
HAL Id: hal-01473941
https://hal.science/hal-01473941v1

Submitted on 22 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Third Generation Neural Networks as Timed
Automata and verifying their behavior through

Temporal Logic
Giovanni Ciatto, Elisabetta de Maria, Cinzia Di Giusto

To cite this version:
Giovanni Ciatto, Elisabetta de Maria, Cinzia Di Giusto. Modeling Third Generation Neural Net-
works as Timed Automata and verifying their behavior through Temporal Logic. [Research Report]
Université Côte d’Azur, CNRS, I3S, France. 2017. �hal-01473941�

https://hal.science/hal-01473941v1
https://hal.archives-ouvertes.fr


Modeling Third Generation

Neural Networks as Timed

Automata and verifying their

behavior through Temporal

Logic

Giovanni Ciatto Elisabetta De Maria

Cinzia Di Giusto

February 22, 2017



Abstract

In this paper we present a novel approach to model Spiking Neural Networks.

These networks, referred as third generation ones, add a new dimension to

the second generation: the temporal axis. We propose a formalisation of

Spiking Neural Networks based on Timed Automata Networks. Neurons

are modelled as timed automata waiting for inputs on a number of different

channels (synapses), for a given amount of time (the accumulation period).

When this period is over, the current potential value is computed taking into

account the current inputs and the previous decayed potential value. If the

current potential overcomes a given threshold, the automaton emits a broad-

cast signal over its output channel, otherwise it restarts another accumulation

period. After each emission, the automaton is constrained to remain inactive

for a fixed refractory period. Spiking neural networks are formalised as sets of

automata, one for each neuron, running in parallel and sharing channels ac-

cording to the structure of the network. The model is then validated against

some properties defined via proper temporal logic formulae.
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Chapter 1

Introduction

Researchers have been trying to reproduce the behavior of the brain for

over half a century: on one side they are studying the inner functioning

of neurons — which are its elementary components —, their interactions

and how such aspects participate to the ability to move, learn or remember,

typical of living beings, on the other side they are emulating nature trying

to reproduce such capabilities e.g., within robot controllers, speech/text/face

recognition applications etc.

In order to achieve a complete comprehension of the brain functioning,

both neurons behavior and their interaction must be studied. Historically,

interconnected neurons, “Neural Networks”, have been naturally modeled as

directed weighted graphs where vertexes are computational units receiving

inputs by a number of ingoing arcs, called synapses, elaborating it, and

possibly propagating it over of outgoing arcs. Several inner models of the

neuron behavior have been proposed: some of them make neurons behave

as binary threshold gates, other ones exploit a sigmoidal transfer function,

while, in a number of cases, differential equations are employed.

According to [17, 20], three different and progressive generations of neu-

ral networks can be recognized: (i) first generation includes discrete and

threshold based models (e.g., McCulloch and Pitt’s neuron [19]); (ii) sec-

ond generation consists of real valued and sigmoidal-based models, which

are nowadays heavily employed in Machine Learning related tasks because

of the existence of powerful learning algorithms (e.g., error back-propaga-
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tion [22]); (iii) third generation, which is the focus of our work, consists of a

number of model that, in addition to stimuli magnitude and differently from

previous generations, take time into account.

Models from the third generation, also known as “Spiking Neural Net-

works”, are weighted directed graphs where arcs represent synapses, weights

serve as synaptic strengths, and vertexes correspond to “Spiking Neurons”.

The latter ones are computational units that may emit (or fire) output im-

pulses (spikes) taking into account input impulses strength and their occur-

rence instants. Models of this sort are of great interest not only because they

are closer to natural neural networks behavior, but also because the tem-

poral dimension allows to represent information according to various coding

schemes [20, 21]: e.g., the amount of spikes occurred within a given time

window (rate coding), the reception/absence of spikes over different synapses

(binary coding), the relative order of spikes occurrences (rate rank coding) or

the precise time difference between any two successive spikes (timing code).

A number of spiking neuron models have been proposed in literature, hav-

ing different complexities and capabilities. In [14] spiking neuron models

are classified according to some behaviors (i.e., typical responses to an input

pattern) that they should exhibit in order to be considered biologically rel-

evant. For example the Leaky Integrate & Fire (LI&F) model [15], where

past inputs relevance exponentially decays with time, is one of the most

studied neuron models because of its simplicity [14, 20], while the Hodgkin-

Huxley (H-H) model [11] is one of the most complex and important within

the scope of computational neuroscience, being composed by four differen-

tial equations comparing the neuron to an electrical circuit. Two behaviors

that every model is able to reproduce are the tonic spiking and integrator :

the former one describes neurons producing a periodic output if stimulated

by a persistent input, the latter one illustrates how temporally closer input

spikes have a greater excitatory effect on neurons potential, making them

able to act as coincidence detectors. As one may expect, the more complex

the model, the more behaviors it can be reproduce, at the price of greater

computational cost for simulation and formal analysis; e.g., the H-H model

can reproduce all behaviors, but the simulation process is really expensive

even for just a few neurons being simulated for a small amount of time [14].
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Our aim is to produce a neuron model being meaningful from a biological

point of view but also amenable to formal analysis and verification, that could

be therefore used to detect non-active portions within some network (i.e., the

subset of neurons not contributing to the network outcome), to test whether

a particular output sequence can be produced or not, to prove that a network

may never be able to emit, or assess if a change to the network structure can

alter its behavior; or investigate (new) learning algorithms which take time

into account.

In this work, we take the discretized variant of LI&F introduced in [7]

and we encode it into Timed Automata. We show how to define the behavior

of a single neuron and how to build a network of neurons. Finally, we show

how to verify properties of the designed system via Model Checking.

Timed Automata are Finite State Automata extended with timed be-

haviors: constraints are allowed limiting the amount of time an automaton

can remain within a particular state, or the time interval during which a

particular transition may be enabled. Timed Automata Networks are sets of

automata that can interact by means of channels.

Our modelling of Spiking Neural Network consists of a Timed Automata

Networks where each neuron is an automaton alternating between two states:

it accumulates the weighted sum of inputs, provided by a number of ingoing

weighted synapses, for a given amount of time, and then, if the potential accu-

mulated during the last and previous accumulation periods overcomes a given

threshold, the neuron fires an output over the outgoing synapse. Synapses are

channels shared between the TA representing neurons, while spike emissions

are represented by synchronizations occurring over such channels. Timed

Automata can be exploited to produce or recognize precisely defined spike

sequences, too.

The biophysical behaviors mentioned above are interpreted as Computa-

tional Tree Logic (CTL) formulae and are tested in Uppaal [3] that provides

an extended modeling language for automata, a simulator for step-by-step

analysis and a subset of CTL for systems verification.

The rest of the report is organized as follows: Chapter 2 exposes the

theoretical background. It explains the differences between the three neural

networks generations and describes our reference model, the Leaky Integrate
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& Fire. It illustrates the expected behaviors. Finally it recalls definitions

of Timed Automata Networks and Computational Tree Logics. Chapter

3 shows how Spiking Neural Networks are encoded into Timed Automata

Networks, how inputs and outputs are handled by automata. Chapter 4

provides formal proofs for the behaviors listed above. Finally, Chapter 5

summarizes our results and presents some future research directions.
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Chapter 2

Theoretical background

2.1 Neural Networks

Neural Networks are directed weighted graphs were nodes are computational

units, also known as neurons, and edges represents synapses, i.e., connections

between some neuron output and some other neuron input. Several models

exist in literature and they differ on the signals that neurons emit/accept and

on the way such signal are elaborated. An interesting classification has been

proposed in [17] which distinguishes three different generations of Neural

Networks:

1. network models within the first generation handle discrete inputs and

outputs and their computational units are threshold-based transfer

functions; this includes McCulloch and Pitt’s threshold gate [19], the

perceptron [9], Hopfield networks [12] and Boltzmann machines [1];

2. second generation models, instead, exploit real valued activation func-

tions, e.g., the sigmoid function, accepting and producing real values:

a well known example is the multi-layer perceptron [6, 22];

3. networks from the third generation are known as Spiking Neural Net-

works. They extend second generation models treating time-dependent

and real valued signals often composed by spike trains. Neurons may

fire output spikes according to threshold-based rules which take into

account input spikes magnitude and occurrence time [20].
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The core of our analysis are Spiking Neural Networks. Because of the

introduction of timing aspects (in particular, observe that information is

represented not only by spikes magnitudes but also by their frequency) they

are considered closer to the actual brain functioning than other generations

models.

We adopt Maass’s definition (see [17] or [16]) because it is a widely gen-

eral template which can be specialized in more fine-grained characterization

by providing additional constraints. Spiking Neural Networks are modeled as

directed weighted graphs where vertexes are computational units and edges

represents synapses. The signals propagating over synapses are trains of im-

pulses : spikes. The particular wave form of impulses must be specified by

model instances. Synapses may modulate such signals according to their

weight or they could introduce some propagation delay. Synapses are classi-

fied according to their weight as excitatory, if it is positive, or inhibitory if

negative.

Computational units represents neurons, whose dynamics is governed by

two variables: the membrane potential (or, simply, potential) and the thresh-

old. The former one depends on spikes received by neurons over ingoing

synapses, after being modulated and/or delayed. Both current and past

spikes are taken into account even if old spikes contribution is lower. The

latter may vary according to some rule specified by instances. The neuron

outcome is controlled by the algebraic difference between the membrane po-

tential and the threshold: it is enabled to fire (i.e., emit an output impulse

over all outgoing synapses) only if such difference is non-negative. Immedi-

ately after each emission the neuron membrane is reset.

Another important constraint, typical of Spiking Neural Networks, is the

refractory period : each neuron is unable to fire for a given amount of time

after each emission. Such behavior can be modeled preventing the potential

to reach the threshold either by keeping the former low or the latter high.

More formally:

Definition 2.1 (Spiking Neuron). A Spiking Neuron v is a tuple (θv, pv, τv),

where :

• θv : R+
0 → R is the threshold function,
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• pv : R+
0 → R is the [membrane] potential function,

• τv ∈ R+
0 is the refractory period.

The dynamics of some neuron v is defined by means of the set of its firing

times Fv = {t1, t2, . . .} ⊂ R+
0 , also called spike train. Such set is defined

recursively: ti+1 is computed as a function of the difference pv(t)− θv(t− ti):

• e.g., a simple model may simply consider the smallest t such that

pv(t) ≥ θv(t− ti),

• while, in a stochastic model, such difference may govern the firing prob-

ability for neuron v.

