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Abstract
We show that accelerated optimization methods can be seen as particular instances of multi-step

integration schemes from numerical analysis, applied to the gradient flow equation. In comparison
with recent advances in this vein, the differential equation considered here is the basic gradient flow
and we show that multi-step schemes allow integration of this differential equation using larger step
sizes, thus intuitively explaining acceleration results.

Introduction

The gradient descent algorithm used to minimize a function f has a well-known simple numerical
interpretation as the integration of the gradient flow equation, written

x(0) = x0

ẋ(t) = −∇f(x(t)),
(Gradient Flow)

using Euler’s method. This appears to be a somewhat unique connection between optimization and
numerical methods, since these two fields have inherently different goals. On one hand, numerical
methods aim to get a precise discrete approximation of the solution x(t) on a finite time interval.
More sophisticated methods than Euler’s were developed to get better consistency with the contin-
uous time solution but still focus on a finite time horizon (see for example Süli and Mayers, 2003).
On the other hand, optimization algorithms seek to find the minimizer of a function, which corre-
sponds to the infinite time horizon of the gradient flow equation. Structural assumptions on f led
to more sophisticated algorithms than the gradient method, such as the mirror gradient method (see
for example Ben-Tal and Nemirovski, 2001; Beck and Teboulle, 2003), proximal gradient method
(Nesterov et al., 2007) or a combination thereof (Duchi et al., 2010; Nesterov, 2015). Among them
Nesterov’s accelerated gradient algorithm (Nesterov, 1983) is proven to be optimal on the class of
smooth convex or strongly convex functions. This last method was designed with the lower com-
plexity bounds in mind, but the proof relies on purely algebraic arguments and the key mechanism
behind acceleration remains elusive, which led to various interpretations of it (Bubeck et al., 2015;
Allen Zhu and Orecchia, 2017; Lessard et al., 2016).

A recent stream of papers recently used differential equations to model the acceleration be-
havior and offer a better interpretation of Nesterov’s algorithm (Su et al., 2014; Krichene et al.,
2015; Wibisono et al., 2016; Wilson et al., 2016). However, the differential equation is often quite
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complex, being reverse-engineered from Nesterov’s method itself, thus losing the intuition. More-
over, integration methods for these differential equations are often ignored or are not derived from
standard numerical integration schemes, because the convergence proof of the algorithm does not
require the continuous time interpretation.

Here, we take another approach. Rather than using a complicated differential equation, we
use advanced multi-step methods to discretize the basic gradient flow equation in (Gradient Flow).
These lesser known methods, developed decades ago by numerical analysts, directly correspond
to various well-known optimization algorithms. In particular, Nesterov’s method can be seen as a
stable and consistent gradient flow discretization scheme that allows bigger step sizes in integration,
leading to faster convergence.

The paper is organized as follows. In Section 1 we present our setting and recall classical
results on differential equations. We then review definitions and theoretical properties of integration
methods called linear multi-step methods in Section 2. Linear one-step and two-step methods are
detailed in Section 3 and linked to optimization algorithms in Section 4 (strongly convex case) and
Section 5 (convex case). Finally, we propose several extensions for (Gradient Flow), which can be
used to explain proximal methods (Section 6), non-euclidean method (Section 7) or a combination
thereof (Section 8).

1. Gradient flow

We seek to minimize a L-smooth µ-strongly convex function f defined on Rd and look in that
purpose at the discretization the gradient flow equation (Gradient Flow), given by the following
ordinary differential equation (ODE)

ẋ(t) = g(x(t))

x(0) = x0,
(ODE)

where g comes from a potential −f , meaning g = −∇f . Smoothness of f means Lipschitz conti-
nuity of g, i.e.

‖g(x)− g(y)‖ ≤ L‖x− y‖, for every x, y ∈ Rd,

where ‖.‖ is the Euclidean norm. This property ensures the existence and uniqueness of the solu-
tion of (ODE) (see (Süli and Mayers, 2003, Theorem 12.1)). Strong convexity of f means strong
monotonicity of −g, i.e.,

µ‖x− y‖2 ≤ −〈x− y, g(x)− g(y)〉, for every x, y ∈ Rd,

and ensures that (ODE) has a unique point x∗ such that g(x∗) = 0, called the equilibrium. This is
the minimizer of f and the limit point of the solution, i.e., x(∞) = x∗. In the numerical analysis
literature, strong monotonicity of −g is referred to as one-sided Lipschitz-continuity of g. What-
ever its name, this property essentially contracts solutions of (ODE) with different initial points as
showed in the following proposition.

Proposition 1.1 Assume that x1(t), x2(t) are solutions of ODE with different initial conditions,
where −g is strongly monotone. Then, x1(t) and x2(t) get closer as t increases, precisely,

‖x1(t)− x2(t)‖2 ≤ e−2µt‖x1(0)− x2(0)‖2.
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Proof Let L(t) = ‖x1(t)− x2(t)‖2 If we derive L(t) over time,

d

dt
L(t) = 2〈x1(t)− x2(t), ẋ1(t)− ẋ2(t)〉

= 2〈x1(t)− x2(t), g(x1(t))− g(x2(t))〉
≤ −2µL(t).

We thus have L(t) ≤ e−2µtL(0), which is the desired result.

Strong convexity allows us to control the convergence rate of the potential f and the solution x(t)
as recalled in the following proposition.

Proposition 1.2 Let f be a L-smooth and µ-strongly convex function and x0 ∈ dom(f). Writing
x∗ the minimizer of f , the solution x(t) of (Gradient Flow) satisfies

f(x(t))− f(x∗) ≤ (f(x0)− f(x∗))e−2µt (1)

‖x(t)− x∗‖ ≤ ‖x0 − x∗‖e−µt. (2)

Proof Indeed, if we derive the left-hand-side of (1),

d

dt
[f(x(t))− f(x∗)] = 〈∇f(x(t)), ẋ(t)〉 = −‖f ′(x(t))‖2.

