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WEIGHTED GEVREY CLASS REGULARITY OF EULER

EQUATION IN THE WHOLE SPACE

FENG CHENG, WEI-XI LI AND CHAO-JIANG XU

Abstract. In this paper we study the weighted Gevrey class regularity of
Euler equation in the whole space R

3. We first establish the local existence of
Euler equation in weighted Sobolev space, then obtain the weighted Gevrey
regularity of Euler equation. We will use the weighted Sobolev-Gevrey space
method to obtain the results of Gevrey regularity of Euler equation, and the
use of the property of singular operator in the estimate of the pressure term
is the improvement of our work.

1. Introduction

The incompressible flow for Euler equations in the whole space R
3 reads



























∂u

∂t
+ u · ∇u+∇p = 0, x ∈ R

3, t > 0

∇ · u = 0, x ∈ R
3, t > 0

u||x|→∞ = 0, t > 0

u|t=0 = u0, x ∈ R
3,

(1.1)

where u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) denotes vector velocity field and p(x, t)
denotes scalar pressure at point x = (x1, x2, x3) at time t. Usually, we always
assume the initial data u0 satisfies the following compatible condition

∇ · u0 = 0, u0||x|→∞ = 0. (1.2)

There are many known results about Euler equations in history. It is well known
that in two-dimensional space, the existence and uniqueness of (globally in time)
classical solutions to the Euler equations were studied in [17, 18, 20, 25] in either
spaces of continuous functions or Hölder functions. With the use of the Log-Sobolev
inequality, one can also obtain the global existence in Sobolev space for reference in
[19]. While in three-dimensional spaces, there are only local existence and unique-
ness of Hr- solutions, with r > 3/2 + 1, on a maximal time interval [0, T ∗), for
references in [6, 7, 11, 22, 23]. The famous BKM criterion [4] assures that the

solutions exist on [0, T ] as long as
∫ T

0
‖curl u(s)‖L∞ ds is bounded, and this is the

reason that in two dimensions the solutions exist globally. For C∞ smooth initial
data, Foias, Frisch and Temam [9] proved the persistence of C∞ solutions. For
analytical initial data, Bardos and Benachour [1] proved the persistence of analyt-
icity of solutions to Euler equations and also obtain an estimate of the radius of
analyticity in [2, 5]. Since Gevrey class space is the intermediate space between C∞

smooth space and analytical function space, it is natural to consider such results in
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the framework of Gevrey space. On three-dimensional periodic domains, Levermore
and Oliver [15] take the method of Gevrey-class regularity to prove the persistence
of analyticity and obtain the explicit estimate of the decay of the radius. Their
method is based on the fact that the Gevrey class space can be equivalently defined
by characterizing the decay of their Fourier coefficients in periodic domain, see [10].
Later, Kukavica and Vicol developed this method to half space and improved the
estimate of the decay of the radius of analyticity (or Gevrey class regularity) in
their work [13, 14].

We have discussed the persistence of vertical weighted Gevrey class regularity
of Euler equation on half plane R

2
+ in [8] following the method of Kukavica and

Vicol [13], where the difficulty arise from the estimate of the pressure in weighted
Sobolev space. In this paper, we will discuss the whole spatial variable weighted
Gevrey class regularity of Euler equation in whole space. We first consider the local
existence and uniqueness of solutions for Euler equation in the weighted Sobolev
space. Then we consider the persistence of weighted Gevrey class regularity of
solutions of Euler equation. The appearance of the weight function and boundary
condition will cause trouble in estimate of the pressure, thus we will now consider
in whole space without boundary and implement the theory of singular integral
operators with the weight function belonging to certain weight class Ap. In the
future, we will look forward to investigate situations within bounded domain. We
remark that the results can also be applied to two dimensions which recover the
results we have studied in [8].

The paper is organized as follows. In Section 2, we will give some notations and
state our main results. In Section 3, we study the local existence of solutions of
Euler equation in Weighted Sobolev space. In Section 4, we will give two Lemmas
first and then use the Lemmas and Theorem 3.1 to finish the proof of Theorem 2.1.

2. Preliminaries

In this section we will give some notations and function spaces which will be used
throughout the following arguments. Throughout the paper, C denotes a generic
constant which may vary from line to line.

For a multi-index α = (α1, α2, α3) in N
3
0, we denote |α| = α1 + α2 + α3 and

∂α = ∂α1
x1

∂α2
x2

∂α3
x3

. We denote by L2(R3)3 the space of real valued vector functions
which are square integrable, and it is a Hilbert space for the scalar product

〈u, v〉 =

∫

R3

u(x) · v(x)dx, ‖u‖
2
L2 := 〈u, u〉 .

With no ambiguity arise we may suppress the domain R
3 and the differences be-

tween vector functions and scalar functions and denote uniformly by L2 for sim-
plicity. Likewise, we denote by Hr the standard Sobolev space of vector functions
which are in L2 together with their weak derivatives of order ≤ r, and the inner
product and the norm are defined as follows

〈u, v〉Hr =
∑

|α|≤r

〈∂αu, ∂αv〉 , ‖u‖
2
Hr :=

∑

|α|≤r

‖∂αu‖
2
L2 .

Let us define the weight function 〈x〉 := (1+ |x|
2
)

1
2 , which is very close to |x| when

|x| is very large and is well behaved when x is near to zero. We then introduce the
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weighted Sobolev space Hm
ℓ as follows,

Hr
ℓ =

{

u ∈ Hr ; ‖u‖
2
Hr

ℓ
:= ‖u‖

2
L2 +

∑

1≤|α|≤r

∥

∥

∥
〈x〉

ℓ
∂αu

∥

∥

∥

2

L2
< ∞

}

,

where
∥

∥

∥
〈x〉

ℓ
∂αu

∥

∥

∥

2

L2
=

∫

R3

〈x〉
2ℓ ∣
∣∂αu(x)

∣

∣

2
dx =

∫

R3

(1 + |x|
2
)ℓ
∣

∣∂αu(x)
∣

∣

2
dx,

and ℓ ≥ 0 is a constant. It is obvious that the weighted Sobolev space Hr
ℓ equipped

with the following inner product,

〈u, v〉Hr
ℓ
:= 〈u, v〉+

∑

1≤|α|≤r

〈

〈x〉
ℓ
∂αu, 〈x〉

ℓ
∂αv

〉

,

is a Hilbert space. And ℓ ≥ 0 obviously imply that for a given function u ∈ Hr
ℓ ,

‖u‖Hr ≤ ‖u‖Hr
ℓ
always holds.

In this paper we will consider the Gevrey regularity for Euler equation. Let us
recall the definition of Gevrey class functions first. It is said that a smooth function
u(x) is uniformly of Gevrey class s in R

3, if there exists C, τ > 0 such that

|∂αu(x)| ≤ C
|α|!s

τ |α|
, (2.1)

for all x ∈ R
3 and all multi-index α ∈ N

3
0. When s = 1 these functions are of

the class of real-analytic functions, and for s > 1 these functions are C∞ smooth
but might not be analytic. The constant τ is called the radius of analyticity with
s = 1 (or Gevrey class regularity with s > 1 respectively). Usually we refer to the
equivalently defined space somewhere called Sobolev-Gevrey spaces, for example
the Xτ , Yτ used in Kukavica and Vicol [12] and [13],

Xτ =

{

v ∈ C∞ ; ‖v‖Xτ
=

∞
∑

m=3

|v|m
τm−3

(m− 3)!s
< ∞

}

,

where |v|m is defined as

|v|m =
∑

|α|=m

‖∂αv‖L2 ,

and usually we define |v|m,∞ =
∑

|α|=m ‖∂αv‖L∞ . Similarly, Yτ is defined as

Yτ =

{

v ∈ C∞ ; ‖v‖Yτ
=

∞
∑

m=4

|v|m
(m− 3)τm−4

(m− 3)!s
< ∞

}

.

