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This article investigates the structural stability and sensitivity properties of the confined turbulent

wake behind an elongated D-shaped cylinder of aspect-ratio 10 at Re = 32 000. The stability analysis

is performed by linearising the incompressible Navier-Stokes equations around the numerically com-

puted and the experimentally measured mean flows. We found that the vortex-shedding frequency

is very well captured by the leading unstable global mode, especially when the additional turbulent

diffusion is modelled in the stability equations by means of a frozen eddy-viscosity approach. The sen-

sitivity maps derived from the computed and the measured mean flows are then compared, showing a

good qualitative agreement. The careful inspection of their spatial structure highlights that the highest

sensitivity is attained not only across the recirculation bubble but also at the body blunt-edge, where

tiny pockets of maximum receptivity are found. The impact of the turbulent diffusion on the obtained

results is investigated. Finally, we show how the knowledge of the unstable adjoint global mode of the

linearised mean-flow dynamics can be exploited to design an active feedback control of the unsteady

turbulent wake, which leads, under the adopted numerical framework, to completely suppress its

low-frequency oscillation. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4974069]

I. INTRODUCTION

Understanding and controlling the flow in the wake of

geometries which give rise to large scale unstable structures,

such as for instance vortex shedding, is of paramount impor-

tance in many engineering applications. This is the case,

for example, of the separated flow over a wing, resulting

in unwanted aerodynamic loading, and of the unstable wake

behind a bluff body, where the flow unsteadiness increases the

aerodynamic drag and becomes a source of acoustic noise. The

idea to use passive or active control strategies to improve the

performance as well as the efficiency of certain applications

is far from new and has been extensively investigated both

numerically and experimentally.1–3

Numerical modelling of fluid flows and mathematically

rigorous theories for their control4,5 have been usually first

tested and verified in simplified conditions, at low or moder-

ate Reynolds numbers.6–9 Within this framework, the concept

of structural sensitivity has gained interest with applications to

a large variety of globally unstable flows.10–15 Indeed this

linearised approach allows one to predict, beforehand, the

effective positioning of a flow disturbance, i.e., a passive

device, able to shift the vortex-shedding frequency or even

to completely suppress the global instability of the flow. A

remarkable example is represented by the possibility to qual-

itatively recover the well-known experimental control map of

a)Author to whom correspondence should be addressed. Electronic mail:
jan.pralits@unige.it

Strykowski and Sreenivasan16 for the circular cylinder wake,

as shown by Marquet, Sipp and Jacquin.17 At the same time,

a main concern is that the underlying theory is limited to low-

Reynolds number flows near the instability threshold, which

often makes these techniques of little interest from practical

and industrial viewpoint.

Despite the lack of a rigorous mathematical foundation,

over the last few years, the above approach has been applied

to turbulent bluff-body wakes, heuristically based on the lin-

ear stability analysis of time-averaged mean flows. For various

flow configurations, past studies18–20 have shown that either

linearised Euler or Navier-Stokes equations around the mean

flow successfully exhibit a mildly unstable global mode with

approximately the same frequency of the unsteady flow. These

results are reminiscent of the seminal work of Malkus,21 first

conjecturing the marginal stability of the mean-flow field, a

conjecture which has been pursued by Mantič-Lugo, Arratia

and Gallaire22 to build-up an effective self-consistent model

of the nonlinear saturation mechanisms of the circular cylinder

wake up to Re = 110. The marginal stability criterion becomes

indeed exact in the case of pure monochromatic oscillations of

the flow, as shown by Turton, Tuckerman and Berkley,23 and

further theoretical insight to the more general case of a broad-

band spectrum has been recently given by Beneddine et al.,24

based on the singular-value analysis of the resolvent operator

associated with the mean-flow linearised equations, with focus

to high Reynolds number weakly non-parallel flows.

A first attempt at pushing forward the structural sensitiv-

ity analysis in the context of turbulent flows has been made by
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Meliga, Pujals and Serre.25 In their study, the authors computed

the time-averaged solution of the unsteady two-dimensional

Reynolds-Averaged Navier-Stokes (RANS) equations for the

flow past a D-shaped cylinder at Re = 13 000 and then per-

formed a sensitivity analysis of the obtained mean flow by

linearising both the flow and the turbulence model equations.

In analogy with the studies of the circular cylinder wake

at low Reynolds numbers, the frequency control map com-

puted by the authors for the considered turbulent flow was

in close agreement with the one experimentally obtained by

Parezanović and Cadot26 through extensive measurements per-

formed for different positions of the secondary cylinder. Later,

similar results were reproduced by Mettot, Sipp and Bézard27

by means of a simpler approach, where the linearisation is

restricted to the flow equations only, thus making the whole

procedure independent from the turbulence modelling. In the

experimental study by Camarri, Fallenius and Fransson28 the

same approach is applied to the mean wake behind a circular

cylinder with transpiration at Re = 3500. Although the stabil-

ity and sensitivity analyses of experimental data pose some

computational difficulties, the authors have shown that this

approach can predict, with good accuracy, not only the vortex-

shedding frequency but also its variation with respect to the

transpiration parameter, based on the induced modifications of

the mean flow.

The present study further explores the possibility to cap-

ture and control low-frequency unsteadiness in turbulent bluff-

body wakes based on the stability properties of the inher-

ent mean flow. To this purpose, we consider the confined

incompressible flow past an elongated D-shaped cylinder at

Re = 32 000 by means of both numerical and experimen-

tal investigations. In analogy with the aforementioned stud-

ies,25,27 numerical simulations are undertaken in the RANS

framework while the experimental measurements are per-

formed by means of Particle Image Velocimetry (PIV) in the

near-wake region of the flow. Notwithstanding that the accu-

rate and reliable numerical prediction of turbulent flows over

bluff-body geometries still represents a great challenge, RANS

computations define a consolidated modelling approach for

several industrial applications, whose ability in reproducing

basic mean-flow features and turbulence statistics has been

assessed over the last decades. The mean-flow analysis of

Mettot, Sipp and Bézard27 based solely on the linearisation

of the momentum and mass conservation equations is adopted

here and applied to both the numerical and the experimental

flow data, thus allowing a direct comparison of the obtained

sensitivity maps. In the context of the adopted RANS mod-

elling, we carefully investigate the impact of a frozen eddy

viscosity approximation when introduced in the stability equa-

tions. Finally we show how the obtained stability results can be

exploited to design an active feedback control of the unsteady

wake targeting its vortex-shedding mechanism. The control

design is based on the mean-flow linearised description of the

fluid plant, under the well-established framework of the lin-

ear optimal control theory.4,5 The Minimal Energy Control

(MCE) technique,29 which has been successfully applied to

the laminar cylinder wake,30 is extended here to the control of

organized low-frequency waves in turbulent flow oscillators,

as described by the mean-flow global mode dynamics. The

main advantage of this technique is that the computation of

the stabilizing feedback gain field only requires the knowledge

of the unstable adjoint mode, bypassing any model reduction

step and thus providing directly a physical insight of the most

relevant flow regions for a velocity feedback control.

The paper is organized as follows. We present in Sec. II

the flow configuration, the employed numerical and experi-

mental setups, and we compare the obtained results in terms

of the vortex-shedding frequency and of the mean-wake flow

structure. Then in Sec. III we introduce the global stability

and sensitivity analyses of the computed and measured mean-

flows, with the details of the related numerical procedures.

The proposed active feedback control of the unsteady RANS

flow is described in Sec. IV, showing that the vortex-shedding

is completely suppressed. In addition, a brief summary and

concluding remarks are given in Sec. V.

II. FLOW CONFIGURATION

The considered flow configuration is illustrated in Fig. 1,

featuring an elongated D-shaped cylinder of aspect ratio

AR = 10 located at the centre of a channel. The body lead-

ing edge is defined by a semi-ellipse which extends down to

the mid-chord, while the remaining body half is represented

by a thick flat-plate. The geometry in Fig. 1 exactly corre-

sponds to a longitudinal plane of the wind-tunnel test section

employed in our experimental setup, which is also illustrated

in Fig. 3. Within this plane, the fluid motion is described using

a Cartesian coordinate system where the x-axis is aligned with

the direction of the incoming fluid stream, and the origin is

located at the intersection between the symmetry axis and the

body stern. The flow is modelled by means of the incompress-

ible Navier-Stokes equations which are made dimensionless

using the body thickness H, the velocity of the uniform fluid

stream U∞ at the inlet and the constant density ρ. The corre-

sponding Reynolds number is Re = U∞H/ν = 32 000, ν being

the kinematic viscosity of the fluid.

