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Abstract 58 
Arbuscular mycorrhizal fungi (AMF) interact continuously with vegetation and soil and thus shape the dynamics 59 
of plant communities. Yet the recovery of AMF after severe anthropogenic disturbance such as cultivation has 60 
rarely been assessed. Here, to determine whether AMF root colonization recovers after such disturbance, we 61 
compared AMF root colonization in abandoned fields last cultivated 2, 35, and 150 years ago in the La Crau area 62 
(south-eastern France) with that of a grassland several thousands of years old (considered as the reference 63 
ecosystem). We measured AMF root colonization of four species (Carthamus lanatus L, Carduus pycnocephalus 64 
L, Brachypodium distachyon (L.) P. Beauv, and Bromus madritensis), and performed surveys of plant communities 65 
and soil chemical properties. AMF root colonization was still significantly lower 35 years after disturbance for 66 
one species (B. distachyon) and 2 years after disturbance for two species (B. distachyon and B. madritensis). The 67 
main soil chemical properties (soil pH, phosphorus and potassium content) were similar to the reference ecosystem 68 
35 years after disturbance. Average vegetation height and cover recovered after 35 years, whereas species richness 69 
recovered only on the field abandoned for 150 years. Vegetation composition and structure did not recover in any 70 
of the abandoned fields. Our results suggest that recovery of AMF root colonization is very low after a severe 71 
anthropogenic disturbance, despite the recovery of soil chemical properties. 72 
Key Words: Cultivation; Diversity; Plant Community; Steppe; Arbuscular Mycorrhizal Fungi 73 
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Introduction 75 
The importance of taking into account arbuscular mycorrhizal fungus (AMF) interactions when exploring plant 76 
community dynamics is increasingly acknowledged (Grime et al. 1987; O’Connor et al. 2002; van der Heijden and 77 
Horton 2009; Bever et al. 2010; Koziol and Bever 2015). However, there are far fewer studies of AMF than of 78 
plants because access to AMF data is more difficult (Bever et al. 2001). Mycorrhizas can be found in most plant 79 
communities (van der Heijden and Sanders 2002), principally arbuscular mycorrhizal fungi (AMF), and interact 80 
with 80% of plant species (Wang and Qiu 2006). AMF increase plant water and phosphorus uptake mainly through 81 
the increased soil volume available for foraging (Allen 1982; Bolan 1991; Koide 1991; Augé 2001) and may thus 82 
impact growth of plant individuals and of their descendants (Koide and Lu 1992; Heppell et al. 2002). 83 
Consequently, AMF modify competition between plants, thereby affecting their coexistence (Grime et al. 1987; 84 
Smith et al. 1999; Mariotte et al. 2012) as well as the structure (Wilson and Hartnett 1997; O’Connor et al. 2002), 85 
species richness and composition of plant communities (Gange et al. 1993; Francis and Read 1994; Zobel and 86 
Moora 1995). This makes AMF dynamics a key to improving our comprehension of ecosystem functioning, and 87 
a topic that clearly warrants further investigation. Ecosystems in stressful environments are known to favor biotic 88 
interactions such as facilitation within plant species (Callaway et al. 2002; He et al. 2013) or with AMF (van der 89 
Heijden et al. 2003), especially old-growth grasslands. These ancient grassland ecosystems characterized by high 90 
species richness, high endemism, and unique species composition (Veldman et al. 2015) have had time to develop 91 
