
HAL Id: hal-01474234
https://hal.science/hal-01474234

Submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Efficient and versatile FPGA acceleration of support
counting for stream mining of sequences and frequent

itemsets
Adrien Prost-Boucle, Frédéric Pétrot, Vincent Leroy, Hande Alemdar

To cite this version:
Adrien Prost-Boucle, Frédéric Pétrot, Vincent Leroy, Hande Alemdar. Efficient and versatile FPGA
acceleration of support counting for stream mining of sequences and frequent itemsets. ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), 2017, ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), 10 (3), pp.21. �10.1145/3027485�. �hal-01474234�

https://hal.science/hal-01474234
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

A

Eff cient and versatile FPGA acceleration of support counting for
stream mining of sequences and frequent itemsets

ADRIEN PROST-BOUCLE and FRÉDÉRIC PÉTROT, TIMA Lab. - CNRS/Université Grenoble-Alpes

VINCENT LEROY and HANDE ALEMDAR, LIG Lab. - CNRS/Université Grenoble-Alpes

Stream processing has become extremely popular for analyzing huge volumes of data for a variety of applications, including

IoT, social networks, retail, and software logs analysis. Streams of data are produced continuously, and are mined to extract
patterns characterizing the data. A class of data mining algorithm, called generate-and-test, produces a set of candidate
patterns that are then evaluated over data. The main challenges of these algorithms are to achieve high throughput, low latency

and reduced power consumption. In this paper, we present a novel power-eff cient, fast, and versatile hardware architecture
whose objective is to monitor a set of target patterns in order to maintain their frequency over a stream of data. This accelerator
can be used to accelerate data mining algorithms including itemsets and sequences mining.

The massive f ne-grain reconf guration capability of FPGA technologies is ideal to implement the high number of pattern

detection units needed for these intensive data mining applications. We have thus designed and implemented an IP that
features high-density FPGA occupation and high working frequency. We provide detailed description of the IP internal micro-
architecture and its actual implementation and optimization for the targeted FPGA resources. We validate our architecture by
developing a co-designed implementation of the Apriori Frequent Itemset Mining (FIM) algorithm, and perform numerous

experiments against existing hardware and software solutions. We demonstrate that FIM hardware acceleration is particularly
eff cient for large and low-density datasets (i.e. long-tailed datasets). Our IP reaches a data throughput of 250 million items/s

and monitors up to 11.6k patterns simultaneously, on a prototyping board that overall consumes 24W in the worst case.

Furthermore, our hardware accelerator remains generic and can be integrated to other generate and test algorithms.

Additional Key Words and Phrases: Data Mining, Frequent Itemset Mining, Sequence Mining, Stream Mining, FPGA
Architecture, Hardware Accelerator, Apriori Algorithm

1. INTRODUCTION

Extracting information from huge collections of unstructured data has taken an increasing importance
in the last decades. This mining process takes place in a context in which an increasing amount
of data sources are data streams, i.e. data is produced by a continuous and uninterruptible source,
leading to a potentially unbounded amount of data.

Many algorithms have been developed to perform batch extraction of patterns (e.g. sets or se-
quences of items) from f nite datasets, including frequent pattern mining, emerging pattern mining,
association rules mining, etc. However most of these algorithms require the ability to store the
entire dataset in memory to scan it repeatedly for f ltering and data structure transformation with
unconstrained processing time. This is notably the case for mining frequent itemsets and sequences.
These algorithms have a high practical interest and have been applied successfully for a variety
of applications [Cret et al. 2009; Zaiane 2014; Gu et al. 2016]. These algorithms work under the
assumption that the data is organized as a sequence of transactions. Mining frequent itemsets consists
of f nding groups of items that are present in an arbitrary order in a suff ciently large number of
transactions. Mining sequences is a similar process but then the order of items must be respected.

Batch mining algorithms are designed for the off ine processing of a f xed collection of transactions,
and thus are not directly applicable online on data streams. A practical approach for stream processing
consists in splitting the stream according to a sliding window based on transaction frontiers. This

This project is being funded in part by Grenoble Alpes Métropole through the Nano2017 Esprit project.
Author’s addresses: Adrien Prost-Boucle and Frédéric Pétrot: 46 Avenue Félix Viallet, 38031 Grenoble Cedex, France. Vincent
Leroy and Hande Alemdar: CS 40700, 38058 Grenoble Cedex 9, France. Email: <f rstname>.<lastname>@imag.fr

ACM Transactions on Reconf gurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:2

T0 = {a, b}
T1 = {a, b, d}
T2 = {a, c, d}
T3 = {a, b, c, d}
T4 = {b}
T5 = {c, d}
(a) Example dataset

size 1 size 2 size 3
{a} : 4 {a, b} : 3 {a, b, d} : 2
{b} : 4 {a, c} : 2 {a, c, d} : 2
{c} : 3 {a, d} : 3
{d} : 4 {b, d} : 2

{c, d} : 2
(b) Frequent Itemsets

Fig. 1. Example of FIM (ε = 2)

constitutes mini-batches which enables to use traditional batch-based mining algorithms. However
this requires temporary storage for these mini-batches. The storage capacity and the time data has to
be retained depends on the execution time of the actual mining process. Given the interest of doing
these kinds of analysis online, our goal is to specify and design a versatile and low power hardware
device to accelerate pattern mining. In particular, we focus on the generate-and-test class of pattern
mining algorithms that operate by generating candidate patterns and evaluating their frequency in
the data. Our hardware accelerator loads the set of candidate patterns and maintains a count of their
frequency over a stream of data. This accelerator is generic, as it can be applied to a wide range of
generate-and-test algorithms, including itemset and sequence mining.

Among the algorithms that have been proposed for Frequent Itemset Mining (FIM), Apri-
ori [Agrawal et al. 1994], Eclat [Zaki et al. 1997], FP-Growth [Han et al. 2000], and LCM [Uno
et al. 2003] are representative of the evolution of the domain. A large body of work has been done
at optimizing software implementations [Borgelt 2003], but the required CPU processing power
remains very high. As such, the currently known software implementations of these algorithms
cannot be used on high throughput, low latency streams, with a reasonable power budget. Apart from
LCM, these algorithms feature a high level of fine-grained parallelism and hardware acceleration
approaches have been studied. In this work, we evaluate our hardware accelerator with a co-designed
implementation of the Apriori algorithm, as it is representative of generate-and-test algorithms.

The rest of the paper is organized as follows. Section 2 presents the context of this work by
introducing data mining concepts and presenting the characteristics of the main Frequent Itemset
Mining algorithms. Section 3 introduces the most relevant works that target hardware acceleration
of these algorithms, and outlines their strengths and weaknesses. Section 4 details the specification
of a novel hardware architecture aiming at accelerating pattern matching and support counting on
FPGA, and Section 5 details its integration with the Apriori algorithm. The implementation is tested
and compared to previously published software and hardware/software results in Section 6. Finally,
Section 7 summarizes our work and draws some perspectives for enhancement.

2. PRELIMINARIES
2.1. Definition of the Frequent Itemset Mining Problem
A dataset D is a collection of transactions over a set of items I. We assume the existence of a strict
ordering on I . A transaction T ∈ D of size n is denoted T = {i1, ..., in} where T ⊆ I. Table 1a
provides an example dataset of 6 transactions where I = {a, b, c, d}. An itemset P is a subset of I.
A transaction T is an occurrence of P if T contains P , i.e. P ⊆ T . The number of occurrences of
an itemset in D is called its support, denoted supD(P). In our example dataset, supD({a, b}) = 3.
Frequent Itemset Mining (FIM) consists of finding all itemsets whose support in D is at least ε, along
with their exact support. The list of frequent itemsets in our sample dataset for ε = 2 is given in
Table 1b.

2.2. Most notable algorithms
Apriori. Agrawal et al. defined the problem of FIM and proposed the Apriori algorithm to solve

it [Agrawal et al. 1994]. Apriori enumerates itemsets by increasing length, also called breadth-first

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:3

exploration, finding all frequent itemsets of size K (noted K-itemset) before considering (K + 1)-
itemsets. Apriori follows the generate-and-test approach. (K+1)-itemset P ′ are generated by adding
one frequent item e to the frequent K-itemset P (i.e. generate phase). P ′ is then a candidate itemset,
and to decide whether it is actually frequent or not, it is necessary to count the number of dataset
transactions that do contain P ′ (i.e. test phase). This operation is named support counting and it is
the most time-consuming part of Apriori, as it requires scanning through D for each candidate.

