

tion of the radial distribution of epitopes allowed us to measure

the radial extent of ankG, with a 32-nm average distance be-

tween the SB and CTer domains (see Figure 4M). It is unlikely

that antibody penetration was an issue in our mapping of ankG

organization, as we could visualize microtubules at deeper posi-

tions and throughout the entire transverse section of the AIS.

AnkG could stretch to hundreds of nanometers if its tail was

fully extended, and it has been visualized as �150-nm rods by

scanning electron microscopy (Jones et al., 2014). The 32-nm

radial extent value indicates that ankG actually lies in the vicinity

of the plasma membrane and may adopt convoluted conforma-

tions in the scaffold. This limited radial extent could also be

adopted by the shorter 270-kDa ankG isoform that lacks the

distal 1,745 amino acids of the tail, as suggested by the similar

depth measured using antibodies recognizing either the distal

tail of 480-kDa ankG or the CTer domain shared by both iso-

forms. Interestingly, the proximal part of the 480-kDa ankG-spe-

cific tail (encompassing the S2417 residue) has recently been

implicated in the recruitment of ßIV-spectrin to the AIS (Jenkins

et al., 2015), suggesting it could be located in the submembrane

lattice. We found that the distal part of the tail (antibody targeting

residues 3,516–3,530) as well as the CTer domain were located

25 nm deeper than ßIV-spectrin: this suggests that the ankG

distal tail is the part that exits the submembrane lattice. The

insertion of the large exon coding for the SR and tail domains

of neuronal ankG has thus led to an extension of ankG from

the submembrane scaffold, potentially allowing the connection

to more intracellular structures (Bennett and Lorenzo, 2013).

Importantly, the intracellular localization of the ankG CTer

domain was resistant to cytoskeleton perturbations. A short-

term high-KCl treatment that started to disassemble the AIS

could alter the ßIV-spectrin periodic lattice, but not the radial

extent of ankG. These nanoscale features of the AIS scaffold

may thus be essential for the stability of the AIS as a

compartment.

Molecular Organization of ankG Hints at Its Role in
Regulating Protein Transport through the AIS
The ‘‘dendrification’’ of the proximal axon observed after ankG

depletion (Hedstrom et al., 2008; Sobotzik et al., 2009) led to
-spectrin SD (magenta).

ectrin SD (magenta).

ectrin SD (magenta).

G CTer (magenta).

B, and ankG CTer labeling. Red line is ßIV-spectrin SD reference at 0 nm (n =

d Y scale to align with the ßIV-spectrin SD reference in K; n = 168; N = 2).
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Figure 5. The Radial Extent of ankG Is Resistant to Actin or Microtubule Perturbation

(A) 3D-STORM image of the AIS from a neuron treated with vehicle (0.1% DMSO; 1 hr), fixed and labeled for ankG CTer (green) and ßIV-spectrin SD (magenta).

The scale bars for (A), (C), (G), (I), (J), and (L) represent 2 mm for XY image and 0.5 mm for YZ section.

(B) Intensity profiles for each channel along the yellow line.

(C and D) Same as (A) and (B) for an AIS from a sister culture treated with latrunculin A (latA; 5 mM; 1 hr).

(E) Radial distance to ßIV-spectrin SD for the ankG CTer labeling in vehicle- and latA-treated neurons (n = 225–289 profiles; N = 3).

(F) Epifluorescence image of a neuron treated with vehicle (0.1% DMSO; 3 hr), labeled live for neurofascin (NF) (magenta), fixed/extracted, and labeled for

microtubules (gray).

(G) Overlay of a STORM images of the microtubule labeling (gray) with a scaled TIRF image of the live neurofascin labeling (magenta) along the AIS shown in (F).

(H and I) Same as (F) and (G) for an AIS from a sister culture treated with nocodazole (20 mM; 3 hr).

(J and K) 3D-STORM image (J) of the AIS from a neuron treated with vehicle, fixed, and labeled for ankG CTer (green) and ßIV-spectrin SD (magenta);

(K) corresponding intensity profiles.