FIG. 1. Schematic diagram of the con-

sidered flow configuration.
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A. 2D-RANS setup

A two-dimensional RANS modelling is employed for the

numerical simulation of the considered turbulent flow. Both

steady and unsteady RANS computations have been performed

using the OpenFOAM code.31 The implemented k-ω SST

model32 has been selected for such purpose, with the whole

flow state being described by the velocity field U(x, y, t), the

pressure field P(x, y, t) and two additional scalar fields, k(x, y, t)

and ω(x, y, t) which are physically related to the turbulent

kinetic energy and to the specific dissipation rate, respectively.

The turbulent viscosity field νt(x, y, t) is defined as follows:

νt =
a1k

max (a1ω, Ω)
, (1)

where a1 = 0.31 and Ω denotes the magnitude of the vor-

ticity field. Within this framework the governing equations

are spatially discretized using a finite volume approach, with

a combination of centred and upwinded second-order dis-

cretization schemes. For time integration, a three-level second-

order backward difference method is employed. Given the

incompressible description of the flow, the pressure-velocity

coupling is handled using a standard “segregated” approach

based on a momentum predictor, a pressure solver and a

momentum corrector, exploiting the algorithms already imple-

mented in OpenFOAM. In particular, the SIMPLE (semi-

implicit method for pressure linked equations) method33 is

used for steady-state RANS (S-RANS) computations while

the PIMPLE method, which merges the SIMPLE and the

PISO (pressure implicit with split operator)34 algorithms, has

been used for the unsteady simulations. A unit streamwise

velocity is imposed at the inlet of the computational domain

(Σ), where a turbulence level of Tu = 2% and an eddy-to-

kinematic viscosity ratio of νt/ν = 100 are prescribed, based

on the recommendations from Menter, Kuntz and Langtry.35

On the outlet boundary, the governing equations are supple-

mented by homogeneous Neumann conditions for the velocity

field, ∇U · n̂ = 0, n̂ being the outward unit normal vector.

Finally, consistently with the adopted near-wall mesh reso-

lution, direct-wall boundary conditions36 are assigned on the

solid surfaces:

U = 0, k = 0, ω =
60ν

β1d2
, (2)

where β1 = 0.075 and d is the distance of the first cell cen-

troid from the wall. For the pressure equation, homogeneous

Neumann conditions are assigned everywhere on the domain

boundary except for the outflow boundary where the pres-

sure is fixed to zero. The workflow is the following: first the

S-RANS solution is computed using half of the mesh, thanks

to the inherent mean-flow symmetry, and then it is employed

as the initial condition for the U-RANS computations.

The employed mesh features a hybrid structure, as shown

in Fig. 2. More precisely, the mesh is composed of a struc-

tured layer close to the wall boundaries (for both the body

and the wind-tunnel surfaces) and of an unstructured region

with triangular prismatic cells elsewhere. The use of hexa-

hedral wall layers allows the better control of the near-wall

mesh resolution and the accurate description of the turbulent

boundary layers features. In particular, for the present compu-

tations, a strong clustering of the near-wall cells is adopted,

with d+ ≤ 1 everywhere, where the notation (·)+ is used here

and in the following to indicate the inner-wall scaling of the

considered physical quantity. The total number of cells is

Nc = 362 162.

In order to validate our numerical solver, we consider a

well known benchmark represented by the flow past a square

cylinder at Re = U∞D/ν = 22 000, where D is the length

of the square side. For this test case, we employ the same

computational box used by Bosch and Rodi,42 with a near-

wall grid resolution fine enough to guarantee that d+ ≤ 1 on

the square boundary and resulting in a total mesh size of 43

200 cells. Similarly to the case of the thick flat-plate, a unit

streamwise velocity is imposed at the inlet, where both Tu

and νt/ν are prescribed following the recommendations of the

aforementioned authors. On the lateral boundaries, symmetry

conditions are applied while at the outflow, homogeneous Neu-

mann conditions hold for the velocity field. The dimensionless

time-step is ∆t = 2 × 10−4. After a transient the flow settles

down to a fully developed vortex-shedding regime, whereafter

the solution is advanced in time and averaged on-the-fly over

600 time units (about 78 shedding cycles). Obtained results in

terms of mean aerodynamic forces and nondimensional vortex-

shedding frequency St = fD/U∞, are reported in Table I, and

compare well with numerical and experimental data available

from the literature.

B. Experimental setup

The experiments were conducted in an Eiffel wind tunnel

at ONERA Toulouse. The test section, which is illustrated in

FIG. 2. Hybrid mesh employed for the

RANS computations: detail of the mesh

structure around the thick-flat plate.

Colors are used to visualize the differ-

ent structured and unstructured mesh

regions. Note in particular the narrow

mesh blocks introduced at the body

blunt-edges to better capture the blow-

ing/suction actuation; see Sec. IV for

further details.
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TABLE I. Synoptic table of representative mean and fluctuating quantities for the flow past a square cylinder at

Re = 22 000. C̄D, denotes the mean drag coefficient, C′
D

and C′
L

, the r.m.s. of the drag and lift coefficient signals

and St, the vortex-shedding Strouhal number.

Contribution Model C̄D C′
D

C′
L

St

Lyn et al.37 Expt. 2.1 · · · · · · 0.132

Lee38 Expt. 2.05 0.16☞0.23 · · · · · ·

Rodi et al.39 LES 2.2 0.14 1.01 0.13

Minguez et al.40 LES 2.2 · · · · · · 0.141

Rodi et al.39 2D RANS, two layer k −ω 2.004 · · · · · · 0.143

Iaccarino et al.41 2D RANS, v2
☞f 2.22 0.056 1.83 0.141

Meliga et al.25 2D RANS, SA 2.26 0.37 1.13 0.139

Present 2D RANS, k −ω 2.14 0.27 1.58 0.13

Fig. 3 has dimensions 1.2 × 0.4 × 0.31 m3 (length × width

× height). The free-stream velocity ranges from 5 m/s up to

50 m/s with a measured turbulence level lower than 0.5%.

For the present experiments the free-stream velocity is set to

U∞ = 10 m/s, yielding the considered Reynolds number of

Re = 32 000.

The D-shaped model is located at the mid-height of the

test section with a zero angle of attack and spans over the

entire width of the wind tunnel. The model is characterized

by a chord length ℓ = 500 mm and a trailing edge thickness

H = 50 mm, yielding a blockage ratio of 16.5%. Given this

bluff-body geometry, a wake observation area of length≈ 10 H

was achieved. In order to force the boundary layer transition

to the turbulent state at a fixed streamwise location, a 510 µm

zig-zag strip was placed at the 4.4% of the body chord starting

from the leading-edge. Such a placement is motivated by the

strong flow acceleration induced by the leading-edge geometry

and the blockage ratio.

A high-speed stereo-PIV measurement system has been

employed to characterize the wake of the thick-flat plate. After

a preliminary verification of the two-dimensionality of the

wake mean state with respect to the z-axis (see Fig. 3(a)), flow

measurements were performed in the mid-span xy plane of the

model. The employed PIV system is composed of a Nd:YLF

laser (Litron, LDY304 PIV, 527 nm, 30 mJ at 1 kHz) and two

high-speed cameras (Phantom v711). The latter were mounted

on Scheimpflug adapters positioned on each side of the light

sheet and equipped with 105 mm lenses (AFD Micro Nikkor,

f 1 : 2.8) pointing to the measurement plane with an angle of

35◦. The PIV measurements were performed at an acquisition

frequency of 555 Hz over 5405 nondimensional time units. The

velocity field and the related statistics were computed using

the LaVision Davis 8.2 software, with final interrogation win-

dows of 24×24 pixels and 75% overlap, which yield a PIV grid

composed of 222 points in x and of 122 points in y for the rect-

angular box of coordinates [0.20, 4.46]× [−1.12, 1.21], which

is represented in Fig. 1. The obtained spatial resolution is 0.963

mm, corresponding to ∆x =∆y≈ 0.0193 in nondimensional

units.

C. Results

The computed RANS solutions of the confined flow past

the thick flat-plate are depicted in Figs. 5 and 6 by means

of the velocity field magnitude and of the turbulent viscos-

ity field, respectively. A convergence study with respect to

the employed near-wall mesh resolution has been performed

based on the S-RANS results in order to reduce the required

computational effort compared to the U-RANS case. Repre-

sentative results are illustrated in Fig. 4, confirming that for

d+ ≤ 1, both the body and the wind-tunnel turbulent boundary

layers are accurately captured. With reference to the employed

mesh, the average and maximum values of d+ on the differ-

ent wall boundaries are reported in Table II, indicating that the

distribution of d+ does not significantly change when the time-

averaged U-RANS solution is considered. Note that averaging

is performed over ≈30 shedding cycles, as done in the study

by Meliga et al.43 for the turbulent flow past a square.