The interest of Apriori comes from the fact that for any (K + 1)-candidate P ′ to be frequent, all
the K-itemsets included in P ′ must also be frequent. This property is known as the anti-monotony of
the support of itemsets. By building the list of (K + 1)-candidates from the list of actually frequent
K-itemsets, the very costly support counting operation is not launched on itemsets which are known
to be infrequent. While a dataset D potentially contains 2|I| different itemsets, Apriori avoids in
practice exponential complexity by exploiting this property to prune the search space.

Eclat. Zaki et al. proposed Eclat as an alternative to Apriori [Zaki 2000]. Contrary to Apriori,
Eclat performs a depth-first exploration of itemsets, and computes the supersets of an itemset before
other itemsets of the same size. Eclat uses a vertical representation of the dataset: instead of storing
transactions as arrays of items, it computes for each item the list of transactions it belongs to. The
transaction list of an itemset P is obtained by intersecting the list of transactions of the parent itemsets
of P , and its support is the number of entries it contains. This vertical representation is effectively
obtained by a transposition of the dataset structure and it must be done on the whole dataset before
starting frequent itemset mining. Contrary to Apriori, Eclat does not store candidates nor previously
found frequent itemsets, which makes it a generally fast and memory-efficient algorithm.

FP-Growth. Han et al. introduced the FP-Growth algorithm [Han et al. 2000]. It consists of
transforming the dataset into a frequent pattern tree (FP-tree, a tree that contains all itemsets that
exists in the dataset). In such a tree, each node represents an item, and the path from the root node
to any other node represents an itemset. Each node also contains a counter that is the number of
transactions that include the corresponding itemset. Once this is done, the tree can be recursively
scanned and the counters checked to decide whether the corresponding itemset is frequent. Software
implementations of FP-Growth are generally faster than Apriori but the FP-tree’s high memory usage
limits its application to large datasets.

LCM. LCM, proposed by Uno et al. [Uno et al. 2005], performs a depth-first itemsets enumeration
similar to Eclat. It maintains both a horizontal (transaction based) and vertical (item based) represen-
tation of the dataset. The main innovation of LCM is a dataset reduction operation, which creates
a significantly compressed version of the dataset before enumerating the supersets of an itemset.
While the performance of each FIM algorithm varies depending on the characteristics of the dataset,
LCM 3.0 is generally considered as the fastest algorithm available (see section 6.7).

3. STATE OF THE ART IN ACCELERATED FIM
3.1. Apriori
Baker and Prasanna devised an FPGA-based acceleration for Apriori [Baker and Prasanna 2005;
Baker and Prasanna 2006]. The systolic array architecture is used for every step of the algorithm:
finding pairs of parent itemsets to generate candidates, eliminating candidates using anti-monotony,
and computing support of candidates. The hardware proposed in [Baker and Prasanna 2005] is able
to load 560 candidates in a Virtex-II Pro XC2VP100 FPGA, and support is evaluated by streaming
the dataset. An updated version of the support counting unit groups similar candidates around small
CAMs used for item recoding. This enables to overall load more candidates, which reduces the
number of iterations through the dataset [Baker and Prasanna 2006]. However they do not indicate
the CPU cost of efficiently grouping candidates in order to make the best use of these CAMs.

Unfortunately the results in [Baker and Prasanna 2005; Baker and Prasanna 2006] were based
on wrong estimations of the number of candidate itemsets. This has also been noted by [Thoni and
Strey 2009] who re-implemented the technique proposed in [Baker and Prasanna 2006]. Although in

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:4

[Thoni and Strey 2009] no CAM-based item recoding is implemented, the obtained execution time
and FPGA resource utilization per candidate are notably higher.

In [Wen et al. 2008] the FPGA-based platform, HAPPI, is proposed. They a use hardware hash
table to limit CPU-FPGA communications and synchronizations. This seems to be very effective on
the small synthetic datasets they used but scalability is probably limited due to the hardware nature
of their hash table.

GPU acceleration of Apriori is proposed in [Nikam and Meshram 2014]. A bitmap representation
of the dataset is used, which does not scale well to large datasets that have long tail distributions (i.e.
many items but short transactions). They used only very small datasets in experiments (max. 19 MB)
despite using a high-end workstation (two Tesla C2050 GPUs), and absolute execution times are
difficult to infer from their figures.

Finally, an implementation based on Micron’s Automata processor is proposed in [Wang et al.
2015]. They obtain noticeable acceleration compared to Borgelt’s Apriori sortware tool and a
multi-thread implementation of the Eclat algorithm. Their approach appears competitive with GPU-
accelerated Eclat running on GPU NVidia Kepler K20C [Zhang et al. 2013a].

3.2. Eclat
Zhang et al. proposed to accelerate Eclat using GPU [Zhang et al. 2013a]. Candidates enumeration
takes place on the CPU, while support counting operations take place on the GPU. A vertical
representation of the dataset is stored in the memory of the GPU as bitsets. The intersection of
transactions lists is thus a AND operation taking place on the GPU, and the support is computed by
counting the number of 1 bits in the resulting bitset. The authors evaluate their solution on a Nvidia
Tesla S1070 GPU, and report a 6 to 30 speedup compared to software FIM implementations.

A similar acceleration was also performed on FPGA [Zhang et al. 2013b]. The main difference
with GPU acceleration stems from the lack of memory on the FPGA. Thus, bitsets are stored in main
memory and the FPGA only has a small cache. The authors argue that the main bottleneck is the
bandwidth of the memory controller, and proposed compression techniques to improve performance.

Shi et al. propose a different FPGA acceleration [Shi et al. 2013]. Transactions are not represented
as bitsets, but as lists of integers. Hence, the intersection process, taking place on the FPGA, is more
complex than with bitsets.

3.3. FP-growth
Hardware acceleration of FP-Growth with systolic trees has been proposed in [Sun et al. 2008]. They
noted that the size of the systolic tree grows more than exponentially with the number of frequent
items the tree can handle, which limits hardware accelerators to only a few frequent items, typically
four. To overcome this limitation they proposed to generate sub-databases by performing projection
of the original database on a few items. These sub-databases have to be processed iteratively with the
systolic tree and the results have to be merged together.

Experiments with known datasets were performed in [Sun and Zambreno 2011] with a systolic
tree limited to four frequent items. The mining times are compared to a software implementation of
FP-Growth. The hardware accelerator speeds mining up when the number of frequent items is low,
but there may be no acceleration at all when database projection operations are needed.

In [Bustio et al. 2016] using systolic trees is proposed for stream mining applications. They used
datasets with a very low number of items (17 to 75) because of the scalability issue of the systolic
tree. Mining also becomes approximate for more than 20 items.

3.4. Analysis
In this work, we focus on accelerating the Apriori algorithm. Indeed, our goal is to design a reusable
hardware accelerator for data mining, and the generate-and-test approach of Apriori is more generic
than other algorithms specifically tailored for FIM. Furthermore, Apriori requires the least data
structure transformation to perform mining, even sometimes no transformation at all. All pattern
matching and support counting can be performed in parallel on all candidates itemsets, which make it

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:5

Fig. 2. Hardware accelerator architecture

a prime candidate for a massively parallel hardware accelerator. For stream mining, this also ensures
only a minimal amount of buffering is needed which minimizes both hardware requirements and
output latency.

Just like the hardware accelerators from previous works, our proposal relies on the knowledge of
certain properties of the data to mine (e.g. number of different items), and puts some bounds to the
data it can handle at once (e.g. number of transactions).

4. HARDWARE ACCELERATOR ARCHITECTURE AND IMPLEMENTATION
We propose an optimized FPGA accelerator for generate-and-test mining algorithms. The bottleneck
of such algorithms, including Apriori, is the support counting phase, in which the frequency of all
candidate patterns is evaluated. Hence, contrary to [Baker and Prasanna 2005; Wen et al. 2008]
where hardware resources are used for mechanisms to filter candidate itemsets, we direct our efforts
towards the support counting units.