Using that f is strongly convex, we have (see Nesterov (2013))

f(x)− f(x∗) ≤ 1

2µ
‖∇f(x)‖2,

and therefore
d

dt
[f(x(t))− f(x∗)] ≤ −2µ[f(x(t))− f(x∗)].

Solving this differential equation leads to the desired result. We can apply a similar technique for
the proof of (2), using that

µ‖x− y‖2 ≤ 〈∇f(x)−∇f(y), x− y〉,

for strongly convex functions (see again Nesterov (2013)).

We now focus on numerical methods to integrate (ODE).

2. Numerical integration of differential equations

In general, we do not have access to an explicit solution x(t) of (ODE). We thus use integration
algorithms to approximate the curve (t, x(t)) by a grid (tk, xk) ≈ (tk, x(tk)) on a finite interval
[0, tmax]. For simplicity here, we assume the step size hk = tk − tk−1 constant, i.e., hk = h and
tk = kh. The goal is then to minimize the approximation error ‖xk − x(tk)‖ for k ∈ [0, tmax/h].
We first introduce Euler’s explicit method to illustrate this on a basic example.
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2.1 Euler’s explicit method

Euler’s explicit method is one of the oldest and simplest schemes for integrating the curve x(t). The
idea stems from the Taylor expansion of x(t) which reads

x(t+ h) = x(t) + hẋ(t) +O(h2).

When t = kh, Euler’s explicit method approximates x(t + h) by xk+1 by neglecting the second
order term,

xk+1 = xk + hg(xk).

In optimization terms, we recognize the gradient descent algorithm used to minimize f . Approxi-
mation errors in an integration method accumulate with iterations, and as Euler’s method uses only
the last point to compute the next one, it has only limited control over the accumulated error.

2.2 Linear multi-step methods

Multi-step methods use a combination of several past iterates to improve convergence. Throughout
the paper, we focus on linear s-step methods whose recurrence can be written

xk+s = −
s−1∑
i=0

ρixk+i + h
s∑
i=0

σig(xk+i), for k ≥ 0, (3)

where ρi, σi ∈ R are the parameters of the multi-step method and h is again the step size. Each
new point xk+s is a function of the information given by the s previous points. If σs = 0, each new
point is given explicitly by the s previous points and the method is then called explicit. Otherwise
each new point requires solving an implicit equation and the method is then called implicit.

To simplify notations we use the shift operator E, which maps Exk → xk+1. Moreover, if
we write gk = g(xk), then the shift operator also maps Egk → gk+1. Recall that a univariate
polynomial is called monic if its leading coefficient is equal to 1. We now give the following
concise definition of s-step linear methods.

Definition 2.1 A linear s-step method integrates an (ODE) defined by g, x0, using a step size h and
x1, . . . , xs−1 starting points by generating a sequence xk that satisfies

ρ(E)xk = hσ(E)gk, for every k ≥ 0,

where ρ is a monic polynomial of degree s with coefficients ρi, and σ a polynomial of degree s with
coefficients σi.

A linear s−step method is uniquely defined by the polynomials (ρ, σ). The sequence generated
by the method then depends on the starting points and the step size. Each linear multi step method
has a twin sister, called one-leg method, which generates the sequence x̃k following

ρ(E)x̃k = σ(1)hg

(
σ(E)

σ(1)
x̃k

)
.

It is possible to show a bijection between xk and x̃k (Dahlquist, 1983). We quickly mention one-
leg methods in Section 6 but we will not go into more details here. We now recall a few results
describing the performance of multi-step methods.
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2.3 Stability

Stability is a key concept for integration methods. First of all, consider two curves x(t) and y(t),
both solutions of an (ODE) defined by g, but starting from different points x(0) and y(0). If the
function g is Lipchitz-continuous, it is possible to show that the distance between x(t) and y(t) is
bounded on a finite interval, i.e.

‖x(t)− y(t)‖ ≤ C‖x(0)− y(0)‖ ∀t ∈ [0, tmax],

where C may depend exponentially on tmax. We would like to have a similar behavior for our
sequences xk and yk, approximating x(tk) and y(tk), i.e.

‖xk − yk‖ ≈ ‖x(tk)− y(tk)‖ ≤ C‖x(0)− y(0)‖ ∀k ∈ [0, tmax/h], (4)

when h→ 0, so k →∞. Two issues quickly arise, namely:

• For a linear s-step method, we need s starting values x0, ..., xs−1. Condition (4) will therefore
depend on all these starting values and not only x0.

• Any discretization scheme introduce at each step an approximation error, called local error,
which is accumulated over time. We denote this error by εloc(xk+s) and define it as

εloc(xk+s) , xk+s − x(tk+s)

if xk+s is computed using the real solution x(tk), ..., x(tk+s−1).

In other words, the difference between xk and yk can be described as follows

‖xk − yk‖ ≤ Error in the initial condition + Accumulation of local errors.

We now write a complete definition of stability, inspired from Definition 6.3.1 from Gautschi (2011).

Definition 2.2 A linear multi-step method is stable if, for two sequences xk, yk generated by (ρ, σ)
using any sufficiently small step size h > 0, from the starting values x0, ..., xs−1, and y0, ..., ys−1,
we have

‖xk − yk‖ ≤ C

 max
i∈{0,...,s−1}

‖xi − yi‖+

tmax/h∑
i=1

‖εloc(xi+s)− εloc(yi+s)‖

 , (5)

for any k ∈ [0, tmax/h]. Here, the constant C may depend on tmax but is independent of h.

When h tends to zero, we may recover equation (4) only if the accumulated local error tends also to
zero. We thus need

lim
h→0

1

h
‖εloc(xi+s)− εloc(yi+s)‖ = 0 ∀i ∈ [0, tmax/h].

This condition is called consistency. Once this condition satisfied, we still need to ensure

‖xk − yk‖ ≤ C max
i∈{0,...,s−1}

‖xi − yi‖, (6)

and this condition is called zero-stability.
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2.3.1 TRUNCATION ERROR AND CONSISTENCY

The truncation error of a linear multi-step method is a measure of the local error εloc(xk) made by
the method, normalized by h. More precisely it is defined using the difference between the step
performed by the algorithm and the step which reaches exactly x(tk+s), with

T (h) ,
x(tk+s)− xk+s

h
assuming xk+i = x(tk+i), i = 0, . . . , s− 1. (7)

This definition does not depend on k but on the recurrence of the linear s-step method and on the
(ODE) defined by g and x0. We can use this truncation error to define consistency.