It is remarked that the space Xτ and Yτ can be identified with the the classical
definition (2.1).

Naturally, we say that a smooth function u(x) is uniformly of weighted Gevrey
class s, if there exists C, τ > 0 such that

∣

∣

∣
〈x〉

ℓ
∂αu(x)

∣

∣

∣
≤ C

|α|!s

τ |α|
, (2.2)

for all x ∈ R
3 and all multi-index α ∈ N

3
0. It is obvious that a weighted Gevrey class

s function of course belongs to the standard Gevrey class s for ℓ ≥ 0. In analogy
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with Xτ and Yτ , we define the weighted Sobolev-Gevrey class s space Xτ,ℓ and Yτ,ℓ

as follows,

Xτ,ℓ =

{

v ∈ C∞ ; ‖v‖Xτ,ℓ
=

∞
∑

m=3

|v|m,ℓ

τm−3

(m− 3)!s

}

,

where

|v|m,ℓ :=
∑

|α|=m

∥

∥

∥
〈x〉

ℓ
∂αv

∥

∥

∥

L2
, |v|m,ℓ,∞ :=

∑

|α|=m

∥

∥

∥
〈x〉

ℓ
∂αv

∥

∥

∥

L∞
,

and

Yτ,ℓ =

{

v ∈ C∞ ; ‖v‖Yτ,ℓ
=

∞
∑

m=4

|v|m,ℓ

(m− 3)τm−3

(m− 3)!s

}

.

Remark 2.1. The functions space Xτ,ℓ and Yτ,ℓ can be identified with (2.2).
Namely, a function u is said to be of weighted Gevrey class s with radius of weighted
Gevrey class τ , then u ∈ Xτ ′,ℓ for τ

′ < τ . Conversely, if u ∈ Xτ,ℓ, then u is of course
of weighted Gevrey class s with τ the radius of weighted Gevrey class regularity.

The following statement is our main theorem concerning the persistence of
weighted Gevrey class regularity for the Euler equation in whole space.

Theorem 2.1. Let r ≥ 5, 0 ≤ ℓ < 3
2 , s ≥ 1, τ0 > 0 be given constants. Let

u0 ∈ Hr
ℓ ∩ Xτ0+ǫ,ℓ be divergence-free and uniformly of weighted Gevrey-class s in

R
3, where ǫ < τ0. Then we have,

(1). There exists unique solutions u, p such that

u ∈ L∞([0, T ∗), Hr
ℓ ), ∇p ∈ L∞([0, T ∗), Hr

ℓ ),

where 0 < T ∗ < ∞ is the maximal time of existence of Hr− solution.
(2). The solutions u,∇p are also of weighted Gevrey-class s and satisfying,

u(t, x) ∈ L∞([0, T ); Xτ(t),ℓ) ∩ L1([0, T ); Yτ(t),ℓ),

and
∇p(t, x) ∈ L∞([0, T ); Xτ(t),ℓ) ∩ L1([0, T ); Yτ(t),ℓ),

where 0 < T < T∗. Moreover, the uniform radius of weighted Gevrey-class τ(t) of
u(t) is a decreasing function of t and satisfying

τ(t) ≥
(1− C ‖u0‖Hr t)2

C0(1 + t)4
, (2.3)

where C2 > 0 is a constant depending only on r, while C1 has additional dependence
on u0.

Remark 2.2. We also obtain an explicitly estimate of the decay of the radius of
Gevrey class s, but we did not actually improve the rate of decay (2.3) as to [13]

which was proportional to exp
( ∫ t

0 ‖∇u(s)‖L∞ ds
)

. The reason is that the calculus
inequality in [17] failed in appearance of the weight function, thus we can only
obtain an rougher estimate.

Remark 2.3. The proof of Theorem 2.1 also works in two dimensional plane, in
which case the power ℓ need to be less than 1 due to the property of A2 weights for
Rieze operator. It has been done in [8] in half plane with vertical variable weight
function. And it is well known that in two-dimensional case the Hm-solution exists
globally in time.



WEIGHTED REGULARITY FOR EULER EQUATION 5

The rest of the paper is due to proving Theorem 2.1. We will prove the first
part of Theorem 2.1 in Section 3, and the weighted Gevrey class regularity will be
postponed to Section 4.

3. Local solution to Euler equation in weighted Sobolev space

In this Section we will prove the first part (1) of the main Theorem 2.1, i.e. the
local existence and uniqueness of solutions to Euler equation in weighted Sobolev

space. When there is no weight function 〈x〉ℓ, the existence and uniqueness is
classical in [11, 17], which we state as follows,

Theorem 3.1. Fix r ≥ 3. Let u0 ∈ Hr be divergence-free. Then there exists a
unique solution u ∈ C([0, T∗), H

r) and ∇p ∈ C([0, T∗), H
r) to the Euler equation

(1.1), where T∗ is the maximal existing time of Hr(R3)− solution to the Euler
equation (1.1).

When the weight function was taken in consideration, the situation becomes a
slight differently cause the pressure term does not vanish. In this situation the
inner product with weight is no longer orthogonal between a gradient function
and a divergence free vector field, which is the main difficulty when considering in
framework of the weighted function space. To overcome the difficulty arise from the
estimate of the pressure, we take use of the tool of singular integral theory, which
was recently used in [24] in estimate of the pressure term when studying the global
well-posedness of incompressible magnetohydrodynamic equations.

Remark 3.1. In two-dimensional plane, it is shown in [19] the Hr-solution exists
globally in time and it can be proved that the Hr

ℓ -solution also exists globally in
time with 0 ≤ ℓ ≤ 1. The reason ℓ less than 1 is due to the A2 weights theory of
Rieze operator in R

2.

In the following, we will first give some Lemmas and then we give the detailed
proof of the local existence and uniqueness, i.e. the first part (1) of Theorem 2.1.
Firstly, we will frequently use the following embedding inequality in the weighted
Sobolev space Hm

ℓ , which is as follows,

Lemma 3.2. For any ℓ ≥ 0, there holds for u ∈ H3
ℓ

∥

∥

∥
〈x〉

ℓ
∇u

∥

∥

∥

L∞
≤ C ‖u‖H3

ℓ
,

where C is a constant independent of u.

This is an elementary Sobolev embedding theorem H2 →֒ L∞, and using the

fact that ∂α 〈x〉
ℓ
≤ C 〈x〉

ℓ
holds for ∀α ∈ N

3, we thus omit the proof. In order to
handle the convecting term, we need the following weighted calculus inequality.

Lemma 3.3. For α, β ∈ N
3 with 0 6= β ≤ α and |α| ≤ m, let u ∈ Hr

ℓ with
r ≥ 3, ℓ ≥ 0, the following inequality holds,

∥

∥

∥
〈x〉ℓ ∂βu · ∇∂α−βu

∥

∥

∥

L2
≤ C ‖u‖Hr ‖u‖Hr

ℓ
,

where C is a constant depending on r.
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Proof. The proof is the application of Sobolev embedding inequality. It suffices to
consider the case |α| = r, since the case for |α| < r is much easier, for example, in
such case we directly have for some constant C,

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2

≤
∥

∥

∥
〈x〉

ℓ
∂βu

∥

∥

∥

L4

∥

∥∇∂α−βu
∥

∥

L4

≤ C
∥

∥

∥
〈x〉

ℓ
∂βu

∥

∥

∥

1/4

L2

∥

∥

∥
D(〈x〉

ℓ
∂βu)

∥

∥

∥

3/4

L2

∥

∥∇∂α−βu
∥

∥

1/4

L2

∥

∥D∇∂α−βu
∥

∥

3/4

L2

≤ C ‖u‖Hr
ℓ
‖u‖Hr ,

where we have used the Gagliardo-Nirenberg inequality (or Ladyzhenskaya’s in-
equality) for N = 3 in the following form,

‖u‖L4 ≤ C ‖u‖
1/4
L2 ‖Du‖

3/4
L2 .