species-specific relationships with soil organisms (Tscherko et al. 2005; Bauer et al. 2015). 92 
 93 
Such old-growth grasslands (e.g. dehesa in Spain or continental steppes in Siberia) are particularly threatened. 94 
Technical progress in agronomy in the last century allowed agricultural intensification in low-productivity 95 
ecosystems (Huston 2005). Understanding how such changes in land-use can alter these ecosystems is important, 96 
especially when environmental authorities aim to stop biodiversity loss and target 15% ecosystem restoration 97 
(Millennium Ecosystem Assessment 2005; Convention on Biological Diversity 2011). In this context, 98 
abandonment of intensive land-use can be viewed as an opportunity both to restore former ecosystems and to study 99 
ecosystem natural recovery (Prach and Walker 2011). While old-growth grasslands usually show poor recovery 100 
after severe anthropogenic disturbance (Forey and Dutoit 2012; Veldman et al., 2015), little seems to be known 101 
about the recovery of other ecosystem components, such as soil or AMF.  102 
Cultivation can be seen as a severe anthropogenic disturbance for natural or semi-natural plant communities: 103 
during cultivation, disturbance occurs over a large scale exceeding plant community processes (Peterson et al. 104 
1998; Huston 1999) and its strength (i.e. the force of the disturbance; Sousa 1984) is high. The severity of 105 
disturbance (i.e. the damage caused by the disturbance; Sousa 1984) is also high, as the majority of mature plants 106 
initially present are killed prior to and during a cultivation event. As a consequence, anthropogenic disturbance 107 
such as cultivation is followed by low recovery in many ecosystems, such as grasslands, heathlands or forests 108 
(Bellemare et al. 2002; Dupouey et al. 2002; Römermann et al. 2005; Elmore et al. 2007; Gustavsson et al. 2007). 109 
In the medium term (i.e. decades), vegetation recovery has been proven to be very poor (Römermann et al. 2005; 110 
Buisson et al. 2006). Cultivation disturbance generally leads to leaching of amended nutrients and therefore a 111 
progressive recovery of soil chemical properties, except for phosphorus, which is known to remain in soil (Smits 112 
et al. 2008; Henkin et al. 2010). Due to their low dispersal and competitive abilities, most steppe plant species can 113 
recolonize only a few meters from remnant steppe patches (Buisson et al. 2006). This means recovery of vegetation 114 
composition is usually poor even when abandoned fields are surrounded by remnant steppe patches.  115 
To address AMF recovery dynamics, we chose the La Crau area of south-eastern France, an old-growth 116 
Mediterranean dry grassland or steppe plant community impacted by thousands of years of interaction between (1) 117 
Mediterranean climate, (2) a particularly well-draining soil and (3) extensive sheep grazing (Devaux et al. 1983; 118 
Buisson and Dutoit, 2006). Almost 20% of this species-rich plant community was once cultivated and then 119 
abandoned. As AMF root colonization depends not only on AMF dispersal abilities but also on host abundance 120 
and soil conditions, our hypothesis was that the more recent and intense the disturbance is, the less AMF root 121 
colonization recovers. 122 
We assessed AMF root colonization on four plant species from this Mediterranean steppe after three disturbance 123 
events (a vineyard abandoned for 150 years, a melon field abandoned for 35 years and an intensive orchard 124 
abandoned for 2 years), compared to an undisturbed ecosystem, to determine whether AMF root colonization 125 
recovers after cultivation disturbance. 126 

