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AN EXPLICIT VIEW OF THE HITCHIN FIBRATION ON

THE BETTI SIDE FOR P1 MINUS 5 POINTS

CARLOS T. SIMPSON

Dedicated to Nigel Hitchin

Abstract. The dual complex of the divisor at infinity of the charac-
ter variety of local systems on P1 − {t1, . . . , t5} with monodromies in
prescribed conjugacy classes Ci ⊂ SL2(C), was shown by Komyo to be
the sphere S3. We compare in some detail the projection from a tubu-
lar neighborhood to this dual complex, with the corresponding Hitchin
fibration at infinity.

1. Introduction

The Hitchin fibration, source of a profoundly rich amount of structure,
has been studied intensively over the past 30 years. This fibration is defined
on Hitchin’s moduli space of Higgs bundles MH [25, 24, 39]. The Hitchin
equations [25] give the nonabelian Hodge correspondence between this mod-
uli space and the character variety MB , which we call the “Betti side” to
use a motivic terminology, and we obtain a topological map defined on MB .

There have recently been signs of a deep relationship between the Hitchin
fibration and the structure of the compactification of MB as an algebraic
variety, notably the P = W conjecture [9, 21, 22, 23], wallcrossing [31, 32]
and Gaiotto-Moore-Neitzke’s theory [13]. Given the highly transcendental
nature of the solutions of Hitchin’s nonlinear partial differential equations,
the existence of such a relationship is very surprising.

In this paper, we would like to consider a specific example: the case of P1

with five singular points. The Hitchin fibration will be defined on a moduli
space of parabolic Higgs bundles [6, 16, 30, 38, 41, 44]. The character variety
or Betti moduli space is the space of local systems on P1−{t1, . . . , t5} with
given conjugacy classes at the five punctures. Our goal is to describe an
explicit compactification of MB within which we can see some of the fine
topological structure of the Hitchin fibration.

A global result has already been established by Komyo [29] who shows
that the dual complex of the compactification of MB is homotopy equivalent
to S3. Presumably this should be the same as the S3 at infinity in the
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2 C. SIMPSON

base of the Hitchin fibration, although that remains conjectural for now.
Without addressing that conjecture, we would like to identify more precisely
a fibration structure over this sphere, which (again conjecturally) would
correspond to the structure of the fibration on MH . The case of 5 points
is the first one where the discriminant locus in the Hitchin base comes into
play.

In order to motivate this investigation, it is important to understand what
happens in the case of P1 minus 4 points. Let us fix the conjugacy classes
Ci = C ⊂ SL(2,C) of matrices of trace zero. The character variety MB for
P1 minus 4 points is the Fricke-Klein cubic given by the equation

(1) xyz + x2 + y2 + z2 − 4 = 0

in A3. It has four singular points corresponding to reducible representa-
tions—our choice of conjugacy classes is not generic here. These don’t affect
the behavior in a neighborhood of the divisor at infinity, and they go away
when generic Ci are chosen; in that case the equation acquires a general
linear term as has been discussed recently in the papers of Boalch [4] and
Goldman and Toledo [17] among others.

The divisor at infinity, given by the highest degree term xyz, is a tri-
angle of P1’s. It is already a divisor with normal crossings, whose dual
complex is a real triangle homotopic to the circle S1. There are six strata
S1, S2, S3, S12, S23, S31. The punctured neighborhoods at infinity denoted
T ∗
1 , T

∗
2 , T

∗
3 , T

∗
12, T

∗
23, T

∗
31 are all homotopic to (S1)2, indeed T ∗

ij
∼= ∆∗ ×∆∗ (a

product of two punctured disks) whereas T ∗

i
∼= Gm ×∆∗.

Let T ∗ ⊂ MB be the union of all these, the punctured neighborhood at
infinity of the character variety. It maps to the dual complex S1 and the
homotopy fiber is (S1)2. A calculation about how the pieces fit together as
we go around the triangle shows that the monodromy operation is multipli-
cation by −1 on the torus (S1)2.

Let’s compare now with the Hitchin fibration: the moduli space of para-
bolic Higgs bundles [6, 16, 30, 38, 44] (in this case, with rational parabolic
weights 1/4 and 3/4 so the orbifold picture [41] applies)1 is two-dimensional
so the Hitchin base is just A1 and the Hitchin fibration

MH → A1

has general fiber an elliptic curve E, namely the one branched over the
given four points in P1. The only non-smooth fiber is the nilpotent cone
over 0 ∈ A1 and the other fibers are all isomorphic by the C∗-action. One
can see that the monodromy operation of going once around the punctured
disk at infinity, corresponds to the hyperelliptic involution of E namely it
is multiplication by −1. This picture is readily identified with the Betti
picture: the dual complex of the triangle of P1’s corresponds to the circle at

1The Hitchin integrable systems in the case of P1 date back, in a birational sense,
to Garnier [14, 43] but that doesn’t take into account semistability and the nonabelian
harmonic theory.



BETTI HITCHIN FIBRATION 3

infinity in A1, and the punctured neighborhoods T ∗

i and T ∗

ij correspond to
the fibers of the Hitchin fibration.

Something special was happening here: the Hitchin base being 1-dimen-
sional, the discriminant locus doesn’t meet the sphere at infinity, so the
Hitchin map is topologically a fiber bundle and its identification with the
picture on the Betti side becomes a homotopy-theoretical aspect.