After-spike refractory behavior is achieved by making it impossible for the

potential to reach and overcome the threshold. This can be modeled in two

ways:

• making any neuron unable to reach the threshold, e.g., by constraining

each threshold function θv such that: θv(t− t′) = +∞ if t− t′ < τv for

each t′ ∈ Fv;

• making any neuron ignore its inputs, e.g., by constraining each poten-

tial function pv such that: pv(t− t′) = 0 if t− t′ < τv for each t′ ∈ Fv,

Next we introduce networks:

Definition 2.2 (Spiking Neural Network). A Spiking Neural Network is a

tuple (V, A, ε, w), where:

• V are Spiking Neurons,

• A ⊆ V × V are the synapses,

• a response function εu,v : R+
0 → R for each synapse (u, v) ∈ A,

• a weight wu,v ∈ R for each synapse (u, v) ∈ A.
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(a) Tonic Spiking (b) Excitability (c) Integrator

Figure 2.1: Summary and graphical representation of some of the most interesting neuron

behaviors we mention within this report, taken from [14]. Each cell shows the neuron response

(in the upper part) to a particular input current (in the lower part). Our interest is about 2.1a,

2.1b and 2.1c since they are the behaviors reproducible by the Leaky Integrate & Fire model.

Each response function εu,v represents the impulse propagating from neu-

ron u to neuron v and can be used to model synapse-specific features, like

delays or noises.

For each neuron v ∈ V −Vin, the potential function pv takes into account

the response function value εu,v(t− t′) and the corresponding weight wu,v, for

each previous or current firing time t′ ∈ Fv : t′ ≤ t and for each input synapse

(u, v); so the current potential may be influenced by both the current and the

previous inputs. For each neuron v ∈ Vin, the set Fv is assumed to be given

as input for the network. For all neuron v ∈ Vout, the set Fv is considered an

output for the network.

Such definition is deliberately abstract since there exist in literature a

number of models that, while respecting this definition, may differ in the

way they handle e.g., potentials, signal shapes, etc.

Some authors [14,20] classify the models presented in literature according

to their biophysical plausibility. Estimating such a feature for a given model

may be a complex task since it is not well formalized. According to Izhikevich,

there exists a set of behaviors, some shown in Figure 2.1, which a neuron may

be able to reproduce. A behavior is basically a well-featured input-output

relation and a model is said to be able to reproduce it if there exists at least

one instance of the model presenting a comparable outcome when receiving

an alike input. The author also proposes to use the amount of behaviors a

model can reproduce as a measure of its biophysical plausibility.
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Figure 2.2: Comparison between several neuron models taking into account the amount of

behaviors from Figure 2.1 the model can reproduce. See [14] for more detailed descriptions and

for references.

As far as our work is concerned, the most interesting results are about the

Integrate & Fire model capabilities. Indeeds, instances of this model should

be able to reproduce the following behaviors:

tonic spiking: as a response to a persistent input, the neuron periodi-

cally fires spikes as output;

excitability: a neuron of this sort has an emission rate that linearly

increases with input magnitude;

integrator: a neuron of this sort prefers high-frequency inputs: the

higher the frequency the higher its firing probability; it may act as inputs

coincidence detector.

2.1.1 Leaky Integrate & Fire model

Since our aim is to define a model being simple enough to be inspectable

through model-checking techniques but also complex enough to be biophys-

ically meaningful, we focused on the Leaky Integrate & Fire, which is one of

the simplest and most studied model of biological neuron behavior (see [14]

and [20]), whose original definition is traced back to [15].

We adopt the formulation proposed in [7]. It is a discretized model,

amenable to formal verification, where time progresses discretely and signals

are boolean-valued even if potentials are real-valued. The discretized version
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is represented by the following recursive equation:

pv(t) = εv(t) + λ · pv(t− 1) (2.1)

where pv(0) equals to 0 and λ ∈ [0, 1] is the leak factor, a measure of neuron

memory about past spikes.

Let m be the number of input synapses for some neuron v, which are

modeled as boolean-valued and time-dependent signals εi : N→ {0, 1}, then

εv(t) =
∑m

i=1wi ·εi(t) is the neuron total input. A spike propagates or occurs

on the i-th synapse whenever εi(t) = 1. The neuron output is yv : N→ {0, 1},
a signal defined as follows:

yv(t) =

1 if pv(t) > θv

0 otherwise
(2.2)

thus, as for inputs, an output spike occurs when y(t) = 1, and it is im-

mediately propagated to any synapse (v, u′) ∈ A since this model does not

allow delays on synapses. Finally, let tf be the last time unit where v emit-

ted a spike, i.e., yv(tf ) = 1, then, for a given refractory period τv ∈ N,

pv(tf + k) = 0, ∀k < τ . Please note that during any refractory period:

• the neuron cannot increase its potential;

• it cannot emit any spike, since pv(tf + k) < θv;

• any received spike is lost, i.e., it has no effect on neuron potential.

Remark. There exists an explicit version for Equation 2.1, that is:

pv(t) =
t∑

k=0

λk · εv(t− k) (2.3)

which clearly shows how previous inputs relevance exponentially decays as

time progresses. Such formulation is achieved as follows (subscripts are omit-
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ted):

p(0) = ε(0) = λ0 · ε(0)

p(1) = ε(1) + λ · p(0) = λ0 · ε(1) + λ1 · ε(0)

p(2) = ε(2) + λ · p(1) = λ0 · ε(2) + λ1 · ε(1) + λ2 · ε(0)

p(3) = ε(3) + λ · p(2) = λ0 · ε(3) + λ1 · ε(2) + λ2 · ε(1) + λ3 · ε(0)
...

p(t) = ε(t) + λ · p(t− 1) =
∑t

k=0 λ
k · ε(t− k)

2.2 Timed Automata

Timed Automata [2, 4] are a powerful theoretical formalism for modeling

and verification of real time systems. Next, we recall their definition and

semantics, their composition into Timed Automata Networks as well as the

composed network semantics. We conclude with an overview on the extension

introduced by the specification and analysis tool Uppaal [3] that we have

employed here.

A Timed Automaton is a finite state machine extended with real-valued

clock variables. Time progresses synchronously for all clocks, even if they

can be reset independently when edges are fired. States, also called locations,

may be enriched by invariants, i.e., constraints on the clock variables limiting

the amount of time the automaton can remain into the constrained location.

Edges are enriched too: each one may be labeled with guards, i.e., constraints

over clocks which enable the edge when they hold, and reset sets, i.e., sets

of clocks that must be reset to 0 when the edge is fired. Symbols, optionally

consumed by edge firings, are here called events. More formally:

Definition 2.3 (Timed Automaton). Let X be a set of symbols, each identi-

fying one clock variable, and let G be the set of all possible guards: conjunc-

tions of predicates having the form x o n or (x − y) o n, where x ∈ X,

n ∈ N and o ∈ {>,>,=,6, <}. Then a Timed Automaton is a tuple

(L, l(0), X, I, A, E) where:

• L is a finite set of locations ;

• l(0) ∈ L is the initial location;
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• I : L→ G is a function assigning guards to locations;

• A is a set of symbols, each identifying an event;

• E ⊆ L×(A∪{ε})×G×2X×L is a set of edges, i.e., tuples (l, a, g, r, l′)

where:

– l, l′ are the source and destination locations, respectively,

– a is an event,

– g is the guard,

– r ⊆ X is the reset set.

In order to present de semantics of Timed Automata, we need to recall

the definition of Labeled Transition Systems, which are a formal way to

describe formal systems semantics. They consist of directed graph where

vertexes are called states, since each of them represents a possible state of

the source system, and edges are referred as transitions, since they represent

the allowed transitions, from a state to another, for the source system. Edges

are decorated through labels representing, e.g., the action firing a particular

transition, the guards enabling it or some operation to be performed on their

firing.

Definition 2.4 (Labeled Transition System). Let Λ be a set of labels, then

a Labeled Transition System is a tuple M = (S, s0, −→) where:

• S is a set of states,

• s0 ∈ S is the initial state,

• −→⊆ S × Λ× S is a transition relation, i.e., the set of allowed transi-

tions, having the form s
λ−→ s′, where

– s, s′ ∈ S are the source and destination state, respectively;

– λ ∈ Λ is a label.

For what concerns Timed Automaton semantics, clocks are evaluated by

means of an evaluation function u : X → R+
0 assigning a non-negative time
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value to each variable in X. With an abuse of notation, we will write u

meaning {u(x) : x ∈ X}, the set containing the current evaluation for each

clock; u + d meaning {u(x) + d : x ∈ X}, for some given d ∈ R+
0 , i.e., the

clock evaluation where every clock is increased of d time units respect to

u. Similarly, for any reset set r ⊆ X, we will use the notation [r 7→ 0]u to

indicate the assignment {x1 7→ 0 : x1 ∈ r} ∪ {u(x2) : x2 ∈ X − r}. We will

then call u0 the function such that u0(x) = 0 ∀x ∈ X and RX the set of all

possible clocks evaluations. Finally, we will write u |= I(l) meaning that,

for some given location l, every invariant is satisfied by the current clock

evaluation u.

Let T = (L, l(0), X, I, A, E) be a Timed Automaton. Then, the seman-

tics is a labelled transition system (S, s0, →) where:

• S ⊆ L × RX is the set of possible states, i.e., couples (l, u) where l is

a location and u an evaluation function;

• s0 ∈ S is the system initial state which by definition is (l(0), u0);

• →⊆ S× (R+
0 ∪A∪{ε})×S is a transition relation whose elements can

be:

– Delays: modeling an automaton remaining into the same location

for some period. This is possible only if the location invariants

holds for the entire duration of such a period.

Transitions of this sort share the form (l, u)
d→ (l, u + d), for

some d ∈ R+
0 , and they are subjected to the following constraint:

(u+ t) |= I(l), ∀t ∈ [0, d].

– Event occurrences: modeling an automaton instantaneously

moving from one location to another. This is possible only if

an enabled edge from the source location to the destination one

is defined. An edge is enabled only if its guards hold and if the

destination invariants keep holding after the clocks in the edge

reset set have been reset.

Transitions of this sort share the form (l, u)
a→ (l′, u′), where

a ∈ A ∪ {ε}. They are subjected to the following constraint:

∃e = (l, a, g, r, l′) ∈ E such that u |= g (i.e., all guards g are

14



satisfied by the clock assignments u in l) and u′ = [r 7→ 0]u (i.e.,

the new clock assignments u′ are obtained by u resetting all clocks

in r) and u′ |= I(l′) (i.e., the new clock assignments u′ satisfies all

invariants of the destination state l′).

Timed Automata Networks are a parallel composition of automata over

a common set of clocks and communication channels obtained by means of

the parallel operator ‖. Let X be a set of clocks and let As, Ab be sets

of symbols representing synchronous and broadcast communication channels

respectively, such that As ∩ Ab = ∅ and let A = {?, !} × (As ∪ Ab). Events

in A are of two types:

• ?a is the event “sending/writing a message over/on channel a”,

• !a is the event “receiving/reading a message over/from channel a”.