 127 
Materials and methods 128 
Study area 129 
The La Crau area is the last xeric steppe of south-eastern France (ca. 10,000ha). It is shaped by i) a dry 130 
Mediterranean climate, ii) a 40cm-deep soil with about 50% of siliceous stones overlying an almost impermeable 131 
conglomerate layer, making the alluvial water table unavailable to plant roots and iii) itinerant sheep grazing over 132 
a period of several thousand years (Devaux et al. 1983; Buisson and Dutoit 2006). This has led to a unique and 133 
species-rich vegetation association composed mainly of annuals and dominated by Brachypodium retusum Pers. 134 
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and Thymus vulgaris L.. The steppe, which experienced recurring anthropogenic disturbance until 400 BP from 135 
sheep grazing and pastoral fires, has lost more than 80% of its original 45,000 ha area due to other anthropogenic 136 
disturbances such as intensive cultivation (Buisson and Dutoit 2006). Our study focuses on three types of 137 
cultivation, all initiated on the original steppe, applied for several years and today abandoned: (1) a vineyard 138 
abandoned approximately 150 years ago (AF-150) as revealed from consultation of old cadastral maps and land 139 
registers (Dutoit et al. 2005), (2) two melon fields, cultivated for one year only before being abandoned 35 years 140 
ago (AF-35) (Römermann et al. 2005) and an orchard cultivated for 17 years, abandoned in 2006 and which 141 
underwent its last disturbance comparable to ploughing in 2009, two years before sampling (Jaunatre et al. 2014) 142 
(AF-2) (Fig. 1). The control was the surrounding steppe, whose available history (Cassini et al. 1778) showed no 143 
severe anthropogenic disturbance. The three types of cultivation represent a gradient both of time since 144 
abandonment and of disturbance intensity: the vineyard probably underwent only one ploughing and no herbicide 145 
applications (Dutoit et al. 2005), the melon field underwent one ploughing and one fertilizer and herbicide 146 
application (Römermann et al. 2005), while the orchard underwent repeated ploughing, fertilizer and herbicide 147 
applications (Jaunatre et al. 2014). 148 
2.2. Sampling 149 
We concentrated our sampling areas around the former vineyard (AF-150, n=3) and the former orchard (AF-2, 150 
n=3) as they are unique in the La Crau area (Fig. 1). Two steppe sites (ST-6000, n=6) and two sites in fields 151 
abandoned for 35 years (AF-35, n=6) were selected, one of each in proximity to either AF-150 or AF-2. The 152 
imbalance in design is due to the fact that there was only one site abandoned for 150 years before sampling and 153 
only one site abandoned for 2 years before sampling in the entire La Crau area (10 000 ha). We considered the 154 
distance between sampling areas (>70m; Fig 1c) sufficient because of the very weak dispersal ability of La Crau 155 
plant species (i.e. after 19 years of abandonment, half the species had colonized less than a few meters, Buisson 156 
and Dutoit 2004; Buisson et al., 2006). In each of the six sites selected, three sampling areas were set up to sample 157 
AMF root colonization, vegetation and soil (Fig. 1d). 158 
AMF root colonization 159 
Colonization by AMF was assessed from roots of four species occurring over almost the entire gradient described 160 
above: i) Carthamus lanatus L, an Asteraceae more abundant in the steppe, ii) Carduus pycnocephalus L, an 161 
Asteraceae more abundant in the abandoned fields, iii) Brachypodium distachyon (L.) P. Beauv, a Poaceae more 162 
abundant in the steppe and iv) Bromus madritensis L, a Poaceae more abundant in the abandoned fields. When 163 
possible, in each sampling area three individuals of each species were collected; however, some species were not 164 
present in some sampling areas. Air-dried roots were colored with black Schaeffer ink using the vinegar coloration 165 
method (Vierheilig et al. 1998). For total percentage AMF root colonization, internal hyphae, vesicles or arbuscules 166 
were counted with the magnified intersections method using 100 intersections (McGonigle et al. 1990). 167 
Soil analyses 168 
In each sampling area, three 70g sub-samples of soil were taken from depths of 1-10cm (Fig. 1d) and pooled to 169 
constitute one soil sample. Soil was sieved (2mm mesh) for analyses carried out by INRA (Institut National de la 170 
Recherche Agronomique, Arras, France). Granulometry without decarbonation (percentage content of clay 171 
(<0.002 mm), fine silt (0.002-0.02 mm), coarse silt (0.02-0.05 mm), fine sand (0.05-0.2 mm) and coarse sand (0.2-172 