Our proposal stands in three points. First, we design an optimized support counting unit, from the
standpoint of FPGA area and speed. Second, we propose a low latency data delivery mechanism.
And third, we optimize the placement of the compute part of the accelerator to maximize FPGA
efficiency.

Improvements compared to the related works are:

— introduction of a technique to handle de-duplicated transactions in the accelerated support
counting phase,

— definition of a very efficient technique to distribute data to support counting units,
— design of a highly optimized implementation for the support counting units,
— definition of an ad-hoc algorithm to place a very high number of units in the FPGA.

These contributions are presented in the following sections.

4.1. Hardware accelerator architecture
Figure 2 is an overview of the architecture of our hardware accelerator. It is a PCIe Gen 2 peripheral
that provides hardware acceleration of support counting to the host computer.

We integrate our support counting IP with the RIFFA interface framework [Jacobsen et al. 2015].
The RIFFA interface takes care of the setup of the PCIe hard IP embedded in the FPGA and offers
simple bidirectional FIFO-based communication channels to our IP. We use two RIFFA channels: the
first is dedicated to the read/write operations on the configuration registers inside our IP controller,
and the second is dedicated to high-throughput streamed data transfer between the computer and our
IP.

The support counting operation is performed by a large number of small and identical support
counting units (implementation details are given in section 4.2). Data and control signals are broadcast
from the controller to the units using an ad-hoc distribution mechanism to cope with fanout issues
(implementation details are given in section 4.3). Events from units are gathered with a similar ad-hoc
mechanism (implementation details are given in section 4.4).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:6

Fig. 3. Support counting unit

Each unit can be programmed at run-time with one candidate pattern, and is dedicated to counting
the support of that pattern. To that end, the computer sends the pattern data to our IP controller
through the RIFFA channel dedicated to high-throughput transfers. The controller broadcasts this
pattern to all units, but a write enable token mechanism only enables one unit to store any given
pattern. The write enable token is sent to the units with a dedicated one-bit scan chain that traverses
all units.

Once the computer has transfered the set of all candidate patterns, it sends the dataset through the
same RIFFA channel. Our IP controller broadcasts this data stream to all counting units, that perform
pattern matching on-the-fly and increment an internal support counter if the pattern is detected in the
transaction.

Then the computer asks that all support values are sent back. Our IP controller broadcasts a
dedicated control signal to all counting units. The support values are then shifted one by one to the
controller, using another dedicated scan chain that traverses all units. The controller transfers this
data stream back to the computer through the RIFFA channel.

4.2. Support counting unit
The internal implementation of a single support counting unit is given Figure 3. A lot of care has
been taken optimizing every bit of this unit in order to have as many of them as possible fit into the
FPGA.

Some elements are now relatively common in the field of FPGA-accelerated FIM [Baker and
Prasanna 2005; Baker and Prasanna 2006; Wen et al. 2008]: a small RAM stores the pattern, an item
comparator checks for inclusion in the received dataset transactions, and a counter keeps track of the
pattern support.

However, the unit we propose differs on several fundamental points:

— the absence of address comparator,
— the simplified item comparator,
— the ability to handle transaction weights,
— the absence of per-unit controller.

As proposed in [Wang et al. 2015] for FIM acceleration with Micron’s Automata Processor, we
use a special item value as delimiter of the end of patterns and transactions.

An illustration of how our unit works is given in Figure 4. The pattern address register is reset to
zero at the beginning of each transaction. This address register is incremented each time the item
is matched with the transaction item. For this only an equal to item comparator is needed, where
the additional functionality greater than and/or less than was required in [Baker and Prasanna 2005;
Wen et al. 2008]. Additionally, the end-of-pattern delimiter value can only be matched at the end
of the transaction. If it is matched, it means that all items of the candidate pattern monitored by the
support counting unit have also been matched in the transaction. This way, to check if the current
transaction supports the pattern, it is sufficient to test if the delimiter item is matched at the end of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:7

Fig. 4. Unit in action

the transaction. This test works for any pattern size, so there is also no need for another comparator
on the address register, unlike proposed in [Baker and Prasanna 2006]. Hence, a single equal to item
comparator per unit is sufficient.

This approach to detecting the presence of patterns in data transactions is generic and can be easily
used in the context of both itemset and sequence mining. Indeed, to match itemsets, it is sufficient to
sort candidate patterns and transactions using an arbitrary ordering on items. In the case of sequences,
the order of items in candidates and transactions remains unchanged.

It is neither needed to send the pattern size to counting units, nor to store this size in the units. In
the case of Apriori, all candidate patterns have the same size. However, the pattern in all counting
units of the FPGA can be of different sizes, which makes the proposed implementation completely
generic and able to load any set of candidate patterns.

To our knowledge, no related work has been proposed to handle transaction weights. Many software
implementations perform de-duplication of identical transactions after filtering infrequent items. This
operation enables to reduce the dataset size, sometimes by one order of magnitude depending on the
characteristics of the data. This is particularly beneficial for hardware acceleration where the dataset
is commonly sent one item at a time to the units. In the proposed implementation, the transaction
weight is handled and is sent to units at the clock cycle that follows the end of the transaction. The
units add the weight to the support counter instead of adding 1.

In fact, the proposed unit features no actual controller. Most control signals are global and are
generated by the main support counting controller, as illustrated in Figure 2. This saves many
hardware resources in the support counting units. Dedicated data distribution mechanisms are used
to efficiently send the global signals to all units.

4.3. Mechanism for data distribution
The proposed implementation does not use a scan chain to send candidate patterns, transactions and
control signals to units. This is the method of choice in related works [Baker and Prasanna 2005;
Wen et al. 2008]. However despite its apparent simplicity, this solution has two main drawbacks.
First, this forms a high-latency pipeline, and second, it requires a high amount of registers, which
contributes to the area per unit and to power consumption. We propose an alternative solution that
addresses both points.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:8

Fig. 5. Distribution tree

The proposed implementation is a pipelined fanout distribution tree, illustrated in Figure 5. It is a
tree in which each node is buffered with a register, and where each register is used under a low fanout
(we used the value 4). With a fanout of 4, it can be calculated that the average number of registers
used per unit is roughly one third of what would be needed by a corresponding dedicated scan chain.
This tree also uses no logic resources (e.g. LUT), so these registers fit nicely in the few places that
are still unused after compact placement of the units. Hence, the area of this global distribution
mechanism is virtually zero.

Our implementation still makes use of two scan chains: a one-bit chain to propagate a Fill Enable
flag to enable writing patterns into the RAMs of the units, and another chain to send the support
values back to the controller. The former uses exactly one register and one LUT per unit, which
makes it very low-cost. The latter has a much larger width but it is entirely implemented in the
registers of the support counters and the corresponding ALU, so its resource usage is also virtually
zero.

The mechanism employed to write the candidate patterns into the units is also independent from
the scan chain formed by the support counters. For iterations of the generate-and-test algorithm
where the number of candidate patterns exceeds the number of available units, this enables to save
time by simultaneously writing a batch of patterns and reading the support values of a previous batch
of patterns (see section 5.2).

4.4. Mechanism for gathering unit events
Support counters are incremented during mining. To avoid overflow, it is necessary to read and clear
them regularly. However mining is stopped when reading counters, which can be a real problem for
online mining of uninterruptible streams.

In order to read counters only when strictly necessary, the hardware mining controller must know
when a counter is almost full. To that end, one small comparator can be added to the matching unit to
detect when the most significant bits of the counter cross a given threshold (only one LUT is enough
for this). The value of the threshold can be set in the LUT at synthesis time, or at run-time at the cost
of an additional dedicated small data distribution tree to send the threshold value to the units.

Similarly, it is important to know as early as possible when a pattern is found in the mined stream.
That way the controlling application can store only the parts of the stream that do contain monitored
patterns, for later more thorough analysis. To that end, the mining controller has to know as early as
possible when any of the monitored patterns is found in the mined dataset/stream transactions. This
event can also serve as wake-up signal for any controlling software, so for power-saving purposes
the CPU (if any) can be kept in its lowest-power sleep mode most of the time. For FIM acceleration,
this signal can also be used to reduce the dataset size between iterations of the Apriori algorithm by
removing unuseful items and transactions.