Definition 2.3 An integration method for an (ODE) defined by g, x0 is consistent if and only if, for
any initial condition x0,

lim
h→0
‖T (h)‖ = 0.

The following proposition shows there exist simple conditions to check consistency, which rely
on comparing a Taylor expansion of the solution with the coefficients of the method.

Proposition 2.4 A linear multi-step method defined by polynomials (ρ, σ) is consistent if and only
if

ρ(1) = 0 and ρ′(1) = σ(1). (8)

Proof Assume tk = kh. If we expand g(x(tk)) we have

g(x(tk)) = g(x0) +O(h).

If we do the same thing with x(tk), we have

x(tk) = x0 + khẋ(t0) +O(h2) = x0 + khg(x0) +O(h2).

If we plug these results in the linear multi-step method,

T (h) =
1

h

x(tk+s) +
s−1∑
i=0

ρix(tk+i)− h
s∑
i=0

σig(x(tk+i))


=

1

h
ρ(1)x0 + (ρ′(1)− σ(1))g(x0) +O(h).

The limit is equal to zero if and only if we satisfy (8).

Consistency is crucial for integration methods, we give some intuition about how important are
conditions defined in (8).

First condition, ρ(1) = 0. If the condition is not satisfied, then the method exhibits an artificial
gain or damping. Assume we start at some equilibrium x∗ of ODE (i.e. ∇f(x∗) = 0), so xi = x∗

for the first s− 1 steps. The next iterate becomes

xs = −
s−1∑
i=0

ρix
∗ + hσ(E) g(x∗)︸ ︷︷ ︸

=0

,

and if 1 +
∑s

i=0 ρi = ρ(1) 6= 0, we have that the next iterate xs is different from x∗.
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Second condition, ρ′(1) = σ(1). If this relation is not satisfied, we actually are integrating an-
other equation than (ODE). Assuming the first condition satisfied, 1 is a root of ρ. Consider then
the factorization

ρ(z) = (z − 1)ρ̃(z)

where ρ̃ is a polynomial of degree s− 1, and ρ′(1) = ρ̃(1). The linear multi-step method becomes

ρ̃(E)(yk+1 − yk) = hσ(E)g(yk).

If we sum up the above equation from the initial point, we get

ρ̃(E)(yk − y0) = σ(E)Gk,

where Gk =
∑k

i=0 hg(yi). If h goes to zero, our iterates yk converge to some continuous curve
c(t), and Gk →

∫ t
0 g(c(τ)) dτ ,

s∑
i=0

ρ̃i(c(t)− x(0)) =
s−1∑
i=0

σi

∫ t

0
g(c(τ)) dτ.

If we take the derivative over time, we get

ρ̃(1)ċ(t) = σ(1)g(c(t)) ⇔ ρ′(1)ċ(t) = σ(1)g(c(t)).

which is different from the ODE we wanted to discretize, unless ρ′(1) = σ(1).

2.3.2 ZERO-STABILITY AND ROOT CONDITION

To get stability, assuming consistency holds as above, we also need to satisfy the zero-stability
condition (6), which characterizes the sensitivity of a method to initial conditions. Actually, the
name comes from an interesting fact: analyzing the special case where g = 0 is completely equiv-
alent to the general case, as stated in the root condition theorem. The analysis becomes simplified,
and reduces to standard linear algebra results because we only need to look at the solution of the
homogeneous difference equation ρ(E)xk = 0.

Theorem 2.5 (Root condition) Consider a linear multi-step method (ρ, σ). The method is zero-
stable if and only if all roots of ρ are in the unit disk, and the roots on the unit circle are simple.

The proof of this theorem is technical and can be found as Theorem 6.3.4 of Gautschi (2011).

2.4 Convergence of the global error and Dahlquist’s equivalence theorem

Numerical analysis focuses on integrating an ODE on a finite interval of time [0, tmax]. It studies
the behavior of the global error defined by the difference between the scheme and the solution of
the ODE, i.e., x(tk) − xk, as a function of the step size h. If the global error converges to 0 with
the step size, the method is guaranteed to approximate correctly the ODE on the time interval, for
h small enough. The faster it converges with h, the less points we need to guarantee a global error
within a given accuracy.

We now state Dahlquist’s equivalence theorem, which shows that the global error converges to
zero when h does if the method is stable, i.e., when the method is consistent and zero-stable. This
naturally needs the additional assumption that the starting values x0, . . . , xs−1 are computed such
that they converge to the solution (x(0), . . . , x(ts−1)).

7



Theorem 2.6 (Dahlquist’s equivalence theorem) Given an (ODE) defined by g and x0 and a con-
sistent linear multi-step method (ρ, σ), whose starting values are computed such that limh→0 xi =
x(ti) for any i ∈ {0, . . . , s− 1}, zero-stability is necessary and sufficient for being convergent, i.e.,
x(tk)− xk tends to zero for any k when the step size h tends to zero.

Again, the proof of the theorem can be obtained from Gautschi (2011). Notice that this theorem
is fundamental in numerical analysis. For example, it says that if a consistent method is not zero-
stable, then the global error may be arbitrary large when the step size goes to zero, even if the local
error decreases. In fact, if zero-stability is not satisfied, there exists a sequence generated by the
linear multi-step method which grows with arbitrarily large factors.