2 mm)), nutrients (organic C, total N, P2O5 (Olsen et al. 1954), CaO, and K2O) and pH were measured according 173 
to the methods described in Baize (2000). 174 
Vegetation survey 175 
Vegetation relevés were performed on three 2x2m quadrats for each sampling area using Braun-Blanquet 176 
coefficients (Braun-Blanquet et al. 1952). In addition, average vegetation height (i.e. height of the dominant 177 
stratum) and cover (in percentage) were estimated in each quadrat. 178 
Data analysis 179 
Generalized Linear Mixed Models (GLMM) were used to determine whether the cultivation disturbance continued 180 
to affect AMF root colonization, soil chemical variables and plant community characteristics. We compared two 181 
models: in the first, age was implemented as a categorical fixed factor and blocks (i.e. around the AF-2 or around 182 
AF-150; Fig. 1) as a categorical random factor; the second contained neither a fixed factor nor blocks as a 183 
categorical random factor. If the first model containing age had a lower Aïkake Information Criterion (AIC) with 184 
a difference greater than 2, age effect was declared significant (Burnham and Anderson 2004) and difference 185 
between ages was assessed by a multiple comparison test using Tukey’s method. To obtain a global overview of 186 
soil parameters and of plant communities, we ran a Principal Component Analysis (PCA) for soil parameters and 187 
a Correspondence Analysis (CA) for plant community (Borcard et al. 2011). To measure similarity of plant 188 
communities to those of the undisturbed control, we used the normalized Community Structure Integrity Index 189 
(CSIInorm) and the Higher Abundance Index (HAI) to distinguish the percentage of recovery of reference species 190 
abundances (CSIInorm) from new abundances not occurring in this reference (HAI) (Jaunatre et al., 2013). 191 
All analyses were performed with R 2.13.0 (R Development Core Team 2011), univariate analyses with its package 192 
“lme4” and “multcomp” (Hothorn et al. 2008; Bates et al. 2012) and multivariate analyses with its packages “ade4” 193 
(Chessel et al. 2004; Dray and Dufour, 2007; Dray et al. 2007) and “vegan” (Oksanen et al. 2008). 194 
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Results 195 
AMF root colonization 196 
AMF root colonization recovered to ST-6000 values (approximately 90%) in all three abandoned fields for forbs 197 
(Carthamus lanatus and C. pycnocephalus ; Fig. 2, Table 1). However, both grasses did not recover in all the 198 
locations: Bromus madritensis shows lower AMF root colonization in AF-2 (40.7±3.8) than in ST-6000 (63.9±4.2) 199 
(Fig. 6, Table 1) and B. distachyon shows a significant difference in AMF root colonization between AF-35 200 
(51.4±5.9) and ST-6000 (64.2±2.1) (no B. distachyon was found in AF-2). 201 
Soil analyses 202 
The PCA of soil properties (Fig. 3) clearly discriminates among the four locations. The first axis (35.2%) shows a 203 
clear distinction in age between the field abandoned 2 years previously (AF-2) and the three other locations, with 204 
higher concentrations of P2O5, pH and K2O (Fig. 4), although only pH is significantly higher (Table 1). The second 205 
axis (24.5%) discriminates the steppe (ST-6000) from the longest-abandoned field (AF-150), with higher carbon 206 
and nitrogen content (Fig. 4), although only carbon differences are significant (Table 1). 207 
Vegetation survey 208 
Compared to the reference, all three abandoned fields have significantly different values for composition and 209 
structure (Table 1, Fig. 5). Their CSIInorm is lower: AF-150 and AF-35 have recovered less than 60% of the 210 
vegetation structure, while AF-2 has recovered less than 20%. Their HAI is higher: in AF-150 and AF-35, 50% of 211 
the structure is composed of species whose abundances are higher than in ST-6000 (both new species and the same 212 
species); while in AF-2, more than 70% of species have abundances higher than in ST-6000. These differences in 213 
plant community variables are also discernible on the correspondence analysis (Fig. 6): AF-2 is dominated by 214 
Bromus madritensis L, Bromus lanceolatus Roth and Carduus pycnocephalus L.. AF-35 is also characterized by 215 
Poaceae and Asteraceae (Bromus hordeaceus L, Bromus rubens L, Carthamus lanatus L. etc.). AF-150 and ST-216 
6000 share many species (e.g. Aegilops ovata L, Brachypodium distachyon (L.) P. Beauv, Carlina corymbosa L, 217 
Erodium cicutarium (L.) L’Hérit. or Plantago bellardii All.), although i) some dominant ST-6000 species are 218 
absent from AF-150 (e.g. Brachypodium retusum (Pers.) P. Beauv.) and ii) some AF-150 species are absent from 219 