So each unit can output two event signals (if enabled at synthesis time). These signals are gathered
and routed back to the mining controller using a hardware tree similar to the data distribution tree
described in section 4.3, but where signals pass in the other direction. Each node of the tree consists
of one OR logic gate (inside one LUT) and one register. This effectively performs a pipelined OR
reduction on the signals that come from all counting units. One instance of that tree is used to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:9

Fig. 6. Global FPGA organization

gather the signals for counter almost full, and another instance is used to gather the output of the
comparators inside the units (according to whether these functionalities are enabled at synthesis
time).

With this lightweight event gathering tree mechanism, the mining controller receives events with a
4 to 6 clock cycles latency, which is very short. The controlling software running on the host computer
(if any) can also receive these events with only a few microseconds latency (e.g. for PCI-Express),
with no interruption of the data stream.

4.5. Global FPGA organization
Our implementation is tuned for the Xilinx VC709 FPGA board, so the presented optimizations
cannot be directly applied on other targets and particularly for other FPGA vendors. However, similar
per-target optimizations should be feasible.

The global FPGA organization is illustrated Figure 6. The RIFFA framework [Jacobsen et al.
2015] is used as PCI-Express communication interface with the computer. Our support counting
controller and the RIFFA interface are placed close to the hard PCI-Express endpoint. The controller
only needs to drive one side of the chain of support counting units, so there is a lot of freedom to
place that chain through the FPGA while filling all gaps as much as possible.

Unfortunately, the fully automated Vivado place-and-route suite fails to automatically infer the
topology of the connections between the units and the controller, and it fails to place the units close
to each other. Overall, Vivado fits 25% less matchers in our FPGA than theoretically possible, and the
resulting designs work at a frequency 20% lower than our 250 MHz target (linked to PCIe interface).
This under-utilizes the FPGA capabilities by around 40%, which is very significant.

In order to fully exploit the FPGA capabilities and to get closer to the theoretical limits, a large part
of the design placement is predefined and is performed by ad-hoc scripts, which guides the Vivado
place-and-route steps. This is achieved by describing the unit entity at netlist level by explicitly
instantiating the LUT and slice register primitives. The internal elements of the units are then largely
untouched by logic synthesis, and they can be found again later and manipulated with scripts. The
automated placer is left with the task of placing the controller, the data distribution tree and the event
gathering trees (if any). The very short distance between the pre-placed unit elements ensures a high
working frequency and makes the task of the automated router much easier.

However there are thousands of units to place with scripts and this is only possible with a high
level of regularity. This is achieved by using a particular placement layout template where two units

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:10

Fig. 7. Examples of placement layout templates

Table I. Unit details for various pattern heights

Template height
(slices)

Units
in FPGA

Pattern
size

Item
(bits)

Counter
(bits)

Event
gathering tree

4 11636 32 8 16 no

5 9360

32 8 20 yes
32 12 19 no
32 12 16 yes
32 16 16 no
64 8 20 no

6 7788
32 12 24 yes
32 16 24 no
64 8 24 yes

7 6644 32 16 28 yes
64 12 28 yes

8 5818
32 24 32 yes
32 32 28 no
64 16 28 yes

are packed together. The template is rectangular, 4 FPGA slices large. The optimal template height
(in slices) depends on the width of the support counter and of the items to process, in bits. Examples
of templates are illustrated Figure 7 for a maximum itemset size of 32, including the delimiter item.
With 16-bit support counters and 8-bit items, two units fit inside a 4x4 slices template. With 24-bit
support counters and 16-bit items, two units fit inside a 4x6 slices template. In both cases, strictly all
LUT primitives of the template are used, which makes these two templates optimal. Approximately
half of the slice registers are either used or unusable because of restrictions due to LUTRAM usage in
the same slice. The remaining registers are needed for the global distribution tree, with a welcomed
little margin because this tree is placed and routed with the automated Vivado design suite.

Our placement scripts are not fully automatic. We created one basic placement routine that fills
a specified rectangle area by placing units using a zig-zag path. To completely fill our FPGA, this
routine is called around 10 to 15 times, with manually-specified coordinates, for each supported
template height value. We felt this was an acceptable enough solution to efficiently handle the FPGA
black boxes and other local non-uniformities of the reconfigurable fabric. Devising a fully automatic
algorithm to place our chain of units should be possible, but this is out of the scope of this paper.

This technique enables to very densely tile the available reconfigurable FPGA area. Table I
presents some of the possible combinations of unit characteristics for several height values, given
in FPGA slices. The pattern size includes the delimiter item. Note that many other combinations
are possible, including some that are locally optimal, but they are not shown for clarity. For each
combination, the corresponding FPGA configuration can be generated. This operation can take hours
for each configuration because of the size of the FPGA. However it is only done once so this effort is
amortized. For FIM operations, the most appropriate configuration can be selected and programmed
onto the FPGA. With high-speed data transfer through PCI-Express or from on-board DDR memory,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:11

the entire FPGA can be reconfigured in as low as 72 ms. Also once programmed, the FPGA can be
used for any number of different datasets, so the FPGA programming time is generally not an issue.

There is however an area of the FPGA without LUTRAM primitives. It represents approximately
6% of the total reconfigurable FPGA area. LUTRAMs are needed for the itemset RAM of each
unit, so no unit can be placed in that area. Even with this limitation, and with some area margin
taken to ease placement and routing of the large design section PCIe+RIFFA+Controller, the global
LUT usage is around 90%. This is exceptionally high compared to the usual objective of 80% for
large FPGA designs. With a global working frequency of at least 250 MHz, the proposed design
architecture enables to very efficiently use the FPGA resources.

4.6. Data throughput
As one item is processed per clock cycle, with our 250 MHz implementation the maximum throughput
ranges from 250 MB/s for 8-bit item encoding to 1 GB/s for 32-bit item encoding, regardless of the
fact that it is a dataset being processed offline or a data stream being monitored online.

We highlight the fact that during Apriori FIM, our hardware accelerator behaves strictly the same
way as it would for online sequence matching on an uninterruptible data stream.

5. APPLICATION: APRIORI ACCELERATION
We demonstrate the efficiency of our architecture using the batch Apriori FIM application, because
the underlying generate-and-test approach can be used for a variety of mining tasks, including
sequence mining, whether from offline batch or online stream. There are also many implementations
to compare to, in hardware as well as in software, which is not the case for stream sequence mining.

Note that the dataset filtering and sorting steps and the need for dataset re-scanning are specific to
batch-based applications. However, the acceleration of the core support counting functionality of the
Apriori FIM application is representative of stream mining (user-specified sequences or itemsets).

5.1. Dataset loading and filtering
In the usual software FIM world, the dataset loading steps are the following:

(1) read the dataset file from disk,
(2) remove infrequent items,
(3) sort transactions so items are always in the same order,
(4) de-duplicate identical transactions.

Some of these operations may be performed in a different order, particularly with trie-based storage
of transactions.

The usual FPGA-accelerated Apriori world presents two differences:

— items are re-coded using the range 0 to #items− 1,
— identical transactions are not de-duplicated.

Re-coding items enables to use hardware units tailored to just the minimum number of useful
bits, and to reduce the size of data transfers between the computer and the accelerator. The reason
for not de-duplicating identical transactions is generally due to hardware constraints: handling a
per-transaction weight requires more complex data transfer protocols, hence an increased design
complexity, and usually larger support counting units, which reduces the number of units that can fit
in the FPGA.

However in the proposed approach, the hardware unit is able to handle per-transaction weight
at virtually no hardware cost, while still having a very simple implementation. De-duplication of
identical transactions can be performed and, on some datasets, the amount of data transfers is strongly
reduced, which brings a very high speedup.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:12

Fig. 8. Pipelined processing of batches of candidate itemsets

5.2. HW / SW parallelism
When the number of candidate (K + 1)-itemsets is higher than the number of support counting units,
the candidates are grouped into several batches that are iteratively sent to the FPGA. The order of
candidates is not relevant, so they are simply grouped by following the order in which the generation
algorithm produces them. Each batch is created and processed in several steps:

(1) build a batch of candidates,
(2) send the batch of candidates to the FPGA,
(3) send the dataset to the FPGA,
(4) get the support values from the FPGA,
(5) drop infrequent itemsets.