As expected, the S-RANS solution features a longer recir-

culation bubble compared to the U-RANS one, Figs. 5(a) and

5(c). At the same time, a remarkable difference is observed

in the spatial distribution of the turbulent viscosity field.

Indeed, while in the S-RANS case, Fig. 6(a), ν̄t(x, y) is mainly

concentrated in the near-wake region, reaching its maximum

FIG. 3. Experimental setup. (a) Sche-

matic of the D-shaped body installed in

the wind tunnel test section. (b) Picture

of the wind-tunnel test section.
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FIG. 4. Convergence study of the

S-RANS mean flow in the near-wall

region with respect to the adopted mesh

resolution. (a) Thick-flat plate boundary

layer at x = ☞0.5. (b) Wind tunnel

boundary layer at x = ☞0.5.

TABLE II. Near-wall layer resolution at both the wind tunnel and the thick flat-plate solid surfaces. The average

and the maximum values of the nondimensional distance of the first cell centroid from the wall, d+avg and d+max ,

respectively, are reported.

Wind tunnel wall Body wall (x < 0) Body stern (x = 0)

Mean flow d+avg d+max d+avg d+max d+avg d+max

S-RANS 0.36 1.0 0.30 0.40 0.1 0.30

U-RANS (time-averaged) 0.37 1.0 0.35 0.82 0.3 0.55

value just downstream of the recirculation bubble, in the time-

averaged U-RANS solution, Fig. 6(c), the eddy viscosity val-

ues gradually increase from the body stern up to the outflow

boundary. Note that ¯(·) is used to denote a time-averaged quan-

tity. Similar considerations hold for νt(x, y, t) during the fully

developed vortex-shedding regime, as shown by an instan-

taneous snapshot in Fig. 6(b), where the structure of the

von Kármán wake is clearly highlighted. The corresponding

velocity snapshot is depicted in Fig. 5(b). The flow evolution

from the S-RANS state to the oscillatory regime is described in

Figs. 7(a) and 7(c) by means of the time traces of the body aero-

dynamic coefficients which are defined based on the adopted

reference velocity and length scales:

CD(t) =
2Fa(t) · x̂

ρHU2
∞

, CL(t) =
2Fa(t) · ŷ

ρHU2
∞

, (3)

where Fa(t) stands for the aerodynamic force, per unit width,

acting on the thick flat-plate and x̂, ŷ denote the unit vectors

FIG. 5. RANS simulation of the con-

fined flow past the thick flat-plate: mag-

nitude of the velocity field, ‖U ‖. (a)

S-RANS solution. (b) U-RANS snap-

shot during the fully-developed vortex-

shedding regime. (c) Time-averaged

U-RANS solution; averaging is per-

formed over ≈ 30 shedding cycles.
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FIG. 6. RANS simulation of the con-

fined flow past the thick flat-plate: tur-

bulent viscosity field, νt . (a) S-RANS

solution. (b) U-RANS snapshot dur-

ing the fully-developed vortex-shedding

regime. (c) Time-averaged U-RANS so-

lution; averaging is performed over≈ 30

shedding cycles.

of the Cartesian reference system. At regime, the lift coeffi-

cient displays a fairly regular harmonic oscillation, Fig. 7(b),

with a dominant frequency peak at St = f H/U∞ = 0.276

and a small secondary peak at St = 0.83, which approxi-

mately corresponds to the third harmonic of the dominant

frequency, Fig. 7(d). With the onset of the unsteady sepa-

ration, the value of the mean drag coefficient C̄D increases

of ≈ 200%. However, due to the high blockage ratio, care

should be taken when comparing this value with experimental

and numerical results aimed at characterizing similar geome-

tries in an open-flow. By following the provisions of Barlow,

Rae and Pope,44 a first estimate of the effects introduced

by the wind-tunnel walls for the considered two-dimensional

geometry results in a corrected value of C̄D,c ≈ 0.87, which

appears more consistent with the value of ≈0.98 measured by

Pastoor et al.45 for a D-shaped body of aspect-ratio 3.64 at

Re = 23 000.

The obtained numerical results are then compared with

the available PIV measurements of the turbulent wake. With

reference to Table III, the time-averaged U-RANS solution

underpredicts the recirculation length LR, a fact that can be

ascribed to the occurrence of strong three-dimensional phe-

nomena (such as oblique vortex-shedding and vortex disloca-

tions) in the near-wake dynamics. A value of LR ≈ 0.85 has

been measured by Naghib-Lahouti, Lavoie and Hangan46 for

a D-shaped body of AR = 12.5, at Re = 30 000. At the same

time, the estimated value of St results in close agreement with

the experimental one. A small deviation is observed when

FIG. 7. Unsteady RANS simulation:

time history of the thick-flat plate aero-

dynamic force coefficients. (a) Lift coef-

ficient, CL . (b) Detail view of CL when

the vortex-shedding is fully developed.

(c) Drag coefficient, CD. (d) Spectral

content of CL during the fully developed

vortex-shedding regime.
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TABLE III. Confined turbulent flow past the thick flat-plate: Comparison

between experimental and numerical results.

LR St Ste

U-RANS (time-averaged) 0.67 0.275 0.207

Expt. 1.00 0.276 0.225

the vortex shedding frequency is made dimensionless using

the effective body thickness He = H + 2δ∗ (with δ∗ being

the boundary layer displacement thickness) and the maximum

streamwise velocity Ūmax at the trailing edge, thus account-

ing for the high blockage-ratio effects. The obtained values of

Ste,c = f He/Ūmax are also listed in Table III and compare well

with Ste ≈ 0.231 reported by the aforementioned authors in the

range of 15 000 ≤ Ree ≤ 25 000, where Ste = f He/U∞ and

Ree = U∞He/ν, and with the value of Ste ≈ 0.229 obtained

by Bull et al.47 for blunt trailing-edge profiled bodies with

fully turbulent boundary layers. Finally, a detailed compar-

ison of the near-wake flow structure is illustrated in Fig. 8

by inspecting the streamwise velocity profile at different x-

stations downstream of the body stern. The major deviations

from the experimental measurements are observed just down-

stream of the flow separation, where the detached shear-layers

display an excessive diffusion with respect to the experimental

measurements. On the contrary, moving downstream, the tur-

bulent wake is better approximated in its self-similar region.

The fact that the numerical results cannot adequately capture

the details of the reverse flow region (as frequently occurs

for RANS computations around bluff-body geometries) could

question the physical relevance of their subsequent stabil-

ity and sensitivity analyses. However, in the aforementioned

work,25 Meliga, Pujals and Serre have shown that, even if

LR is underestimated by ≈30% (as in the present case), the

global stability analysis still provides a fairly good prediction

of the measured vortex-shedding frequency, and, moreover,

a very good qualitative agreement in terms of the experi-

mental frequency sensitivity map obtained by Parezanović

and Cadot.26 The comparison between the experimental and

numerical mean flow could probably be improved by means

of more advanced and computationally expensive techniques,

such as LES or DES, which are, however, still far from the

state-of-the-art of many industrial CFD applications.

III. GLOBAL STABILITY AND SENSITIVITY ANALYSES

The global stability and sensitivity analyses of the consid-

ered turbulent flow are carried out based on the so-called mean

flow approach, as described by Mettot, Sipp and Bézard.27

This approach simply relies on the linearisation of the mass

conservation and momentum equations around the given time-

averaged mean flow, either numerically computed or exper-

imentally measured, neglecting any turbulence modelling.

Although lacking of a rigorous mathematical foundation, past

studies18,19,25,27 have shown that the mean-flow linearised

Navier–Stokes equations can be used to efficiently predict the

leading frequency of large-scale organized waves in various

laminar and turbulent flows driven by an oscillator-like insta-

bility mechanism. A common variant of this approach is based

on the use of a modified viscosity ν̃(x, y) in the stability equa-

tions, with ν̃ being equal to the sum of the molecular viscosity

ν and of the time-averaged eddy viscosity ν̄t(x, y). This vari-

ant, often known as frozen eddy-viscosity approach, is also

employed here in the analysis of the U-RANS data, investi-

gating the impact of such an approximation on the stability

and sensitivity results. In the following, the same terminology

introduced by Mettot, Sipp and Bézard27 will be adopted, with

the mean-flow approach based on the molecular viscosity only

being termed quasi-laminar approach, and its frozen eddy-

viscosity variant, quasi-laminar mixed approach. Finally, the

global stability of the S-RANS solution will be also exam-

ined using the above described methodologies. However, it

is worthwhile to note that, in this case, the stability analysis

should be interpreted within a base-flow like framework,19,27

since the involved mean flow, which corresponds to a steady

solution of the RANS equations, is only driven by the Reynolds

stresses stemming from the fine-scale turbulent motions and

not by the large-scale flow unsteadiness. The relevance of such

results for the active control of the flow will be addressed in

Sec. IV.