ST-6000 (e.g. Bothriochloa ischaemum (L.) Keng, Crucianella angustifolia L.). The species richness of AF-150 220 
is not significantly different from that of ST-6000; however, it is significantly lower for AF-35 and AF-2. All the 221 
abandoned field locations except AF-2 have recovered ST-6000 average height and vegetation cover, while AF-2 222 
shows significantly higher values (Table 1, Fig. 5). 223 
Discussion 224 
It takes a very long time to recover ecosystem characteristics. This has been proved for many different old-growth 225 
grassland types, such as Midwest prairie, Scandinavian semi-natural grasslands, Mediterranean steppe or limestone 226 
grassland (Tomanek et al. 1955; Bonet et Pausas 2004; Öster et al. 2009; Forey and Dutoit 2012), and our study 227 
confirms it. Most of these low-resilient ecosystems have similar characteristics: harsh environmental conditions, 228 
which are attenuated by the disturbance event (i.e. nutrient or water availability is increased). In such a context, 229 
some plant species adapted to higher nutrient content can colonize and generate relatively stable mutualistic 230 
associations with soil organisms, such as AMF or microbial communities, thus slowing down the potential 231 
recovery of the original state (Spiegelberger et al. 2006; Wardle et al. 2014). Our study shows that it is not only 232 
vegetation and soil components that are durably affected by a severe anthropogenic disturbance such as cultivation: 233 
there is an impact on AMF root colonization too. The results also confirm our hypothesis that the more recent and 234 
intense the disturbance is, the less AMF root colonization recovers. Our findings are in line with those from studies 235 
on different components under harsh environmental conditions, which reacted in a similar way (Hejcman et al. 236 
2007; Spiegelberger et al. 2010, 2006). However, new evidence is provided here on ecosystem recovery via the 237 
recovery of AMF root colonization, rarely studied in parallel with soil and plant communities. 238 
AMF root colonization 239 
AMF root colonization can decrease due to any soil disturbance (Jasper et al. 1989). Agricultural practices in 240 
particular are known to impact AMF communities, modifying their abundance, their diversity and their 241 
composition (Douds et al. 1995; Jansa et al. 2003), and their reproduction dynamics (Oehl et al. 2009). Areas 242 
cultivated with more fertilizer show less AMF root colonization (Douds et al. 1995; Mäder et al. 2000). In our 243 
study, the AMF root colonization rate increases with time since cultivation abandonment for two plant species out 244 
of four. It has previously been shown that AMF root colonization can recover with time (Eriksson 2001; Gibson-245 
Roy et al. 2014) but that this depends on plant community composition (Fitzsimons et al. 2008). This is supported 246 
by our results: AMF root colonization recovered and was no longer significantly different from the steppe after 35 247 
years, except for B. distachyon, and the field abandoned for 35 years showed over 50% recovery of plant 248 
community structure (Figure 5). It should be noted that the major finding here is the difference between AMF root 249 
colonization in abandoned fields and in the reference. The similar values found here for AMF root colonization 250 
may in fact mask an absence of recovery of certain AMF species, since it is likely that different AMF species are 251 
involved. This hypothesis is supported by the fact that AMF community composition can be altered by a change 252 
in plant community composition (Klamer and Hedlund, 2004), and such a change occurred in our abandoned fields. 253 
We did not find any difference in root colonization recovery between species more abundant in the steppe (C. 254 
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lanatus and B. distachyon) and species more abundant in the abandoned fields (C. pycnocephalus and B. 255 
madritensis). We found, however, that grasses (B. distachyon and B. madritensis) have higher average mycorrhizal 256 
root colonization and higher recovery of mycorrhizal root colonization than forbs (C. lanatus and C. 257 
pycnocephalus), which confirms that plant functional type is the most important driver of plant response to 258 
mycorrhizal fungi (Hoeksema et al. 2010). 259 
Soil parameters 260 
The different abandoned fields are found to have contrasting soil properties. The former vineyard, which is the 261 
longest abandoned field, has the lowest pH and potassium and phosphorus content. However, the difference in 262 