The processing of batches is highly pipelined in order to perform as many software tasks as
possible during data transfers. From the software side, data transfers are actually handled by the
RIFFA driver and performed by the autonomous DMA of the processor. This uses nearly no CPU
time so it is done in parallel with the other software tasks.

Figure 8 illustrates how these steps are orchestrated between the software and hardware sides, and
shows how the processing pipeline is initialized. Tasks are represented by boxes and data transfers
are highlighted with large grey arrows.

Building batches of candidates (K + 1)-itemsets is performed using a well-known technique,
briefly described here. The frequent K-itemsets obtained at the previous iteration of the Apriori

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:13

algorithm are scanned. From two K-itemsets of the form P ′ ∪ {a} and P ′ ∪ {b}, where P ′ is a
frequent (K − 1)-itemsets, the candidate P ′ ∪ {a, b} is built. This candidate is also filtered by
checking that all other K-itemsets it contains are also frequent. This is done with a software hash
table that contains hashes of all frequent K-itemsets, which is both very fast and scalable.

The support counting process begins by building the first batch of candidates of size K + 1. Then
this first batch is sent to the FPGA, followed by the dataset for support counting. While the dataset is
being sent, the computer builds the second batch of candidates.

The support counters of the first batch are sent back to the computer, which is simultaneously
sending the second batch to the FPGA.

When both operations are finished, the dataset is sent again to the FPGA for support counting of
the second batch. In the meantime, the computer drops infrequent itemsets from the first batch, then
it builds the third batch while the dataset is still being sent.

The processing pipeline is now initialized and batches are processed with maximum computer-
accelerator parallelism. This process continues until all candidates have been either filtered out or
processed in the batches.

5.3. Splitting large datasets
Similarly to the fact that there can be more candidates than there are hardware counting units, which
forces to process candidates into several batches, the range of the hardware counters can be shorter
than what would be needed to hold the worst-case itemset frequency.

To that end, after loading and filtering the dataset, the frequencies of all items are considered.
Indeed, no itemset can be more frequent than any of its items. In case the hardware counters are
too short to hold this worst-case itemset frequency, the dataset is split into several partial datasets
such that for each one, the worst-case itemset frequency is guaranteed to fit in the hardware counters.
At support counting time, the dataset is not sent to the FPGA in one go as previously illustrated
Figure 8. Instead, the partial datasets are sent one at a time. Hardware counters are also read and
cleared between partial datasets.

However, there might be transactions whose weight value can’t fit in the hardware counters,
even taken alone. In this situation, these transactions are isolated and each forms a partial dataset.
Such special partial dataset is sent to the FPGA with transaction weight forced to 1, and when
later receiving support values, the values are multiplied by the original transaction weight. This
technique enables to use hardware units with short counters even for very large datasets. This enables
to instantiate in the FPGA a higher number of units compared to using counters large enough,
potentially speeding up the support counting operation.

6. RESULTS
6.1. Datasets
Datasets chosen from related works are used in order to compare the performance of our solution
against other recent implementations. Details are given in Table II.

T10I4D100K and T40I10D100K are standard synthetic datasets from [FIMI Repository 2003],
used in [Baker and Prasanna 2005; Baker and Prasanna 2006; Thoni and Strey 2009]. This enables to
compare against competing FPGA implementations of the Apriori algorithm.

Pumsb, accidents and webdocs are standard real-world datasets from [FIMI Repository 2003],
webdocs5x is a synthetic dataset obtained by replicating webdocs 5 times. They are used in [Wang
et al. 2015], enabling to compare against an implementation of the Apriori algorithm using Micron
Automata Processor.

T40I10D03N500K, T40I10D03N1000K, T60I20D05N500K and T90I20D05N500K are used in
[Zhang et al. 2013b]. This enables to compare against an FPGA-accelerated implementation of
the Eclat algorithm. The datasets are generated with the tool IBM Market-Basket Synthetic Data
Generator [IBM 2012].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:14

Table II. Datasets

Dataset # Trans. # Items Avg. length
of trans. Size

T10I4D100K 100k 870 10.1 3.8 MB
T40I10D100K 100k 942 39.6 14.8 MB

pumsb 49046 2113 74 15.9 MB
accidents 340183 468 33.8 33.9 MB
webdocs 1692082 5267656 177.2 1.38 GB

webdocs5x 8460410 5267656 177.2 6.90 GB
T40I10D03N500K 500k 299 40 63 MB
T40I10D03N1000K 1000k 300 40 134 MB
T60I20D05N500K 500k 500 60 104 MB
T90I20D05N500K 500k 499 90 155 MB

chess 3196 75 37 334 kB
BMS-WebView-2 77512 3340 4.62 2.20 MB

connect 67557 129 43 8.80 MB
BMS-POS 515596 1657 6.53 11.3 MB

kosarak 990002 41270 8.10 30.5 MB

The five other datasets, chess, BMS-WebView-2, connect, BMS-POS and kosarak are used in [Sun
and Zambreno 2011]. This enables to compare against an FPGA-accelerated implementation of the
FP-Growth algorithm.

6.2. Workstation
All experiments are performed on a Dell Precision T3500 workstation. It is equipped with an Intel
Xeon W3530 processor (2.8 GHz, 8 MB cache) and 12 GB of RAM. The processor is a 4-cores,
8-CPU model but all experiments are run using only one CPU. Our VC709 FPGA board is directly
plugged in a PCIe2 8x motherboard slot. This board is equipped with the Xilinx FPGA XC7VX690T.
It is also equipped with 8 GB of dedicated RAM, but this RAM is not used by our acceleration
technique. For clarity, only three FPGA configurations are used:

— 11636 units, 8-bit items, 16-bit counters,
— 9360 units, 12-bit items, 19-bit counters,
— 7788 units, 16-bit items, 24-bit counters.

All configurations have itemset size 32, including the special delimiter item value, and the special
even gathering tree was not used.

In order to reduce the dependency of results upon disk I/O speed, each dataset is pre-loaded into
main RAM before any FIM operation, accelerated or not.

We highlight that the available PCIe data throughput largely exceeds our needs: our FPGA IP
processes one item per clock cycle, so for 16-bit items only 500 MB/s are required, whereas the
PCIe 2.0 8x interface provides up to 4 GB/s.

6.3. Comparison with FPGA-accelerated FP-Growth
We compare with [Sun and Zambreno 2011] as they provide results with several datasets and broad
ranges of support values. They implemented a systolic tree of depth 4, which means 4 frequent items.
Handling more frequent items is done by performing dataset projections. The transactions must be
sorted before sending them to the systolic tree, this is a light limitation we also have.

Table III shows execution times for their approach and ours for a few support values. It is important
to highlight that the datasets are small and dense, and the support values that are used lead to millions,
sometimes billions of frequent itemsets. Obviously in this kind of situation only the number of
itemsets can be counted. There is even a peak at 1.4 × 1017 for BMS-WebView-2 with minimum
support 2. However during generation, the Apriori algorithm stores all K-itemsets simultaneously in
main RAM memory. So for extreme amounts of itemsets, RAM requirements are often excessive and
our approach fails (noted swap in the table). Anyhow, as the number of itemsets increases, it becomes

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:15

Table III. Execution time compared to systolic tree (in seconds)

Dataset Support # Itemsets Time, systolic tree Time, VC709 Time, LCM 3.0

chess 1000 29,442,848 20 9.41 0.23
300 5,689,107,303 1545 swap 10.4

BMS-WebView-2 4 60,193,073 25 30 1.07
2 144,256,300,227,727,150 403 swap 7.27

connect 30000 188,117,389 78 67.5 0.16
20000 1,408,869,383 868 swap 0.30

BMS-POS 1000 29,490 15 0.53 0.61
100 5,711,447 63 20.2 2.39

pumsb 30000 16,029,969 20.2 3.66 0.24
21000 1,447,453,702 3000 swap 4.88

kosarak 2000 34,483 25 1.21 0.90
1000 711,424 52 5.45 1.45

Table IV. Execution time compared to accelerated Eclat (in seconds)

Dataset Support Zhang2013 VC709
T40I10D03N500K 1% 12.1 51.1

T40I10D03N1000K 2% 5.71 16.4
T60I20D05N500K 2% 8.75 45.6
T90I20D05N500K 5% 16.6 120

difficult, if not impossible, to perform analyses and draw useful conclusions from an application
point of view.