FIG. 8. Mean flow past the thick flat-

plate: near-wake velocity profiles at dif-

ferent x stations. Comparison between

the U-RANS prediction (continuous red

line) and the PIV experimental measure-

ments (grey dots). (a) x = 0.1974. (b)

x = 0.5057. (c) x = 1.007. (d) x = 1.5076.

(e) x = 2.0028.
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A. Mathematical formulation

The linear global stability analysis of the given mean flow

Qm(x, y)= (Um, Pm) is performed by solving for a small per-

turbation field q = (u, p) in the normal mode form q(x, y, t)

= q̂(x, y) exp(λt), where q̂(x, y) denotes the spatial mode shape

and λ ∈ C. By introducing this ansatz into the “linearised”

incompressible Navier–Stokes equations around Qm, we get

λû + (Um ·∇)û + (û ·∇)Um

+∇p̂ − ∇·
(

ν̃
(

∇û + ∇û
T
))

= 0,

∇· û = 0,

(4)

where ν̃(x, y) = 1/Re + ν̄t(x, y) and (·)T stands for the trans-

pose. Note that any term stemming from the linearisation of

the turbulence model has been neglected in the above formu-

lation, except for the frozen turbulent diffusion. When the

quasi-laminar approach is employed (ν̄t = 0), this corre-

sponds to implicitly assume that, at least at a first-order, the

turbulence affects the dynamics of the large-scale fluctuations

only indirectly, through the induced mean-flow corrections.

As concerns the boundary conditions, a distinction has to be

made between the analysis of the numerical and the experi-

mental data. In the first case, the same computational domain

employed for the RANS computations is adopted, where û

is assumed to vanish at the inlet and on the solid boundaries

while the following condition is imposed at the outflow:

p̂n̂ − ν̃
(

∇û + ∇ûT
)

· n̂ = 0. (5)

In the stability analysis of the experimental data, which are

available only within a smaller flow region (see Fig. 1), the

above condition, Eq. (5), is imposed on the whole bound-

ary of the corresponding domain, except at the inlet, where

û = 0. Once supplemented with these homogeneous boundary

conditions, Eq. (4) define a generalized eigenvalue problem

for λ. Any solution q̂ associated with an eigenvalue λ repre-

sents a global mode of the mean-flow linearised dynamics with

growth-rate ℜ(λ) and angular frequency ℑ(λ). The sensitiv-

ity properties of the leading global mode are then investigated

by computing and making use of the properties of the corre-

sponding adjoint mode, q̂† = (û†, p̂†), which is solution of the

following (adjoint) eigenvalue problem:

λ∗û† − (Um ·∇)û†

+ ∇Um
T · û† + ∇p̂† − ∇·

(

ν̃
(

∇û
†
+ ∇û

†T ))

= 0,

∇· û† = 0,

(6)

where (·)∗ stands for the complex conjugate. As discussed by

Giannetti and Luchini10 and by Pralits, Brandt and Giannetti,11

the regions of the flow acting as a “wavemaker” in the exci-

tation of the global instability mechanism can be identified as

the regions of highest receptivity to a structural perturbation

in the form of a local force-velocity feedback,

λ ′E(x, y)q̂′ −A(x, y)q̂′ = H(x, y; x0, y0)q̂′, (7)

where we have introduced the following compact notation for

the linearised Navier–Stokes operator

E(x, y)q =

(

u

0

)

, A(x, y)q = *
,
−(Um ·∇)u − (u ·∇)Um − ∇p + ∇·

(

ν̃
(

∇u + ∇uT
))

∇· u
+
-

, (8)

and the feedback operator

H(x, y; x0, y0)q =

(

δ(x − x0, y − y0)K0u

0

)

, (9)

K0 being a constant feedback tensor while (·)′ has been used

to denote the perturbed quantities. By carrying out a first-

order sensitivity analysis of the perturbed eigenvalue problem,

Eq. (7), the corresponding first-order variation of λ, δλ, can

be expressed as follows:

δλ = S(x0, y0) : K0, (10)

whereS(x, y) is the structural sensitivity tensor associated with

the considered global mode and defined as

S(x, y) =

(

û†
)∗
⊗ û

〈û†, û〉
, (11)

with

〈û†, û〉 =

∫
Σ

(

û†
)∗
· û dΣ , (12)

being the vector-field scalar product on the considered spa-

tial domain (Σ ). In Eqs. (10) and (11), the symbols “:”

and “⊗” stand for the double contraction and the dyadic

products, respectively. Relevant information about the eigen-

value sensitivity can be extracted by plotting at each spatial

point a suitable norm of S(x, y), such as, for instance, its

Frobenious norm, ‖S(x, y)‖F , for which the following identity

holds:

‖S(x, y)‖F = ‖û
†(x, y)‖‖û(x, y)‖, (13)

with the global modes being normalized such that 〈û†, û〉 = 1.

In addition to the wavemaker analysis, the eigenvalue sen-

sitivity to a perturbation of the mean flow defines another

important quantity to get a physical insight in the instability

mechanism, especially for control purpose. Indeed it provides

a useful tool to predict how the mean flow should be varied

by the control action in order to significantly affect the leading

global mode. In particular, this kind of analysis has been shown

to accurately predict the vortex-shedding frequency variation

produced by a small secondary cylinder placed in the turbu-

lent wake of a D-shaped body.25,27 When a generic variation

of the considered mean flow δUm is assumed, at a first-order,
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the corresponding eigenvalue drift can be formally expressed

as

δλ = 〈∇Um
λ, δUm〉, (14)

where the complex-valued sensitivity vector-field ∇Um
λ has

the following expression11,17

∇Um
λ = −∇ûH · û† + (û∗ ·∇)û†, (15)

with (·)H indicating Hermitian conjugation.

B. Numerical method

The linear stability and sensitivity problems are numer-

ically solved by means of a finite element discretization on

unstructured grids made of triangular cells, using a standard

P2-P1 representation for the velocity and the pressure per-

turbation fields, respectively. The open-source finite element

library FEniCS48 is employed for such purpose. Within this

numerical framework all the required matrix inversions are

handled by means of the sparse direct-solver MUMPS49,50

while the involved large-scale eigenvalue problems are solved

using the Krylov-Schur algorithm implemented in the SLEPc

library,51,52 with a shift-invert transformation. A “discrete”

approach is adopted to compute the adjoint modes, which

allows one to account for the proper boundary conditions

of the adjoint problem automatically and to preserve the

bi-orthogonality property of the eigenmodes up to machine

precision.

Once computed using the RANS solver, both the veloc-

ity and the turbulent viscosity fields are linearly interpolated

from the original hybrid mesh to a triangularization of the

same computational domain made of 834 470 triangles, which

correspond to a total number of 3 774 800 degrees of free-

dom. A strong mesh refinement is introduced in the neigh-

bourhood of the thick flat-plate blunt edges with a minimum

mesh size of ≈ 5 × 10−5, to properly capture the extremely

localized features of the adjoint mode, as will be described in

the following. At the same time, in order to reduce the com-

putational effort without significantly affecting the stability

results, the unstructured grid is made a little bit coarser in

the wind-tunnel boundary layer regions which will be shown

to marginally contribute to the stability and sensitivity spa-

tial structures. A mesh refinement with a subsequent linear

interpolation of the turbulent mean flow is also introduced in

the stability analysis of the experimental data. Starting from

the PIV measurement window, the computational domain is

resized in the y direction to [☞0.85, 0.85], in order to skip

those regions where the available flow measurements are not

trustable. Then, the initial triangle mesh is easily obtained

from the original Cartesian PIV grid, resulting in a total num-

ber of 35 024 triangles which is increased up to 537 347

by means of subsequent refinement steps, avoiding the intro-

duction of any numerical stabilization term of the governing

equations.

C. Results

1. Global modes

The global spectrum extracted from the analysis of the

RANS mean flow is illustrated in Fig. 9, for both the S-RANS

and the time-averaged U-RANS flow fields, Figs. 9(a) and 9(b),

respectively. In both cases, the spectrum computed using the

quasi-laminar approach (black round dots) features the exis-

tence of a leading unstable mode whose frequency is close

to the vortex-shedding frequency. In addition, and in anal-

ogy to the results described by Mettot, Sipp and Bézard,27

we observe the existence of some slightly unstable modes

lying on the real axis. When the turbulent diffusion is taken

into account in the stability analysis (quasi-laminar mixed

approach), the whole spectrum is damped, with all the afore-

mentioned real modes becoming stable. Moreover, the esti-

mation of the vortex-shedding frequency is further improved.