As soon as the moduli space has dimension ≥ 4, there will be a discrim-
inant locus in the base, over which the Hitchin map will have degenerate
fibers. It is natural to ask, to what extent can we still see the topology of
this map by looking closely at the Betti side?

The purpose of the present paper is to attempt to shine some light on
that question, by considering the next case—the first in which the Hitchin
fibration has degenerate fibers, the case of P1 minus 5 points.

Our discussion will take place mostly on the Betti side. To motivate it,
let us however look in general terms at what to expect by considering the
actual Hitchin fibration. We’ll maintain the choice of Ci = C conjugacy
classes of matrices in SL(2,C) with trace zero; for 5 points that is generic so
the moduli space is a smooth 4-dimensional variety. The Lagrangian Hitchin
fibration goes to affine space of half the dimension:

ϕ : MH → A2.

The general fibers are 2-dimensional abelian varieties, thus topologically
(S1)4. The discriminant locus Disc ⊂ A2 is conical, being invariant under
the action of C∗. The general spectral curve is a genus 2 curve branched
over the given five points, plus a variable sixth point, and this new point
provides the coordinate in P1 = A2 − {0}/C∗. Degenerate fibers therefore
occur when the sixth point coincides with one of the five others. In other
words, the discriminant locus consists of five lines in A2 whose slopes are
given by the five original points.

The sphere at infinity in the Hitchin base is S3. It intersects the discrim-
inant locus in five circles. They are fibers of the Hopf fibration S3 → S2, so
they are pairwise linked.

As we have noted above, Komyo has already shown that the dual com-
plex of any compactification of MB is homotopy equivalent to S3 [29]. It
didn’t seem immediately apparent how to get an explicit description of the
components of his compactification.

We pursue an approach that is probably rather special2 to the case of
5 points: by choosing a good collection of trace coordinates, we get to a
hypersurface defined by a generalization of the Fricke-Klein equation (1),
and then using some computer-algebra we can investigate explictly the res-
olution of singularities at infinity. This is complicated by the fact that our
hypersurface expression will not be for MB but rather for its quotient by an

2It isn’t clear whether or not to expect a series of nice polynomials corresponding to
any number of points. Boalch points out in [5] a whole series of polynomial equations
dating back to Euler, somewhat similar to Fricke-Klein, defining wild character varieties.



4 C. SIMPSON

involution, so the information of a 2 : 1 covering needs to be brought along
and the hypersurface itself will have a singular locus.

We are able to identify five circles in the dual complex, over which the
Betti Hitchin fibers (i.e. the punctured tubular neighborhoods of the strata
at infinity) degenerate. One problem with this picture is that the circles
intersect a little bit—they don’t seem to split apart entirely in any Betti
compactification. But there exist non-intersecting pairs and those circles
are indeed linked. The monodromy of the smooth part of the fibration
around the circles is as expected.

At the end of the paper we discuss briefly some further directions of study.
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2. A Fricke-Klein equation

Let X := P1−{t1, t2, t3, t4, t5}. Choose a basepoint x0 ∈ X, and let γi be
paths going from the basepoint around ti and back, so we have the relation
γ1 · · · γ5 = 1. A local system on X, with framing over x0, is given by a
quintuple of matrices (A1, . . . , A5) such that

(2) A1A2A3A4A5 = 1.

We consider SL(2,C)-local systems, and impose the conditions that Ai ∈ C
where C is the conjugacy class of matrices whose eigenvalues are ±

√
−1.

Equivalently C is the set of matrices A ∈ SL(2,C) with Tr(A) = 0. The
variety RB of such representations is therefore the variety of quintuples of
matrices with det(Ai) = 1,Tr(Ai) = 0 and satisfying (2). The moduli space
MB := RB/PSL(2,C) is the GIT quotient by the conjugation action of the
group, an action that factors through PSL(2,C).

One should of course envision a choice of conjugacy classes C1, . . . , C5 and
ask Ai ∈ Ci. For the purposes of the present paper, we are making a very
specific choice of this collection, with all Ci equal to the conjugacy class C
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of matrices of trace 0. We are doing this in order to simplify as much as
possible the equations.

Notice that our collection of conjugacy classes is Kostov-generic: for any
choice of one eigenvalue at each point, the product of all five of these is
±
√
−1 6= 1 so a local system as above cannot contain a rank 1 subsystem.

All the points of RB are automatically irreducible. The quotient MB :=
RB/PSL(2,C) is therefore a geometric quotient, andMB is a smooth variety
of dimension 4.

The character variety MB is affine, and we know in general that an em-
bedding can be obtained by using a finite collection of functions of the form
ρ 7→ Tr(ρ(ξ)) for group elements ξ ∈ π1(X,x0). However, getting a practi-
cally useable expression requires some luck.

After a certain amount of experimentation, it would seem that one good
way to proceed is as follows. Use the group elements ξi = γiγi+1 (in cyclic
ordering) to define the coordinate functions

x := Tr(A1A2) y := Tr(A2A3) z := Tr(A3A4)

u := Tr(A4A5) v := Tr(A5A1).

A generalization of the Fricke-Klein equation to this setup goes as follows.

Proposition 2.1. The map (A1, . . . , A5) 7→ (x, y, z, u, v) defines a finite
2 : 1 ramified covering.