(L and M) Same as (J) and (K) for an AIS from a sister culture treated with nocodazole.

(N) Radial distance to ßIV-spectrin SD for the ankG CTer labeling in vehicle- and nocodazole-treated neurons (n = 300–346; N = 3).

See also Figure S6.
propose a role for the AIS in the maintenance of axonal identity

via a diffusion barrier and an intracellular filter (Leterrier and

Dargent, 2014; Rasband, 2010). Since its initial description

(Song et al., 2009), the existence of an intracellular filter in

the AIS that regulates protein traffic between the soma and

axon has been a debated issue (Petersen et al., 2014; Wata-

nabe et al., 2012). How ankG could participate in the regulation

of protein transport into the axon remains unknown, as ankG

has been primarily detected near the plasma membrane by im-
2790 Cell Reports 13, 2781–2793, December 29, 2015 ª2015 The Au
munogold electron microscopy (Iwakura et al., 2012; Le Bras

et al., 2013). Even if ankG forms �150-nm-long rods (Jones

et al., 2014), our results show that it reaches depths within

�50 nm of the plasma membrane, ruling out a fully radial

orientation and the hypothesis of ankG extending through

the axoplasm to reach deep intracellular targets (Davis et al.,

1996; Leterrier and Dargent, 2014). The shallow depth re-

ached by ankG in our study suggests that the AIS scaffold

could rather recruit and spatially organize a population of
thors



Figure 6. Elevated K+ Partially Disassembles the AIS and Impairs the Periodic Lattice, but Not the ankG Radial Extent
(A and B) Deconvolved epifluorescence images of neurons untreated (A; control medium 5mMKCl) or incubated with elevated K+ (B; 45mMKCl; 3 hr), fixed and

stained for ßIV-spectrin SD (red), ankG CTer (green), and map2 (blue). The scale bars represent 20 mm.

(C) Labeling intensity at the AIS of neurons for ßIV-spectrin SD (red, left) and ankG CTer (green, right), normalized to the vehicle condition.

(D) AIS length measured on the ßIV-spectrin SD labeling (for C and D, n = 103–126 AIS; N = 3 or 4).

(E) STORM image of AIS from control neurons labeled for ßIV-spectrin SD. The scale bars for (E), (G), (J), and (L) represent 2 mm for XY images and 0.5 mm for YZ

sections.

(F) Intensity profile along the yellow line.

(G and H) Same as (E) and (F) for an AIS from a sister culture treated with KCl (images and intensity profiles are identically processed for both conditions).

(I) (Top) Histogram of the spacing values in the control and KCl conditions. (Bottom) Goodness of sinusoid fit (R squared) for the ßIV-spectrin SD labeling for

control or KCl-treated neurons is shown (for both graphs, n = 130–206 profiles; N = 3 or 4).

(J) 3D-STORM image of the AIS from control neurons, fixed and labeled for ankG CTer (green) and ßIV-spectrin SD (magenta).

(K) Intensity profiles for each channel along the yellow lines.

(L and M) Same as (J) and (K) for an AIS from a sister culture treated with KCl.

(N) Radial distance to ßIV-spectrin SD for the ankG CTer labeling in control and KCl-treated neurons (n = 415–431; N = 3).
microtubules close to the axolemma (Westrum and Gray,

1976). This specific microtubule organization could in turn influ-

ence polarized traffic to and from the axon, explaining how the

AIS participate in the sorting of vesicular trafficking. Interest-

ingly, a recently identified giant ankG isoform organizes the dis-

tribution of microtubules along the axon in Drosophila neurons

(Stephan et al., 2015).
Cell Rep
The AIS: From Cellular Traffic to Brain and Nervous
System Disorders
In conclusion, we show that the AIS scaffold is a precisely orga-

nized compartment, with a longitudinal periodicity and a radial

layering. This nanoscale organization is robust, pointing to its po-

tential importance for proper cell function. Our work confirms the

strength of super-resolution microscopy for elucidating the
orts 13, 2781–2793, December 29, 2015 ª2015 The Authors 2791