In Fig. 9(b) the quasi-laminar spectrum of the PIV measured

mean-flow is also reported. The structure of the spectrum

is analogous to the one observed for the U-RANS based

results, although the mode displaying the vortex-shedding fre-

quency is much more damped. It is interesting to note that

no unstable real modes have been observed in the global

eigenspectrum reported by Camarri, Fallenius and Fransson28

for the PIV measured mean-flow past a porous cylinder at

Re = 3500.

The spatial structures of the direct and adjoint modes

are compared in Fig. 10 for the PIV based and the U-RANS

based quasi-laminar computations. The direct mode, repre-

sented by its real streamwise component in Figs. 10(a) and

10(c), displays the typical pattern of the von Kármán insta-

bility, and despite a phase difference still remains after adopt-

ing the same normalization, the two mode shapes compare

fairly well. Note that the computational domain employed

for the stability analysis of the experimental mean flow is

exactly the one used to depict the direct mode in Fig. 10(c).

FIG. 9. Global eigenspectrum of the

turbulent mean flow past the thick

flat-plate. (a) S-RANS mean flow. (b)

U-RANS (time averaged) mean flow.

For both cases, results obtained using

the quasi-laminar approach (black dots)

and the quasi-laminar mixed approach

(green downward triangles) are illus-

trated. In the panel (b) the spectrum

extracted from the quasi-laminar stabil-

ity analysis of the PIV measured mean

flow is also reported (upward red trian-

gles).
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FIG. 10. Leading direct and adjoint

global modes resulting from the stabil-

ity analysis of the PIV measured ((a)

and (b)) and the U-RANS computed ((c)

and (d)) time-averaged mean flows. For

both cases the quasi-laminar approach

is used. ((a) and (c)) Real streamwise

component of the direct mode veloc-

ity field normalized using the condition

û(2, 0) = 1. ((b) and (d)) Magnitude

of the adjoint mode velocity field nor-

malized with respect to its maximum

value within the considered region. In

the panels ((b) and (d)) the mean flow

streamlines are also illustrated.

The spatial distribution of the adjoint field magnitude is illus-

trated in Figs. 10(b) and 10(d). In this case, each scalar map

has been rescaled to the maximum value attained within the

employed representation window. Notwithstanding the dif-

ference in the near-wake structure, both modes are highly

localized on the boundary of the recirculation bubble, showing

qualitatively the same spatial distribution. As already men-

tioned, in order to accurately capture the thin layers char-

acterizing the adjoint mode, the original PIV mesh has been

strongly refined in the near-wake region. The computed eigen-

value for an increasing mesh resolution is reported in Table IV.

In addition, similarly to what has been done by Camarri,

Fallenius and Fransson,28 the influence of the adopted bound-

ary conditions and of the continuity errors are investigated.

When the velocity disturbances are assumed to vanish on the

lateral boundaries, the eigenvalue associated with the vortex-

shedding mode moves to the left-half of the complex plane

and the associated frequency increases of ≈ 10%, thus indi-

cating that these boundary conditions are too severe for the

small employed computational domain. On the contrary, when

the experimental mean flow is projected on a divergence-free

subspace at a pre-processing stage, only a slight variation

of the eigenvalue is observed. More precisely, the projection

step is performed by solving the following system of coupled

equations:

Uc
m = Um − ∇φ,

∇· Um
c
= 0,

(16)

where Uc
m is the corrected mean flow and the scalar field φ(x, y)

is a Lagrange multiplier introduced to enforce the incompress-

ibility constraint. The above system is discretized using the

finite element method outlined in Sec. III B and φ is computed

by solving the associated Schur-complement system, thus

avoiding the introduction of ad hoc boundary conditions for φ.

It is interesting to note that homogeneous Dirichlet conditions

on the lateral boundaries have been employed by Camarri, Fall-

enius and Fransson28 without observing any damping effect on

the leading eigenvalue, although the crosswise extent of their

computational domain is comparable to the present one. How-

ever, a slight sensitivity of the eigenvalue to these boundary

conditions is shortly mentioned by the authors.

TABLE IV. Quasi-laminar stability analysis of the PIV measured mean flow past the thick flat-plate. Eigenvalue

associated with the vortex-shedding instability obtained for different mesh resolutions and boundary conditions

on the top and bottom sides of the computational box. The results obtained by projecting the experimental mean

flow on a divergence-free subspace are also reported.

Ne Bcs top & bottom side Divergence free ℜ(λ) × 102 ℑ(λ)

35 024 Stress-free No 3.028 394 1.801 678

70 839 Stress-free No 2.989 337 1.801 810

123 441 Stress-free No 2.987 804 1.801 801

181 191 Stress-free No 2.985 676 1.801 798

461 943 Stress-free No 2.985 290 1.801 795

537 347 Stress-free No 2.985 263 1.801 795

537 347 Homogeneous Dirichlet No ☞6.178 652 1.981 686

537 347 Stress-free Yes 4.060 024 1.778 353
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FIG. 11. Leading direct and adjoint

global modes resulting from the stability

analysis of the time-averaged U-RANS

mean flow using the quasi-laminar

mixed approach. (a) Real streamwise

component of the direct-mode veloc-

ity field normalized using the condi-

tion û(2, 0) = 1. (b) Magnitude of the

adjoint-mode velocity normalized with

respect to its maximum value. In the

panel (b) a color-scale saturated at the

2.5% has been employed to better high-

light the overall spatial structure of the

adjoint mode.

For the sake of comparison, the above representations of

the direct and adjoint modes have been necessarily limited

to the small measurement window. Their whole spatial struc-

ture as extracted from the quasi-laminar mixed analysis of the

U-RANS mean flow is depicted in Fig. 11. By comparing

Figs. 10(c) and 11(a), we can observe that the turbulent dif-

fusion does not substantially modify the shape of the direct

mode. On the contrary, the sharp gradients characterizing the

adjoint mode are noticeable smoothed, Figs. 10(d) and 11(b).

Note that, with respect to Fig. 10(d), the adjoint map illustrated

in Fig. 11(b) has now been rescaled to the maximum value

attained over the entire computational domain (Σ). However,

in the same picture, a colormap saturated at 2.5% has been

used for visualization purposes, in order to better highlight

the regions of highest receptivity in the near-wake. Indeed, the

inspection of the whole spatial structure of the adjoint mode

reveals that the mode maxima are extremely localized at the

blunt edges of the thick flat-plate, as shown in the inset of

Fig. 11(b) (where a full-range colormap is used instead), with

an amplitude of two orders of magnitude greater than the values

reached on the boundary of the recirculation bubble. The same

considerations hold also for the quasi-laminar results where

the difference in amplitude with the thinner layers of near-

wake receptivity reduces to ≈ 1 order of magnitude, as well

as for the S-RANS-based results (not shown here). As already

mentioned, an ad hoc mesh refinement has been introduced to

accurately capture this fine-scale structure of the adjoint mode,

and, as an example, the convergence study carried out for the

S-RANS-based quasi-laminar results is summarized in

Table V.

Note that similar features of the adjoint mode have not

been described, nor pointed out in past studies of the global

TABLE V. Quasi-laminar stability analysis of the computed S-RANS mean

flow past the thick flat-plate. Leading eigenvalue convergence with respect

to an increasing mesh resolution. Successive mesh refinement areas have

been introduced around the thick flat-plate blunt edges to properly capture

the adjoint global mode maxima.

Ne ℜ(λ) ℑ(λ)

737 447 0.325 948 1.823 954

778 411 0.326 169 1.824 223

873 011 0.326 194 1.824 223

stability properties of turbulent flow past a D-shaped cylin-

der.25,27 The existence of a receptivity pocket at the sharp

corner where flow separation occurs (and its implications for

flow control) have been described not only in several studies

concerning cavity flows,53–55 but also for a backward facing

step geometry.56 Despite, the experimental reverse mean flow

is poorly captured by the numerical results, the detached upper

and lower boundary layer profiles reported in Fig. 8(a) are

well reproduced, which can suggest that also the detaching

boundary layer at the trailing-edge is adequately captured.

Unfortunately, no PIV measurements were performed in this

region, which prevented us to include it in the stability analysis

of the experimental mean flow to get a direct comparison with

the above results. As it will be shown in the following, these

receptivity pockets are suggested to play a relevant role in the

sensitivity picture as well as in the active control of the flow.

2. Sensitivity analysis

In agreement with the theory shortly recalled in Sec. III A,

we can now quantify the unstable mode sensitivity to a force-

velocity feedback, Eq. (11), and its sensitivity to a generic

perturbation of the mean flow, Eq. (15). The corresponding

maps obtained from the quasi-laminar analysis of the numeri-

cal (U-RANS) and the experimental time-averaged mean flows

are compared in Fig. 12. Similarly to the adjoint mode depicted

in Figs. 10(b) and 10(d), the regions of highest sensitivity are

localized along the shear-layers delimiting the average recir-

culation bubble, and more precisely, towards the closure of

the bubble itself. The structure of both the wavemaker in Fig.