2.5 Region of absolute stability

Stability and global error are ensured on finite time intervals, however solving optimization prob-
lems requires us to look at the infinite time horizon. We thus need more refined results and start
by finding conditions ensuring that the numerical solution does not diverge when the time interval
increases, i.e. that the numerical solution is stable with a constant C which does not depend of tmax.
Formally, for a fixed step-size h, we want to ensure

‖xk‖ ≤ C max
i∈{0,...,s−1}

‖xi‖ for all k ∈ [0, tmax/h] and tmax > 0. (9)

This is not possible without assumptions on the function g as in the general case the solution x(t)
itself may diverge. We begin with the simple scalar linear case which, given λ > 0, reads

ẋ(t) = −λx(t)

x(0) = x0.
(Scalar Linear ODE)

The recurrence of a linear multi-step methods with parameters (ρ, σ) applied to (Scalar Linear ODE)
then reads

ρ(E)xk = −λhσ(E)xk ⇔ [ρ+ λhσ](E)xk = 0,

where we recognize an homogeneous recurrence equation. Condition (9) is then controlled by the
step size h and the constant λ, ensuring that this homogeneous recurrent equation produces bounded
solutions. This leads us to the definition of the region of absolute stability.

Definition 2.7 The region of absolute stability of a linear multi-step method defined by (ρ, σ) is the
set of values λh such that the characteristic polynomial

πλh , ρ+ λhσ (10)

of the homogeneous recurrent equation πλh(E)xk = 0 produces bounded solutions.

Standard linear algebra links this condition to the roots of the characteristic polynomial as recalled
in the next proposition (see Lemma 12.1 of Süli and Mayers (2003)).

Proposition 2.8 Let π be a polynomial and write xk a solution of the homogeneous recurrent equa-
tion π(E)xk = 0 with arbitrary initial values. If all roots of π are inside the unit disk and the ones
on the unit circle have a multiplicity exactly equal to one, then ‖xk‖ ≤ ∞.
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Absolute stability of a linear multi-step method determines its ability to integrate a linear ODE
defined by

ẋ(t) = −Ax(t)

x(0) = x0,
(Linear ODE)

where A is a positive definite matrix whose eigenvalues belong to [µ,L] for 0 < µ ≤ L. In this
case the step size h must indeed be chosen such that for any λ ∈ [µ,L], λh belongs to the region of
absolute stability of the method. This (Linear ODE) is a special instance of (Gradient Flow) where f
is a quadratic function. Therefore absolute stability gives necessary (but not sufficient) condition to
integrate (Gradient Flow) of L-smooth µ-strongly convex functions.

2.6 Convergence analysis in the linear case

By construction, absolute stability also gives us hints on the convergence of xk to the equilibrium.
More precisiely, it allows us to control the rate of convergence of xk, approximating the solution
x(t) of (Linear ODE) (see Lemma 12.1 of Süli and Mayers (2003)).

Proposition 2.9 Given a (Linear ODE) defined by x0 and a positive definite matrix A whose eigen-
values belong to [µ,L] for 0 < µ ≤ L, for a fixed step size h and a linear multi-step method defined
by (ρ, σ), let rmax be defined as

rmax = max
λ∈[µ,L]

max
r∈roots(πλh(z))

|r|,

where πλh is defined in (10). If rmax < 1 and its multiplicity is equal to m, then the speed of
convergence of the sequence xk produced by the linear multi-step method to the equilibrium x∗ of
the differential equation is given by

‖xk − x∗‖ = O(km−1rkmax). (11)

We can now use these properties to analyze and design multi-step methods.

3. Analysis and design of multi-step methods

As shown before, we want to integrate (Gradient Flow) and Proposition 1.2 gives us a rate of con-
vergence in the continuous case. If the method tracks x(t) with sufficient accuracy, then the rate
of the method will be close to the rate of convergence of x(kh). So, larger values of h yield faster
convergence of x(t) to the equilibrium x∗. However h cannot be too large, as the method may be too
inaccurate and/or unstable as h increases. Convergence rates of optimization algorithms are thus
controlled by our ability to discretize the gradient flow equation using large step sizes. We recall
the different conditions that proper linear multi-step methods should follow.

• Monic polynomial (Section 2.2). This is a convention, otherwise dividing both sides of the
difference equation of the multi-step method by ρs does not change the method.

• Explicit method (Section 2.2). We assume that the scheme is explicit in order to avoid solving
a non-linear system at each step (Section 6 shows that implicit methods are linked to proximal
methods).
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• Consistency (Section 2.3.1). If the method is not consistent, then the local error does not
converge when the step size goes to zero.

• Zero-stability (Section 2.3.2). Zero-stability ensures convergence of the global error (Section
2.4) when the method is also consistent.

• Region of absolute stability (Section 2.5). If λh is not inside the region of absolute stability
for any λ ∈ [µ,L], then the method is divergent when tmax increases.

Using the remaining degrees of freedom, we will tune the algorithm to have the best rate of con-
vergence on (Linear ODE), which corresponds to the optimization of a quadratic function. Indeed,
as showed in Proposition 2.9, the largest root of πλh gives us the rate of convergence on quadratic
functions (when λ ∈ [µ,L]). Since smooth and strongly convex functions are close to be quadratic
(they are in fact sandwiched between two quadratics), this will also give us a good idea of the rate
of convergence on these functions.

We do not derive a proof of convergence of the sequence for a general smooth and (strongly)
convex function (in fact, it is already proved by Nesterov (2013) or using Lyapunov techniques by
Wilson et al. (2016)). But our results provide intuition on why accelerated methods converge faster.

3.1 Analysis and design of explicit Euler’s method (s = 1)

In Section 2.1 we introduced Euler’s method. In fact, we can view it as an explicit linear “multi-
step” method with s = 1 defined by the polynomials

ρ(z) = −1 + z, σ(z) = 1.

We can check easily that it is consistent (using Proposition 2.4) and zero-stable since ρ has only
one root which lies on the unit circle (Theorems 2.5 and 2.6). We need to determine the region of
absolute stability in order to have an idea about the maximum value that h > 0 can take before
the method becomes unstable. Assume we want to integrate any µ-strongly convex and L-smooth
function f , with 0 < µ < L with any starting value x0. Then, we need to find the set of values of h
such that the roots of the polynomial

πλh(z) = [ρ+ λhσ](z) = −1 + λh+ z, λ ∈ [µ,L]

are small. The unique root is 1− λh and we need to solve the following minimax problem

min
h

max
λ∈[µ,L]

|1− λh| ,

in the variable h > 0. The solution of this optimization problem is h∗ = 2
L+µ , its optimal value is

(L− µ)/(L+ µ) and its rate of convergence is then

‖xk − x∗‖ = O

((1− µ/L
1 + µ/L

)k)
.