architecture of neuronal assemblies, down to the macromolec-

ular level (Maglione and Sigrist, 2013). Knowledge of the AIS

nanoscale architecture will help decipher the molecular mecha-

nisms that underpin neuronal excitability and protein mobility in

polarized cells. Beyond this fundamental relevance, under-

standing the AIS structure and function has neuro-pathological

implications. AnkG gene variants and mutations have been

consistently associated with in several neuropsychiatric disor-

ders, including bipolar disorders and schizophrenia (Iqbal

et al., 2013; Leussis et al., 2012). Furthermore, affected axonal

transport is a key factor in most neurodegenerative diseases,

where the gatekeeper function of the AISwas recently implicated

(Sun et al., 2014). Our structural work will hopefully open the way

to a better understanding of the AIS crucial functions, in physio-

logical as well as pathological contexts.

EXPERIMENTAL PROCEDURES

Antibodies and Reagents

Rabbit polyclonal anti-ßIV-spectrin antibodies were gifts from Matthew Ras-

band (Baylor College of Medicine). Rabbit polyclonal anti-480-kDa ankG (res-

idues 3,516–3,530 of human 480-kDa ankG) was a gift from François Couraud

(Université Pierre et Marie Curie). For two-color STORM, paired fluorophore-

conjugated secondary antibodies were made by coupling unconjugated anti-

bodies with reactive activator and reporter fluorophores, according to the

N-STORM sample preparation protocol (Nikon Instruments).

Animals and Neuronal Cultures

The use of Wistar rats followed the guidelines established by the European

Animal Care and Use Committee (86/609/CEE) and was approved by the local

ethics committee (agreement D13-055-8). Rat hippocampal neurons were

cultured on 18-mm coverslips at a density of 6,000/cm2 following the Banker

method, above a feeder glia layer in B27-supplemented medium (Kaech and

Banker, 2006).

Immunocytochemistry and STORM Imaging

After 14–21 days in culture, neurons were fixed using 4% PFA or using an

extraction-fixation method optimized for microtubule labeling. After blocking,

they were incubated with primary antibodies overnight at 4�C and then with

secondary antibodies for 1 hr at room temperature. STORM imaging was per-

formed on an N-STORM microscope (Nikon Instruments). Coverslips were

imaged in STORM buffer: Tris 50 mM (pH 8); NaCl 10 mM; 10% glucose;

100 mM MEA; 3.5 U/ml pyranose oxidase; and 40 mg/ml catalase. For sin-

gle-color imaging, the sample was continuously illuminated at 647 nm (full

power) and 30,000–60,000 images were acquired at 67 Hz, with progressive

reactivation by simultaneous 405-nm illumination. Two-color STORM imaging

was either performed by successive imaging with 488- and 647-nm lasers (for

double staining comprising phalloidin-Atto 488) or using alternated sequences

of one activator frame followed by three reporter frames. The N-STORM soft-

ware (Nikon Instruments) was used for the localization of single fluorophores.

Image Processing and Analysis

Image reconstructions were performed using the ThunderSTORM ImageJ plu-

gin (Ovesný et al., 2014). Custom scripts and macros were used to automate

images reconstructions. For quantification of longitudinal periodicity, intensity

profiles were fitted using a sinusoid function. The histogram of spacing values

was fitted with a Gaussian curve to obtain the mean spacing and spread. For

quantification of radial distributions, radial profiles were obtained on YZ trans-

verse projections and the distance between epitopes defined as the difference

between themaxima of Gaussian fits on each channel. For quantification of the

AIS length and components intensity on epifluorescence images, a threshold

was applied on line profiles along the axon to detect the AIS position (Grubb

and Burrone, 2010b). Significances were tested using two-tailed unpaired

t tests (two conditions) or one-way ANOVA followed by Tukey posttest (three
2792 Cell Reports 13, 2781–2793, December 29, 2015 ª2015 The Au
or more conditions). In all figures and tables, significance is coded as ns, non-

significant; *p < 0.05; **p < 0.01; and ***p < 0.001.
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