12(a) and of the frequency sensitivity field, ℑ(∇Um
λ), shown

in Figs. 12(d) and 12(e), closely resemble the ones described

for the turbulent flow past a porous cylinder.28 However the

maximum sensitivity is remarkably higher in the present case,

of one order of magnitude for ‖S(x, y)‖F and of two orders

of magnitude for ℑ(∇Um
λ). The U-RANS and the experimen-

tal based results agree well, both in terms of the sensitivity

spatial distribution with respect to the underlying mean flow

structure, and of the attained values. The main difference is

represented by the existence of a secondary region of high

sensitivity across the wake centreline, which is not observed

in the PIV based results. The existence of this additional region

can be associated with the higher back-flow velocity observed

in the computed mean-flow, which is approximately two times

greater than the corresponding experimental value.
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FIG. 12. Quasi-laminar sensitivity analysis of the unstable global mode associated with the vortex-shedding instability. ((a)-(e)) PIV based results. ((f)-(l))

U-RANS based results. ((a) and (f)) Sensitivity to a local force-velocity feedback. ((b) and (g)) Mode growth-rate sensitivity with respect to streamwise mean-

flow modifications, ℜ(∇Umλ) · x̂. ((c) and (h)) Mode growth-rate sensitivity with respect to crosswise mean-flow modifications, ℜ(∇Umλ) · ŷ. ((d) and (i))

Mode frequency sensitivity with respect to streamwise mean-flow modifications ℑ(∇Umλ) · x̂. ((e) and (l)) Mode frequency sensitivity with respect to crosswise

mean-flow modifications,ℑ(∇Umλ) · ŷ. Note that in the bottom panels the employed colormaps are saturated at the range of values attained within the represented

spatial region.

FIG. 13. Adjoint-based sensitivity

analysis of the leading unstable mode

associated with the time-averaged

U-RANS mean flow. Left column:

quasi-laminar approach. Right column:

quasi-laminar mixed approach. ((a) and

(b)) Sensitivity to a local force-velocity

feedback. ((d) and (e)) Magnitude of

the mode growth-rate sensitivity with

respect to mean-flow modifications,

‖ℜ(∇Umλ)‖. ((f) and (g)) Magnitude

of the mode frequency sensitivity with

respect to mean-flow modifications,

‖ℑ(∇Umλ)‖. Note that in the central

and bottom row panels saturated

colormaps have been employed while

the corresponding full-range colormap

is reported in the corresponding insets.
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The effects of the additional turbulent diffusion on the

mean-flow sensitivity are investigated in Fig. 13 by comparing

the quasi laminar and the quasi-laminar mixed results obtained

from the analysis of the time-averaged U-RANS mean flow.

In both cases the visual inspection of the sensitivity maps,

which now include the body stern region, shows that the high-

est sensitivity is always attained within a tiny pocket just above

the blunt edge of the thick-flat plate. This is true also for

the wavemaker structure in Figs. 13(a) and 13(b), thus sug-

gesting (according to the analysis of Giannetti and Luchini10)

that the “core” of the instability is composed of two distinct

regions: a primary region corresponding to the blunt edge, and

a secondary one at the end of the recirculation bubble, already

described in Figs. 12(a) and 12(f). This is even more evident

when the turbulent viscosity is taken into account in the sen-

sitivity analysis, Fig. 13(b), with the values of ‖S‖F close to

the body stern being approximately one order of magnitude

greater than those found at the downstream edge of the recircu-

lation bubble. The difference between these two regions further

increases when considering the scalar maps associated with

‖ℜ(∇Um
λ)‖ and ‖ℑ(∇Um

λ)‖, depicted in Figs. 13(c)–13(f),

respectively. Indeed, due to the additional turbulent diffusion,

the sensitivity layers lying on the boundary of the recircula-

tion bubble are considerably smoothed, while the thin region

along the centreline almost disappears. At the same time, it is

worthwhile to note that the shape of the blunt-edge sensitivity

pocket is not substantially affected by ν̄t , and although the cor-

responding peak value is different between the quasi laminar

and the quasi-laminar mixed results, it keeps the same order

of magnitude.

IV. ADJOINT-BASED FEEDBACK CONTROL

The mean-flow stability analysis has been shown to accu-

rately capture the leading frequency of the unsteady thick flat-

plate wake, especially when a quasi-laminar mixed approach

is used. In this section we investigate the possibility to fur-

ther exploit these results in order to actively control the global

instability of the considered flow. Recent studies25,27 have

shown how the mean-flow based sensitivity analysis can be

used to effectively predict before hand the impact of a small

control cylinder on the vortex-shedding frequency of a bluff-

body wake, thus paving the way for the efficient design of

passive control devices. Motivated by these results, we numer-

ically explore here the possibility to design an active feedback

control of the considered flow based on the linearized Navier–

Stokes equations around a selected mean-flow, leaving aside

any turbulence modelling except for the frozen eddy viscosity

approximation, as done in the stability and sensitivity analyses.

This makes the control design independent of the particu-

lar choice of the turbulence model. Indeed, in a real control

experiment, while we can have access to phase-averaged mea-

surements of the turbulent flow field, it is rather difficult or

even unrealistic to adequately estimate turbulence modelling

quantities, such as k(x, y, t) and ω(x, y, t), even based on their

physical counterparts.

In the following we consider a full-information control

within the well-established framework of the linear opti-

mal control theory.4,5,57 More precisely, we present here an

original extension of the Minimal Control Energy (MCE) tech-

nique29,30 to the control of turbulent bluff-body wakes. This

technique allows the efficient computation of a stabilizing

feedback rule of the linearised flow model based solely on

the knowledge of the unstable adjoint modes. The proposed

extension relies on the particular choice of the mean flow

employed to build up the linear model which corresponds to

the S-RANS solution instead of the time-averaged U-RANS

one. It is well known that for bluff-body configurations, the

steady solution of the RANS equations often exhibits a lower

mean drag coefficient with respect to the real one, due to the

overprediction of the mean wake recirculation length. Indeed,

both these quantities are better estimated by means of unsteady

RANS computations, where the mean-flow corrections due

to the large-scale instabilities are taken into account. Never-

theless the quasi-laminar mixed analysis performed around

the S-RANS mean flow has shown that the vortex-shedding

frequency is accurately predicted, Fig. 9(a). These observa-

tions provide us the rational to employ the S-RANS mean

flow in the derivation of the linearised flow model for control

design. Indeed, as shown in the control of the laminar cylinder

wake,30 the base solution around which the “linearisation” is

performed, i.e., the generalized base flow, not only specifies the

linearised dynamics, but also plays the role of the “target flow”

of the control action. Therefore, a control design based on the

S-RANS mean flow is expected to drive the unsteady flow

around a time-averaged state characterized by an elongated

mean wake with a lower pressure drag.

Finally, even if it would be hard to introduce a full-

information feedback control in a real control experiment

(since it would require the measurement, at each time instant,

of the whole flow field), the inspection of the spatial distribu-

tion of the computed feedback gain (vector) field can provide

relevant information about those flow regions which are of

utmost importance for feedback control, thus guiding and sup-

porting the experimental investigations. In addition, bypassing

any open-loop model reduction, it is possible to assess the best

control performance in absence of model reduction errors, with

the model reduction step being postponed after the control

design step, i.e., in closed loop, or restricted to the estimation

problem only.

A. Control definition, methodology
and implementation

The unsteady RANS flow is controlled by means of

a couple of blowing/suction slots symmetrically positioned

on the upper and lower surfaces of the thick flat-plate for

x ∈ [−0.1,−0.05], as sketched in Fig. 14. This placement of

the actuators, very close to the body stern results as a com-

promise between the need of a realistic control configuration,

with body-embedded actuators, and the results of the sensitiv-

ity analysis described in Sec. III C 2, showing that the highest

sensitivity is located at the blunt edge of the thick flat-plate.

The reference crosswise velocity profile of the blowing/suction

actuation is also illustrated in the inset of Fig. 14, featuring

a smoothed top-hat shape which is given by the following

expression:

v(ξ) = hm(ξ/w − 1) + hm((ξ − 1)/w + 1), ξ ∈ [0, 1], (17)
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FIG. 14. Schematic diagram of the flow

configuration with active feedback con-

trol. Blowing/suction slots (denoted by

the small red arrows) are introduced

on the upper and lower body surfaces

close to the stern, for x ∈ [−0.1,−0.05].