Let N = T1 ‖ · · · ‖ Tn be a Timed Automata Network where each

Ti = (Li, l
(0)
i , X , Ii, A, Ei) is a Timed Automaton. Then, its semantics is a

labelled transition system (S, s0, →) where:

• S ⊆ (L1 × . . .× Ln)× RX is the set of possible states, i.e., pairs (l, u)

where l is a locations vector and u an evaluation function;

• s0 ∈ S is the system initial state which by definition is (l0, u0), with

l0 = (l
(0)
1 , . . . , l

(0)
n );

• →⊆ S× (R+
0 ∪A∪{ε})×S is a transition relation whose elements can

be:

– Delays: making all automata composing the network remain in

respective locations for some period. This is possible only if all

invariants of every automaton hold for the entire duration of such

a period.

Transitions of this sort share the form (l, u)
d→ (l, u + d), for

some d ∈ R+
0 , and they are subjected to the following constraint:

(u + t) |= I(l) 1 ∀t ∈ [0, d]. Note that time progresses evenly for

all clocks and automata.
1 with an abuse of notation we write I(l) instead of I(l1) ∧ . . . ∧ I(ln), for any l =

(l1, . . . , ln)
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– Synchronous communications (synchronizations): model-

ing a message exchange between two different automata. This

can happen only if one of them, the sender, is enabled to write

on some synchronous channel and the other one, the receiver, is

enabled to read from the same channel. This means the sender

must be within a location having an enabled outgoing edge deco-

rated by !a, and, similarly, the receiver must be within a location

having an enabled outgoing edge decorated by ?a.

Transitions of this sort are in the form (l, u)
a→ (l′, u′), where a ∈

As. They are subjected to the following constraint: there exists,

for two different i, j ∈ {1, . . . , n}, two edges ei = (li, !a, gi, ri, l
′
i)

and ej = (lj, ?a, gj, rj, l
′
j) in E1 ∪ · · · ∪En such that u |= (gi ∧ gj)

and u′ = [(ri ∪ rj) 7→ 0]u and u′ |= I(l′), where l′ = [li 7→ l′i, lj 7→
l′j]l; so a synchronous communication makes two automata fire

their edges ei and ej atomically. If more that a couple of automata

can synchronize, one will be chosen non-deterministically.

– Broadcast communications: modeling a message spreading

over some channel from a sender automaton to any automaton

interested in receiving messages from that channel. The main dif-

ference from synchronizations is that, here, senders can write their

message even if no one is ready to receive it: thus senders cannot

get stuck and massages can be lost. This transition is possible

only if the sender is enabled to write on some broadcast channel

a. The set of receiving automata is computed taking into account

the ones being within a location having an enabled outgoing edge

decorated by ?a. This set must then be filtered, removing those

automata which would move to a location whose invariants would

be violated by some clock reset caused by this transition.

More formally, transitions of this sort share the form (l, u)
a→

(l′, u′), where a ∈ Ab. They are subject to the following con-

straint: there exists in E1 ∪ · · · ∪ En

◦ an edge ei = (li, !a, gi, ri, l
′
i), for some i ∈ {1, . . . , n},

◦ a subsetD′ containing all edges having the form ej = (lj, ?a, gj, rj, l
′
j)
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such that u |= (gj), where i 6= j ∈ {1, . . . , n},
◦ a subset D = D′ − {et ∈ D′ : u′′ |= I(l′)}, where u′′ = [(rt) 7→

0, ∀t : et ∈ D′ ∪ {ei}]u,

thus, for each ek in D ∪ {ei}, u |= (gk) and u′ = [(rk) 7→ 0, ∀k]u

and u′ |= I(l′), where l′ = [lk 7→ l′k, ∀k]l. So a broadcast communi-

cation make a number of edges fire atomically and it only requires

an automaton to be enabled to write. If more than one broadcast

communication can occur, one is chosen non-deterministically.

– Moves: modeling an automaton unconstrained movement from

a location to another because of an edge firing. This requires the

edge guards to hold within the source state and the destination

location invariants to hold after clock resets have been performed.

Such transitions have the form (l, u)
ε→ (l′, u′), are subject to the

following constraint: ∃e = (l, ε, g, r, l′) in E1∪ · · · ∪En such that

u |= g and u′ = [r 7→ 0]u and u′ |= I(l′).

To simulate and verify our systems we use Uppaal [3]. It provides some

extensions that we describe informally:

• a set of shared bounded integer variables is part of the states of the

transition system defining Timed Automata Networks semantics: pred-

icates concerning such variables can be part of edges guards or locations

invariants, moreover variables can be updated on edges firings but they

cannot be assigned to/from clocks;

• locations can be marked as urgent meaning that time cannot progress

until an automaton remains in such a location: it is semantically equiv-

alent to a locations labeled by the invariant x ≤ 0 for some clock x

where all ingoing edges reset x;

• locations can also be marked as committed meaning that, as for urgent

locations, they do not allow the time to progress and they constrain

any outgoing or ingoing edge to be fired before any edge not involv-

ing committed locations. If more than one edge involving committed

locations can fire, then one is chosen non-deterministically.
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Uppaal modeling language actually includes other features that were ex-

ploited. For a more detailed description consider reading [3].

When representing Timed Automata edges we will indicate three sections

G, S and U respectively containing Guards, communications/Synchornizations

and Updates list, where an update can be a clock reset and/or a variable

assignment.

2.3 Formal Verification

This section aims at introducing a number of concepts which are useful to

express the expected behavior of Spiking Neural Networks and automatically

verify it. We recall definitions for CTL and the Model Checking problem [5]

and, finally, we discuss about the Uppaal model checker.

Temporal logics are extensions of the first order logic allowing to represent

and reason about temporal properties of some given formal system.

In this report we use CTL to express properties of the systems.

Definition 2.5 (CTL Syntax). Let P be the variable ranging over atomic

propositions, then a CTL formula φ is defined by:

φ = P | true | false atoms

| ¬φ | φ ∧ φ | φ ∨ φ | φ =⇒ φ | φ ⇐⇒ φ connectives

| Aψ | Eψ path quantifiers

ψ = Xφ | Fφ | Gφ | φUφ state quantifiers

where ¬, ∧, ∨, =⇒ and ⇐⇒ are the usual logic connectives, A and E are

path quantifiers and X, F , G and U are path-specific state quantifiers.

CTL formulae can only contain couples of quantifiers, here we give an

intuition of their semantics. A formal definition can be fount in [5].

AGφ – Always: φ holds in every reachable state

AFφ – Eventually: φ will eventually hold at least in one state on every

reachable path
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AXφ – Necessarily Next: φ will hold in every successor state

A(φ1Uφ2) – Necessarily Until: in every reachable path, φ2 will even-

tually hold and φ1 holds while φ2 is not holding

EGφ – Potentially always: there exists at least one reachable path

where φ holds in every state

EFφ – Possibly: there exists at least one reachable path where φ will

eventually hold at least once

EXφ – Possibly Next: there exists at least one successor state where

φ will hold

E(φ1Uφ2) – Possibly Until: there exist at least one reachable path where

φ2 will eventually hold and φ1 holds while φ2 is not holding

The formula AG(φ1 =⇒ AFφ2) is a common pattern used to express

liveness properties, i.e., desirable events which will eventually occur. The

formula can be read as: “φ1 always leads to φ2” or “whenever φ1 is satisfied,

then φ2 will eventually be satisfied”. Formulae of this sort are sometimes

written using the alternative notation φ1  φ2.

Model-checking is an approach to system verification aiming to test whether

a given temporal logic formula holds for a given formal system, starting from

a given point in time. It generally assumes that a transition system can be

build, somehow representing all possible states and all allowed transitions for

the given system. The verification process usually consists into exhausting

all reachable states from a given initial state, searching for a violation of the

property. If none is found, then the property is satisfied, otherwise a counter-

example, also known as trace, is returned, i.e., a path from the initial state

to the state violating the property.

In order to test some formulae we use the Uppaal model checker: it
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employs a subset of CTL defined as follow:

φ = AGψ | AFψ | EGψ | EFψ quantifiers

| ψ  ψ leads-to

ψ = true | false | deadlock | P atoms

| ¬ψ | ψ ∧ ψ | ψ ∨ ψ | ψ =⇒ ψ connectives

where P , as usual, ranges over atomic propositions and deadlock is an

atomic proposition which holds only in states having no outgoing transition.
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Chapter 3

Spiking Neural Networks

formalization

This chapter describes how to encode Spiking Neural Networks into Timed

Automata Networks. We begin by showing several ways to represent LI&F

neurons.

3.1 Leaky Integrate & Fire neurons as Timed

Automata

Since our tool Uppaal does not allow to use real numbers, which would be

a desirable capability when handling synapses weights and leak factors, we

decided to:

• discretize the [0, 1] interval splitting it into R parts, where R is a

positive integer referred as discretization granularity,

• represent the leak factor as a rational number.

3.1.1 Asynchronous Model

The first way, referred as Asynchronous Model, does not explicitly exploit the

concept of time-quantum. It assumes that: (i) time is continuous; (ii) two

input spikes cannot occur at the same instant.
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1 // Type definition for rational numbers

2 typedef struct {

3 int num;

4 int den;

5 } ratio_t;

6

7 // Discretization granularity

8 const int R = <int >;

9

10 // Type definition for weights

11 typedef int[-R, R] weight_t;

12

13 const int M = <int >; // Number of inputs

Listing 3.1: Uppaal global definitions common to all models: the R constant represent the

discretization granularity which is used to discretized the unitary interval, in deeds the weight t

type contains integers from -R to +R; while the ratio t type contains rational numbers and is

used for leak factors.

Definition 3.1 (Asynchronous Neuron). Let m ∈ N, then a neuron NA is a

tuple (w, λ, θ, τ), where:

• w = (w1, . . . , wi, . . . , wm) ∈ {−R, . . . , R}m is the m-uple of weights,

• λ : R+
0 → [0, 1] is the leak factor function which must be a decreasing

function of time used to calculate λ(t − t′), i.e., the potential leak

between the current spike t and the previous one t′,

• θ ∈ N is the threshold, which is a natural number whose magnitude

must be considered related to R like for any wi,

• τ ∈ N+ is the refractory period.