fertilization practices can also introduce biases; fertilizer use was more sparing and more organic-based 150 years 263 
ago than 3 years ago (Dutoit et al. 2005). Annual, and therefore cumulative, fertilizer quantities are difficult to 264 
estimate. Despite these potential biases, our results are consistent with findings from other studies: as in Wong et 265 
al. (2010), potassium and phosphorus content tend to decrease with time since last cultivation, and as in studies on 266 
Mediterranean or calcareous grasslands (Smits et al. 2008; Henkin et al. 2010), high soil phosphorus content is 267 
maintained even 35 years after cessation of fertilization. Soil properties are known to be very important in 268 
determining plant community diversity, structure and composition. For instance, Kulmatiski et al. 2006 showed 269 
how soil legacies impact invasive plant species distributions and Janssens et al. (1998) suggested that 5 mg of 270 
phosphorus per 100 g of dry soil is a threshold value limiting establishment of species-rich plant communities. 271 
Despite the fact that in our abandoned fields current soil phosphorus content remains close to (AF-2) or below this 272 
level (AF-35 and AF-150), it is possible that a previous higher phosphorus content had a long-term effect which 273 
can still be observed, even after the recovery of lower values (Semelová et al. 2008).  274 
Plant communities 275 
As with soil, the longer the time since abandonment, the more plant community characteristics in abandoned fields 276 
differ from the reference. More recently abandoned fields have lower species richness or CSII, while they have 277 
higher HAI, average vegetation height and cover. Moreover, vegetation composition, which is mainly dominated 278 
by grasses such as Bromus spp. in the most recently abandoned fields, gains in species richness and in the number 279 
of forbs with time since abandonment. Similar slow recolonization was observed in other ecosystems after severe 280 
disturbances (Tomanek et al. 1955; Coffin et al. 1996; Meiners et al. 2002; Bonet and Pausas 2004). However after 281 
150 years, while the vegetation composition of the abandoned field is close to that of the steppe it is still slightly 282 
different, notably due to the absence of B. retusum, the dominant steppe species. Interestingly, the species with the 283 
lowest AMF root colonization recovery rate (B. distachyon) is phylogenetically closest to B. retusum (The 284 
Angiosperm Phylogeny Group 2009). B. retusum is not present in any part of this long-abandoned field, although 285 
it is the dominant steppe species and occurs at the abandoned field boundaries, and despite the fact that all measured 286 
environmental characteristics are not significantly different. Low seed production and fertility, and hence poor 287 
dispersal abilities, have already been hypothesized (Buisson et al. 2006; Coiffait-Gombault et al. 2012). The slow 288 
recovery of AMF root colonization rates in a phylogenetically close species would suggest that B. retusum not 289 
only has low seed production (Caturla et al. 2000) but also suffers from a lack of AMF interaction.  This interaction 290 
would likely enhance its growth by higher phosphorus uptake (López-Sánchez et al. 1992), enabling it to establish 291 
in abandoned fields. 292 
Ecosystem recovery 293 
Our results on vegetation are consistent with previous studies, where: vegetation was still affected 70 years after a 294 
fertilization event, even though the soil almost recovered its properties (Spiegelberger et al. 2006); only half the 295 
species were able to colonize abandoned fields 50 years later (Öster et al. 2009); or differences in plant 296 
communities were still significant more than 2000 years after a cultivation event in a forest community (Dupouey 297 
et al. 2002). The filter model is often used to describe vegetation dynamics (Keddy 1992; Lortie et al. 2004): i) 298 
plant species have to be able to disperse, which depends on species dispersal abilities and proximity of source site 299 
(Gibson and Brown 1991; Pärtel and Zobel 1999; Lindborg and Eriksson 2004; Herault and Thoen 2009); ii) plant 300 
species have to be able to withstand environmental constraints, which depends both on historical environmental 301 
conditions and on disturbance legacies (Foster et al. 2003) and iii) the first two filters will be modified by biotic 302 
interactions and will depend on the presence of facilitators or competitors in the community (Bruno et al. 2003). 303 
This model explains the low resilience of plants after cultivation in the La Crau area: species have low dispersal 304 