The inset illustrates the non-dimensional

reference jet profile for the y velocity

component.

where ξ is a non-dimensional abscissa along the slot width and hm(s) is a mollified step function defined as

hm(s) =



0 if s ≤ −1,

0.5 + s(0.9375 − s2(0.625 − 0.1875s2)) if s ∈ (−1, 1),

1 if s ≥ 1,

(18)

where the smoothing parameter w has been set equal to

w = 0.15. Note that the two actuators are operated in phase

opposition with the same amplitude, resulting in a zero net-

mass blowing/suction actuation. Therefore, a single control

variable ϕ(t) is defined, which represents the instantaneous58

maximum blowing/suction velocity, where a positive sign

means blowing from the upper surface and suction from the

lower one.

Given the above configuration and the linearised descrip-

tion of the flow dynamics around the considered mean flow,

the “flow plant”, is defined as follows:

E(x, y)
∂q

∂t
= A(x, y)q, on (Σ),

q(x, y, t)|Γc
= h(x, y)ϕ(t),

B(x, y)q(x, y, t)|∂Σ/Γc
= 0,

(19)

where h(x, y) stands for the spatial distribution of the applied

Dirichlet condition on the control boundary Γc. On the remain-

ing portion of (∂Σ) the same homogeneous boundary condi-

tions of the eigenvalue problem (4), here formally expressed

through the operator B(x, y), are applied. The above bound-

ary control problem can be conveniently recast in a vol-

ume control formulation by means of a lifting procedure6

of the inhomogeneous datum on (Γc). This is obtained by

introducing the solution qc(x, y) of the following steady

problem:

A(x, y, t)qc = 0, on (Σ),

qc(x, y)|Γc
= h(x, y),

B(x, y)qc(x, y)|∂Σ/Γc
= 0,

(20)

and then expressing the original flow state as q(x, y, t)

= q̃(x, y, t) + qc(x, y)ϕ(t) where, upon a substitution into

Eq. (19), we derive the following problem for the auxiliary

flow state q̃(x, y, t):

E(x, y)
∂q̃

∂t
= A(x, y)q̃ + b(x, y)c(t), on (Σ),

q̃(x, y, t)|Γc
= 0,

B(x, y)q̃(x, y, t)|∂Σ/Γc
= 0,

(21)

where b(x, y)= E(x, y)qc(x, y) and c(t) =−dϕ(t)/dt. The above

equations are spatially discretized using the same finite ele-

ment approach described in Sec. III B, obtaining

E
dx

dt
= Ax(t) + Bc(t), (22)

with x(t) being the array of velocity and pressure states, while

the matrices E, A and B denote the discrete representation of

the linear operators E(x, y), A(x, y) and of the forcing vector

field b(x, y), respectively. At this point, the linear feedback

control is designed directly within the discrete setting, with a

control law of the form c(t)=Kx(t). More precisely, the feed-

back gain (row) matrix K is computed as the MCE solution

of the classical Linear Quadratic Regulator (LQR) problem,57

through the following formula:30,59

K = −r−1BH
u F−1PH

u E, (23)

where Pu is the matrix of the unstable left eigenvectors of the

pencil (A, E), i.e., the discrete representation of the complex-

conjugate pairs of unstable adjoint modes, q̂† and (q̂†)
∗
,

Bu =PH
u B and r is the control weight associated with the def-

inition of the optimal control cost function J = ∫
∞

0 xHQx

+ rc(t)2dt which is minimized. Note that the state weight

matrix Q does not enter the computation of the MCE solu-

tion.59 Furthermore, it can be shown that when a single control

variable is considered, the particular value of r, with r ≥ 0,

does not affect the resulting gain values.30 In the following

expressions, r is reported only for the sake of completeness

and we can simply assume r = 1. The matrix F in Eq. (23) is

defined as

F =



M11

2ℜ(λ)

M12

2λ

M21

2λ

M22

2ℜ(λ)


with M = r−1BuBH

u . (24)

Therefore, as previously anticipated, the computation of the

MCE feedback gains requires only the knowledge of the unsta-

ble adjoint modes of the the mean-flow linearised dynamics.

Once computed, the linear feedback rule can be re-interpreted

within the continuous setting by introducing the field qk(x, y)

of feedback gains:
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TABLE VI. MCE control law: computed values of α, α̃ and β for both the laminar cylinder wake at Re = 50 and

the turbulent flow past the thick flat-plate at Re = 32 000.

α α̃ β

Laminar cylinder wake −6.3871 × 10−2 −7.6871 × 10−2 −6.8107 × 10−14

Turbulent thick-flat plate flow −9.6076 × 10−1 −1.2010 −3.2720 × 10−12

c(t) = Kx(t) = kHEx ≈

∫
Σ

q∗k · E(x, y)q̃ dΩ = 〈uk , ũ〉, (25)

where the array k = −r−1PuF−HBu denotes the discrete coun-

terpart of qk(x, y) = (uk , pk), storing the corresponding veloc-

ity and pressure gain degrees of freedom. It is worthwhile to

observe that in the derived feedback law, the pressure does not

contribute to c(t), since E is positive semidefinite, according

to the incompressibility constraint. Both k and qk are real-

valued quantities and, in the present case, simply correspond

to a linear combination of the real and the imaginary parts of

the unstable adjoint mode. We can further manipulate Eq. (25)

in order to express the feedback law in terms of the original

control variable ϕ(t) and of the inhomogeneous linearised flow

state q(x, y, t). By taking into account the lifting procedure and

substituting for the definition of q̃(x, y, t) and c(t) in Eq. (25),

we get

dϕ(t)

dt
= −〈uk , u − ϕ(t)uc〉 = αϕ(t) − 〈uk , u〉, (26)

with α = 〈uk , uc〉 being a constant coefficient. An additional

step is required when the control is applied directly to the

nonlinear RANS flow model. In fact, consistently with the

adopted linear mean-flow model, within the fully nonlinear

U-RANS setting q is approximated as the difference between

the instantaneous flow velocity U(x, y, t) and the considered

mean-flow Um(x, y), yielding to

dϕ(t)

dt
= αϕ(t) − 〈uk , U〉 + β, (27)

where the additional constant coefficient β is equal to

β = 〈uk , Um〉. It is worthwhile to note that, due to the intro-

duced lifting procedure, a feedback control of integral type is

finally obtained in terms of ϕ(t)

ϕ(t) = ϕ(0)eαt −

∫ t

0

eα(t−τ)γ(τ) dτ, (28)

with γ(t) = 〈uk , U〉 − β. Indeed it is easy to show that the over-

all closed-loop system features a pole at the origin, which can

lead to a constant value of ϕ(t) different from zero at infinite

time, i.e., a constant non zero actuation. In order to prevent

this, at least within the linearised setting, the value of α can be

tuned by a small variation which results to be approximately of

the same order of−ℜ(λ), and in the following we denote by α̃,

the modified value of α which is employed in the simulations

of the control systems.

Within the adopted U-RANS setup described in Sec.

II A, the feedback control is numerical implemented using

a “segregated-like” approach where at each time-step of the

closed-loop dynamics, the value of ϕ(t) (which enters the

boundary conditions of the U-RANS equations) is linearly

extrapolated from the previous time-steps and, at the same

time, the coupling term 〈uk , U〉 in Eq. (27) is integrated explic-

itly by means of the second-order Adam-Bashforth scheme.

This allows us to encapsulate the control algorithm within

an ad hoc created C++ class of boundary conditions derived

from the general OpenFOAM class named fixedValue, mak-

ing the control implementation independent from the specific

choice of the OpenFOAM flow solver and thus ready avail-

able for a wide range of flow simulations. Once computed by

means of the finite-element discretization, the feedback gain

field uk(x, y) is interpolated on the hybrid finite-volume mesh

and given in input to the control algorithm in the U-RANS

simulation. The whole numerical setup has been first vali-

dated on the cylinder wake at low Reynolds numbers, where

the MCE approach has been shown to completely suppress

the vortex-shedding.30 For such test case, a coarse rectangular

unstructured mesh composed of 38 646 triangles is employed,

with a minimum mesh size of ≈0.02. The cylinder is placed

at a distance of 15 diameters from the inlet and the lateral

boundaries and of 30 diameters from the outflow boundary. A

uniform streamwise velocity is assigned at the inlet, while on

the remaining portions of the external boundary ∇U · n̂ = 0

is assumed. For Re = 50, the unstable eigenvalue extracted

from the global stability analysis of the inherent base flow is

FIG. 15. MCE control of the laminar

cylinder wake at Re = 50. (a) Lift coef-

ficient CL(t). (b) Control variable ϕ(t)

corresponding to the cylinder angular

velocity which is assumed positive in the

courter-clockwise direction. The con-

trol starts at the nondimensional time

t = 1500.
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FIG. 16. Active feedback control of the

confined turbulent flow past the thick-

flat plate. (a) Magnitude of the lifting

velocity field, ‖uc(x, y)‖. (b) Magnitude

of the feedback gain field, ‖uk(x, y)‖.
Note that in both panels the colormap

has been saturated for visualization pur-

pose, highlighting the near-wake flow

structure. The insets in each panel illus-

trate a detailed view of the x and y

components of the corresponding vec-

tor field in the neighbourhood of the

thick-flat plate blunt edge, using the

corresponding full colormap.