The main obstacle to such a definition is the fact that Uppaal (as of

version 4.1.19) does not allow to compute time depending functions, which

means λ(t) cannot be calculated. In order to work around such a limitation,

we add the following assumption:

consecutive input spikes will occur with an almost constant frequency

regardless of which synapsis they come from, i.e. the time difference

between one spike and its successor is considered to be the same
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Figure 3.1: “Asynchronous neuron” model. Please note the graph represents a Timed Au-

tomaton, it does not represent a Neural Network. The initial state is Accumulate, Decide is

a committed state while Wait is a normal state subject to the t 6 τ . The (A → D) edge is

actually a parametric and synthetic way to represent m edges, one for each input synapsis.

so it is possible to consider the leak factor as a constant instead of a decreasing

function of time, leading to the following refined definition:

Definition 3.2. Let m ∈ N, then an Asynchronous Neuron NA is a tuple

(w, λ, θ, τ), where:

• w = (w1, . . . , wm) ∈ {−R, . . . , R}m is the m-uple of weights,

• λ ∈ Q ∩ [0, 1] is the leak factor,

• θ ∈ N is the threshold,

• τ ∈ N+ is the refractory period.

The neuron behavior is then described by the Timed Automaton in Figure

3.1 and depends on the following channels, variables and clocks:

• x = (x1, . . . , xi, . . . , xm) is the m-uple of broadcast channels used to

receive input spikes,

• y is the output broadcast channel used to emit the output spike,

• p ∈ N is an integer variable holding the current potential value, which

is initially 0,
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• t ∈ N is a clock, initially set to 0.

The automaton has three locations: A, D and W, which respectively stand

for Accumulate, Decide and Wait. It can move from one location to another

according following rules:

• it keeps waiting in location A for input spikes and whenever it receives

a spike on input xi (i.e. it receives on channel xi) it moves to location

D updating p as follows:

p := wi + bλ · pc

• while the neuron is in location D then time does not progress (since

it is committed); from this location, the neuron moves back to A if

p < θ, or it moves to W, firing an output spike (i.e. writing on y) and

resetting t, otherwise;

• the neuron will remain in location W for an amount of time equal to

τ and then it will move back to location A resetting both p and t.

Remark. The assumptions this model relies on are maybe too strong: it

does not handle properly scenarios having input spikes occurrence times with

non-negligible variance and it is expected to behave poorly in such cases.

Basically, if no input spike occurs, time flow has no effect on the neuron,

which is far from truth.

Implementation through Uppaal. A neural network with asynchronous

neurons is implemented as an Uppaal system having global definitions shown

in Listing 3.1. Each neuron is realized as a Template having the following

parameters list:

// One broadcast chan &xi for each input

broadcast chan &x1 , ... , weight_t &w[M_<name >], broadcast

chan &y

and declarations shown in Listing 3.2. Procedure input(i) is executed on

each (A → D) edge firing, while reset() is executed on each firing of edge

(W→ A).
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1 clock t = 0;

2

3 int tau = <int >;

4 int theta = <int >;

5 ratio_t lambda = { <int >, <int > };

6

7 int p = 0;

8

9 void input(int i) {

10 p = (w[i] * lambda.den + lambda.num * potential) / lambda

.den;

11 }

12

13 void reset() {

14 p = 0;

15 }

Listing 3.2: Asynchronous neuron template declarations in Uppaal

Finally, it may be noticed that a minimal automaton can be obtained

collapsing locations A and D. The reasons they have been kept separated

are: (a) within some model-checking query, the presence of location D allows

to express concepts like “the neuron has received a spike” or “the neuron

is going to emit”; (b) when actually implementing the neuron in Uppaal,

the presence of location D allows to reduce the number of required edges:

without D we would have needed m loops on location A and m edges from

A to W, so 2m + 1 total edges, considering the one from W to A; while

thanks to D we only need m+ 3 edges.

3.1.2 (Partially) Synchronous Model

We present here a second approach aimed at overcoming the limitations of the

asynchronous model introduced above: it handles input spike co-occurrence,

and time-dependent potential decay, even if no spike is received. The neuron

is conceived as a synchronous and stateful machine that: (i) accumulates po-

tential whenever it receives input spikes within a given accumulation period,

(ii) if the accumulated potential is greater than the threshold, the neuron
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Figure 3.2: “Synchronous neuron” model. The (A → A) loop is actually a parametric and

synthetic way to represent m edges, one for each input synapsis.

emits an output spike, (iii) it waits for refractory period, (iv) and resets to

initial state. We assume that no two input spikes on the same synapse can be

received within the same accumulation period (i.e., the accumulation period

is shorter than the minimum refractory period of the input neurons).

Definition 3.3 (Synchronous Neuron). Let m ∈ N, then a Synchronous

Neuron NS is a tuple (w, T, λ, θ, τ), where:

• w = (w1, . . . , wm) ∈ {−R, . . . , R}m is the m-uple of weights,

• λ ∈ Q ∩ [0, 1] is the leak factor,

• θ ∈ N is the threshold,

• τ ∈ N+ is the refractory period,

• T ∈ N+ is the accumulation period.

The neuron behavior, described by the Timed Automaton shown in Figure

3.2, depends on the following channels, variables and clocks:

• t, x, y and p are, respectively, a clock, the m-uple of input broad-

cast channels, the output broadcast channel and the current potential

variable, as for the asynchronous model,
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• a ∈ N is a variable holding the weighted sum of input spikes occurred

within the current accumulation period; it is 0 at the beginning of each

period.

Locations are named as in the asynchronous model, but this one is subjected

to different rules:

• the neuron keeps waiting in state A for input spikes while t 6 T and

whenever it receives a spike on input xi it updates a as follows:

a := a+ wi

• when t = T the neuron moves to state D, resetting t and updating p

as follows:

p := a+ bλ · pc

• since state D is committed, it does not allow time to progress, so, from

this state, the neuron can move back to A resetting a if p < θ, or it

can move to W, firing an output spike, otherwise;

• the neuron will remain in state W for τ time units and then it will

move back to state A resetting a, p and t.

The innovation here is the concept of accumulation period. According to

the asynchronous model, two inputs cannot occur into the same instant and,

above all, their relative order is the only thing that influences the neuron po-

tential: two consecutive input spikes would have the same effect regardless of

their time difference. Thanks to the accumulation period of the synchronous

model, the time distance between two consecutive spikes can be valorized:

since the (A→ D) edge firing, namely “the end of the accumulation period”,

is not governed by input spikes as in the asynchronous model but only by

time, the neuron potential will actually decay as time progress if no input is

received.

Note that, if the assumption requiring one input not to emit more than

once within the same accumulation period does not hold (i.e. inputs frequen-

cies are too high), the neuron potential would increase as if the two spikes

were from different synapses.
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1 const int T = <int >;

2 clock t = 0.0;

3 const int tau = <int >;

4 const int theta = <int >;

5 ratio_t lambda = { <int >, <int > };

6

7 int a = 0;

8 int p = 0;

9

10 void reset() {

11 a = 0;

12 p = 0;

13 }

14

15 void input(int i) {

16 a += w[i];

17 }

18

19 void endAccumulation () {

20 p = (a * lambda.den + p * lambda.num) / lambda.den;

21 }

Listing 3.3: Synchronous neuron template declarations in Uppaal
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Implementation through Uppaal. A neural network with synchronous

neurons is implemented as an Uppaal system having global definitions shown

in Listing 3.1. It differs from the asynchronous model implementation only

for the declarations, as shown in Listing 3.3. Procedure input(i) is executed

on each (A → A) loop firing, endAccumulation() is invoked on (A → D),

while reset() is executed on each firing of edge (W → A). As for the

asynchronous model, a minimal automaton can be obtained by removing

state D and adding more edges.

3.2 Spiking neural networks as Timed Au-

tomata Networks

After showing how a Timed Automaton can represent a neuron, the main

concern is about neuron interconnection, i.e., representing a Neural Network

as a Timed Automata Network by means of some proper channel sharing

convention. Another relevant matter covered by this section is about inputs

and outputs representation, analysis and governance.

In order to make our models easier to inspect, we defined a language for

input sequences specification. Here we show how to translate any word from

such a language into a Timed Automaton able to emit it. Then we introduce

non-deterministic input generators which are useful in those contexts where

neurons must handle generic input sequences. Finally, we show how output

consumers can be used to measure a neuron spike frequency.

Synapses connecting neurons are represented by automata sharing chan-

nels. More formally, let I1, I2, . . . be input generators, let N , N1, N2, . . .

be neurons, and let O be an output consumer; then synapses are Timed

Automata Networks obtained by parallel composition as follows:

• input generators to neuron: (I1, . . . , In)
x

‖ N , where x = (x1, . . . , xn)

and each xi is a channel shared by Ii and N , carrying input spikes from

the former to the latter;

• neurons to neuron: (N1, . . . , Nn)
y

‖ N , where y = (y1, . . . , yn) and

each yi is a channel shared by Ni and N , carrying Ni outputs which
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are received by N ;

• neuron to output consumer: N
y

‖ O, where y is a shared channel

carrying N outputs which are consumed by O.

3.2.1 Input generators

Regular input generators. Essentially, input sequences are sequences of

spikes and pauses: spikes are instantaneous while pauses have a non-null

duration. Sequences can be empty, finite of infinite. After each spike there

must be a pause except when the spike is the last event of a finite sequence,

i.e., there exists no sequence having two consecutive spikes. Infinite sequences

are composed by two parts: a finite and arbitrary prologue and an infinite and

periodic part whose period is composed by a finite sequence of spike–pause

couples.

Definition 3.4 (Input Sequence Grammar). Let s, p, ] and [ be terminal

symbols, let I, N , P1, . . . , Pn and P be non-terminals and let x1, . . . , xn ∈
N+ be some durations for a given n > 0, then:

I ::= ε | P? (s P )∗ (s ε | ((s P1) · · · (s Pn))ω)

P ::= p[N ]

p1 ::= p[x1]
...

Pn ::= p[xn]

represents the ω-regular expression for valid input sequences.

In Definition 3.4:

• s is a symbol representing a spike;

• p is a symbol representing a pause;

• according to the productions of P and Pi, each pause is associated to

a natural-valued duration;

• p[N ] represents a pause whose duration is some number matching N ,

the regular expression for natural numbers;

30



• p[xi] represents a pause whose duration is a given number xi.

Notice that any pause within any valid input sequence is followed by a

spike. We denote with Φ the finite prefix of an input sequence and with Ω the

part which is repeated infinitely often, while α ranges over sub-sequences.

It is possible to generate an emitter automaton for any valid input se-

quence. Such an automaton requires a clock t to measure pauses durations,

a boolean variable s which is true every time the automaton is firing and a

location for each spike or pause into the sequence. The encoding J I K of a

sequence I = ε | Φ | Φ Ωω is as follows:

• J ε K = an empty sequence is encoded into an automaton having

just one location E without any edge;

• J Φ K = any finite sequence is encoded into a

sequence of locations, as described below, where the last one has no

outgoing edges and represent the end of the sequence;

• J Φ Ωω K = any infinite sequence is

composed by a finite sub-sequence Φ followed by a finite sub-sequence

Ω repeated an infinite amount of times. The two sub-sequences are

encoded according to the rules explained below and the resulting au-

tomata are connected. Finally, an urgent location R is added, having

an input edge from Ω last location and an output edge to Ω first loca-

tion.