φ : MB → H ⊂ A5.

Its image is the hypersurface H defined by the equation f = 0 where

f(x, y, z, u, v) :=

xyzuv+(x2y2+ y2z2 + z2u2 +u2v2 + v2x2)− 4(x2 + y2 + z2+u2 + v2)+ 16.

The singular locus of H is a smooth two-dimensional subvariety B ⊂ H,
equal to the ramification locus of φ.

Proof. The equation was found with some guesswork, using the parametriza-
tion discussed below, and a computer algebra program. I used singular

[10]. The equation may be checked directly by the computer program.
To see that φ is a 2 : 1 covering, it is useful to have some kind of a

parametrization. Komyo’s description [29] using GIT didn’t seem immedi-
ately to yield explicit equations, although it would certainly be interesting
to look more closely there. Cluster coordinates would be another option.
We’ll use some kind of “algebraic Fenchel-Nielsen coordinates” [26, 27].

View X as being glued from three pieces: one of them contains the punc-
tures t1 and t2 with boundary curve α = γ1γ2; the other one contains the
punctures t4 and t5 with boundary curve β = γ4γ5; and the third piece
contains the puncture t3 with two boundary curves α, β (having opposite
orientation). Each piece is a 3-punctured sphere, on which we consider a
rank 2 local system: it must be the hypergeometric system, determined by
the monodromy traces at the punctures except in degenerate cases. The
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traces along the boundaries α and β are the coordinates x and u respec-
tively. If we fix these, then the full local system is determined by glueing
parameters along the boundary curves. We should first choose a standard
basis in each piece, then express the glueing.

More precisely, let us choose bases for the two end pieces. With a := x/2,
write

ρ(α) =

(
a a− 1

a+ 1 a

)
and ρ(γ1) =

1√
a2 − 1

(
0 1− a

1 + a 0

)
.

Similarly with b := u/2 put

ρ′(β) =

(
b b− 1

b+ 1 b

)
and ρ′(γ5) =

1√
b2 − 1

(
0 1− b

1 + b 0

)
.

Here ρ′ means the representation in a different basis. One may check with
these expressions that Tr(ρ(γ2)) = 0 and Tr(ρ(γ4)) = 0.

We don’t need a basis for the middle piece, but rather write directly the
glueing matrix between the two bases above as

g =

(
p q
r s

)
.

Set ρ(γi) := gρ′(γi)g
−1 for i = 4, 5 with ρ′ as above. The condition for the

middle piece is to require g to satisfy the equation Tr(ρ(γ3)) = 0.
Define

P := (a+ 1)(b− 1)p2, Q := (a+ 1)(b+ 1)q2,

R := (a− 1)(b− 1)r2, S := (a− 1)(b + 1)s2.

With these notations we have

y =
1√

a2 − 1
(P −Q+R− S),

z =
1√

b2 − 1
(−P −Q+R+ S),

and

v = − 1√
(a2 − 1)(b2 − 1)

(P +Q+R+ S)

with finally
Tr(ρ(γ3)) = 2ab+ P −Q−R+ S.

If x, y, z, u, v are given, with x, u 6= ±2, then we get a, b and can choose
determinations of the square-roots to make the above expressions well-
defined. From there, the values of P,Q,R, S are determined, and these
give p2, q2, r2, s2. The matrix g is therefore determined up to changing the
sign of its coefficients. Also g is subject to the condition det(g) = 1, and
the only sign changes that preserve this condition are: multiply the whole
matrix by −1; or p, s 7→ −p,−s with q, r fixed; or the composition of these
which is q, r 7→ −q,−r with p, s fixed. However, g is also to be considered
as an element in PSL(2,C) since we only care about conjugation by g. So
−g represents the same element as g. We conclude that there are at most
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2 points in MB with the given x, y, z, u, v, and generically the number is
2. This proves that the map φ is quasi-finite and generically 2 : 1 over the
subset where x, u 6= ±2.

One notices from the equation f = 0 that the coordinates cannot all be
±2, so there is at least one different one, say (using the cyclic symmetry)
x 6= ±2. In the case where the matrices ρ(γ3γ4) and ρ(γ4γ5) are both the
identity we can conclude that the local system is uniquely determined. If
both traces are ±2 then we may therefore assume that one of them, say
ρ(γ4γ5) is nontrivially unipotent. Then we proceed using much the same
analysis as above, but choosing a frame where

ρ′(β) =

(
1 1
0 1

)
, ρ′(γ5) =

(
i 0
0 −i

)
.

The other cases, for example where Tr(ρ(β)) = −2 or where the upper
eigenvalue of ρ′(γ5) is −i are very similar. Proceeding as before under the
assumption that x, y, z, u, v are fixed, with x 6= ±2, we first get that p2 and
r2 are determined, hence p, r determined up to a choice of sign; and then
q, s are determined from them. We again get quasi-finiteness of the map φ
in this case. By cyclic and other symmetries, this covers all the cases so it
shows that the map φ is quasi-finite.

Now, since MB is affine, if the map φ were not proper then it would be
non-proper along a codimension 1 subset of the hypersurface H. However,
proceeding as in the above discussions, we can rule out that possibility,
essentially by noting that the number of elements in the fiber of φ is always
2 outside of codimension 2. We conclude that φ is a finite 2 : 1 covering.