We now only consider the case |α| = r and discuss the values of |β| for β 6= 0. Let
us assume first that r = 3, in such case |β| has only three possible values.
If |β| = 1, the Hölder inequality and Sobolev inequality imply,

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2
≤

∥

∥∂βu
∥

∥

L∞

∥

∥

∥
〈x〉

ℓ
∇∂α−βu

∥

∥

∥

L2
≤ C ‖u‖Hr ‖u‖Hr

ℓ
.

If |β| = 2, the Hölder inequality and the Gagliardo-Nirenberg inequality imply,
∥

∥

∥
〈x〉ℓ ∂βu · ∇∂α−βu

∥

∥

∥

L2

≤
∥

∥

∥
〈x〉ℓ ∂βu

∥

∥

∥

L4

∥

∥∇∂α−βu
∥

∥

L4

≤ C
∥

∥

∥
〈x〉

ℓ
∂βu

∥

∥

∥

1/4

L2

∥

∥

∥
D(〈x〉

ℓ
∂βu)

∥

∥

∥

3/4

L2

∥

∥∇∂α−βu
∥

∥

1/4

L2

∥

∥D(∇∂α−βu)
∥

∥

3/4

L2

≤ C ‖u‖Hr ‖u‖Hr
ℓ
.

If |β| = 3, then α = β and we have
∥

∥

∥
〈x〉ℓ ∂βu · ∂α−β∇u

∥

∥

∥

L2
≤ ‖∇u‖L∞

∥

∥

∥
〈x〉ℓ ∂βu

∥

∥

∥

L2
≤ C ‖u‖Hr ‖u‖Hr

ℓ
.

For higher r say r ≥ 4, the situation becomes more easier. In this situation, we
only need to discuss two situations, which are 1 ≤ |β| ≤ r − 2 and r − 1 ≤ |β| ≤ r.
If 1 ≤ |β| ≤ r − 2, we have

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2
≤

∥

∥∂βu
∥

∥

L∞ ‖u‖Hr
ℓ
≤ C ‖u‖Hr ‖u‖Hr

ℓ

If r − 1 ≤ |β| ≤ r, we have
∥

∥

∥
〈x〉ℓ ∂βu · ∇∂α−βu

∥

∥

∥

L2
≤

∥

∥

∥
〈x〉ℓ ∂βu

∥

∥

∥

L2

∥

∥∇∂α−βu
∥

∥

L∞ ≤ C ‖u‖Hr ‖u‖Hr
ℓ

With all the above in consideration, the Lemma is then proved. �

The weighted calculus inequality in Lemma 3.3 is rougher than the estimate in
the case without weight function in [17], and this is the reason the decay of the
radius in (2.3) is rougher than the decay obtained by Kukavica and Vicol [13].
We note that the pressure term does not vanish because of the weight function,
this is the main difficulty to handle the Euler equation in weighted Sobolev space.
We implement the idea of Singular operator theory to handle this term. We first
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recall the well known Weighted Calderón-Zygmund inequalities in the framework
of singular integrals (see [21]). The following inequality holds in f ∈ C∞

0 (RN\{0}),

‖|x|
α
Tf‖Lp ≤ C ‖|x|

α
f‖Lp , (3.1)

for 1 < p < ∞, −N
p < α < N

p′ , where T is the Calderón-Zygmund kernel correspond-

ing to the operator D2∆−1. The weight function 〈x〉
ℓ
is close to |x|

ℓ
for large x, so

the above inequality also holds for 〈x〉
ℓ
if ℓ < N

p′ . Taking p = 2, N = 3, f ∈ C∞
0 (R3),

the inequality (3.1) implies that,
∥

∥

∥
〈x〉

ℓ
D2f

∥

∥

∥

L2
≤ C

∥

∥

∥
〈x〉

ℓ
∆f

∥

∥

∥

L2
, (3.2)

for 0 ≤ ℓ < 3
2 . With this inequality, we can prove the following Lemma.

Lemma 3.4. Let r ≥ 3 and suppose p satisfies

−∆p =

3
∑

i,j=1

∂xi
uj∂xj

ui.

Then for fixed multi-index α ∈ N
3 with 1 ≤ |α| ≤ r, the following estimate holds,

∥

∥

∥
〈x〉

ℓ
∇∂αp

∥

∥

∥

L2
≤ C ‖u‖Hr ‖u‖Hr

ℓ
,

where C is a constant depending only on r.

Proof. Fix α with 1 ≤ |α| ≤ r, there exists α′ such that α′ ≤ α, |α′| = |α|−1. Since
p satisfies

−∆p =
3

∑

i,j=1

∂xi
uj∂xj

ui.

We rewrite ∇∂αp = ∇∂α−α′

∂α′

p with |α− α′| = 1, and thus ∂α′

p satisfies

−∆∂α′

p =

3
∑

i,j=1

∂α′

(∂xi
uj∂xj

ui).

We thus infer from (3.2) that for 0 ≤ ℓ < 3
2 there holds,

∥

∥

∥
〈x〉

ℓ
∇∂αp

∥

∥

∥

L2
≤ C

∥

∥

∥

∥

∥

∥

〈x〉
ℓ

3
∑

i,j=1

∂α′

(∂xi
uj∂xj

ui)

∥

∥

∥

∥

∥

∥

L2

≤ C

3
∑

i,j=1

∥

∥

∥
〈x〉

ℓ
∂α′

(∂xi
uj∂xj

ui)
∥

∥

∥

L2

≤ C ‖u‖Hr ‖u‖Hr
ℓ
,

(3.3)

The last step in (3.3) with notice |α′| ≤ r − 1 is very similar to the estimate of
Lemma 3.3 after expansion by Leibniz formula, we thus omit the details. �

With these Lemma 3.3 and Lemma 3.4 in preparation, we now prove the local
existence and uniqueness of Hr

ℓ - solutions to Euler equation.
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Proof of (1) of Theorem 2.1. We first obtain the a priori estimate. Suppose there
exists smooth solutions u, p (decaying polynomially at infinity) to the Euler equa-
tions, it is obvious that the zero order energy estimate holds,

1

2

d

dt
‖u(t)‖2L2 = 0.

For α ∈ N
3 with 1 ≤ |α| ≤ r, we apply ∂α on the Euler equation to obtain

∂t∂
αu+ ∂α(u · ∇u) +∇∂αp = 0. (3.4)

Taking L2 inner product with 〈x〉
2ℓ
∂αu on both sides of (3.4), we obtain,

d

dt

1

2

∥

∥

∥
〈x〉ℓ ∂αu

∥

∥

∥

2

L2
+
〈

〈x〉ℓ ∂α(u · ∇u), 〈x〉ℓ ∂αu
〉

+
〈

〈x〉ℓ∇∂αp, 〈x〉ℓ ∂αu
〉

= 0.

Summing over 1 ≤ |α| ≤ r and adding the zero order energy term, and obtain,

d

dt

1

2
‖u(t)‖2Hr

ℓ
+

∑

1≤|α|≤r

〈

〈x〉ℓ ∂α(u · ∇u), 〈x〉ℓ ∂αu
〉

+
∑

1≤|α|≤r

〈

〈x〉
ℓ
∇∂αp, 〈x〉

ℓ
∂αu

〉

= 0.