abilities and no permanent seed bank (Graham and Hutchings 1988; Römermann et al. 2005), soil nutrient content 305 
is still different in recently abandoned fields, and finally, some species are better competitors under higher nutrient 306 
conditions (Baeten et al. 2009; Öster et al. 2009), especially if they arrived first due to chance or better dispersal 307 
abilities (Fukami et al. 2005). 308 
It should be feasible to apply a similar model to AMF, to explain their recovery after a severe anthropogenic 309 
disturbance, as suggested by Lekberg et al. (2007). If AMF have been eliminated during the cultivation event 310 
(Douds et al. 1995; Jansa et al. 2003), they have to disperse through the disturbed area. Wind seems to be a poor 311 
long-distance disperser (Egan et al., 2014), but faunal agents may also provide some local-scale dispersal (Warner 312 
et al. 1987; Allen 1989; Harinikumar and Bagyaraj 1994). Hyphae not killed by cultivation can also be a rich 313 
source of AMF; however, they are highly affected by soil disturbance (Jasper et al. 1989; Brundrett and Abbott, 314 
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1994). AMF root colonization thus depends on environmental conditions: the more available nutrients are, the less 315 
roots are colonized by AMF (Koide, 1991). Our findings support this: AMF root colonization was higher in the 316 
abandoned fields with lower soil nutrient content. Finally, AMF root colonization depends on biotic interactions. 317 
In our study, the abandoned field with the highest vegetation average height and the highest vegetation cover (AF-318 
2) was found to have the lowest mycorrhizal root colonization. These results are in accordance with the negative 319 
relationship between vegetation biomass and AMF biomass already found in abandoned fields (Hedlund et al., 320 
2003). Despite the fact that mechanical soil disturbance plays a greater role than plant communities in shaping 321 
AMF communities (Schnoor et al. 2011), plant species richness has been shown to increase the diversity and fitness 322 
of AMF (Burrows and Pfleger, 2002). Moreover, the diversity of AMF infecting an individual plant depends on 323 
the diversity of the whole plant community (van de Voorde et al. 2010), and the composition of the plant 324 
community has a significant effect on the composition of the AMF community (Johnson, 1993; Eom et al. 2000; 325 
Hiiesalu et al., 2014). 326 
Our study is a first step towards exploring the relationship between a proxy of AMF (AMF root colonization), soil 327 
conditions and plant communities. In accordance with our hypotheses, recovery of these three ecosystem 328 
components differs, increasing from vegetation (lowest recovery) to AMF root colonization (intermediate 329 
recovery), to soil conditions (highest recovery). All three components assessed are moving towards the undisturbed 330 
state, but full, unassisted recovery is highly unlikely within a human lifetime. 331 
Feedbacks occurring between different ecosystem components, as in a panarchy model, need to be taken into 332 
account to understand the overall recovery process. One component starts to recover while being influenced by 333 
another component; based on these dynamics, the recovery of the first component is affected, and in turn the 334 
recovery of other components is further influenced (Allen et al. 2014). To our knowledge, although few studies 335 
have measured the recovery of different components of an ecosystem after disturbance, most of them found, like 336 
us, staggered responses for each component (García-Tejero et al. 2013; Wardle and Jonsson, 2013). Determining 337 
the limiting components able to affect, slow down or stop the recovery dynamics of the whole ecosystem would 338 
be of particular interest in a restoration context. AMF communities affect plant communities in complex ways: 339 
like plants, not all AMF species play the same role in ecosystems (Hart et al. 2003). The effects of AMF on plants 340 
are species-specific (Hoeksema et al. 2010; Endresz et al. 2013), but also depend on environmental conditions 341 
(Grime et al. 1987; Hartnett and Wilson, 1999; Kytöviita et al. 2003), and higher AMF root colonization is not 342 
always linked with better vegetation recovery (Richter et al. 2002). Further research is required to explore how 343 
different ecosystem components can affect overall ecosystem recovery, and how they could be used to facilitate 344 
or to accelerate this recovery in a restoration context (Allen, 1989; Herrera et al. 1993; Callaway et al. 2001; Kardol 345 
et al. 2009).  346 
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Tables 606 