We recover the optimal step size and the rate of convergence of the gradient method for a general
smooth and strongly convex function (Nesterov, 2013).
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3.2 Analysis of two-step methods (s = 2)

We will now analyze two-step methods. First we write the conditions of a good linear multi step
method, introduced at the beginning of this section, into constraints on the coefficients.

ρ2 = 1 (Monic polynomial)

σ2 = 0 (Explicit method)

ρ0 + ρ1 + ρ2 = 0 (Consistency)

σ0 + σ1 + σ2 = ρ1 + 2ρ2 (Consistency)

|Roots(ρ)| ≤ 1 (Zero-stability).

If we use all equalities, we finally have three linear constraints, defined by

L =
{
ρ0, ρ1, σ1 : ρ1 = −(1 + ρ0); σ1 = 1− ρ0 − σ0; |ρ0| < 1

}
. (12)

We will now try to find some condition on the remaining parameters in order to have a stable method.
At first, let us analyze a condition on the roots of second order equations. Absolute stability requires
that all roots of the polynomial πλh are inside the unit circle. The following proposition gives us the
values of the roots of πλh as a function of the parameters ρi and σi.

Proposition 3.1 Given constants 0 < µ ≤ L, a step size h > 0 and a linear two-step method
defined by (ρ, σ), under the conditions

(ρ1 + µhσ1)2 ≤ 4(ρ0 + µhσ0),

(ρ1 + Lhσ1)2 ≤ 4(ρ0 + Lhσ0),

the roots r±(λ) of πλh, defined in (10), are complex for any λ ∈ [µ,L]. Moreover, the largest
modulus root is equal to

max
λ∈[µ,L]

|r±(λ)|2 = max {ρ0 + µhσ0, ρ0 + Lhσ0} . (13)

Proof We begin by analyzing the roots r± of the generic polynomial

z2 + bz + c,

where b and c are real numbers, corresponding to the coefficients of πλh, i.e. b = ρ1 + λhσ1 and
c = ρ0 + λhσ0. For a fixed λ roots are complex if and only if

b2 ≤ 4c ⇔ (ρ1 + λhσ1)2 − 4(ρ0 + λhσ0) ≤ 0.

Since the left side this is a convex function in λ, it is equivalent to check only for the extreme values

(ρ1 + µhσ1)2 ≤ 4(ρ0 + µhσ0),

(ρ1 + Lhσ1)2 ≤ 4(ρ0 + Lhσ0).

As roots are complex conjugates,

|r±(λ)|2 = |c| = |ρ0 + λhσ0|.

11



Because the function is convex, the maximum is attained for an extreme value of λ,

max
λ∈[µ,L]

|r±(λ)|2 = max {ρ0 + µhσ0, ρ0 + Lhσ0} ,

which is the desired result.

The next step is to minimize the largest modulus defined in (13) in the coefficients ρi and σi to get
the best rate of convergence, assuming the roots are complex. We will not develop the case where
the roots are real because this leads to weaker results.

3.3 Design of optimal two-step method for quadratics

We have now have all ingredients to build a two-step method for which the sequence xk converges
quickly to x∗ for quadratic functions. We need to solve the following problem,

minimize max {ρ0 + µhσ0, ρ0 + Lhσ0}
s.t. (ρ0, ρ1, σ1) ∈ L

(ρ1 + µhσ1)2 ≤ 4(ρ0 + µhσ0)
(ρ1 + Lhσ1)2 ≤ 4(ρ0 + Lhσ0),

in the variables ρ0, ρ1, σ0, σ1, h > 0, where L is defined in (12). If we use the equality constraints
in (12) and make the following change of variables,

ĥ = h(1− ρ0),

cµ = ρ0 + µhσ0,

cL = ρ0 + Lhσ0,

(14)

the problem becomes, for fixed ĥ,

minimize max
{
cµ, cL

}
s.t. (−1− cµ + µĥ)2 ≤ 4cµ

(−1− cL + Lĥ)2 ≤ 4cL
|Lcµ − µcL| < |L− µ|,

in the variables cµ, cL. In that case, the optimal solution is given by

c∗µ =
(

1−
√
µĥ
)2
, c∗L =

(
1−

√
Lĥ
)2
, (15)

obtained by tightening the two first inequalities, for ĥ ∈]0, (1+µ/L)2

L [ such that last inequality is
satisfied. Now if we fix ĥ we can recover an optimal two step linear method defined by (ρ, σ) and
an optimal step size h by using the equations in (14). We will use the following quantity

β ,
1−

√
µ/L

1 +
√
µ/L

. (16)
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A suboptimal two-step method. We can fix ĥ = 1/L for example. All computations done, the
parameters of this two-step method, called methodM1, are

M1 =


ρ(z) = β − (1 + β)z + z2,

σ(z) = −β(1− β) + (1− β2)z,

h = 1
L(1−β) ,

(17)

and its largest modulus root (13) is given by

rate(M1) =
√

max{cµ, cL} =
√
cµ = 1−

√
µ/L.

Optimal two-step method for quadratics. We can compute the optimal ĥ which minimizes the
maximum of the two roots c∗µ and c∗L defined in (15). The solution is simply the one which balances
the two terms in the maximum:

ĥ∗ =
(1 + β)2

L
⇒ c∗µ = c∗L.

This choice of ĥ leads to the methodM2, described by

M2 =


ρ(z) = β2 − (1 + β2)z + z2,

σ(z) = (1− β2)z,

h = 1√
µL
,

(18)

with the rate of convergence

rate(M2) =
√
cµ =

√
cL = β < rate(M1).

We will now see that methodsM1 andM2 are actually related to Nesterov’s method and Polyak’s
heavy ball algorithms.