Any finite sub-sequence is a list of spikes and pauses. They are recursively

encoded as follows:

• J p[N ]α K = any pause having duration N and

followed by a sub-sequence α is encoded into a location P with the

invariant t 6 T having one outgoing edge connected to the automaton

J α K; such an edge is enabled if and only if t = T and, if triggered, t is
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reset and, since pauses are always followed by spikes, the s variable is

set to true;

• J s α K = any spike followed by a sub-sequence α is

translated to an urgent location S having one output edge connected to

the automaton translated from α; such an edge emits on y if triggered

and resets s.

Non-deterministic input generators. If no assumptions are available

or desirable about some neuron inputs, one can exploit non-deterministic

input generators, i.e., automata able to fire randomly and only constrained

to wait an amount of time Tmin between an emission and its successor. An

automaton of this sort is shown in Figure 3.3a and behaves as follows:

• it waits in location B an arbitrary amount of time before moving to

location S, firing its first spike over channel x,

• since location S is urgent, the automaton instantaneously moves to

location W, resetting clock t,

• from location W, after an arbitrary amount of time t ∈ ]Tmin, ∞ [, it

moves to location S, firing a spike.

Remark. One may introduce an initial delay D by adding invariant t ≤ D

to location B and guard t = D on edge (B→ S)

Fixed-rate input generators. Some contexts may consider input se-

quences having fixed rates, i.e., the expected amount of spikes during some

given time window T is constant, even if the sequence is not formally peri-

odic since the distribution of spikes within two different time windows may

differ. We propose the automaton shown in Figure 3.3b, which is able to

non-deterministically produce an output spike for each discrete time window

T , after it has been quiescent for an initial delay D:

• it waits in location B until clock t value equals to D, then it moves to

location W, resetting it;
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(a) “Non-deterministic input generator”

(b) “Fixed-rate input generator”

Figure 3.3: Automata generating input sequences. Non-deterministic generators are only con-

strained to wait more than Tmin time units between emissions. Fixed-rate generators are only

constrained to fire exactly once for each period T .

Figure 3.4: “Output consumer” automaton. Its initial location is Wait, location Output is

urgent, since-last-spike is a clock while even is a boolean variable.

• it waits in location W a non-deterministic amount of time ts ∈ ] 0, T [

and then it moves to location S firing a spike over channel x;

• finally, it waits T − ts time units in S before moving back to W.

3.2.2 Output consumers

As shown in Section 3.1, neuron models emit outputs writing on some broad-

cast channel y. In order to query a model-checker about output neurons out-

comes, the output consumer automaton shown in Figure 3.4 is connected to

each neuron by sharing its output channel. Its behavior is straightforward:
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• it waits in location W for the neuron it is connected to to emit an

output spike, which makes it move to location O;

• since location O is urgent, the automaton will instantly move back to

location W resetting s and setting e to its negation;

where s is the clock measuring the elapsed time since last emission and e is

a boolean variable which differentiates each emission from its successor.

So if an output consumer automaton is in location O then its correspond-

ing neuron has just emitted one spike.
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Chapter 4

Validation of the Leaky

Integrate & Fire model

In this chapter we validate the synchronous neuron model against its ability

of reproducing some behaviors, as described by Izhikevich in [14].

First we recall the following concepts:

Definition 4.1 (Input (sub-)sequence). Let I1, . . . , Im be a input sources

(i.e., neuron or generators) connected to some neuron N , and let Fi =

{ti,1, ti,2, . . .} be the ordered set of firing times of Ii; then I =
⋃m
i=1 Fi is

the ordered input sequence of N . For any continuous interval Q ⊂ R+
0 the

set I ∩Q is a sub-sequence of I.

Definition 4.2 (Output (sub-)sequence). Let N be a neuron and let FN =

{t1, t2, . . .} be its ordered set of firing times; then FN is the ordered output

sequence of N . For any continuous interval Q ⊂ R+
0 the set FN ∩ Q is a

sub-sequence of FN .

Definition 4.3 (Persistent input (sub-)sequence). Let N = (w, T, λ, θ, τ)

be a Synchronous Neuron, let I be its input (sub-)sequence and let t range

over the accumulation periods starting instants; then I is persistent if and

only if card(I ∩ [ t, t+ T [) > 0, ∀t.

Definition 4.4 (Persistent excitatory/inhibitory input (sub-)sequence). Let

N = (w, T, λ, θ, τ) be a Synchronous Neuron, let I be its input sub-sequence

and let n range over the accumulation periods; then I is excitatory (resp.

35



inhibitory) if and only if An > 0 (resp. An < 0) ∀t, where An is the sum of

weighted inputs for the n-th accumulation period.

Definition 4.5 (Persistent constant input (sub-)sequence). LetN = (w, T, λ, θ, τ)

be a Synchronous Neuron, let I be its input sub-sequence and let n range

over the accumulation periods; then I is constant if and only if there exists

some K ∈ Z such that An = K, ∀t.

Definition 4.6 (Periodic output (sub-)sequence). Let N be a neuron and

let FN = {t1, t2, . . .} be its output sequence, then FN is periodic if and only

if there exists some P ∈ R+ such that ti+1 − ti = P, ∀i.

Definition 4.7 (Simultaneous input spikes). Let N = (w, T, λ, θ, τ) be

a Synchronous Neuron, let I be its input sequence, let t range over the

accumulation periods starting instants and let s1, s2 ∈ I be two input spikes;

then s1 and s2 are simultaneous if and only if s1, s2 ∈ [ t, t+ T [ for some t.

Definition 4.8 (Consecutive input spikes). Let N = (w, T, λ, θ, τ) be a

Synchronous Neuron, let I be its input sequence, let t, t′ be the starting

instants of some accumulation period and the next one, respectively, and let

s1, s2 ∈ I be two input spikes; then s1 and s2 are consecutive if and only if

s1 ∈ [ t, t+ T [∧s2 ∈ [ t′, t′ + T [.

Definition 4.9 (Reset times). Let N be a neuron and let FN = {t1, t2, . . .}
be its output sequence, then the set of reset times of N is ZN = {t+ τ : t ∈
FN}.

We use calligraphic letters (A) for automata, bold letters (X) for au-

tomata states, and lower-case italic letters (t) for automata variables or

clocks. Within temporal logic formulae, the predicate stateA(X) is 1 if and

only if automaton A is in state X, 0 otherwise, and evalA(t) is a function

mapping a variable or clock t to the value it currently carries within the

context of automaton A: a predicate may consist of the comparison between

such a value and a constant. For boolean variables we may abuse the nota-

tion writing eval(b) and ¬evalA(b) instead of evalA(b) = 1 or evalA(b) = 0,

respectively.
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4.1 Intrinsic Properties

Maximum threshold. Here we show that, assuming an upper bound for

the sum of ingoing synapses weights, there exist a way to compute the max-

imum threshold value such that, any neuron having a threshold greater than

or equals to it, will never be able to fire.

Property 4.1 (Threshold-leak factor relation). Let N = (w, T, λ, θ, τ) be

a Synchronous Neuron and amax ∈ N+ the maximum value of weighted inputs

sum, then, if θ ≥ amax

1−λ , the neuron is not able to fire.

Proof. Without loss of generality, we suppose that, during each accumulation

period, N receives the maximum possible input amax. Then, its potential

function is:

pn = amax + bλ · pn−1c

which is always lower than or equal to its undiscretized version:

pn ≤ p′n = amax + λ · p′n−1

The same inequality can be written in explicit form because of Equation 2.3:

pn ≤ p′n =
n∑
k=0

an−k · λk

and, since we assumed the neuron always receives amax, an−k is constant and

do not depend on k:

pn ≤ amax ·
n∑
k=0

λk

The rightmost factor is a geometric series having a more compact represen-

tation:

pn ≤ amax ·
1− λn

1− λ
which reaches its maximum value 1

1−λ for n→∞, therefore:

pn ≤
amax
1− λ

, ∀n ∈ N

Thus, if θ ≥ amax

1−λ , it is impossible for the neuron potential to reach the

threshold and, consequently, the neuron cannot fire.
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Notice that, according to Definition 3.3, synapses weights are never greater

than an integer R, so amax = mR for each neuron having m ingoing synapses,

even if, in the general case, we will consider amax =
∑m

i=0 wi ≤ mR. We will

say that a neuron is firing enabled if θ < amax

1−λ .

Analysis of neuron timings. We can quantify the amount of time that

the neuron requires to complete an accumulate–fire–rest cycle. Such expres-

sion is useful to prove some interesting properties, e.g., here we show that

there exists a minimum delay between one neuron emission and its successor.

Property 4.2 (Minimum firing period). Let N = (w, T, λ, θ, τ) be a firing

enabled Synchronous Neuron, then the time difference between successive

firings cannot be lower than T + τ .

Proof. Let An =
∑T

k=1 ak+t0 be the sum of weighted inputs during the n-th

accumulation period, then the neuron behavior can be described as follows:

pn = An + bλ · pn−1c (4.1)

is the potential value after the n-th accumulation period. If the neuron will

eventually fire an output spike, then there exists n̂ > 0 such that:

n̂ = arg min
n∈N

{pn : pn ≥ θ} (4.2)

i.e., the firing will occur at the end of the n̂-th accumulation period, which

means during the t̂-th time unit since t0, thus:

t̂ = n̂ · T + t0 (4.3)

where t0 is the last reset time, i.e., the last instant back in time when the

neuron completed its refractory period. Then the next reset time t′, i.e., the

next instant in future when the neuron will complete its refractory period,

after having emitted a spike, is:

t′ = t̂+ τ = n̂ · T + τ + t0

At instant t′, the neuron quits its refractory period, n is reset to 0, t0 is set

to t′, and n̂, t̂ and t′ must be consequently re-computed as described above.
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Such a way to describe our model dynamics allow us to express the inter-

firing period as a function of n̂:

t′ − t0 = n̂ · T + τ (4.4)

So, the minimum inter-firing period is T + τ for n̂ = 1. Such a property can

be verified as follows: let I be the non-deterministic input generator having

Tmin = 1 and, without loss of generality1, initial delay D = T + τ , then the

Timed Automata Network I
x

‖ N
y

‖ O satisfies the following formula:

AG(stateO(O) =⇒ evalO(s) ≥ T + τ) (4.5)

where s measures the time elapsed since last firing, meaning that, whenever

the output consumer receives a spike, the time elapsed since the previous

received spike cannot be lower than T + τ .