We note that the divergence of u is zero, so the cancellation equality holds,
〈

u · ∇(〈x〉
ℓ
∂αu), 〈x〉

ℓ
∂αu

〉

= 0.

Then the highest order term in the convecting term is,

〈

〈x〉
ℓ
u · ∇∂αu, 〈x〉

ℓ
∂αu

〉

=

3
∑

i,j=1

∫

R3

〈x〉
2ℓ
ui(∂xi

∂αuj)∂
αujdx

= −
〈

〈x〉ℓ u · ∇∂αu, 〈x〉ℓ ∂αu
〉

−

3
∑

i=1

∫

R3

(∂xi
〈x〉

2ℓ
)ui |∂

αu|
2
dx.

Therefore, from the fact ∇〈x〉
ℓ
≤ C 〈x〉

ℓ
we have,

∣

∣

∣

〈

〈x〉
ℓ
u · ∇∂αu, 〈x〉

ℓ
∂αu

〉
∣

∣

∣
≤

1

2

3
∑

i

∫

R3

∣

∣

∣
(∂xi

〈x〉
2ℓ
)ui

∣

∣

∣
|∂αu|

2
dx

≤ C ‖u‖L∞ ‖u‖
2
Hr

ℓ
.

(3.5)

With the use of the Lemma 3.3 and Lemma 3.4, we obtain,

d

dt

1

2
‖u(t)‖

2
Hr

ℓ
≤ C ‖u‖Hr

ℓ

∑

1≤|α|≤r

∑

06=β≤α

(

α

β

)

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2

+ C ‖u‖L∞ ‖u‖
2
Hr

ℓ
+ C ‖u‖Hr

ℓ

∑

1≤|α|≤r

∥

∥

∥
〈x〉

ℓ
∇∂αp

∥

∥

∥

L2

≤ C ‖u‖Hr ‖u‖
2
Hr

ℓ
+ C ‖u‖L∞ ‖u‖

2
Hr

ℓ
.

By use of Sobolev inequality, we have,

d

dt
‖u(t)‖Hr

ℓ
≤ C ‖u(t)‖Hr ‖u(t)‖Hr

ℓ
. (3.6)



WEIGHTED REGULARITY FOR EULER EQUATION 9

As we already know that u(t, x) ∈ C([0, T ∗), Hr), where T ∗ is the maximal time of
existence of Hr− solution. Then, on one side the Grownwall’s inequality implies,

‖u(t)‖Hr
ℓ
≤ ‖u0‖Hr

ℓ
exp

(
∫ t

0

C ‖u(s)‖Hr ds

)

, 0 < t < T ∗. (3.7)

On the other hand, the definition of the weighted Sobolev space with ℓ ≥ 0 obviously
implies,

‖u‖Hr ≤ ‖u‖Hr
ℓ
.

Thus we obtain from (3.6),

d

dt
‖u(t)‖Hr

ℓ
≤ C ‖u(t)‖

2
Hr

ℓ
.

Therefore the following inequality also holds,

‖u(t)‖Hr
ℓ
≤

‖u0‖Hr
ℓ

1− C ‖u0‖Hr
ℓ
t
,

with 0 < t < 1
C‖u0‖Hr

ℓ

< T ∗.

Once we have obtained the a priori estimate, we need to construct the approx-
imate solutions u(n), n ∈ N. Before that we first rewrite the Euler system into the
following modified Euler system,

{

∂tu+ u · ∇u+∇Π(u, u) = 0,

u|t=0 = u0,

where Π(u, v) is defined in the following way

−∆Π(u, v) =

3
∑

i,j=1

∂xi
uj∂xj

vi.

Noting that we did not demand that the divergence of u is zero in this modified
Euler system. It is showed in [3] that the solution u to this modified Euler system
is also the solution (u,∇p = ∇Π(u, u)) of the standard Euler equation with the
same divergence free initial data u0, and conversely the solution of standard Euler
equation satisfies this modified system. Thus we now focus on the modified Euler
system, and we shall use the following iteration scheme to construct approximate
solutions to the modified Euler system,

{

∂tu
(n+1) + u(n) · ∇u(n+1) +∇Π(u(n), u(n)) = 0,

u(n+1)
∣

∣

t=0
= u0, n = 0, 1, 2, . . . ,

(3.8)

where u(0) = u0 and Π(u(n), u(n)) satisfies the following condition,

−∆Π(u(n), u(n)) =

3
∑

i,j=1

∂xi
u
(n)
j ∂xj

u
(n)
i .

For given u(n)(t, x) ∈ L∞
loc(R

+, Hr
ℓ ) with r ≥ 3, then Lemma 3.4 indicates that the

pressure ∇Π(u(n), u(n))(t, x) ∈ L∞
loc(R

+, Hr
ℓ ). And the fact that Hr →֒ C1 and

the Cauchy Lipschitz Theorem shows that the transport equation at least exists a
solution u(n+1)(t, x) ∈ L∞

loc(R
+, Hr

ℓ ). Moreover, applying ∂α on both sides of (3.8)
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with 1 ≤ |α| ≤ r and taking L2-inner product with 〈x〉
2ℓ
∂αu(n+1), we can obtain

from the Lemma 3.3 and Lemma 3.4,

d

dt

∥

∥

∥
u(n+1)(t, ·)

∥

∥

∥

2

Hr
ℓ

≤ C
∥

∥

∥
u(n)(t, ·)

∥

∥

∥

Hr
ℓ

∥

∥

∥
u(n+1)(t, ·)

∥

∥

∥

2

Hr
ℓ

+ C
∥

∥

∥
u(n)(t, ·)

∥

∥

∥

2

Hr
ℓ

∥

∥

∥
u(n+1)(t, ·)

∥

∥

∥

Hr
ℓ

.

Using Grownwall inequality, we have for all n ∈ N the following inequality holds

∥

∥

∥
u(n+1)(t, ·)

∥

∥

∥

Hr
ℓ

≤ eCUn(t)

(

‖u0‖Hr
ℓ
+ C

∫ t

0

e−CUn(s)
∥

∥

∥
u(n)(s, ·)

∥

∥

∥

2

Hr
ℓ

ds

)

, (3.9)

where

Un(t) =

∫ t

0

∥

∥

∥
u(n)(s, ·)

∥

∥

∥

Hr
ℓ

ds.

We hope to find a uniform bound for {u(n)}, n ∈ Z. Let us argue by induction, we
fix a T > 0 such that 2C ‖u0‖Hr

ℓ
T < 1 and obviously have

∥

∥

∥
u(0)(t)

∥

∥

∥

Hr
ℓ

≤
‖u0‖Hr

ℓ

1− 2Ct ‖u0‖Hr
ℓ

, ∀t ∈ [0, T ].

We claim that

∥

∥

∥
u(n)(t)

∥

∥

∥

Hr
ℓ

≤
‖u0‖Hr

ℓ

1− 2Ct ‖u0‖Hr
ℓ

, ∀t ∈ [0, T ], ∀n ∈ N. (3.10)

Obviously, the choice of T ensures the claim holds for n = 0, let us suppose the
claim holds for n = k, i.e.

∥

∥

∥
u(k)(t)

∥

∥

∥

Hr
ℓ

≤
‖u0‖Hr

ℓ

1− 2Ct ‖u0‖Hr
ℓ

We proceed to show the claim holds for n = k + 1. Plugging the bound into the
iterative inequality (3.9), we have

∥

∥

∥
u(k+1)(t)

∥

∥

∥

Hr
ℓ

≤ e
C

∫
t

0

‖u0‖Hr
ℓ

1−2Cs‖u0‖Hr
ℓ

ds
‖u0‖Hr

ℓ

+ C

∫ t

0

e
C

∫
t

s

‖u0‖Hr
ℓ

1−2Cτ‖u0‖Hr
ℓ

dτ ‖u0‖
2
Hr

ℓ

(1− 2Cs ‖u0‖Hr
ℓ
)2
ds

≤
‖u0‖Hr

ℓ

1− 2Ct ‖u0‖Hr
ℓ

.