Depending on the dataset, our approach achieves better or similar performance than the systolic
tree. Interestingly, our speedup is the highest when the number of frequent itemsets is reasonable
(datasets BMS-POS and kosarak). The bottleneck of their approach is probably the dataset projections
they need to perform, which are CPU tasks. When there are relatively few itemsets to find, the cost
of these projections is not amortized. So it makes sense to also compare against one of the fastest
software tools, LCM 3.0 (see our comparison of SW tools in section 6.7). Unsurprisingly for these
small and dense datasets, the depth-first, memory-efficient LCM 3.0 approach is much faster than
the systolic tree (and faster than our approach too). Hardware acceleration is probably now only
pertinent for much larger, lower-density datasets. Fortunately, these so called long-tailed dataset are
very frequent, in particular in Web data and retail data [Anderson 2006].

6.4. Comparison with FPGA-accelerated Eclat
Table IV shows execution times of our VC709 platform, compared to an FPGA-accelerated imple-
mentation of the Eclat algorithm [Zhang et al. 2013b]. The configuration with 9360 units is used for
all datasets except T40I10D03N1000K where the 11636-units configuration is used due to the low
number of frequent items. For these datasets and support values, their platform seems to perform
much better than ours with speedups ranging from 2.87x to 7.22x.

However, the underlying hardware is different. Our Xilinx Virtex-7 xc7vx609t FPGA is composed
of 108k logic slices, they use four Altera Statix III EP3SE260 FPGAs, each having 102k Adaptive
Logic Modules (ALM). For our support counting implementation, each Xilinx slice is roughly
equivalent to 2 Altera ALMs. So with the amount of hardware resources available on their platform,
our acceleration technique would run twice faster. They also use large on-board RAM with low-
latency access. This makes their platform more complex and probably more power-consuming.

The very limited test set makes it difficult to further compare both platforms. It would also be
interesting to know how fast the on-board RAM limit is reached and mining fails, like in [Wang et al.
2015] with dataset T100D20M. Our accelerator is not limited by on-board RAM.

6.5. Comparison with Micron Automata
In Figures 9 and 10 the support counting times with Micron Automata Processor board (noted AP)
and of our FPGA-accelerated platform (noted VC709) are shown. We use counting time instead of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:16

Fig. 9. VC709 vs AP - Datasets pumsb and accidents

Fig. 10. VC709 vs AP - Datasets webdocs and webdocs5x

overall execution time because only counting time could be precisely extracted from the reference
paper [Wang et al. 2015].

The configuration with 11636 units is used for pumsb and accidents, and 7788 units are used for
webdocs and webdocs5x It can be observed that our platform is much faster than AP for all datasets
and for all support values, with a maximum speedup of 12.3x for dataset pumsb (support 52%).

This performance gap has several explanations:

— number of counting units and clock frequency,
— symbol replacement time,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:17

Table V. Execution time compared to previous FPGA-accelerated Apriori (support counting
only)

Previous design Proposed design
Dataset Support Time (ms) # Passes Time (ms) # Passes Speedup

T10I4D100K 150 1888 288 196 41 9.63
T10I4D100K 200 1699 261 179 37 9.49
T10I4D100K 300 1423 221 146 31 9.75
T10I4D100K 500 918 149 97.4 22 9.43
T10I4D100K 1000 344 64 38.5 9 8.94

T40I10D100K 1000 12464 532 1200 72 10.4
T40I10D100K 5000 693 42 69.6 6 9.96

— de-duplication of dataset transactions.

The AP board is clocked at 133 MHz and is configured with 18432 counting units. Our VC709 board
is clocked at 250 MHz, so with the 11636-units configuration it is theoretically faster than the AP
board by 18.7%. Also, when using 9-bit to 16-bit item encoding, the item rate is halved on the AP
board. On our VC709 board the item rate is unchanged, so we provide a theoretical speedup of 90.9%
with 9-bit to 12-bit encodings (9360 units) and 58.8% with 13-bit to 16-bit encodings (7788 units).
Our FPGA also supports virtually any item width, whereas it is unknown if more that 16-bit items
can be used one the AP board.

The symbol replacement time, in the worst case, is 45 ms for the AP board, but only 1.49 ms for
the VC709 board with the 11636-units configuration. However this parameter should only be relevant
for very small filtered datasets, e.g. pumsb.

The AP board can only increment support counters by 1 when counting. This is the main drawback
of their implementation and perhaps of the hardware itself. Our FPGA counting unit is specifically
designed to enable adding transaction weights to support counters. So during dataset loading, we
perform de-duplication of filtered transactions. The size of the dataset pumsb is then reduced by the
factor 4.88x for support 52%. This de-duplication feature has a direct consequence on the time needed
to send the dataset to the accelerator. Similarly for the dataset webdocs5x (created by concatenating
webdocs 5 times), there is a minimum guaranteed speedup of 5x thanks to de-duplication.

The advantages of the VC709 board over the AP board are not limited to counting speed. The AP
board is composed of 48 Automata Processor chips, where each has a 150 mm² die size on 50 nm
technology node and a 4 W power consumption [Micron Technology, Inc. 2013]. This is a total of
7200 mm² of die size and 192 W, not including other board components and power supplies. The
power consumption of a development board is also announced at 300 W [Micron, Inc. 2016].

In comparison, the power consumption of our entire VC709 board, which includes power supplies
and the unnecessary on-board 8 GB RAM, was measured at 24 W (peak). Xilinx does not publish the
die size for our exact board FPGA and package, but for reference the packages with same footprint
size 45x45 mm have maximum die size 23.85x21.65 mm which is 516 mm² [Xilinx Inc. 2015]. Our
FPGA is manufactured on 28 nm node, so even if the AP chips are now manufactured on 45 nm
node, it is safe to assume that the VC709 FPGA die size is smaller by an order of magnitude. So
for FIM acceleration, our FPGA solution is not only much faster than the AP board, it also presents
a performance per watt level one order of magnitude higher, and it uses much more common and
certainly more affordable hardware.

6.6. Comparison with previous FPGA-accelerated Apriori
We compare against [Thoni and Strey 2009] because their target FPGA technology (Xilinx Virtex-5)
is very close to ours (Xilinx Virtex-7). They also noted that the previous results in [Baker and
Prasanna 2006] were wrong. Moreover, the results from [Baker and Prasanna 2005] can also be
verified to be wrong due to erroneous estimation of the numbers of candidates. So the works from
[Thoni and Strey 2009] are the most pertinent. Two datasets from [FIMI Repository 2003] are used:
T10I4D100K and T40I10D100K.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:18

We use the configuration with 9360 counting units, all working at 250 MHz. They use 1116
counting units working at 170 MHz. Like ours, their architecture is able to process one item per
clock cycle. This brings a theoretical, ideal speedup of 12.3x for our platform. The results are given
in Table V. We measure only counting time instead of overall execution time because it is the metric
used in [Thoni and Strey 2009]. The actual average speedup is 9.6x, which is lower than the ideal
speedup. This is because for the last iterations of the Apriori algorithm, the number of candidates is
lower than the number of counting units, so the FPGA is under-utilized. Actually the datasets used are
very small and this effect would have a much lower impact with larger ones. However if considering
only the number of passes, the average speedup should be only 7.1x, but our speedup is higher than
that. This is partly due to our transaction de-duplication technique, which reduces the dataset size
by 11% to 12%. The low amount of details given in [Thoni and Strey 2009] makes it difficult to
explain where the rest comes from, but it may be due to our design allowing to simultaneously read
the support counters and send another batch of candidates.

It is also pertinent to compare the resource usage and the functionalities of the proposed counting
units. Unfortunately in [Thoni and Strey 2009] and [Baker and Prasanna 2006], neither the counter
width nor the maximum itemset size are given. Similarly in [Baker and Prasanna 2005] the counter
width is not given. As previously shown in section 4.5 these parameters have a strong impact on the
size of counting units, which makes the comparison difficult.