Table 1: Aikaike Information Criterion of Generalized Linear Mixed Models, one including Age as a fixed effect 607 
and Block as a random effect, the other including only Block as a random effect. Stars preceding variable names 608 
indicate that the model including age is better (i.e. ΔAIC > 2 ; Burnham and Anderson, 2004) and age can 609 
therefore be considered as affecting the variable. 610 

  Variable     
AIC  

Age+Block 

AIC  

Block 

Mycorrhizal root 

colonization 

*Brachypodium distachyon 276.1 289.8 

*Bromus madritensis 344.2 368.5 

*Carthamus lanatus 274.7 286.0 

*Carduus pycnocephalus 187.0 198.1 

Vegetation 

*Species-richness 364.7 472.6 

*CSII -50.5 40.8 

*HAI -110.5 -14.9 

*Average height 351.5 410.0 

*Vegetation cover 430.7 474.5 

Soil 

*Carbon 69.2 76.8 

*pH 9.5 19.5 

C:N 23.2 25.0 

Nitrogen 3.1 -6.9 

Phosphorus -54.8 -69.8 

Potassium -30.8 -40.3 

  611 
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Figure Captions 612 
 613 

Fig. 1 Study site and sampling design. a: location of La Crau area in France. b: location of study area in La Crau 614 
area. c: location of sites: the two steppe sites (ST-6000) and the field sites abandoned for 150 (AF-150), 35 (AF-615 
35) and 2 (AF-2) years. Dark grey areas represent sampled abandoned fields. d: detailed scheme of design per 616 
sampling area, large circle represents the area prospected for individuals of the four species for mycorrhizal root 617 
colonization assessment, grey squares represent the three 2x2m quadrats where plant species abundances were 618 
recorded and black dots represent the three soil samples before pooling for soil physical and chemical analyses 619 
Fig. 2 Mean mycorrhizal root colonization for the four species in steppe (white, ST-6000) and abandoned fields 620 
(grey, AF-2/35/150). Error bars represent standard error; bars having a common letter are not significantly different 621 
(Tukey; p>0.05). Numbers inside plots indicate the number of individual plants on which mycorrhizal root 622 
colonization was counted. Missing bars indicate that the species was not found in any plot of the abandoned field 623 
Fig. 3 Ordination plot of the Principal Component Analysis based on soil granulometry and nutrient content in 624 
steppe (white, ST-6000) and abandoned fields (grey, AF-2/35/150). Arrows represent soil variables (coarse sand, 625 
fine sand, coarse silt, fine silt, clay, organic matter, C:N: Carbon/Nitrogen ratio; C: total carbon; N: total nitrogen; 626 
K2O: potassium, P2O5: Olsen phosphorus; CaO: Calcium oxide and pH). Polygons surround the points 627 
corresponding to one age class 628 
Fig. 4 Soil nutrient content in steppe (white, ST-6000) and abandoned fields (grey, AF-2/35/150). Mean values ± 629 
standard error of carbon (C), nitrogen (N), C/N ratio (C/N), phosphorus (P2O5), and potassium (K2O) in steppe 630 
(ST-6000) and abandoned fields (AF-2/35/150). Bars having a common letter are not significantly different 631 
(Tukey; p>0.05) 632 
Fig. 5 Mean species richness per 4 m² (a), normalized Community Structure Integrity (b), Index Higher Abundance 633 
Index (c), average height (d) and percentage of vegetation cover (e) in steppe (white, ST-6000) and abandoned 634 
fields (grey, AF-2/35/150). Error bars represent standard error; bars having a common letter are not significantly 635 
different (Tukey; p>0.05) 636 
Fig. 6 Ordination plot of the Correspondence Analysis based on vegetation abundances on steppe (white, ST-6000) 637 
and abandoned fields (grey, AF-2/35/150). Based on 54 relevés and 110 species, showing the 35 most correlated 638 
with the axes. Polygons surround the points corresponding to one age class 639 
 640 