Therefore we proved the claim (3.10) by induction. And we have {u(n)}, n ∈ N is
uniformly bounded in L∞(0, T ;Hr

ℓ ). We then are going to show that {u(n)}, n ∈ N

is a Cauchy sequence in C(0, T ;Hr−1
ℓ ). For this purpose, we note that for all

(n, k) ∈ N
2, we have from the iteration scheme,

(∂t + u(n+k) · ∇)u(n+k+1) +∇Π(u(n+k), u(n+k)) = 0,

(∂t + u(n) · ∇)u(n+1) +∇Π(u(n), u(n)) = 0.
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Taking difference of these two equations, we have,

(∂t + u(n+k) · ∇)(u(n+k+1) − u(n+1)) = (u(n) − u(n+k)) · ∇u(n+1)

+∇Π(u(n), u(n))−∇Π(u(n+k), u(n+k))

(3.11)
We now want to estimate

∥

∥u(n+k+1)(t, ·)− u(n+1)(t, ·)
∥

∥

Hr−1
ℓ

. For this purpose, we

take the same procedure as in the estimate of the a priori estimate. From the
Lemma 3.3 we can obtain,

〈

u(n+k) · ∇(u(n+k+1) − u(n+1)), u(n+k+1) − u(n+1)
〉

Hr−1
ℓ

≤ C
∥

∥

∥
u(n+k)

∥

∥

∥

Hr
ℓ

∥

∥

∥
u(n+k+1) − u(n+1)

∥

∥

∥

2

Hr−1
ℓ

,
(3.12)

and
〈

(u(n) − u(n+k)) · ∇u(n+1), u(n+k+1) − u(n+1)
〉

Hr−1
ℓ

≤ C
∥

∥

∥
u(n+1)

∥

∥

∥

Hr
ℓ

∥

∥

∥
u(n) − u(n+k)

∥

∥

∥

Hr−1
ℓ

∥

∥

∥
u(n+k+1) − u(n+1)

∥

∥

∥

Hr−1
ℓ

.
(3.13)

Noting that Π(u(n), u(n))−Π(u(n+k), u(n+k)) satisfies the following form,

−∆Π(u(n), u(n)) + ∆Π(u(n+k), u(n+k))

=

3
∑

i,j=1

∂xi
u
(n)
j ∂xj

u
(n)
i −

3
∑

i,j=1

∂xi
u
(n+k)
j ∂xj

u
(n+k)
i

=

3
∑

i,j=1

∂xi
(u

(n)
j − u

(n+k)
j )∂xj

u
(n)
i +

3
∑

i,j=1

∂xi
u
(n+k)
j ∂xj

(u
(n)
i − u

(n+k)
i ).

(3.14)

Hence by Lemma 3.4, we can obtain,

〈

∇
(

Π(u(n), u(n))−Π(u(n+k), u(n+k))
)

, u(n+k+1) − u(n+1)
〉

Hr−1
ℓ

≤ C

(

∥

∥

∥
u(n)

∥

∥

∥

Hr
ℓ

+
∥

∥

∥
u(n+k)

∥

∥

∥

Hr
ℓ

)

∥

∥

∥
u(n) − u(n+k)

∥

∥

∥

Hr−1
ℓ

∥

∥

∥
u(n+1) − u(n+k+1)

∥

∥

∥

Hr−1
ℓ

(3.15)

Taking the Hr−1
ℓ -inner product with

(

u(n+k+1) − u(n)
)

on both sides of (3.11) and
combining (3.12), (3.13) and (3.15), we can have,

1

2

d

dt

∥

∥

∥
u(n+k+1) − u(n+1)

∥

∥

∥

2

Hr−1
ℓ

≤ C
∥

∥

∥
u(n+k)

∥

∥

∥

Hr
ℓ

∥

∥

∥
u(n+k+1) − u(n+1)

∥

∥

∥

2

Hr−1
ℓ

+ C
∥

∥

∥
u(n+1)

∥

∥

∥

Hr
ℓ

∥

∥

∥
u(n) − u(n+k)

∥

∥

∥

Hr−1
ℓ

∥

∥

∥
u(n+k+1) − u(n+1)

∥

∥

∥

Hr−1
ℓ

+ C

(

∥

∥

∥
u(n)

∥

∥

∥

Hr
ℓ

+
∥

∥

∥
u(n+k)

∥

∥

∥

Hr
ℓ

)

∥

∥

∥
u(n) − u(n+k)

∥

∥

∥

Hr−1
ℓ

∥

∥

∥
u(n+1) − u(n+k+1)

∥

∥

∥

Hr−1
ℓ
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Then the Grownwall inequality shows,
∥

∥

∥
u(n+k+1)(t)− u(n+1)(t)

∥

∥

∥

Hr−1
ℓ

≤ CeCU(n+k)(t)

×

∫ t

0

e−CU(n+k)(s)
∥

∥

∥
u(n+k)(s)− u(n)(s)

∥

∥

∥

Hr−1
ℓ

(

∥

∥

∥
u(n)(s)

∥

∥

∥

Hr
ℓ

+
∥

∥

∥
u(n+1)(s)

∥

∥

∥

Hr
ℓ

+
∥

∥

∥
u(n+k)(s)

∥

∥

∥

Hr
ℓ

)

ds.

Since {u(n)}, n ∈ N is bounded in L∞(0, T ;Hr
ℓ ), we can find a constant CT , inde-

pendent of n and k, and such that for all t in [0, T ], we have

∥

∥

∥
u(n+k+1)(t)− u(n+1)(t)

∥

∥

∥

Hr−1
ℓ

≤ CT

∫ t

0

∥

∥

∥
u(n+k)(s)− u(n)(s)

∥

∥

∥

Hr−1
ℓ

ds.

Hence, arguing by induction, we get

sup
t∈[0,T ]

∥

∥

∥
u(n+k+1)(t)− u(n+1)(t)

∥

∥

∥

Hr−1
ℓ

≤
(TCT )

n+1

(n+ 1)!
sup

t∈[0,T ]

∥

∥

∥
u(k)(t)− u(0)(t)

∥

∥

∥

Hr−1
ℓ

.

Since supt∈[0,T ]

∥

∥u(k)(t)
∥

∥

Hr
ℓ

is bounded independent of k, we can guarantee the

existence of some new constant C′
T such that

sup
t∈[0,T ]

∥

∥

∥
u(n+k)(t)− u(n)(t)

∥

∥

∥

Hr−1
ℓ

≤ C′
T

(TCT )
n+1

(n+ 1)!
.

Hence, {u(n)}n∈N is a Cauchy sequence in C(0, T ;Hr−1
ℓ ) and converges to some

limit function u ∈ C(0, T ;Hr−1
ℓ ). We have to check that u belongs to L∞(0, T ;Hr

ℓ )

and satisfies Euler equation. Since {u(n)}n∈N is bounded in L∞(0, T ;Hr
ℓ ), the Fatou

property for Sobolev space guarantees that u also belongs to L∞(0, T ;Hr
ℓ ). Now,

as (un)n∈N converges to u in C(0, T ;Hr−1
ℓ ), it is then easy to pass to the limit in

(3.8) and to concludes that u is indeed a solution of the modified Euler equation.
Since u0 is divergence free, we have u is divergence free. Let ∇p = ∇Π(u, u) which
is defined by (??), we finally obtain that u,∇p is the solution of (1.1). Then the
first part (1) of Theorem 2.1 is proved. �

4. Weighted Gevrey-class regularity of Euler equation

In this section, we will consider the weighted Gevrey-class regularity of Euler
equation. It is showed in [13] that the solution remains in Gevrey-class if the initial
data was so, and the decay of the radius of Gevrey-class regularity can also be
obtained explicitly. In the following, we will show that the weighted Gevrey-class
regularity also propagate and the radius of weighted Gevrey-class can be obtained
explicitly, i.e. we will prove the second part (2) of the main Theorem 2.1.