Analysis of neuron memory. Here we discuss about the neuron capa-

bility of taking past events into account when computing its outcome. As

argued above, the neuron potential is affected by every input spike it received

since the last reset time, but every event that occurred before that instant is

forgotten.

Definition 4.10 (Neuron inter-emission memory). Let N be a neuron, let

ZN be its reset times set and let I be an input sub-sequence; then N has

inter-emission memory if and only if there exist two different t, t′ ∈ ZN such

that the output sub-sequence produced by N as a response to I starting from

t differs from the output sub-sequence it produces as a response to I starting

from t′.

Property 4.3 (Memoryless neuron). Let N = (w, T, λ, θ, τ) be a Syn-

chronous Neuron, then N has not inter-emission memory.

Proof. According to Definition 3.3 each reset time occurs on each (W→ A)

firing. Such event makes N automaton move back to its initial location while

resetting clock t and variables p and a, making them equal to their starting

values. So it is impossible for the neuron to behave differently if subjected

to the same input sub-sequence.

1the initial delay is required in order to make the formula hold for the first output spike

too
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Analysis of inhibitory inputs. Here we argue about the effects of an

inhibitory stimulation to a neuron whose potential lower than its threshold.

Property 4.4 (Inhibitory effect of negative stimulations). LetN = (w, T, λ, θ, τ)

be a Synchronous Neuron, let An be the sum of weighted inputs received dur-

ing the current accumulation period and let pn−1 be the neuron potential at

the end of the previous accumulation period, then if pn−1 < θ and An < 0

the neuron cannot fire at the end of the current accumulation period.

Proof. It is sufficient to prove that, under such hypotheses, pn < θ. Consid-

ering pn definition, we can state that:

pn ≤ An + λ · pn−1

so, since An is negative, we can rewrite it as −|An|:

pn + |An| ≤ λ · pn−1

and then we deduce:

pn < λ · pn−1

because pn < pn + |An| and, consequently:

pn ≤
1

λ
· pn < pn−1

because λ−1 ∈ [ 1, ∞ [. So finally:

pn < pn−1 < θ

Next we show that only positive stimulations are necessary for the neuron

to produce emissions:

Property 4.5. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron such that

θ > 0, let An be the sum of weighted inputs received during the current

accumulation period and let pn be the neuron potential at the end of the

current accumulation period, then pn ≥ θ =⇒ An > 0.
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Figure 4.1: Tonic spiking representation for continuous signals from [14].

Proof. It is sufficient to prove that, under such hypotheses, An > 0. We

know that:

pn = An + bλ · pn−1c ≥ θ

Let’s analyze two sub-cases, with respect to the sign of bλ · pn−1c − θ:
Consider the case: bλ · pn−1c < θ.

According to the initial hypothesis:

bλ · pn−1c < θ ≤ An + bλ · pn−1c

and, consequently:

0 < θ − bλ · pn−1c ≤ An

so, finally An > 0.

Consider the case: bλ · pn−1c ≥ θ.

This means pn−1 ≥ θ, in fact:

pn−1 ≥ λ · pn−1 ≥ bλ · pn−1c ≥ θ

But this is absurd because if pn−1 ≥
θ, the neuron emits and resets, thus

its potential in the next accumula-

tion period is zero, which is in con-

tradiction with the hypothesis pn ≥
θ > 0.

4.2 Capabilities

Tonic Spiking. “Tonic spiking” is the behavior of a neuron producing a

periodic output sub-sequence as a response to a persistent excitatory constant

input sub-sequence. An example is shown in Figure 4.1.

Property 4.6 (Tonic spiking). Let N = (w, T, λ, θ, τ) be a Synchronous

Neuron having only one ingoing excitatory synapse such that w > 0 and
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(a) R = 1000, m = 1, w = 1000, T = 1, λ = 1
3

, θ = 100, τ = 1

(b) R = 1000, m = 1, w = 1000, T = 1, λ = 9
10

, θ = 900, τ = 3

(c) R = 1000, m = 1, w = 1000, T = 1, λ = 1
2

, θ = 1900, τ = 1

Figure 4.2: Tonic spiking simulations. Each diagram shows the time elapsed since last neuron

emission (blue), the emitted spikes (red), the refractory periods (purple) and input spikes

(green) within accumulation periods (gray) for three different neurons and for 30 time units. In

each case, the input generator is a fixed-rate generator having initial delay 5 and time window

size 1.

42



θ < w/(1− λ) and let I be the input source connected to N producing a

persistent input sequence, then N produces a periodic output sequence.

Proof (Sketch). Let I be the fixed-rate input generator having arbitrary ini-

tial delay D and time window size T , and let O be an output consumer, then

the Timed Automata Network I
x

‖ N
y

‖ O satisfies the following formulae:stateO(O) ∧ evalO(e) stateO(O) ∧ ¬evalO(e)

stateO(O) ∧ ¬evalO(e) stateO(O) ∧ evalO(e)
(4.6)

where O is the location that automaton O reaches after consuming a spike

and e is boolean variable whose value changes wheneverO moves into location

O. So, whenever automaton O reaches location O it will eventually reach

it again. As shown in Figure 4.2, if we simulate neurons having different

parameters providing them the same input I, then they keep producing a

periodic outcome whose period only depends on T and τ as long as θ <
w

1−λ .

It should be noted that one may also find the value P of the period of

some given neuron N by means of simulations, thus the periodic behavior

can be proven by a model-checker verifying the following formula:

AG(stateO(O) ∧ evalN (f) =⇒ evalO(s) = P ) (4.7)

where s is the clock measuring the time elapsed since last spike consumed

by O, and f is a boolean variable of automaton N which is initially false

and is set to true when edge (W→ A) fires (i.e., it indicates whether N has

already emitted the first spike and waited the first refractory period or not).

Integrator. “Integrator” is the behavior of a neuron producing an output

spike whenever it receives at least a specific number of simultaneous spikes

from different input sources or when it receives a certain amount of consec-

utive spikes from a specific input source. So the neuron parameters can be

tuned in order to detect (i.e., fire as a consequence of) a given number of

simultaneous or consecutive spikes. An example is shown in Figure 4.3.
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Figure 4.3: Integrator behavior representation for continuous signals, from [14].

Property 4.7 (Simultaneous integrator). Let N = ((R, . . . , R), T, λ, n, τ)

be a Synchronous Neuron having m synapses with maximum excitatory

weight R and an integer threshold n ≤ m, then the neuron emits if it receives

a spike from at least n input sources during the same accumulation period.

Proof (Sketch). Let I1, . . . , Im be non-deterministic input generators con-

strained to wait more than T time units between an emission and its succes-

sor, and let O be an output consumer, then the Timed Automata Network

(I1, . . . , Im)
x

‖ N
y

‖ O satisfies the following formula stating that, if at least

n generators are in location S while N is in A, then O will eventually capture

an output of N :(
m∑
i=1

statei(S) ≥ n

)
∧ stateN (A) stateO(O) (4.8)

where S is the location that each automaton Ii reaches after producing a

spike and A is the accumulation location of the neuron N . As shown in

Figure 4.4a, a neuron, under such hypotheses, will fire as soon as it receive

n simultaneous spikes.

Notice that, since potential depends on past inputs too, the neuron may

still be able to fire in other circumstances, e.g., if it keeps receiving less than n

spikes for a sufficient number of accumulation periods, then it may eventually

fire.
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(a) R = 1000, m = 3, w1, w2, w3 = 1000, T = 2, λ = 1
2

, θ = 3000, τ = 5

(b) R = 1000, m = 1, w = 1000, T = 1, λ = 1
2

, θ = 1900, τ = 1

Figure 4.4: Chart 4.4a represents the behavior of a neuron, having 3 ingoing synapses, which is

able to detect the simultaneity of at least 3 inputs: whenever two or more input spikes (green

lines) occur during the same accumulation period (gray), an output spike is produced (red).

Chart 4.4b represents the behavior of a neuron, having a single ingoing synapse, which is able

to detect a sequence of 5 consecutive input spikes.

Property 4.8 (Sequential integrator). Let N = (w, T, λ, θ, τ), be a Syn-

chronous Neuron having only one ingoing synapse, such that θ < w
1−λ , then

there exists a maximal sequence of consecutive input spikes of length n̂ that

results in an output spike.

Proof (Sketch). Let I be the fixed-rate input generator having arbitrary ini-

tial delay D and time window size T , let O be an output consumer, and

let n̂ be the minimum amount of consecutive input spikes required to make

the potential overcome the threshold, obtained by means of simulation or by

recursively computing pn until it reaches the threshold value; then the Timed

Automata Network I
x

‖ N
y

‖ O satisfies the following formula stating that,

whenever O receives a spike, the number of consecutive spikes never greater

than n̂:

AG(stateO(O) =⇒ evalN (c) ≤ n̂) (4.9)

where c is an integer variable of automaton N counting the amount of con-

secutive accumulation periods that received at least one spike since last emis-

sion.
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Figure 4.5: Excitability capability representation for continuous signals, from [14].

Figure 4.4b shows a simulation of a neuron able to detect 5 consecutive

spikes.

Excitability. “Excitability” is the behavior of a neuron emitting sequences

having a decreasing inter-firing period, i.e., and increasing output frequency,

when stimulated by an increasing number of excitatory inputs. An example

is shown in Figure 4.5

Property 4.9 (Excitability). Let N = (w, T, λ, θ, τ) be a firing enabled

Synchronous Neuron having m excitatory synapses, then the inter-spike pe-

riod decreases as the sum of weighted input spikes increases.

Proof. If we assume the neuron is receiving an increasing number of ex-

citatory spikes, generated by, e.g., an increasing number of input sources

emitting persistent inputs, then at is the non-negative, non-decreasing (i.e.,

at+1 ≥ at, ∀t) and progressing (i.e., ∀u ∃t : at > u) succession represent-

ing the weighted sum of inputs within the t-th time unit. Consequently,

An =
∑T

k=1 ak+t0 is the non-negative, non-decreasing and progressing succes-

sion counting the total sum of inputs within the n-th accumulation period.

Since An is positive, according to Equation 4.1 and Equation 4.2, the fol-

lowing statement holds: if An increases then n̂ decreases. Being n̂ the only

variable in Equation 4.4, if n̂ decreases then the difference t′ − t0 decreases

too.
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(a) Phasic spiking represen-

tation for continuous signals

from [14].

(b) The Synchronous neuron model edited to be able to reproduce the

phasic spiking behavior. Variations with respect to the original model

shown in Figure 3.2 are blue-colored.