Again following the above procedure we can also identify the ramification
locus and see that it is the same as the subvariety B ⊂ H where H is not
smooth. One can then compute that B satisfies 10 equations which are
cyclic permutations of

(x2 − 4)(y2 − 4)− 4u2 = 0 and xy2z + 2uvy − 4xz = 0.

The ideal of 3 × 3 minors of the jacobian matrix for this set of equations,
together with f , yields the unit ideal. Hence, B is smooth. �

3. Structure of the compactification

Our hypersurface H ⊂ A5 compactifies to a projective hypersurface H ⊂
P5 given by the homogenization of the polynomial f . Let B ⊂ P5 be the
closure of the branch locus B ⊂ H.

LetX0,X1,X2,X3,X4,X5 denote the homogeneous coordinates, with x =
X1/X0, y = X2/X0, z = X3/X0, u = X4/X0, v = X5/X0.

Since the highest order term of f is the monomial xyzuv, it follows that
the intersection of H with the P4 := P5 − A5 at infinity, decomposes as a
union of divisors

H ∩ P4 =

5⋃

j=1

Dj
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where Dj is given by X0 = Xj = 0. We have Dj
∼= P3. Where appropriate,

indices j = 1, . . . , 5 will be considered in cyclic ordering, so for example if
j = 4 then j + 2 := 1.

Lemma 3.1. The singular locus of H decomposes as

Sing(H) = B ∪
5⋃

j=1

(Mj ∪Nj)

where Mj, Nj ⊂ Dj+2∩Dj−2 are lines given by the following equations: both

satisfy X0 = Xj+2 = Xj−2 = 0, then for Mj we have Xj+1 =
√
−1Xj−1 and

for Nj we have Xj+1 = −
√
−1Xj−1.

Proof. In the computer algebra program we take the jacobian ideal of the
equation for H, then calculate its primary decomposition. �

A resolution of singularities will therefore require blowing up the lines Mj

and Nj . However, we also notice the following:

Lemma 3.2. The singular locus of B is the union of five lines

Sing(B) =

5⋃

j=1

Lj

where Lj = Dj ∩ Dj+2 ∩ Dj−2 is the line given by equations X0 = Xj =
Xj+2 = Xj−2 = 0. This union of five lines is also equal to the intersection

of B with the divisor at infinity.

Proof. Again in the computer program we calculate the primary decompo-
sition of the ideal given by 3 × 3 minors of the 10 × 6 jacobian matrix of
the set of generators for the ideal of B, homogenizations of the polynomials
written at the end of the proof of Proposition 2.1. For the intersection of B
with P4 at infinity, look at the highest order terms of the equations for B:
they are cyclic permutations of x2y2 and xy2v, so their radical is generated
by cyclic permutations of xy. It says that no two consecutive coordinates
should be nonzero, and that constrains onto the union of Lj. �

Our resolution strategy will consist of first blowing up the lines Lj in
some order. The strict transforms of Mj and Nj become disjoint, and we
can resolve them separately.

4. Double covering of the simplex at infinity

Recall that MB is a 2 : 1 covering of H branched along B. To get a
compactification of MB , we extend this to a normal double covering

φ : MB → H

and then to a double covering of the resolution

φ̃ : M̃B → H̃.
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Before getting to the resolution process, let us first consider what the double
cover looks like on the simplex made out of the divisors Dj.

Lemma 4.1. The inverse image of Dj in MB is a union of two distinct
isomorphic components D+

j and D−

j . The double intersections Dj ∩ Dk

similarly decompose into two pieces. The triple intersection lines decompose
into two pieces except for the lines Lj, and the union of these five lines
constitutes the ramification locus at infinity.

Proof. Extend to infinity the description that was used in the proof of Propo-
sition 2.1. Letting a, b →∞ there is a canonical choice of determination of√
a2 − 1 (resp.

√
b2 − 1), namely the one that is asymptotically equivalent

to a (resp. b).
Consider a curve inMB approaching a general point ofD5, with parameter

w → 0. Assume given the homogeneous coordinates Xi(w) with X0 = w.

Write a = a′/w, b = b′/w, and set 1/
√
a2 − 1 = σw (resp. 1/

√
b2 − 1 = τw).

We have

P = (a′ + w)(b′ − w)p2/w2 =: P ′/w2, . . .

and our affine coordinates become

y = X2/X0 = σ(P ′ −Q′ +R′ − S′)/w, . . .

so that

X2(w) = σ(P ′ −Q′ +R′ − S′), X3(w) = τ(−P ′ −Q′ +R′ + S′),

whereas, because of the extra term in front of v,

X5(w) = −στ(P ′ +Q′ +R′ + S′)w.

The equation Tr(ρ(γ3)) = 0 becomes

2a′b′ + P ′ −Q′ −R′ + S′ = 0.

It is easy now to consider X5 → 0 so as to approach a general point of
D5: it just means that a′, b′, σ, τ, P ′, Q′, R′, S′ should have generic bounded
limiting values. The limiting values of X1,X2,X3,X4 and X5/w together
with the equation Tr(ρ(γ3)) = 0 yield limiting values for P ′, Q′, R′, S′. These
are subject to the equation (homogenization of f = 0), corresponding to
existence of a solution with det(g) = 1. Now, the limiting values determine
p2, q2, r2, s2 and as before, there are two distint choices of matrix g with
det(g) = 1, up to multiplication by −1.