Our placement template (see section 4.5) is 5 slices high, which means 40 LUT6 per counting unit.
This is a 29.2% improvement compared to the best case 56.5 LUT6 achieved in [Thoni and Strey
2009]. Using much shorter counters would also be possible with our solution and for instance, for
the two datasets used, 15-bit support counters is the minimum that does not require dataset splitting.
This would make our counting units use only 36 LUT6, which would be a 36.3% improvement. And
even with our 6-slices high template (24-bit counters, 16-bit items) which is largely oversized for the
needs, the resource usage is 48 LUT6, which still represents a 15.1% improvement.

The scalability of designs can also be compared. In [Thoni and Strey 2009] the CAMs are 10-bit
deep which corresponds to 10-bit items. Should we use our best configuration for 10-bit items, our
solution would be much more efficient in terms of logic resources utilization. Regarding memory
needs, their requirement in CAM resources (hence as RAM blocks) grows linearly with the number
of frequent items their hardware can handle. Their FPGA can theoretically contain 11-bit items with
80% block RAM utilization, but beyond that the RAM resources are limiting. It can be calculated
that for 16-bit items the number of counting units they can implement in their FPGA is divided by at
least 32. So our solution scales much better for large numbers of frequent items.

Finally, for FIM, their implementation has an advantage: it is inherently insensitive to item order,
so it does not require that transactions are sorted (although in practice sorting transactions has a
relatively low impact on overall mining time). However because of that insensitivity, they can’t do
sequence mining.

6.7. Comparison with software tools
It is very common in related works to compare the execution speed of a hardware-accelerated
platform against the pure software implementation of the same algorithm being accelerated. But we
consider that FIM users are mainly interested in execution speed and/or energy consumption, and not
in the nature of the algorithm that is internally used. This position is relevant especially as Borgelt’s
Eclat actually internally selects between several variants of Eclat and LCM algorithms.

Table VI gives run times for several recent software FIM tools, and for datasets used in related
works. Borgelt’s Apriori and Eclat tools are often used as reference software tools in related works
about hardware-accelerated FIM. For each tool, we use the latest version available at the time of
this writing. Borgelt’s Apriori is used in [Wang et al. 2015][Baker and Prasanna 2005][Baker and
Prasanna 2006], we use version 6.19 (2015.08.18). Borgelt’s Eclat is used in [Zhang et al. 2013b][Shi
et al. 2013], we use version 5.8 (2015.08.18). We use version 6.8 (2015.12.22) of Borgelt’s FP-
Growth. To the best of our knowledge, LCM 3.0 [Uno et al. 2005] has never been used as reference

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:19

Table VI. Execution time compared to software tools (in seconds)

Dataset Support Borgelt
Apriori

Borgelt
Eclat

Borgelt
FP-Growth LCM 3.0 VC709

T10I4D100K 0.15% 0.433 0.192 0.300 0.200 0.235
T40I10D100K 1% 4.46 1.53 4.18 1.50 1.28

pumsb 52% 537 1.24 1.27 0.837 31.8
accidents 10% 10480 5.66 4.22 2.90 45.8
webdocs 7% 18500 191 swap 84.3 286

webdocs5x 7% 18710 414 swap 280 322
T40I10D03N500K 1% 292 91.5 234 72.9 51.1

T40I10D03N1000K 2% 101 86.6 swap 62.8 16.4
T60I20D05N500K 2% 197 103 swap 79.4 45.6
T90I20D05N500K 5% 1428 419 swap 249 120

Fig. 11. VC709 vs LCM 3.0 - Datasets pumsb and accidents

for hardware-accelerated FIM works, despite it being known for its efficient implementation of the
LCM algorithm.

In Table VI, the time of the fastest software tool is highlighted for each dataset. We indicate
swap when the memory requirements exceed the 12 GB RAM of our workstation. LCM 3.0 largely
outperforms all other tools on most datasets and this trend can be confirmed on much broader ranges
of support values. Only for the tiny datasets T10I4D100K and T40I10D100K Borgelt’s Eclat tool
is very close to LCM 3.0. For this reason, we perform a more detailed comparison of our VC709
platform against LCM 3.0. The time of our VC709 board is highlighted when it outperforms the
software tools.

In Figures 11 and 12 the overall execution times of LCM 3.0 and of our FPGA-accelerated platform
are shown. The 4 datasets from [Wang et al. 2015] are used with the same support ranges: pumsb,
accidents, webdocs and webdocs5x.

LCM 3.0 is still notably faster than our platform for dataset pumsb. This dataset is known to
be exceptionally dense: a huge number of itemsets is produced from a very small dataset. The
filtered dataset is actually small enough to entirely fit in the processor cache, which makes the
depth-first, memory-efficient LCM algorithm almost unbeatable. Similarly, LCM 3.0 clearly leads for
dataset accidents for support values below 35%. For higher support values, mining time is negligible
compared to dataset loading and filtering time, for both tools.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:20

Fig. 12. VC709 vs LCM 3.0 - Datasets webdocs and webdocs5x

Table VII. Distribution of execution time

Dataset pumsb accidents webdocs
Support 80% 52% 20% 10% 10% 7%
Dataset loading + filtering 65.3% 0.17% 7.58% 0.58% 31.3% 2.07%
FPGA receives candidates 5.33% 13.2% 1.64% 0.84% 0.04% 0.06%
FPGA receives dataset 2.11% 37.8% 88.3% 95.7% 67.4% 97.2%
FPGA sends last counters 0.17% 0% 0% 0% 0% 0%
PCIe latency 14.4% 33.4% 1.63% 1.39% 0.34% 0.43%
Software between iterations 4.91% 10.9% 0.79% 0.89% 0.04% 0.08%
Other 7.78% 4.53% 0.06% 0.60% 0.88% 0.16%

Total 100% 100% 100% 100% 100% 100%
Concurrent CPU usage 40.5% 44.7% 2.86% 3.58% 2.45% 1.96%

Nevertheless, our VC709 platform is faster than LCM 3.0 on a large range of support values
for the large and sparse datasets webdocs and webdocs5x, with a maximum speedup of 1.95x for
webdocs (support 12%) and 2.87x for webdocs5x (support 11%). Our platform also outperforms
LCM 3.0 on the 4 datasets from [Zhang et al. 2013b], with speedups ranging from 1.11x for dataset
T40I10D03N500K to 3.51x for dataset T40I10D03N1000K.

However according to our figures, LCM 3.0 still presents a better scalability for low support values.
For the 7% support in Figure 12, there are more than 5 million generated itemsets, which makes it
questionable whether such a high number is of any practical interest. This is even worse with datasets
pumsb, support 52%, and accidents, support 10%, for which the number of frequent itemsets is more
than 98 million and 10 million, respectively.

We highlight that, with the linear scalability of our FPGA design, using larger FPGAs like the
Virtex-7 2000T would directly make our platform 2.8x faster. This confirms that, even though the
Apriori algorithm seems to perform very poor as pure software, FPGA acceleration techniques that
exploit this algorithm are still pertinent, particularly for large and/or sparse datasets.

6.8. Efficiency of FPGA usage
In order to analyze how efficiently our framework uses the FPGA accelerator, Table VII gives the
distribution of the time spent inside the main processing steps, for several representative datasets and
support values.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:21

It shows the time related to loading the dataset (all in software), the ideal time for FPGA operations
(calculated from the theoretical number of clock cycles), the real PCIe latency overhead, and the
software time spent between Apriori iterations (updating the in-memory representation of itemsets).
The rest includes potential software time that was not masked by FPGA operation, creation of threads
to launch Riffa PCIe transfers, miscellaneous PCIe transfers due to setting configuration registers in
the FPGA design, and miscellaneous prints of execution details.

The worst results are for dataset pumsb, this was expected. When filtered, this dataset is so small
that the actual support counting operation represents a relatively small part of the overall processing
time. The main cause is the PCIe latency to initiate transfers, which is high compared to the theoretical
time needed to transfer the data. We highlight that for a support of 80%, the overall processing time is
so small (around 90 ms) that the time to read the counters of the last batch of candidates is noticeable
(not masked by transfer of a batch of candidates).