4. On the link between integration and optimization

In the previous section, we derived a family of linear multi-step methods, parametrized by ĥ. We
will now compare these methods to common optimization algorithms used to minimize L-smooth,
µ-strongly convex functions.

4.1 Polyak’s heavy ball method

The heavy ball method was proposed by Polyak (1964). It adds a momentum term to the gradient
step

xk+2 = xk+1 − c1∇f(xk+1) + c2(xk+1 − xk),

where c1 = (1 − β2)/
√
µL and c2 = β2 where β is defined in (16). We can organize the terms in

the sequence to match the general structure of linear multi-step methods, to get

β2xk − (1 + β2)xk+1 + xk+2 = (1− β2)/
√
µL
(
−∇f(xk+1)

)
.

13



We easily identify ρ(z) = β2 − (1 + β2)z + z2 and hσ(z) = (1 − β2)/
√
µLz. To extract h, we

will assume that the method is consistent (see conditions (8)), which means

ρ(1) = 0 Always satisfied

hρ′(1) = hσ(1) ⇒ h =
1√
µL

.

All computations done, we can identify the “hidden” linear multi-step method as

MPolyak =


ρ(z) = β2 − (1 + β2)z + 1

σ(z) = (1− β2)z

h = 1√
µL
.

(19)

This shows thatMPolyak = M2. In fact, this result was expected since Polyak’s method is known
to be optimal for quadratic functions. However, it is also known that Polyak’s algorithm does not
converge for a general smooth and strongly convex function (Lessard et al., 2016).

4.2 Nesterov’s accelerated gradient

Nesterov’s accelerated method in its simplest form is described by two sequences xk and yk, with

yk+1 = xk −
1

L
∇f(xk),

xk+1 = yk+1 + β(yk+1 − yk).

As above, we will write Nesterov’s accelerated gradient as a linear multi-step method by expanding
yk in the definition of xk, to get

βxk − (1 + β)xk+1 + xk+2 =
1

L

(
−β(−∇f(xk)) + (1 + β)(−∇f(xk+1))

)
.

Consistency of the method is then ensured by

ρ(1) = 0 Always satisfied

hρ′(1) = hσ(1) ⇒ h =
1

L(1− β)
.

After identification,

MNest =


ρ(z) = β − (1 + β)z + z2,

σ(z) = −β(1− β) + (1− β2)z,

h = 1
L(1−β) ,

which means thatM1 =MNest.
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Figure 1: Integration of a (Linear ODE) (which corresponds to the minimization of a quadratic
function) using Euler’s, Nesterov’s and Polyak’s methods between [0, tmax]. On the left,
the optimal step size is used. Because Polyak’s algorithm is the one with the biggest step
size, it needs less iterations than Nesterov or Euler to approximate x(tmax). On the right
side, we reduced the step size to 1/L for all methods. We clearly observe that they all
track the same ODE: the gradient flow.

4.3 Nesterov’s method interpretation as a faster stable integration method

Pushing the analysis a little bit further, we can show why Nesterov’s algorithm is faster than gradient
method. There is of course a complete proof of its rate of convergence (Nesterov, 2013), even using
the argument of differential equations (Wibisono et al., 2016; Wilson et al., 2016), but we take a
more intuitive approach here. The key parameter is the step size h. If we compare it with the one in
classical gradient method, Nesterov’s method uses a step size which is (1− β)−1 ≈

√
L/µ larger.

Recall that, in continuous time, we have seen the rate of convergence of x(t) to x∗ given by

f(x(t))− f(x∗) ≤ e−2µt(f(x0)− f(x∗)).

The gradient method tries to approximate x(t) using Euler approximation with step size h = 1/L,
which means x(grad)

k ≈ x(k/L), so

f(x
(grad)
k )− f(x∗) ≈ f(x(k/L))− f(x∗) ≤ (f(x0)− f(x∗))e−2k µ

L .

However, Nesterov’s method has the step size

hNest =
1

L(1− β)
=

1 +
√
µ/L

2
√
µL

≈ 1√
4µL

which means xnest
k ≈ x

(
k/
√

4µL
)
.

In that case, the estimated rate of convergence becomes

f(xnest
k )− f(x∗) ≈ f(x(k/

√
4µL))− f(x∗) ≤ (f(x0)− f(x∗))e−k

√
µ/L,

which is approximatively the rate of convergence of Nesterov’s algorithm in discrete time and we
recover the accelerated rate in

√
µ/L versus µ/L for gradient descent. The accelerated method is
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more efficient because it integrates the gradient flow faster than simple gradient descent, making
longer steps. A numerical simulation in Figure 1 makes this argument more visual. This intuitive
argument is still valid for the convex counterpart of Nesterov’s accelerated gradient.

5. Acceleration for convex functions

By matching the coefficients of Nesterov’s method, we deduced the value of the step-size used for
the integration of (Gradient Flow). Then, using the rate of convergence of x(t) to x∗, we estimated
the rate of convergence of Nesterov’s method assuming xk ≈ x(tk). Here, we will do the same but
without assuming strong convexity. However, the estimation of the rate of convergence in discrete
time needs the one in continuous time, described by the following proposition.

Proposition 5.1 Let f be L-smooth convex function, x∗ one of its minimizers and x(t) be the solu-
tion of (Gradient Flow). Then

f(x(t))− f(x∗) ≤ ‖x0 − x∗‖2

t+ (2/L)
. (20)

Proof Let L(x(t)) = f(x(t))− f(x∗). We notice that ∇L(x(t)) = ∇f(x(t)) and dL(x(t))/ dt =
−‖∇f(x(t))‖2. Since f is convex,

L(x(t)) ≤ 〈∇f(x(t)), x(t)− x∗〉
≤ ‖∇f(x(t))‖‖x(t)− x∗‖.

By consequence,

− ‖∇f(x(t))‖2 ≤ − L(x(t))2

‖x(t)− x∗‖2
≤ − L(x(t))2

‖x0 − x∗‖2
. (21)

The last inequality comes from the fact that ‖x(t)− x∗‖ decreases over time,

d

dt
‖x(t)− x∗‖2 = 2〈 ẋ(t), x(t)− x∗〉,

= −2〈∇f(x(t)), x(t)− x∗〉,
≤ 0 since f is convex.