This discussion proves that the covering φ : MB → H doesn’t ramify at
generic points of the divisors Dj . Now, purity of the branch locus says that

over the smooth part of H, the ramification locus has pure codimension 1.
But as it is empty in the interior, and doesn’t contain general points of the
divisors at infinity, it implies that φ is unramified outside of the singular
locus of H. As we have seen in Lemmas 3.1 and 3.2, this singular locus
intersected with the divisor at infinity, consists of a collection of lines. In
particular, within any of the divisors Dj it has codimension 2, but as these
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are smooth, it follows that the covering must decompose over each Dj. We
make a choice of components to label them by D+

j and D−

j .

From Lemma 3.1, the singular locus of H contains lines Mj , Nj . We
would like to see that each of these splits into two irreducible components in

MB. For this, we refer to the resolution M̃B → H̃ to be calculated below.
Near a general point of Mj it consists of blowing up the line Mj once.
The strict transform of Dj−2 intersects the exceptional divisor transverally.
As we know that the covering has no monodromy over Dj−2, it follows

that the covering φ̃ doesn’t ramify along this exceptional divisor. We shall
furthermore see that the exceptional divisor, over the open subset Gm ⊂Mj ,
is just P1×P1×Gm and the intersection with Dj−2 is of the form P1×Gm.

Hence, the covering φ̃ has trivial monodromy over the exceptional divisor,
i.e. its inverse image in the covering splits into two irreducible components;
choosing MB as a maximal covering extending MB , the inverse image of the
line Mj splits into two irreducible components. The same argument holds
for Nj.

This shows that Mj , Nj are not part of the ramification locus, hence the
ramification locus at infinity is made up of the five lines Lj. �

We may now form a picture of the dual complex of the divisor at infinity in
MB, even if it isn’t normal crossings. There are 10 irreducible components
D±

j , forming a double cover of the simplex
⋃

Dj . This double cover is
ramified along the reducible curve formed out of the five lines Lj . Notice
that their order is changed: L1 given by X0 = X1 = X3 = X4 = 0 intersects
L3 given by X0 = X3 = X5 = X1 = 0 at the point [0 : 0 : 1 : 0 : 0 : 0],
and L1 intersects L4 given by X0 = X4 = X1 = X2 = 0 at the point
[0 : 0 : 0 : 1 : 0 : 0]. Hence, the five lines form a pentagon in the order

(3) L1 → L3 → L5 → L2 → L4 → L1.

The dual complex of the divisor
⋃

D±

j is still the sphere S3: it is a double
cover of the original simplex with ramification along the circle of lines. This
will be the basic shape of the dual complex of our resolution: the further
steps of blowing up lines don’t modify its homotopy type.

5. Resolution process

Theorem 5.1. First blow up the lines Lj in some order. After that, the
strict transforms of the Mj and Nj become disjoint and we can blow them

up. Let H̃ ⊂ P̃5 denote the resulting hypersurface, and let B̃ be the strict

transform of B. Let D(H̃) denote the reduced inverse image of the divisor
at infinity H ∩ P4. Then:

(a)—D(H̃) =
⋃

j D̃j ∪ L̃j ∪ M̃j ∪ Ñj where D̃j is the strict transform of Dj ,

and L̃j (resp. M̃j , Ñj) is the exceptional divisor over Lj (resp. Mj, Nj);

(b)—B̃ is smooth, and the only components of D that it intersects are the

L̃j intersected smoothly;



BETTI HITCHIN FIBRATION 11

(c)—the D̃j, M̃j and Ñj are smooth;

(d)—L̃j have curves of ordinary double points along their intersections with

B̃ but are smooth otherwise;

(e)—L̃j ∩ L̃j+2 is isomorphic to the Fricke-Klein cubic cf equation (1);
(f)—and the other multiple intersections of divisor components are irre-
ducible and smooth, or empty.

Proof. This is checked in the coordinate charts at infinity obtained by de-
homogenizing the homogenized equation of f at some other variable. By
symmetry only one is needed. Luckily, the monoidal transformations we
need are done along linear centers, essentially coordinate lines. To treat
most easily the Mj and Nj it is convenient to multiply two of our coordi-
nates by

√
−1, then the equations of some examples of Mj and Nj become

defined over Q (translations by 1 of coordinate lines) and the blow-ups can
easily be calculated by computer. I kept track of the charts somewhat man-
ually. One important point to notice is that near points Lj ∩Lj+2 one of the
lines is blown up first, the other one second. The choices are symmetrical.
Point (e) is computed on the second exceptional divisor. �

Let φ̃ : M̃B → H̃ be the 2 : 1 covering extending φ. Let D(M̃B) be the

inverse image of D(H̃). Then it decomposes as

D(M̃B) =
⋃

j

D̃±

j ∪ L̃M
j ∪ M̃±

j ∪ Ñ±

j .

Here D̃+
j and D̃−

j are the two components of the inverse image of D̃j in M̃B ,

the same for M̃+
j , M̃−

j , and Ñ+
j , Ñ−

j . On the other hand the inverse image

of L̃j is a single divisor denoted L̃M
j . It is a double cover of L̃j branched

along B̃ ∩ L̃j. The intersection of L̃M
j and L̃M

j+2 is the double cover of the
Fricke-Klein cubic, compactifying the double cover Gm×Gm over the affine
cubic of equation (1) that corresponds to the elliptic curve covering of P1

branched over 4 points (see [36, §13.4]). From this discussion we obtain the
desingularized compactification of MB:

Theorem 5.2. The resulting pair (M̃B ,D(M̃B)) is a simple normal cross-

ings compactification of MB. The dual complex of D(M̃B) is a triangulation
of S3.