Proof of (2) Theorem 2.1. Since the initial data u0 is of weighted Gevrey class s,
then there exists τ(0) > 0 such that u0 ∈ Xτ0,ℓ. Let u(t, x) be of weighted Gevrey
class s and also the Hr

ℓ− solution obtained in the previous section and suppose τ(t)
is a smooth function of t, then we have

d

dt
‖u(t)‖Xτ(t),ℓ

= τ̇ ‖u(t)‖Yτ,ℓ
+

∞
∑

m=3

d

dt
|u(t)|m,ℓ

τm−3

(m− 3)!s
. (4.1)
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Going back to the Equation,

∂tu+ u · ∇u+∇p = 0.

Applying ∂α with |α| = m, taking the L2− inner product with 〈x〉
2ℓ
∂αu(x), we

obtain
〈

∂t∂
αu, 〈x〉

2ℓ
∂αu

〉

+
〈

∂α(u · ∇u), 〈x〉
2ℓ
∂αu

〉

+
〈

∇∂αp, 〈x〉
2ℓ
∂αu

〉

= 0.

From (3.5), we have
∣

∣

∣

〈

〈x〉
ℓ
u · ∇∂αu, 〈x〉

ℓ
∂αu

〉
∣

∣

∣
≤ C ‖u‖L∞

∥

∥

∥
〈x〉

ℓ
∂αu

∥

∥

∥

2

L2
,

where we have used the fact that ∇〈x〉
ℓ
≤ C 〈x〉

ℓ
. We then have

d

dt

∥

∥

∥
〈x〉

ℓ
∂αu(t)

∥

∥

∥

L2
≤

∑

06=β≤α

(

α

β

)

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2
+
∥

∥

∥
〈x〉

ℓ
∇∂αp

∥

∥

∥

L2

+ C ‖u‖L∞

∥

∥

∥
〈x〉ℓ ∂αu

∥

∥

∥

L2
.

Summing over |α| = m yields

d

dt
|u(t)|m,ℓ ≤

∑

|α|=m

∑

06=β≤α

(

α

β

)

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2
+

∑

|α|=m

∥

∥

∥
〈x〉

ℓ
∇∂αp

∥

∥

∥

L2

+ C ‖u‖L∞

∑

|α|=m

∥

∥

∥
〈x〉

ℓ
∂αu

∥

∥

∥

L2
.

Plugging into (4.1) to obtain

d

dt
‖u(t)‖Xτ(t),ℓ

≤ τ̇ ‖u(t)‖Yτ,ℓ
+

∞
∑

m=3

d

dt
|u(t)|m,ℓ

τm−3

(m− 3)!s

≤ τ̇ ‖u(t)‖Yτ,ℓ
+ Cℓ + Pℓ + C ‖u‖L∞

∞
∑

m=3

|u(t)|m,ℓ

τm−3

(m− 3)!s

≤ τ̇ ‖u(t)‖Yτ,ℓ
+ Cℓ + Pℓ + C ‖u‖L∞ |u|3,ℓ + Cτ ‖u‖L∞ ‖u‖Yτ,ℓ

(4.2)
where

Cℓ =

∞
∑

m=3

∑

|α|=m

∑

06=β≤α

(

α

β

)

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2

τm−3

(m− 3)!s

and

Pℓ =

∞
∑

m=3

∑

|α|=m

∥

∥

∥
〈x〉

ℓ
∇∂αp

∥

∥

∥

L2

τm−3

(m− 3)!s

It remains to estimate Cℓ and Pℓ. We will follow the argument of Kukavica and
Vicol in their work [13] to estimate Cℓ and Pℓ. And the estimate of Pℓ follows from
the consequence of Calderón-Zygmund theory with A2 weights(see [21]). Let us
first state a Lemma which will be used throughout the estimate of Cℓ and Pℓ.

Lemma 4.1. Let {xλ}λ∈N3 and {yλ}λ∈N3 be real numbers, then the following iden-
tity holds,

∑

|α|=m

∑

|β|=j,β≤α

xβyα−β =

(

∑

|β|=j

xβ

)(

∑

|γ|=m−j

yγ

)

. (4.3)
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The proof is trivial by relabeling the multi-indexes, we thus omit the details.
Another fact shall be used in the following is that,

(

α

β

)

≤

(

|α|

|β|

)

,

holds for β ≤ α ∈ N
3
0.

Lemma 4.2. The estimate of Cℓ satisfies the following form

Cℓ ≤ C ‖u‖
2
Hr

ℓ
(1 + τ2) + Cτ ‖u‖Hr ‖u‖Yτ,ℓ

+ Cτ3/2 ‖u‖Xτ
‖u‖Yτ,ℓ

+ Cτ2 ‖u‖Hr ‖u‖Yτ,ℓ
+ Cτ3 ‖u‖Hr ‖u‖Yτ,ℓ

.

Proof. Inspired by (4.3), if we denote

Cℓ,m,j =
τm−3

(m− 3)!s

∑

|α|=m

∑

|β|=j,β≤α

(

α

β

)

∥

∥

∥
〈x〉

ℓ
∂βu · ∇∂α−βu

∥

∥

∥

L2
,

then the summation of Cℓ can be rewritten in the following form

Cℓ =

∞
∑

m=3

m
∑

j=1

Cℓ,m,j.

We then divide the right side of the above equality into seven terms according to
the values of m and j,

Cℓ =
∞
∑

m=3

Cℓ,m,1 +
∞
∑

m=3

Cℓ,m,2 +
∞
∑

m=6

[m/2]
∑

j=3

Cℓ,m,j +
∞
∑

m=7

m−3
∑

j=[m/2]+1

Cℓ,m,j

+

∞
∑

m=5

Cℓ,m,m−2 +

∞
∑

m=4

Cℓ,m,m−1 +

∞
∑

m=3

Cℓ,m,m.

(4.4)

The we are supposed to estimate the right hand of (4.4) in terms of the Sobolev
norms and Gevrey norms. Consequently, we have for j=1,

∞
∑

m=3

Cℓ,m,1 ≤
∞
∑

m=3

mτm−3

(m− 3)!s
|u|1,∞ |u|m,ℓ

≤ C |u|1,∞ |u|3,ℓ + Cτ |u|1,∞ ‖u‖Yτ,ℓ

≤ C ‖u‖2Hr
ℓ
+ Cτ ‖u‖Hr ‖u‖Yτ,ℓ

,

(4.5)

where we used the Sobolev embedding inequality in the last estimate of the above
inequality. When j = 2, we have,

∞
∑

m=3

Cℓ,m,2 ≤

∞
∑

m=3

τm−3

(m− 3)!s

(

m

2

)

|u|2,∞ |u|m−1,ℓ

≤ 3 |u|2,∞ |u|2,ℓ + 6τ |u|2,∞ |u|3,ℓ

+ τ2 |u|2,∞

∞
∑

m=5

|u|m−1,ℓ

(m− 4)τm−5

(m− 4)!s

((

m

2

)

1

(m− 4)(m− 3)s

)

≤ C ‖u‖
2
Hr

ℓ
+ Cτ ‖u‖

2
Hr

ℓ
+ Cτ2 ‖u‖Hr ‖u‖Yτ,ℓ

,

(4.6)
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where we use the fact that there exists a constant C such that

((

m

2

)

1

(m− 4)(m− 3)s

)

≤ C,

for all m ≥ 5. When j varies from 3 to m− 3, we shall use the following Sobolev
inequality,

‖u‖L∞ ≤ C ‖u‖
1/4
L2

∥

∥D2u
∥

∥

3/4

L2 .