From (21), we deduce the differential inequality

d

dt
L(x(t)) ≤ − L(x(t))2

‖x0 − x∗‖2
.

The solution is obtained by integration,∫ t

0

dL(x(τ))/ dτ

L(x(τ))2
dτ ≤

∫ t

0

−1

‖x0 − x∗‖2
.

The general solution is thus

L(x(t)) ≤ 1
t

‖x0−x∗‖2 + C
,
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for some constant C. Since the inequality is valid for all time t ≥ 0, the following condition on C,

L(x(t)) ≤ 1
t

‖x0−x∗‖2 + C
≤ 1

C
for t ≥ 0,

is sufficient. Setting C = 1
f(x0)−f(x∗) satisfies the above inequality. Using smoothness of f ,

f(x0)− f(x∗) ≤ L

2
‖x0 − x∗‖2,

we get the desired result.

Assume we use Euler’s method with step size h = 1
L , the estimated rate of convergence will be

f(xk)− f(x∗) ≈ f(x(kh))− f(x∗) ≤ L‖x0 − x∗‖2

k + 2
,

which is close to the rate of convergence of the classical gradient method for convex function. Now,
consider Nesterov’s method for minimizing a smooth and convex function f :

yk+1 = xk −
1

L
∇f(xk)

xk+1 = −βkxk + (1 + βk)xk+1,

where βk ≈ k−2
k+1 . If we expand everything, we get after rearrangement,

βkxk−1 − (1 + βk)xk + xk+1 =
1

L

(
βk(−∇f(xk−1))− (1 + βk)(−∇f(xk))

)
.

In other terms, we have an expression of the form ρk(E)xk = hkσk(E)(−∇f(xk)). We can
identify h if we assume the method consistent, which means

ρ(1) = 0 Always satisfied

hkρ
′
k(1) = hkσk(1) ⇒ hk =

1

L(1− βk+1)
=

(k + 2)

3L
.

We can estimate, using (20), the rate of convergence of Nesterov’s method. Since xk ≈ x(tk),

xk ≈ x
(∑k

i=0 hi
)
≈ x

(
k2

6L

)
.

In terms of convergence to the optimal value,

f(xk)− f(x∗) ≈ f(x(tk)− f(x∗) ≤ 6L‖x0 − x∗‖2

k2 + 12
,

which is close to the bound from Nesterov (2013). Again, because the step-size of Nesterov’s
algorithm is larger (while keeping a stable sequence), we converge faster than the Euler’s method.

6. Proximal algorithms and implicit integration methods

We present here links between proximal algorithms and implicit numerical methods that integrate
the gradient flow equation. We begin with Euler’s implicit method that corresponds to the proximal
point algorithm.
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6.1 Euler’s implicit method and proximal point algorithm

We saw in Section 2.1 that Euler’s explicit method used the Taylor expansion of the solution x(t)
of the (ODE) at the current point. The implicit version uses the Taylor expansion at the next point
which reads

x(t) = x(t+ h)− hẋ(t+ h) +O(h2).

If t = kh, by neglecting the second order term we get implicit Euler’s method,

xk+1 = xk + hg(xk+1). (22)

This recurrent equation requires to solve an implicit equation at each step that may be costly. How-
ever it provides better stability than the explicit version. This is generally the case for implicit
methods (see Süli and Mayers (2003) for further details on implicit methods).

Now assume that g comes from a potential −f such that we are integrating (Gradient Flow).
Solving the implicit equation (22) is equivalent to compute the proximal operator of f defined as

proxf,h(x) = argmin
z

1

2
‖z − x‖22 + hf(z). (23)

This can be easily verified by checking the first-order optimality conditions of the minimization
problem. Euler’s implicit method applied to (Gradient Flow) reads then

xk+1 = proxf,h(xk),

where we recognize the proximal point algorithm (Rockafellar, 1976).
We present now Mixed ODE that corresponds to composite optimization problems.

6.2 Implicit Explicit methods and proximal gradient descent

In numerical analysis, it is common to consider the differential equation

ẋ = g(x) + ω(x), (Mixed ODE)

where g(x) is considered as the “non-stiff” part of the problem and ω the stiff one, where stiffness
may be assimilated to bad conditioning (Ascher et al., 1995; Frank et al., 1997). Usually, we assume
ω integrable using an implicit method. If ω derives from a potential −Ω (meaning ω = −∇Ω), this
is equivalent to assume that the proximal operator of Ω defined in (23) can be computed exactly.

We approximate the solution of (Mixed ODE) using IMplicit-EXplicit schemes (IMEX). In our
case, we will focus on the following multi-step based IMEX scheme,

ρ(E)xk = h
(
σ(E)g(xk) + γ(E)ω(xk)

)
,

where ρ, σ and γ are polynomials of degrees s, s − 1 (the explicit part) and s respectively and ρ is
monic. It means that, at each iteration, we need to solve, in xk+s,

xk+s =
s−1∑
i=0

(
−ρixk+i + σihg(xk+i) + γihω(xk+i)

)︸ ︷︷ ︸
known

+γsω(xk+s).
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In terms of optimization the mixed ODE corresponds to composite minimization problems of
the form

minimize f(x) + Ω(x), (24)

where f,Ω are convex and Ω has a computable proximal operator. We can link IMEX schemes with
many optimization algorithms which use the proximal operator, such as proximal gradient method,
FISTA or Nesterov’s method. For example, proximal gradient is written

yk+1 = xk − h∇f(xk)

xk+1 = proxhΩ(yk+1).

After expansion, we get

xk+1 = yk+1 − h∇Ω(xk+1) = xk + hg(xk) + hω(xk+1),

which corresponds to the IMEX method with polynomials

ρ(z) = −1 + z, σ(z) = 1, γ(z) = z.

However, for Fista and Nesterov’s method, we need to use a variant of linear multi-step algorithms,
called one leg methods (Dahlquist, 1983; Zhang and Xiao, 2016). Instead of combining the gradi-
ents, the idea is to compute g at a linear combination of the previous points, i.e.