Our compactification depends on a choice of the order in which the Lj

are blown up. Establish a choice that is almost canonical (except for an
orientation): blow them up in the cyclic order (3) doing Lj+2 after Lj. By
cyclicity it isn’t well-defined globally, however it is well-defined locally in the

Zariski topology, yielding a compactification (M̃B ,D(M̃B)) in the category
of (not necessarily projective) schemes. We’ll recall below that a different
global ordering could be chosen that would give a projective scheme.
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6. Stratification

The next objective is to stratify the divisor at infinityD(M̃B) in a nice way
corresponding to the Hitchin fibration. The stratification shall be denoted

D(M̃B) =
∐

η

Sη .

It is obtained from the standard stratification of the divisor with normal
crossings, by grouping together certain groups of strata. In general when
we say “open stratum” this means the open stratum in the standard strati-
fication.
1. Define Sλ(j) to be the open stratum of L̃M

j .

2. Let Sλ(j,j+2) denote the open stratum of L̃M
j ∩ L̃M

j+2.

3. Let Sα(j,+) (resp. Sδ(j,−)) denote the open stratum of D̃+
j (resp. D̃−

j ).

4. Let Sα(j,j+2,+) denote the open stratum of D̃+
j ∩ D̃+

j+2 and similarly for
Sδ(j,j+2,−).

5. Let Sα(j,j+1,j+2,+) denote the open stratum of D̃+
j ∩ D̃+

j+1D̃
+
j+2 and sim-

ilarly for Sα(j,j+1,j+2,−).

6. Group together the pieces D̃+
j−2 ∩ D̃+

j+2 with M̃+
j and Ñ+

j , then take
the open part of this in other words the complement of the intersections
with other strata we have already considered. Call this Sβ(j,+) and define
similarly Sβ(j,−).

7. The boundary of Sβ(j,+) intersects L̃M
j in a piece whose open part is

denoted Sζ(j,+) and similarly for Sζ(j,−).
8. This part corresponds to the point Xj = 1, all the rest 0. The boundary

of Sβ(j,+) intersects L̃M
j−1 in a piece whose open part is denoted Sξ(j,+) and

similarly for Sξ(j,−). This uses the cyclic ordering of resolution of the Lj, in
general the intersection will be with whichever of the pieces corresponding
to Lj−1 or Lj+1 was blown up first.
9. There are a few extra isolated points for which no notation is needed.

For each of these strata Sη, let T∗
η denote the punctured tubular neigh-

borhood. The link at infinity of MB may be viewed as obtained by glueing
together these pieces T∗

η.
View Sη as corresponding to locations in the 3-sphere at infinity of the

Hitchin base, and the pieces T∗
η as corresponding to the Hitchin fibers over

these locations. We’ll call the T∗
η “Betti Hitchin fibers”.

7. Description of the Betti Hitchin fibers

The first proposition describes the Betti Hitchin fibers that look like
smooth tori. These correspond to the smooth fibers of the Hitchin fibra-
tion.

Proposition 7.1. In the above stratification, the following pieces have the
structure of tori:
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—Sλ(j,j+2)
∼= Gm ×Gm;

—Sα(j,±)
∼= Gm ×Gm ×Gm;

—Sα(j,j+2,+)
∼= Gm ×Gm;

—Sα(j,j+1,j+2,+)
∼= Gm;

—along with the isolated points.
If Sη is one of these toroidal pieces of dimension d, then T∗

η looks like a

bundle over it with fibers being (∆∗)4−d so that homotopically T∗
η
∼= (S1)4.

Proof. These are mostly easy to see. For Sλ(j,j+2), as was discussed above
Theorem 5.2, the affine cubic given by equation (1) has a unique smooth
double cover ramified at the singular points, and that cover is Gm×Gm. �

The next proposition isolates the structure of degenerate fibers:

Proposition 7.2. The punctured neighborhoods T∗

β(j,±), T
∗

ζ(j,±), and T∗

ξ(j,±)

are all homotopic to

S1 × S1 × (S2 ∨ S2 ∨ S1).

Proof. Recall that these strata correspond to starting with Dj−2 ∩Dj+2
∼=

P2, taking its strict transform under the first transformations along the lines
L, then blowing up Mj , Nj , and finally going to the covering. The covering
just consists of two identical disjoint pieces so everything can be pictured
within the blow-up of P5.

After blowing up the line Mj , the exceptional locus M̃j has the form
Q×Mj where Q ⊂ P3 is a quadric surface, isomorphic to P1 × P1. It meets

L̃j at Q × {p} and L̃j−1 at Q × {p′} for two points p, p′ ∈ Mj . The same

holds for Ñj. The strata Sζ(j,±) and Sξ(j,±) are isomorphic to (Gm∨Q∨Q),

a Gm with two copies of Q attached at the points ±
√
−1. The strata Sβ(j,±)

are isomorphic to the product of this diagram, with Gm. We may look
either at one of the endpoint strata, or at a slice of the bigger product
stratum. It meets the other divisors as follows: the line Gm corresponds to

D̃j−2 ∩ D̃j+2 ∩ L (here L denotes either one of the L̃, or a slice for the β
stratum) whereas the two copies of Q meet the divisors in two P1’s. The
configuration may be pictured as in Figure 1.