For example when j varies from 3 to [m/2], we have,

∞
∑

m=6

[m/2]
∑

j=3

Cℓ,m,j ≤

∞
∑

m=6

[m/2]
∑

j=3

τm−3

(m− 3)!s

(

m

j

)

|u|j,∞ |u|m−j+1,ℓ

≤ C

∞
∑

m=6

[m/2]
∑

j=3

τm−3

(m− 3)!s

(

m

j

)

|u|
1/4
j |u|

3/4
j+2 |u|m−j+1,ℓ

≤ Cτ3/2
∞
∑

m=6

[m/2]
∑

j=3

[(

|u|j
τ j−3

(j − 3)!s

)1/4(

|u|j+2

τ j−1

(j − 1)!s

)3/4

×

(

|u|m−j+1,ℓ

(m− j − 2)τm−j−3

(m− j − 2)!s

)

Am,j,s

]

≤ Cτ3/2 ‖u‖Xτ
‖u‖Yτ,ℓ

,

(4.7)

where

Am,j,s =

(

m

j

)

(m− j − 2)!s(j − 1)!3s/4(j − 3)!s/4

(m− j − 2)(m− 3)!s

is bounded by some constant C for 3 ≤ j ≤ m/2, s ≥ 1. One can justify this fact
by expressing Am,j,s as

Am,j,s =

(

m− 3

j − 1

)1−s
m(m− 1)(m− 2)

j(m− j)(m− j − 1)(m− j − 2)(j − 1)s/4(j − 2)s/4
.

One then easily see that for 3 ≤ j ≤ m/2, s ≥ 1,

Am,j,s .
1

j(j − 1)s/4(j − 2)s/4
≤ C.
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When j varies from [m/2] + 1 to m− 3, we can symmetrically have,

∞
∑

m=7

m−3
∑

j=[m/2]+1

Cℓ,m,j ≤
∞
∑

m=6

m−3
∑

j=[m/2]+1

τm−3

(m− 3)!s

(

m

j

)

|u|j,ℓ |u|m−j+1,∞

≤ C

∞
∑

m=6

m−3
∑

j=[m/2]+1

τm−3

(m− 3)!s

(

m

j

)

|u|j,ℓ |u|
1/4
m−j+1 |u|

3/4
m−j+3

≤ Cτ3/2
∞
∑

m=6

m−3
∑

j=[m/2]+1

A′
m,j,s

[(

|u|j,ℓ
(j − 3)τ j−4

(j − 3)!s

)

×

(

|u|m−j+1

τm−j−2

(m− j − 2)!s

)1/4(

|u|m−j+3,ℓ

τm−j

(m− j)!s

)3/4]

≤ Cτ3/2 ‖u‖Xτ
‖u‖Yτ,ℓ

,

(4.8)

where

A′
m,j,s =

(

m

j

)

(j − 3)!s(m− j − 2)!s/4(m− j)!3s/4

(j − 3)(m− 3)!s

is also bounded by some constant C for m/2 ≤ j ≤ m− 3, s ≥ 1 because it can be
expressed as

A′
m,j,s =

(

m− 3

j − 3

)1−s
m(m− 1)(m− 2)

j(j − 1)(j − 2)(j − 3)(m− j − 1)s/4(m− j)s/4
< C.

When j = m− 2, we have

∞
∑

m=5

Cℓ,m,m−2 ≤ C |u|3,∞ |u|3,ℓ τ
2 + C |u|3,∞ τ3

∞
∑

m=6

|u|m−2,ℓ

(m− 5)τm−6

(m− 5)!s

×

(

m

2

)

1

(m− 5)(m− 3)s(m− 4)s

≤ C ‖u‖
2
Hr

ℓ
τ2 + Cτ3 ‖u‖Hr ‖u‖Yτ,ℓ

.

(4.9)

When j = m− 1, we similarly have,

∞
∑

m=4

Cm,m−1 ≤
∞
∑

m=4

m |u|2,∞ |u|m−1,ℓ

τm−3

(m− 3)!s

≤ Cτ |u|2,∞ |u|3,ℓ + Cτ2 |u|2,∞ ‖u‖Yτ,ℓ

≤ C ‖u‖
2
Hr

ℓ
τ + Cτ2 ‖u‖Hr ‖u‖Yτ,ℓ

.

(4.10)

Lastly, we have

∞
∑

m=3

Cm,m ≤
∞
∑

m=3

|u|1,∞ |u|m,ℓ

τm−3

(m− 3)!s

≤ C |u|1,∞ |u|3,ℓ + Cτ |u|1,∞ ‖u‖Yτ,ℓ

≤ C ‖u‖2Hr
ℓ
+ Cτ ‖u‖Hr ‖u‖Yτ,ℓ

.

(4.11)

Plugging the estimates (4.5)-(4.11) into (4.4), we then prove the Lemma 4.2. �
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Lemma 4.3. The estimate of Pℓ satisfies the following form

Pℓ ≤ C ‖u‖2Hr
ℓ
+ Cτ ‖u‖Hr

(

‖u‖Hr
ℓ
+ ‖u‖Yτ,ℓ

)

+ Cτ3/2 ‖u‖Xτ
‖u‖Yτ,ℓ

+ Cτ2 ‖u‖Hr

(

‖u‖Hr
ℓ
+ ‖u‖Yτ,ℓ

)

+ Cτ3 ‖u‖Hr ‖u‖Yτ,ℓ
.

Proof. Using inequality (3.2), the summation can first be bounded by

Pℓ =

∞
∑

m=3

∑

|α|=m

∥

∥

∥
〈x〉

ℓ
∂α∇p

∥

∥

∥

L2

τm−3

(m− 3)!s

=
∞
∑

m=3

∑

|α|=m

∥

∥

∥
〈x〉ℓ ∂α−α′

∇∂α′

p
∥

∥

∥

L2

τm−3

(m− 3)!s
, for some α′ ≤ α with |α− α′| = 1

≤ 3C

∞
∑

m=3

∑

|γ|=m−1

3
∑

i,j=1

∥

∥

∥
〈x〉

ℓ
∂γ(∂xj

ui∂xi
uj)

∥

∥

∥

L2

τm−3

(m− 3)!s
,

(4.12)
where we have used

−∆∂α′

p =

3
∑

i,j=1

∂α′(

∂xj
ui∂xi

uj

)

.

Thus

∥

∥

∥
〈x〉

ℓ
∂α−α′

∇∂α′

p
∥

∥

∥

L2
≤ C

3
∑

i,j=1

∥

∥

∥
〈x〉

ℓ
∂α′

(∂xj
ui∂xi

uj)
∥

∥

∥

L2

We now want to estimate the right hand side of (4.12), at first we rewrite the right
hand side summation in the following way (still denote by α in the summation),

Pℓ ≤ C
∞
∑

m=3

∑

|α|=m−1

∑

β≤α

3
∑

i,j=1

(

α

β

)

∥

∥

∥
〈x〉ℓ (∂β∂xj

ui)(∂
α−β∂xi

uj)
∥

∥

∥

L2

τm−3

(m− 3)!s
.