Figure 4.6: Phasic Spiking: example and model variant.

4.3 Limits

Phasic Spiking. “Phasic spiking” is the behavior of a neuron producing

a single output spike on the onset of a persistent and excitatory input sub-

sequence and then remaining quiescent until the end of such sub-sequence.

An example is shown in Figure 4.6a.

Such a behavior requires the neuron to be able to detect the onset of an

excitatory input sub-sequence and, therefore, it depends on the neuron to

have inter-emission memory.

Property 4.10. Let N be a Synchronous Neuron, then N cannot reproduce

the Phasic Spiking behavior.

Proof. It is sufficient to prove that such a behavior requires the neuron to

have inter-emission memory. In fact, the phasic spiking behavior requires the

neuron to ignore any excitatory input spike occurring after its first emission.

This means producing different outcomes, before and after the first emission,

as a response to the same input sub-sequence, which is impossible for a

memoryless neuron, as stated in Property 4.3.

The synchronous model can be edited as shown in Figure 4.6b in order
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to make it able to reproduce such a behavior. This variant simply makes the

neuron able to “remember” if it is receiving a persistent excitatory input sub-

sequence. After each refractory period, the neuron moves to location AH,

instead of moving back to A. Here, accumulation periods keep repeating

every T time units and weighted inputs are accumulated in variable a, as for

location A. The difference between AH and A is that the former one ignores

positive values of a at the end of each accumulation period. Conversely, a

non-positive value of a, at the end of some accumulation period, leads the

neuron back in location A. So, such a variant of the Synchronous Model

will fire only one spike on the onset of each persistent excitatory input sub-

sequence.

Tonic Bursting. A burst is a finite sequence of high frequency spikes.

Some behaviors presented in [14], e.g., tonic of phasing bursting, require the

neuron to be able to generate output bursts instead of single spikes. Here we

formalize the “burst” concept and discuss about the tonic bursting behavior.

Definition 4.11 (Burst). A spike sub-sequence is a Burst if it is composed

by a least a given number of spikes having an occurrence rate greater than

1/τ , where τ is the refractory period duration of the neuron generating the

sub-sequence.

Definition 4.12 (Burst sequence). A burst sequence is a spike sequence

composed by bursts, subjected to the following constraint: the time difference

between the last spike of each burst and the first spike of the next burst

it greater than τ , where τ is the refractory period duration of the neuron

generating the sequence.

Thus, “Tonic Bursting” is the behavior of a neuron producing a burst sub-

sequence as a response to a persistent and excitatory input sub-sequence. An

example is shown in Figure 4.7a.

Such a behavior, differently from Phasic Spiking, does not require the

neuron to have inter-emission memory but it requires the neuron to be able

to produce bursts.

Property 4.11. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot produce bursts.
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(a) Tonic bursting represen-

tation for continuous signals

from [14].

(b) The Synchronous neuron model edited to be able to reproduce the

Tonic Bursting behavior. Variations with respect to the original model

shown in Figure 3.2 are blue-colored. Let n be the number of spikes a

burst is composed of, then such automaton has n− 1 locations Bi. One

may include the green-colored part to model bursts composed by at least

n spikes.

Figure 4.7: Tonic Bursting: example and model variant.

Proof. N cannot emit spikes having a rate greater than 1/(T + τ), as stated

by Property 4.2, so it cannot produce bursts.

Corollary . N cannot reproduce the Tonic Bursting behavior.

The Synchronous Model can be edited as shown in Figure 4.7b in order

to make it able to reproduce such a behavior. This variant simply makes

the neuron emit bursts instead of spikes. The Synchronous Model is re-

defined as a tuple N = (w, T, λ, θ, τ, n) where n is the number of spikes

that each burst emitted by N will contain. If we also consider the green

(Bn−1 → Bn−1) loop of Figure 4.7b, then n is the minimum number of spikes

composing a burst. The rationale of this edit is straightforward: at the end

of each refractory period, the neuron must iterate over n − 1 locations Bi

until eventually reaching location A, as usual. On each ingoing edge of each

location Bi, a spike is fired. Because of the invariants of locations Bi, the

entire burst emission cannot last longer than the refractory period. Please

note that, if n = 1, then Bn−1 ≡W and the automaton degenerates to the

original Synchronous Neuron structure of Figure 3.2.
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(a) Phasic bursting represen-

tation for continuous signals

from [14].

(b) The Synchronous neuron model edited to be able to reproduce the

Phasic Bursting behavior. Variations with respect to the original model

shown in Figure 3.2 are colored. Note that this variant is achieved by

mixing the Phasic Spiking (green part) and Tonic Bursting (blue part)

variants.

Figure 4.8: Phasic Bursting: example and model variant.

Phasic Bursting. “Phasic Bursting” is the behavior of a neuron producing

a burst on the onset of a persistent excitatory input sub-sequence and then

remaining quiescent until the end of such sub-sequence. An example is shown

in Figure 4.8a.

Such a behavior, similarly to Phasic Spiking, requires the neuron to have

inter-emission memory, in order to detect the beginning of an excitatory input

sub-sequence, and, analogously to Tonic Bursting, depends on the neuron to

be able to produce bursts.

Property 4.12. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Phasic Bursting behavior.

Proof. According to Property 4.11, N cannot produce bursts, thus it cannot

reproduce the Phasic Bursting behavior.

The Synchronous Model can be edited as shown in Figure 4.8b in order

to make it able to reproduce such a behavior. This variant simply merges

the edits proposed for Phasic Spiking (green part) and Tonic Bursting (blue

part).
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(a) Bursting-then-Spiking

representation for continuous

signals from [14].

(b) The Synchronous neuron model edited to be able to reproduce the

Bursting-then-Spiking behavior. Variations with respect to the original

model shown in Figure 3.2 are colored. The blue-colored part is needed

to produce bursts while the green-colored edits are needed to keep track

of the onset of an excitatory input sub-sequence.

Figure 4.9: Bursting-then-Spiking: example and model variant.

Bursting-then-Spiking. “Bursting-then-Spiking” is the behavior of a neu-

ron producing a burst on the onset of a persistent excitatory input sub-

sequence and then producing a periodic output sub-sequence until the end

of such sub-sequence. An example is shown in Figure 4.9a.

Such a behavior, similarly to Phasic Bursting, requires the neuron to have

inter-emission memory, in order to detect when a persistent subsequence is

beginning, and depends on the neuron to be able to produce bursts.

Property 4.13. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Bursting-then-Spiking behavior.

Proof. According to Property 4.11, N cannot produce bursts, thus it cannot

reproduce the Bursting-then-Spiking behavior.

The Synchronous Model can be edited as shown in Figure 4.9b in order to

make it able to reproduce such a behavior. This variant, similarly to the one

proposed for Tonic Bursting, comprehends locations B1, . . . , Bn−1, allowing

it to produce n-bursts. Moreover, the model is extended by means of the c
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(a) Spike Frequency Adapta-

tion representation for contin-

uous signals from [14].

(b) The Synchronous neuron model edited to be able to reproduce the

Spike Frequency Adaptation behavior. Variations with respect to the

original model shown in Figure 3.2 are blue-colored.

Figure 4.10: Spike Frequency Adaptation: example and model variant.

boolean variable keeping track of persistent excitatory input sub-sequences.

More precisely, c is set at the end of each refractory period and it is reset

at the end of any accumulation period where the sum of weighted input is

non-positive. So, at the end of an accumulation period, if the neuron just

emitted one spike and c = false (i.e., it’s the first output spike since the

beginning of the current input sub-sequence), it will emit n− 1 more spikes

in order to compose a burst. Conversely, if c = true, then it will not produce

any further spike until the end of the next accumulation period.

Spike Frequency Adaptation. “Spike Frequency Adaptation” is the be-

havior of a neuron producing a decreasing-frequency output sub-sequence as

a response to a persistent excitatory input sub-sequence. The inter-emission

time difference increases as the time elapsed since the onset of the input sub-

sequence and resets to the initial value at the end of such a sub-sequence.

An example is shown in Figure 4.10a.

This behavior requires the neuron to have inter-emission memory: it

should be able to keep track of the time elapsed since the beginning of the

input sub-sequence.

Property 4.14. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Spike Frequency Adaptation behavior.
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Proof. It is sufficient to prove that such behavior requires the neuron to have

inter-emission memory. In fact, the Spike Frequency Adaptation behavior

requires the neuron to detect the beginning instant of an excitatory input

sub-sequence and to increase the time required to fire a spike, after each

emission. This means the neuron will produce different outcomes as response

to equal inputs, which is impossible for any Synchronous Neuron, as stated

in Property 4.3.

The Synchronous Model can be edited as shown in Figure 4.10b in order

to make it able to reproduce such a behavior. This variant allows the refrac-

tory period to increase after each neuron emission thus making the output

frequency decrease. More precisely, the Synchronous Model is re-defined as

a tuple N = (w, T, λ, θ, τ0, ∆τ) where τ0 ∈ N+ is the default refractory

period duration and ∆τ ∈ N+ represents the refractory period variation,

while τ is a variable of automaton N . The initial value of variable τ is τ0.

On every firing of edge (W → A) the variable is increased of ∆τ , while,

on every firing of (D → A), it is reset to τ0. So, any persistent excitatory

input sub-sequence will lead to an output sub-sequence having a decreasing

frequency.

Spike Latency. “Spike Latency” is the behavior of a neuron firing delayed

spikes, with respect to the instant when its potential reached or overcame

the threshold. Such a delay is proportional to the strength of the signal

which lead it to emission, i.e., for a Synchronous Neuron, the sum of weighed

inputs received during the accumulation period preceding the emission. An

example is shown in Figure 4.11a.

This behavior does not require the neuron to have inter-emission memory,

nevertheless it requires the neuron to be able to postpone its outcome.

Property 4.15. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Spike Latency behavior.

Proof. Let n be the first accumulation period since the last reset time where

the potential reaches or overcomes θ. Then, according to Definition 3.3, the

neuron emission instant will be exactly n · T : because of location D being

committed, there is no way for the neuron to postpone its firing instant.
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(a) Spike Latency represen-

tation for continuous signals

from [14].

(b) The Synchronous neuron model edited to be able to reproduce the

Spike Latency behavior. Variations with respect to the original model

shown in Figure 3.2 are blue-colored.

Figure 4.11: Spike Latency: example and model variant.

The Synchronous Model can be edited as shown in Figure 4.11b in order to

make it able to reproduce such a behavior. The proposed variant introduces a

delay between the instant the neuron reaches or overcomes its threshold and

actual emission instant. Such a delay depends solely on the sum of weighted

inputs from the last accumulation period. More formally, the Synchronous

Model is re-defined as a tuple N = (w, T, λ, θ, τ, δ) where δ : N→ N is the

function computing the delay according to the sum of weighted inputs. At

the end of each accumulation period, if the potential is greater than or equal

to the threshold, the neuron will compute the delay duration δ(a), assigning

it to an integer variable d and then wait in location Del for d time units

before emitting a spike on channel y.