One may then consider the punctured tubular neighborhood of the con-
figuration (Gm∨Q∨Q), it turns out3 to be homotopic to S1×(S2∨S2∨S1).
This then should be producted with another copy of S1, either for the Gm-

direction in the case of the β strata, or for the juncture with one of the L̃
in the case of the ζ and ξ strata. �

3Here is a brief discussion. Factor out a copy of S1 for the normal direction of the
whole configuration. Then, for Gm minus the two points we have the complement of four
points in P1, that gives a wedge of three circles. That part should be producted with S1

because it is at the junction of two divisors. Each of the Q minus the intersection lines is
just A2, so contractible. These are attached into the Gm part along the neighborhoods of
points, that correspond to (S1)2. So our space is (S1∨S1∨S1)×S1, to which we contract
two copies of (S1)2. This in turn gives (S1)2 with the same circle contracted two times,
and that is S2 ∨ S2 ∨ S1.
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↓

Gm ⊂ V

Q

Q

D̃j−2 ∩ L

D̃j+2 ∩ L

U ′′

U ′

0

∞

Figure 1. A slice of Sβ(j,±)

Discussion: Recall that a degenerate elliptic curve made up of two copies
of P1 meeting in two points, is homotopically (S2∨S2∨S1). From the above
proposition, one therefore guesses that the degenerate fibers of the Hitchin
fibration should look like elliptic curves times degenerate elliptic curves,
where the degenerating factor has two irreducible components in this way.
Looking on the side of moduli of parabolic Higgs bundles one may see that
this is indeed the case: the degenerate Hitchin fibers for our situation have
two irreducible components.

We finally note that there is a more complicated piece.

Proposition 7.3. If the resolution of Lj was done in cyclic ordering, then
the stratum Sλ(j) is homotopically S1×(S2∨S2∨S2). The punctured tubular

neighborhood T∗

λ(j) is (S1)2 × (S2 ∨ S2 ∨ S2).

Proof. The open stratum is obtained by blowing up Lj once in an affine
chart at infinity (replacing coordinate u by a coordinate w at infinity), and
using the chart complementary to w = 0. Here the equation becomes

xyzv + x2y2 + x2v2 − 4x2 + z2 + v2 − 4 = 0.

Our stratum is a double cover branched over the singular locus. This may
be calculated in the following way: consider the above equation as quadratic
in the coordinate z; its discriminant decomposes as a product

∆ = (x2y2 − 4x2 − 4)(v + 2)(v − 2).

Our hypersurface is a double cover branched over the discriminant but the
required stratum is a double cover of that branched over the singular locus.
The stratum is thus the product of a surface, double cover of the x, y plane
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branched over x2y2 − 4x2 − 4 = 0, with the double cover Gm over the v-
line branched at v = ±2. It remains just to identify the surface. Consider
Y := P1 × P1 with two smooth (1, 1)-curves C,C ′ ⊂ Y , and two points
p′, p′′ ∈ C ′ not at the two intersection points. Blow up Y at p′, p′′ then
remove the strict transforms of C,C ′; this is our double cover. Without
blowing up the points one could see the complement Y − C − C ′ is S2.
Adding in the exceptional A1’s at the blown-up points just adds two more
disks over boundary circles, so altogether the surface is homotopy equivalent
to (S2∨S2∨S2). Its product with Gm gives the stratum Sλ(j). The stratum

is a smooth divisor in H̃, defined in its chart by a single equation, so the
punctured tubular neighborhood is a trivial S1 bundle over it. �

Discussion: What is going on here? It turns out that the zone of the
Hitchin base covered by Sλ(j) meets two of the discriminant circles, and the
Betti Hitchin fiber T∗

λ(j) corresponds to two degenerations attached along

their smooth fibers. This phenomenon seems to be unavoidable. If we change
the order in which the Lj are blown up, the pieces of circles are shifted
around. For example, if some line is blown up first with both adjoining ones
blown up later, then it recovers the homotopy type of a single degeneration
as in Proposition 7.2. But in this case there will also be a line that is blown
up last, which corresponds to three degenerations glued together.

8. Five circles

Let’s see how to fit the above pieces together into circles of degenera-
tion in the sphere at infinity. A circle is formed by the following pieces of
the stratification, which we indicate by their subscripts using a dual graph
notation:

Circle(j) :

s s

s

s

λ(j)

β(j,+)

β(j,−)

λ(j − 1)

ζ(j,+)

ζ(j,−)

ξ(j,+)

ξ(j,−)

Recall that the β, ζ and ξ pieces have Betti Hitchin fibers that corre-
spond to the degenerate fibers of the Hitchin fibration, whereas the λ pieces
correspond to combinations of two degenerate fibers.

The diagrams we have pictured here, yield 5 circles inside the S3 dual
graph of the resolution; but each one touches two other ones at the λ pieces.
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As we discussed above, this touching seems to be an unavoidable phenom-
enon (it is an interesting theoretical question to make a precise statement
and to understand why).