Our experiments show that any filtered dataset substantially larger than pumsb will lead to a
relatively good FPGA utilization efficiency. This is illustrated with datasets accidents and webdocs:
apart from the uncompressible loading time, support counting and more generally FPGA utilization
represents most of the overall processing time.

Table VII also confirms that, in the proposed pipelined processing of batches of candidates (see
section 5.2), the candidate generation done in software is well masked by FPGA operations. Indeed
any unmasked CPU time would appear in row Other and this remains relatively low. As can be seen
on the last line of Table VII, the average CPU usage during FPGA operations is no more than a few
percents of one CPU core (at least for datasets larger than pumsb), which confirms that the proposed
hardware acceleration solution actually relieves the CPU.

7. CONCLUSION
Our works bring notable improvements for Apriori acceleration solutions, whether based on FPGA
or Micron Automata technologies. It also competes well with alternative FPGA-accelerated FIM
algorithms. Our implementation is designed for maximum scalability and versatility, which addition-
ally makes it appropriate for other generate-and-test mining algorithms, including sequence mining
in real time from uninterruptible data streams.

This paper describes all details that we believe are missing in most previous acceleration papers,
with the notable exception of Micron AP works [Wang et al. 2015]. We study the impact of counter
size, item encoding and maximum itemset size on the total number of support counting units that
can fit a given FPGA. This is important because it has a direct correlation on total mining time with
Apriori.

We provide extensive and fair comparisons with several previous works, including many types of
hardware accelerators and pure software solutions. We discovered that FIM hardware acceleration
is only useful for large and low-density datasets. Besides, our Apriori accelerator is well suited for
ultra-low latency sequence recognition and signaling from uninterruptible data streams. Using one
common FPGA prototyping board, we achieved up to 1 GB/s throughput while monitoring up to
5818 patterns, or 250 MB/s with up to 11636 patterns.

As a perspective, when only pattern recognition and signaling on streams are needed, our IP could
be further shrunk by removing the support counters. This could bring up to a 100% increase in the
number of patterns that can be simultaneously monitored.

Acknowledgments
The authors would like to thank Olivier Menut from ST Microelectronics for his valuable inputs and
continuous support.

References
Rakesh Agrawal, Ramakrishnan Srikant, and others. 1994. Fast algorithms for mining association rules. In The International

Conference on Very Large Databases, VLDB, Vol. 1215. 487–499.
Chris Anderson. 2006. The Long Tail: Why the Future of Business Is Selling Less of More. Hyperion.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

A:22

Z.K. Baker and V.K. Prasanna. 2005. Eff cient hardware data mining with the Apriori algorithm on FPGAs. In 13th Annual
IEEE Symposium on Field-Programmable Custom Computing Machines. 3–12.

Z.K. Baker and V.K. Prasanna. 2006. An Architecture for Eff cient Hardware Data Mining using Reconf gurable Computing
Systems. In 14th Annual IEEE Symposium on Field-Programmable Custom Computing Machines. 67–75.

Christian Borgelt. 2003. Eff cient implementations of apriori and eclat. In Proceedings of the IEEE ICDM workshop on
frequent itemset mining implementations.

Lázaro Bustio, René Cumplido, Raudel Hernández, José M. Bande, and Claudia Feregrino. 2016. New Frontiers in Mining
Complex Patterns: 4th International Workshop, NFMCP 2015. Springer International Publishing, Chapter Frequent
Itemsets Mining in Data Streams Using Reconf gurable Hardware, 32–45.

Octavian Cret, Zsolt Mathe, Paul Ciobanu, Sonia Marginean, and Adrian Darabant. 2009. A hardware algorithm for the exact
subsequence matching problem in DNA strings. Romanian Journal of Information Science and Technology 12, 1 (2009),
51–67.

FIMI Repository. 2003. Frequent Itemset Mining Dataset Repository. (2003). http://f mi.ua.ac.be/data/

Xiaoqi Gu, Yongxin Zhu, Shengyan Zhou, Chaojun Wang, Meikang Qiu, and Guoxing Wang. 2016. A Real-Time FPGA-
Based Accelerator for ECG Analysis and Diagnosis Using Association-Rule Mining. ACM Transactions on Embedded
Computing Systems 15, 2 (2016), 25.

Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. In ACM Sigmod Record,
Vol. 29. ACM, 1–12.

IBM. 2012. IBM Quest Synthetic Data Generator. (2012). http://sourceforge.net/projects/ibmquestdatagen/

M. Jacobsen, D. Richmond, M. Hogains, and R Kastner. 2015. RIFFA 2.1: A reusable integration framework for FPGA
accelerators. ACM Transactions on Reconf gurable Technology and Systems 8, 4 (Sept. 2015).

Micron, Inc. 2016. Micron Automata Developer Portal - Hardware. (2016). http://www.micronautomata.com/hardware

Micron Technology, Inc. 2013. Micron Automata Processor - A Brief Introduction. (dec. 2013).

V.B. Nikam and B.B. Meshram. 2014. Scalable Frequent Itemset Mining using Heterogeneous Computing: ParApriori
Algorithm. International Journal of Distributed and Parallel Systems 5, 5 (2014), 13.

Shaobo Shi, Yue Qi, and Qin Wang. 2013. FPGA Acceleration for Intersection Computation in Frequent Itemset Mining. In
2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. 514–519.

Song Sun, M. Steffen, and J. Zambreno. 2008. A Reconf gurable Platform for Frequent Pattern Mining. In International
Conference on Reconf gurable Computing and FPGAs. 55–60.

S. Sun and J. Zambreno. 2011. Design and Analysis of a Reconf gurable Platform for Frequent Pattern Mining. IEEE
Transactions on Parallel and Distributed Systems 22, 9 (Sept 2011), 1497–1505.

DW Thoni and Alfred Strey. 2009. Novel strategies for hardware acceleration of frequent itemset mining with the apriori
algorithm. In 2009 International Conference on Field Programmable Logic and Applications.

Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. 2003. LCM: An Eff cient Algorithm for Enumerating Frequent
Closed Item Sets. In Proceedings of the IEEE ICDM workshop on frequent itemset mining implementations.

Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. 2005. LCM Ver.3: Collaboration of Array, Bitmap and Pref x Tree for
Frequent Itemset Mining. In Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent
Pattern Mining Implementations (OSDM ’05). ACM, 77–86.

Ke Wang, Yanjun Qi, J.J. Fox, M.R. Stan, and K. Skadron. 2015. Association Rule Mining with the Micron Automata
Processor. In IEEE International Parallel and Distributed Processing Symposium. 689–699.

Ying-Hsiang Wen, Jen-Wei Huang, and Ming-Syan Chen. 2008. Hardware-Enhanced Association Rule Mining with Hashing
and Pipelining. IEEE Transactions on Knowledge and Data Engineering 20, 6 (June 2008), 784–795.

Xilinx Inc. 2015. Device Reliability Report - First Half 2015. Technical Report.

Osmar Zaiane. 2014. Rich Data: Risks, Issues, Controversies & Hype. (dec. 2014). Keynote speech at the International
Conference on Advanced Data Mining and Applications .

Mohammed J. Zaki. 2000. Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and Data
Engineering 12, 3 (May/Jun 2000), 372–390.

M. J. Zaki, Parthasarathy, M. S., Ogihara, and W. Li. 1997. New Algorithms for Fast Discovery of Association Rules. In 3rd
International Conference on Knowledge Discovery and Data Mining. pp. 283–286.

Fan Zhang, Yan Zhang, and Jason D. Bakos. 2013a. Accelerating Frequent Itemset Mining on Graphics Processing Units. J.
Supercomput. 66, 1 (Oct. 2013), 94–117.

Yan Zhang, Fan Zhang, Zheming Jin, and Jason D. Bakos. 2013b. An FPGA-Based Accelerator for Frequent Itemset Mining.
ACM Transactions on Reconf gurable Technology and Systems 6, 1, Article 2 (May 2013), 17 pages.

ACM Transactions on Reconf gurable Technology and Systems, Vol. 1, No. 1, Article A, Publication date: January 2016.