ρ(E)xk = h
(
g(σ(E)xk) + ω(γ(E)xk)

)
.

Their analysis (convergence, consistency, interpretation of h, etc...) is slightly different from linear
multi-step method, so we will not go into details in this paper, but the correspondence still holds.

6.3 Non-smooth gradient flow

In the last subsection we assumed that ω comes from a potential. However in the optimization liter-
ature, composite problems have a smooth convex part and a non-smooth sub-differentiable convex
part which prevents us from interpreting the problem with the gradient flow ODE. Non-smooth con-
vex optimization problems can be treated with differential inclusions (see (Bolte et al., 2007) for
recent results on it)

ẋ(t) + ∂f(x(t)) 3 0,

where f is a sub-differentiable function whose sub-differential at x is written ∂f(x). Composite
problems (24) can then be seen as the discretization of the differential inclusion

ẋ(t) +∇f(x(t)) + ∂Ωx(t) 3 0.

7. Mirror gradient descent and non-Euclidean gradient flow

In many optimization problems, it is common to replace the Euclidean geometry with a distance-
generating function called d(x), with the associated Bregman divergence

Bd(x, y) = d(x)− d(y)− 〈∇d(y), x− y〉,
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with d strongly-convex and lower semi-continuous. To take into account this geometry we consider
the Non-Euclidean Gradient Flow (Krichene et al., 2015)

ẏ(t) = −∇f
(
x(t)

)
x(t) = ∇d∗(y(t))

x(0) = x0, y(0) = ∇d(x0).

(NEGF)

Here ∇d maps primal variables to dual ones and, as d is strongly convex, (∇d)−1 = ∇d∗, where
d∗ is the Fenchel conjugate of d. In fact, we can write (NEGF) using only one variable y, but this
formulation has the advantage to exhibit both primal and dual variables x(t) and y(t). Applying the
forward Euler’s explicit method we get the following recurrent equation

yk+1 − yk = −h∇f(xk), xk+1 = ∇d∗yk+1.

Now consider the mirror gradient scheme :

xk+1 = argmin
x

h〈∇f(xk), x〉+ Bh(x, xk).

First optimality condition reads

∇x
(
h〈∇f(xk), x〉+ Bh(x, xk)

) ∣∣
x=xk+1

= h∇f(xk) +∇d(xk+1)−∇d(xk) = 0

Using that (∇d)−1 = ∇d∗ we get

h∇f(xk) + yk+1 − yk = 0, xk+1 = ∇d∗yk+1,

which is exactly Euler’s explicit method defined in (NEGF).

8. Universal gradient descent and generalized gradient flow

Consider the Generalized Gradient Flow, which combines the ideas of (Mixed ODE) and (NEGF),

ẏ(t) = −∇f(x(t))−∇Ω(x(t))

x(t) = ∇d∗(y(t))

x(0) = x0, y(0) = ∇d(x0).

(GGF)

We can write its ODE counterpart, called the ”Generalized ODE”,

ẏ(t) = g(x(t)) + ω(x(t))

x(t) = ∇d∗(y(t)),

x(0) = x0, y(0) = ∇d(x0).

(GODE)

where g = −∇f , with f a smooth convex function, d a strongly convex and semi-continuous dis-
tance generating function and ω = −∇Ω, where Ω is a simple convex function. If Ω is not differ-
entiable we can consider the corresponding differential inclusion as presented in Section 6.3. Here
we focus on (GODE) and (GGF) to highlight the links with integration methods. The discretization
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of this ODE is able to generate many algorithms in many different settings. For example, consider
the IMEX explicit-implicit Euler’s method,

yk+1 − yk
h

= g(xk) + ω(∇d∗(yk+1)), xk+1 = ∇d∗(yk+1),

which can be decomposed into three steps,

zk+1 = yk + hg (xk) (Gradient step in dual space),

yk+1 = proxh(Ω◦∇d∗) (zk+1) (Projection step in dual space), (25)

xk+1 = ∇d∗(yk+1) (Mapping back in primal space).

Now consider the universal gradient method scheme presented by Nesterov (2015):

xk+1 = arg min
x
〈∇f(xk), x− xk〉+ Ω(x) + Bd(x, xk).

Again we can show that both recursions are the same: if we write the first optimality condition,

0 = ∇x
(
h〈∇f(xk), x− xk〉+ hΩ(x) + B(x, xk)

) ∣∣
x=xk+1

= hg(xk) + h∂Ω(xk+1) +∇d(xk+1)−∇d(xk)

= hg(xk)− yk︸ ︷︷ ︸
=zk+1

+h∂Ω(∇d∗(yk+1))− yk+1.

We thus need to solve the non-linear system of equations

yk+1 = zk+1 + h∂Ω(∇d∗(yk+1)),

which is equivalent to the projection step (25). Then we simply recover xk+1 by applying ∇d∗ on
yk+1.

9. Conclusion and future works

We connected several optimization algorithms to multi-step integration methods in numerical analy-
sis. By using the theory of linear multi-step methods on the basic gradient flow equation, we recover
Polyak’s and Nesterov’s method using some optimality arguments. This provides an intuitive inter-
pretation for the design of these methods, with optimal step sizes giving a direct explanation of the
acceleration phenomenon. Our approach generalizes to more structured problems by introducing
the appropriate integration method and/or looking at a generalized gradient flow equation that takes
into account the geometry of the problem.

We described a simple interpretation of the acceleration phenomenon, but our analysis is still
restricted to quadratic problems. The study of G-stability (Dahlquist, 1978; Butcher, 2006) may
generalize our approach to smooth strongly convex functions. For the non-strongly convex case, the
dependence in k of Nesterov’s algorithm makes its links with integration methods less clear.

Finally the study of the links between optimization and numerical methods may provide new
algorithms for both fields. Runge-Kutta methods (another way to integrate differentials equations)
may lead to newer algorithms in optimization. Conversely, Nesterov’s algorithm may lead to new
integration methods to integrate the gradient flow equation of a convex function.
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