λ = 1.597× 10−2
+ 0.7454i which compares well with the

value reported by Carini, Pralits and Luchini.30 The same

occurs for the corresponding direct and adjoint modes (not

shown here). As done in the aforementioned study, the

unsteady wake is controlled by means of angular oscillations

of the cylinder surface around its axis, with ϕ(t) represent-

ing the cylinder angular velocity, which is assumed positive

in the courter-clockwise direction. The computed value of

α, α̃ and β are reported in Table VI. In particular β ≈ 0

which follows from the fact that the control gain field uk dis-

plays the opposite symmetry with respect to the base flow,

i.e., it is antisymmetric with respect to the flow centreline.

The computed MCE control is turned on during the fully-

developed vortex-shedding regime and the time traces of

CL(t) and ϕ(t) illustrated in Fig. 15 confirm that the flow

instability is completely suppressed and the base flow state

restored.

B. Results

The solution of the lifting problem Eq. (20) is illustrated

in Fig. 16(a) by means of the magnitude of the related velocity

field. In addition, a detailed view of the velocity components,

uc and vc, in the neighbourhood of the control boundary Γc

is reported. A similar representation is also adopted for the

feedback gain field uk(x, y) in Fig. 16(b). Note that, for visu-

alization purpose, the colormaps associated with ‖uc(x, y)‖
and ‖uk(x, y)‖ have been saturated to a value lower than the

maximum one. Both vector fields are anti-symmetric with

respect to the x-axis, consistently with the employed anti-phase

blowing/suction actuation. Not surprisingly, uk(x, y) displays

a spatial structure which is very similar to the one of the unsta-

ble adjoint mode extracted from the stability analysis of the

S-RANS mean flow (not shown here). Correspondingly, the

highest gains are reached within a small region close to the

FIG. 17. Active feedback control of the

confined turbulent flow past the thick-

flat plate: time traces of the thick-flat

plate aerodynamic coefficients and of

the control amplitude ϕ(t). (a) Drag

coefficient, CD. (b) Lift coefficient, CL .

(c) Control amplitude ϕ(t).
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FIG. 18. Active feedback control of the

confined turbulent flow past the thick-

flat plate: U-RANS vorticity snapshots

at various time instants during the con-

trol. (a) t = 380. (b) t = 440. (c) t = 560.

(d) t = 680. Note that the same satu-

rated color-scale has been used for all

the panels. In addition in panel (d), the

flow streamlines are also illustrated, in

order to better highlight the asymmetric

structure of the final steady wake.

thick flat-plate blunt edges, these values being almost two

orders of magnitude greater than those attained in the near-

wake, where, however, larger low-frequency velocity fluctua-

tions are expected.

The feedback control law Eq. (27) is now introduced

into the U-RANS simulations and applied directly to the fully

developed vortex-shedding regime reached in the uncontrolled

case, Fig. 7. The values of the control coefficients α, α̃ and β

are listed in Table VI. As expected from symmetry consider-

ations, β ≈ 0 while with respect to the circular cylinder test

case the values of α and α̃ are ≈ 1 order of magnitude greater.

The obtained control results are illustrated in Fig. 17, by means

of the time traces of the aerodynamic force coefficients and of

ϕ(t), and in Fig. 18, by means of vorticity snapshots taken at

different time instants. With reference to Fig. 17(a), after a first

transient of ≈40 time units from the control start-up, both the

oscillation amplitude of CD(t) and its local mean value result

greatly reduced and, finally, the CD(t) slowly converges toward

a constant value, slightly above the one associated with the S-

RANS solution. Similarly, the oscillation amplitude of CL(t)

finally reduces to zero, as shown in Fig. 17(b). However the

asymptotic flow state is characterized by a constant negative

lift force due to a constant blowing (suction) from the upper

(lower) body surface at ≈17% of the free-stream velocity, as

observed from the time trace of ϕ(t) in Fig. 17(c). Note that the

maximum blowing/suction velocity reached during the tran-

sient is of nearly 2 times the free-stream velocity. The control

is able to completely suppress the flow unsteadiness associ-

ated with the vortex-shedding instability and the corresponding

flow evolution is illustrated in Fig. 18. The vortex-rollup is first

delayed downstream of the body stern, resulting in the forma-

tion of a “dead water” region, Fig. 18(b), which produces an

increase of the base pressure and thus considerably reduces

the body drag after the first transient of ≈40. It is interest-

ing to note that this physical mechanism is very similar to

the one described by Pastoor et al.45 in their active control

experiment of the turbulent flow past a D-shaped cylinder.

Then the alternating character of the wake and the associated

vortex structures result progressively mitigated, Fig. 18(c),

until a slightly asymmetric steady wake is established under

the action of a constant non-zero blowing-suction actuation,

showing nearly the same recirculation length of the target

S-RANS solution. The asymmetry of the asymptotic flow state

of the fully nonlinear closed-loop system can be associated

to the integral character itself of the feedback control law,

Eq. (28), as well as to a destabilization of one of the modes

lying on the real axis of the linearized (quasi-laminar mixed)

flow spectrum, Fig. 9(b), through a “water-bed” effect.

V. SUMMARY AND CONCLUSIONS

We presented in this study a linear stability analysis of

the confined turbulent mean flow past an elongated D-shaped

cylinder using a quasi-laminar approach and its mixed vari-

ant.27 In analogy with previous works,25,27,28 we found that

the vortex-shedding frequency measured in the experiments

is very well captured by the leading unstable global mode,

especially when the eddy viscosity is introduced in the sta-

bility equations. Despite the discrepancies observed between

the measured and the computed mean wake, a good qualita-

tive agreement is found when comparing the corresponding

sensitivity maps in the near-wake region, where PIV measure-

ments of the flow are performed. Both for the direct-adjoint

product, i.e., the wavemaker, and the sensitivity to generic

mean-flow variations, regions of high intensity display as thin

layers along the boundary of the recirculation bubble. Sim-

ilar spatial structures were described by Camarri, Fallenius

and Fransson28 in their stability investigation of the turbulent

mean wake behind a circular cylinder with transpiration. How-

ever, the visual inspection of these fields when extended to the

whole spatial domain reveals that huge values of receptivity

are present at the trailing edge of the body within a tiny region

of size of O(H−3). The core of the instability is thus composed

by two distinct regions, the one located at the downstream edge

of the recirculation bubble, common to the circular cylinder

wake, and a second one located at the blunt edge of the thick

flat-plate. These findings, which have not been pointed out in

the aforementioned studies over a D-shaped geometry, suggest

that particular care should be taken in the global stability anal-

ysis of PIV measured flow field when fixed separation points

are left outside of the measurement window. In addition, the

comparison between the quasi-laminar and the quasi-laminar

mixed results show that the turbulent viscosity has a greater

impact on the near-wake sensitivity structures rather than on
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the trailing-edge ones, with the former resulting appreciably

smoothed.

As an additional application of the obtained stability

results we explored the possibility to control the low-frequency

oscillations of the wake. With respect to the works of Meliga

Pujals and Serre25 and of Mettot, Sipp and Bézard,27 we con-

sidered here the design of an active feedback control using

the linear optimal control theory. An original extension of

the MCE technique29,30 to turbulent flow oscillators has been

proposed under the frame of their RANS modelling. When

applied directly to the fully developed vortex-shedding in

the U-RANS simulations, the derived full-information con-

trol achieves a complete suppression of the wake oscillations.

The control action results in a synchronization between the

lower and upper shear layers with a mechanism similar to

the one experimentally investigated by Pastoor et al.45 Such

results indirectly support the relevance of the mean-flow sta-

bility and sensitivity analyses. Nevertheless attention need to

be paid to the proper interpretation of the control performance.

Although from a physical viewpoint a complete suppression

of the vortex-shedding at high Reynolds numbers is rather

unrealistic, the control results suggest that the computed gain

field can select the most relevant “phase-averaged” velocity

information for the effective mitigation of the global insta-

bility. Therefore the spatial distribution of the feedback gains

can be used to guide the design of a real control experiment

where phase-averaged measurements of the flow are available.

In particular, for the present geometry, the structure of the gain

field, as inherited from the underlying adjoint mode, can be

used, at least in principle, to design a simple proportional con-

trol exploiting localized flow measurements at the body stern,

where the highest gain values are found. These issues will

be considered in a future work more focused on flow control

aspects.
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