Threshold Variability. “Threshold variability” is the behavior of a neu-

ron allowing its threshold to vary according to the strength of its income.

More precisely, an excitatory input will rise the threshold while an inhibitory

input will decrease it. As a consequence of such a behavior, excitatory inputs

may more easily lead the neuron to fire when occurring after an inhibitory

input, as shown in the example of Figure 4.12a.

This behavior does not require the neuron to have inter-emission memory,
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(a) Threshold Variability

representation for continuous

signals from [14]: the

inhibitory spike decreases

the neuron threshold making

the following excitatory spike

sufficient to make the neuron

fire.

(b) The Synchronous neuron model edited to be able to reproduce the

Threshold variability behavior. Variations with respect to the original

model shown in Figure 3.2 are blue-colored.

Figure 4.12: Threshold variability: example and model variant.

nevertheless it requires the neuron threshold to vary according to its inputs.

Property 4.16. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Threshold Variability behavior.

Proof. This is true by construction according to Definition 3.3: the neuron

threshold never changes.

The Synchronous Model can be edited as shown in Figure 4.12b in order

to make it able to reproduce such a behavior. This variant allows the thresh-

old to vary after each accumulation period according to the current sum of

weighted inputs. More precisely, the Synchronous Model is re-defined as a

tuple N = (w, T, λ, θ0, τ, ∆θ) where θ0 ∈ N+ is the initial threshold and

∆θ : Z→ Z represents the threshold variation function, while θ is a variable

of automaton N . The threshold variable initial value is θ0. On every firing

of edge (A → D) the threshold variable is increased of ∆θ(a), which is an

integer value whose sign is opposite to the sign of a and whose magnitude is

proportional to the magnitude of a, where a is the sum of weighted inputs

occurred during the last accumulation period.
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(a) Bistability representation

for continuous signals from

[14].

(b) The Synchronous neuron model edited to be able to reproduce the

Bistability behavior. Variations with respect to the original model shown

in Figure 3.2 are blue-colored.

Figure 4.13: Bistability: example and model variant.

Bistability. “Bistability” is the behavior of a neuron alternating between

two modes of operation: periodic emission and quiescence. During the for-

mer mode, it emits a periodic output sub-sequence, even if it receives no

excitatory spike. During the quiescent mode, it does not emit. The neuron

switches from one mode to the other every time it receives an excitatory

spike. An example is shown in Figure 4.13a.

Such a behavior requires the neuron to (i) be able to produce a periodic

output sub-sequence, even if no excitatory spike is received, (ii) be able to

not produce any output when no spike is received, (iii) be able to switch

between the two modes of operation when an excitatory spike is received.

Property 4.17. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Bistability behavior.

Proof. It is sufficient to prove that (i) N cannot produce a periodic output

sub-sequence if no excitatory spike is received, or (ii) N cannot remain quies-

cent if no spike is received, or (iii) N cannot switch between the two modes

of operation. If θ = 0 and no excitatory spike is received, N produces a

periodic output sub-sequence: it is a degenerate case of Property 4.6. Con-

versely, if θ > 0 and no input is received, then N remains quiescent. Since,
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by construction, the threshold cannot vary, there is no way for the neuron to

switch between the two modes of operation.

The Synchronous Model can be modified as shown in Figure 4.13b in

order to make it able to reproduce such a behavior. This variant simply

makes its threshold switch between 0 and a positive value at the end of any

accumulation period during which it received an excitatory sum of weighted

inputs. A null threshold would make the neuron emit even if no input is

received. Conversely, a positive threshold would prevent the neuron from

emitting, if no input is received. More precisely, the Synchronous Model

is re-defined as a tuple N = (w, T, λ, θ0, τ) where θ0 ∈ N+ is the initial

threshold value, while θ is a variable of automaton N . On every firing of

edge (A → D), i.e., at the end of every accumulation period, the threshold

value θ is computed by means of a function bist(·) defined as follows:

bist(θ, a) =


0 if θ > 0 ∧ a > 0

θ0 if θ = 0 ∧ a > 0

θ if a ≤ 0

So every accumulation period where the sum of weighted inputs is positive

makes the neuron threshold switch between the 0 and θ0 values.

Inhibition-induced activities. “Inhibition-induced Spiking” (resp. “Burst-

ing”) is the behavior of neuron producing a spike (resp. burst) output sub-

sequence as a response to a persistent inhibitory input sub-sequence. Exam-

ples are shown in Figure 4.14.

Both behaviors requires the neuron to be able to emit as a consequence of

some inhibitory input spikes. Particularly, Inhibition induced Bursting also

depends on the neuron to be able to produce bursts.

Property 4.18. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then N
cannot reproduce the Inhibition-induced Spiking or Inhibition-induced Burst-

ing behavior.

Proof. It is sufficient to recall that inhibitory input spikes cannot lead N
to emit according to Property 4.5. Moreover, Inhibition-induced Bursting
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(a) Inhibition-induced

spiking.

(b) Inhibition-induced

bursting.

(c) The Synchronous neuron model edited to be

able to produce Inhibition-induced activities. Vari-

ations with respect to the original model shown in

Figure 3.2 are blue-colored. The blue part allows

the neuron to emit bursts. The degenerate case

n = 1 simply emits spikes. The green edit allows

the neuron to after a number of inhibitory inputs.

Figure 4.14: Inhibition-induced activities: examples and model variants. Images, representing

continuous signals, are from [14].
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(a) Rebound spike. (b) Rebound burst. (c) The Synchronous neuron model edited to be

able to produce Inhibition-induced activities. Vari-

ations with respect to the original model shown in

Figure 3.2 are blue-colored. The blue part allows

the neuron to emit bursts. The degenerate case

n = 1 simply emits spikes. The green edit allows

the neuron to produce a rebound spike/burst after

an inhibitory input.

Figure 4.15: Rebound activities: examples and model variants. Images, representing continuous

signals, are from [14].

cannot be reproduced by N because the latter cannot produce bursts, as

stated by Property 4.11.

The Synchronous Model can be edited as shown in Figure 4.14c in or-

der to make it able to reproduce such behaviors. For what concerns the

Inhibition-induced Spiking behavior, we propose a variant where the neuron

emits whenever the absolute value of its potential reaches or overcomes the

threshold. The Inhibition-induced Bursting behavior is obtained by adding

locations B1, . . . , Bn−1 as described in the Tonic Bursting paragraph.

Rebound activities. “Rebound Spike” (resp. “Burst”) is the behavior

of a neuron producing an output spike (resp. burst) after it received an

inhibitory input. Examples are shown in Figure 4.15.

Similarly to Inhibition-induced activities, these behaviors require the neu-

ron to be able to emit as a consequence of an inhibitory input spike. Further-
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more, Rebound Bursting also depends on the neuron to be able to produce

bursts.

Property 4.19. Let N = (w, T, λ, θ, τ) be a Synchronous Neuron, then

N cannot reproduce the Rebound Spiking or Rebound Bursting behavior.

Proof. It is sufficient to recall that inhibitory input spikes cannot lead N
to emit according to Property 4.5. Moreover, Rebound Bursting cannot be

reproduced by N because the latter cannot produce bursts, as stated by

Property 4.11.

The Synchronous Model can be edited as shown in Figure 4.15c in order

to make it able to reproduce such behaviors. For what concerns the Rebound

Spiking behavior, we propose a variant where the neuron potential is always

non-negative and the threshold is set to 0 by inhibitory stimulations. We

recall that a null threshold would make the neuron emit even if its potential

is 0. More precisely, the Synchronous Model is re-defined as a tuple N =

(w, T, λ, θ0, τ) where θ0 ∈ N+ is the nominal threshold value, while θ is a

variable of automaton N . On every firing of the edge (A → D), i.e., at the

end of every accumulation period, if the current sum of weighted inputs a

is negative, the threshold θ is set to 0, otherwise it is set to θ0. Thus, an

inhibitory stimulus will produce a rebound spike. The Rebound Bursting

behavior is obtained by adding locations B1, . . . , Bn−1 as described in the

Tonic Bursting paragraph.
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Chapter 5

Conclusions and future works

In this report we formalized the LI&F model of Spiking Neural Networks via

Timed Automata Networks. LI&F neurons are modeled as automata wait-

ing for inputs on a number of different channels, for a fixed amount of time.

When such accumulation period is over, the current potential value is com-

puted by means of a recursive formula taking into account the current sum of

weighted inputs, and the previous decayed potential value. If the current po-

tential overcomes a given threshold, the automaton emits a broadcast signal

over its output channel, otherwise it restarts its accumulation period. After

each emission, the automaton is constrained to remain inactive for a fixed

refractory period after which the potential is reset. Spiking Neural Networks

composed by more than one neuron can be formalized by a set of automata

one for each neuron, running in parallel and sharing channel accordingly.

The inputs needed to feed network are defined through Timed Automata

as well. We have provided a language and its encoding into Timed Automata

to model patterns of spikes and pauses and a way of modeling unpredictable

sequences.

We validated our neuron model proving some characteristic properties

expressed in CTL via model-checking:

• it is able to exhibit the tonic spiking behavior, i.e., it periodically emits

a spike if stimulated by a persistent excitatory input;

• it is able to act as an integrator under some proper parameter settings,

i.e., it can detect — meaning that it fires as a consequence of — a
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defined amount of simultaneous or consecutive input spikes;

• it is excitable: its output frequency increases (i.e., its inter-emission

period decreases) if its total stimulus magnitude keeps increasing;

• there exists a way to compute the maximum threshold, i.e., the thresh-

old value such that any greater or equal value would prevent the neuron

from firing.

Future research directions. We consider this work as the starting point

for a number of research directions: we plan to study whether our model com-

plies to the definition of LI&F and thus cannot reproduce behaviors requiring

bursts emission capability, as stated in [14] (e.g., tonic or phasic bursting),

or some notion of memory (e.g., phasic spiking, or bistability). Furthermore,

it may be interesting to produce analogous formalizations for more complex

spiking neuron models like, e.g., the theta-neuron model [8] or Izhikevich’s

one [13]. In a wider perspective we would also like to model networks com-

posed by more than one neuron taking as starting point our formalization

into Timed Automata like e.g., mutual inibition networks [18]. Finally it

may be interesting to combine learning algorithms with formal-analysis: we

would like to exploit reachability properties verification to control weights

variations within the scope of existing learning algorithms or strategies, e.g.,

Hebb’s rule [10].
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