If denote

Pℓ,m,k =
τm−3

(m− 3)!s

∑

|α|=m−1

∑

|β|=k,β≤α

(

α

β

) 3
∑

i,j=1

∥

∥

∥
〈x〉ℓ (∂β∂xj

ui)(∂
α−β∂xi

uj)
∥

∥

∥

L2
.

Then the right hand side can be written as

Pℓ ≤ C
∞
∑

m=3

m−1
∑

k=0

Pℓ,m,k

≤ C

∞
∑

m=3

Pℓ,m,0 + C

∞
∑

m=3

Pℓ,m,1 + C

∞
∑

m=5

Pℓ,m,2 + C

∞
∑

m=8

[m/2]−1
∑

j=3

Pℓ,m,k

+ C

∞
∑

m=6

m−3
∑

j=[m/2]

Pℓ,m,k + C

∞
∑

m=4

Pℓ,m,m−2 + C

∞
∑

m=3

Pℓ,m,m−1,

(4.13)
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It rests to estimate the right hand side of (4.13). Since they are quite similar with
the previous Lemma 4.3, we list the results here for simplification.

∞
∑

m=3

Pℓ,m,0 ≤ C ‖u‖2Hr
ℓ
+ Cτ ‖u‖Hr ‖u‖Yτ,ℓ

,

∞
∑

m=3

Pℓ,m,1 ≤ C(1 + τ) ‖u‖
2
Hr

ℓ
+ Cτ2 ‖u‖Hr ‖u‖Yτ,ℓ

,

∞
∑

m=5

Pℓ,m,2 ≤ Cτ2 ‖u‖2Hr
ℓ
+ Cτ3 ‖u‖Hr ‖u‖Yτ,ℓ

,

∞
∑

m=8

[m/2]−1
∑

k=3

Pℓ,m,k ≤ Cτ3/2 ‖u‖Xτ
‖u‖Yτ,ℓ

,

∞
∑

m=6

m−3
∑

j=[m/2]

Pℓ,m,j ≤ Cτ3/2 ‖u‖Xτ
‖u‖Yτ,ℓ

,

∞
∑

m=4

Pℓ,m,m−2 ≤ Cτ ‖u‖
2
Hr

ℓ
+ Cτ2 ‖u‖Hr ‖u‖Yτ,ℓ

,

∞
∑

m=3

Pℓ,m,m−1 ≤ C ‖u‖2Hr
ℓ
+ Cτ ‖u‖Hr ‖u‖Yτ,ℓ

.

(4.14)

Substituting the right hand side estimates of (4.14), we then conclude the proof of
Lemma 4.3. �

For r ≥ 5 fixed, we use the Sobolev embedding theorem, and Lemma 4.2 and
Lemma 4.3 to infer from (4.2),

d

dt
‖u(t)‖Xτ(t),ℓ

≤ C ‖u(t)‖
2
Hr

ℓ

(

1 + τ(t)2
)

+ τ̇ (t) ‖u(t)‖Yτ(t),ℓ

+ C ‖u(t)‖Yτ,ℓ

(

τ(t) ‖u(t)‖Hr + (τ(t)2 + τ(t)3) ‖u(t)‖Hr + τ(t)3/2 ‖u(t)‖Xτ(t)

)

.

(4.15)
If τ(t) decreases fast enough so that for all 0 ≤ t < T ∗ we have,

τ̇ (t)+Cτ(t) ‖u(t)‖Hr+C
(

τ(t)2+τ(t)3
)

‖u(t)‖Hr+Cτ(t)3/2 ‖u(t)‖Xτ(t)
≤ 0. (4.16)

Then (4.15) and the fact τ(t) ≤ τ(0) imply that

d

dt
‖u(t)‖Xτ(t),ℓ

≤ C ‖u(t)‖2Hr
ℓ
(1 + τ(0)2).

Integrating from 0 to t, we have from (3.7)

‖u(t)‖Xτ(t),ℓ
≤ ‖u0‖Xτ(0),ℓ

+ Cτ(0)

∫ t

0

‖u(s)‖
2
Hr

ℓ
ds (4.17)
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for all 0 ≤ t < T ∗, where Cτ(0) = 1+ τ(0)2. We denote by H(t) the right hand side
of (4.17), and it follows from the inequality (3.7),

H(t) := ‖u0‖Xτ(0),ℓ
+ Cτ(0)

∫ t

0

‖u(s)‖2Hr
ℓ
ds

≤ ‖u0‖Xτ(0),ℓ
+ Cτ(0)t ‖u0‖

2
Hr

ℓ
exp

(

C

∫ t

0

‖u(s)‖Hr ds

)

.

Since τ must be chosen to be a decreasing function, a sufficient condition for (4.16)
to hold is that

τ̇(t) + 2Cτ(t) ‖u(t)‖Hr + 2Cτ(t)3/2
(

C′
τ(0) ‖u(t)‖Hr

ℓ
+H(t)

)

= 0 (4.18)

where C′
τ(0) = τ(0)1/2 + τ(0)3/2. It then follows that if we solve the ODE (4.18)

for τ(t),

1

τ(t)1/2
= exp

(

C

∫ t

0

‖u(s)‖Hr ds

)

×

[

τ(0)−1/2 + C

∫ t

0

(

C′
τ(0) ‖u(s)‖Hr

ℓ
+H(s)

)

exp

(

− C

∫ s

0

‖u(λ)‖Hr dλ

)

ds

]

(4.19)
We note from (3.7) if the constant C is large enough such that

‖u(t)‖2Hr
ℓ
≤ ‖u0‖

2
Hr

ℓ
exp

(

C

∫ t

0

‖u(s)‖Hr ds

)

Then we have

τ(0)−1/2+C

∫ t

0

(

C′
τ(0) ‖u(s)‖Hr

ℓ
+M(s)

)

G(s)−1ds

≤ τ(0)−1/2 + C

∫ t

0

(

C′
τ(0) ‖u0‖Hr

ℓ
+ ‖u0‖Xτ(0),ℓ

+ sCτ(0) ‖u0‖
2
Hr

ℓ

)

ds

≤ C0(1 + t)2,

and therefore (4.19) implies

1

τ(t)1/2
≤ C0(1 + t)2 exp

(

C

∫ t

0

‖u(s)‖Hr ds

)

We recall (see [17]) the Hr-norm of u has an upper bound like

‖u(t)‖Hr ≤
‖u0‖Hr

1− Cr ‖u0‖Hr t
, 0 < t < T ∗,

where Cr depends on r and we can enlarge it to be C. Then

1

τ(t)1/2
≤

C0(1 + t)2

1− C ‖u0‖Hr t

And thus we obtain the lower bound for τ ,

τ(t) ≥
(1 − C ‖u0‖Hr t)2

C0(1 + t)4
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In such case choice of τ , we also have from (4.15),

d

dt
‖u(t)‖Xτ(t),ℓ

+ C ‖u(t)‖Yτ,ℓ

[

τ(t) ‖u(t)‖Hr + Cτ(t)3/2
(

C′
τ(0) ‖u(t)‖Hr

ℓ
+H(t)

)

]

≤ C ‖u(t)‖
2
Hr

ℓ

(

1 + τ(t)2
)

.

(4.20)
Since τ(t) has a lower bound for sufficient small 0 < T < T ∗, we then obtain by
integrating (4.20) from 0 to T ,

∫ T

0

‖u(s)‖Yτ(s),ℓ
< ∞.

Thus we have u(t, x) ∈ L∞([0, T ), Xτ(·),ℓ)∩L1([0, T ), Yτ(·),ℓ). This concludes the a
priori estimates that are used to prove Theorem 2.1. The proof can be made formal
by considering an approximating solution u(n), n ∈ N, proving the above estimates
for u(n), and then taking the limit as n → ∞. We thus omit the details and refer
the readers to [12] for further discussions. �
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