We can, nonetheless, look at pairs of disjoint circles, namely ones as
pictured above for indices j and j + 2. In the picture of the actual Hitchin
fibration, recall that our circles correspond to circles in S3 that are fibers
over the P1 at infinity of the Hitchin base, in other words they are fibers of
the Hopf fibration S3 → P1 = S2. Therefore, we expect them to be simply
linked.

It is indeed the case that they are linked. To understand this, recall that
our S3 was obtained as a double cover of the original simplex at infinity,
ramified along the pentagonal S1 composed of lines Lj.

Our Circle(j) is given by looking at the preimage of the open piece inside
Dj−2 ∩Dj+2 together with the line Lj and the point Lj−1 ∩ Lj+1. We may
therefore view Circle(j) as being obtained by joining together two points on
the pentagonal S1 in the original simplex, then taking the preimage by the
double cover. And Circle(j + 2) is obtained similarly, joining points that
alternate, in the order (3), with the points for Circle(j). When going to the
double cover we can view the picture as follows. The vertical line represents
the pentagonal S1, and the right diagram is the double cover of the left
one ramified along this vertical line (with thick lines for the + sheet of the
covering pictured in front).

r

r

r

r

λ(j)

λ(j+2)

λ(j−1)

λ(j+1)

←2 : 1
p

r

r

r

r

Circle(j)

Circle(j+2)

The circles are linked.
Monodromy: Let us look at the monodromy around these circles [1]. It
corresponds to the monodromy action on the smooth Hitchin fibers as we
go around the discriminant locus. Here, it will act as a transformation of
the smooth Hitchin fiber (S1)4, obtained when going once around one of the
circles. That can be viewed in the slice pictured in Figure 1. Recall that

the pieces D̃j−2 and D̃j+2 correspond to strata of the form G3
m, multiplied

by ∆∗ for the tubular neighborhood. The points at 0 and ∞ of the Gm
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in Figure 1 also correspond to (∆∗)4, so we should follow how these glue

together as we go from the endpoint 0 through D̃j+2 to the endpoint∞ and

then back through D̃j−2 to the endpoint 0 again.

Proposition 8.1. The monodromy transformation acting on H1 of the fiber,
is given by the matrix 



1 0 0 0
−2 1 0 0
2 0 1 0
0 0 0 1




Proof. In Figure 1, there are transverse divisors at the two endpoints 0,∞
(not pictured). Let us calculate in the slice. A punctured neighborhood
of 0 (resp. ∞) has the form (∆∗)3 with homology generated by loops δj−2

and δj+2 around D̃j−2 and D̃j+2 respectively, and ν0 (resp. ν∞) around the

transverse divisor at 0 (resp. ∞). Moving on the side of the divisor D̃j+2

from 0 to ∞, the loops δj−2 and δj+2 stay the same. On the other hand,
the endpoint loops undergo

(4) ν0 7→ −ν∞ − δj−2 + δj+2.

To explain this calculation, consider curves V,U ′, U ′′ in D̃j+2 as pictured

in Figure 1: V = D̃j+2 ∩ D̃j−2, and U ′, U ′′ are the two intersections of the

pieces Q with D̃j+2. A curve in D̃j+2 that joins points near 0 to points near
∞, will be linearly equivalent to V + U + U ′. Such a curve must intersect

D̃j−2 in one point, and that (with a change of orientation also seen in the
coefficient of ν∞) yields the −1 coefficient of δj−2 in (4). On the other hand,

the normal bundle to D̃j+2 in H̃ has degree −1 on V (inside D̃j−2, V is a
−1-curve since it is obtained by blowing up twice a line in projective space).

The normal bundle to D̃j+2 in H̃ is trivial on U ′ and U ′′ since these are lines
inside Q ∼= P1× P1. Thus, the normal bundle restricted to V +U ′ +U ′′ has
degree −1: this gives the coefficient of δj+2 in the expression (4).

Going back from∞ to 0 but inside the divisor D̃j−2 has the corresponding
effect ν∞ 7→ −ν0−δj+2+δj−2. Putting these together gives our monodromy
operation:

ν0 7→ −(−ν0 − δj+2 + δj−2)− δj−2 + δj+2 = ν0 − 2δj−2 + 2δj+2.

This is the first column of the matrix. The rest of the matrix is the identity,
first as we have said on δj−2, δj+2; then also on the extra copy of S1 gotten
by considering that the full picture of our strata before slicing is obtained
by either product with a small tube (for the ζ and ξ strata) or product with
Gm (for the β strata). �

This matrix corresponds to the monodromy in the actual Hitchin fibra-
tion, recalling that the degeneration has two components so it is an elliptic
curve product with a two-piece elliptic degeneration. The two components
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Q in Figure 1 seem to correspond closely to the vanishing cycles. At the
moment we don’t have a more precise statement of this relationship.

9. Further questions

A number of further directions naturally present themselves.
WKB theories: It would be good to understand how the geometrical
picture presented here corresponds to the WKB approximations near the
boundary of the Hitchin moduli space as well as the moduli space of vector
bundles with integrable connections. This would provide an example fitting
into a number of theories of current interest, such as cluster varieties [12, 18,
19, 34, 45], spectral networks [13], wallcrossing [31, 32] stability conditions [7,
20], buildings [11, 28, 40], abelianization at infinity [35, 37], isomonodromy
[4, 15], and others.

It is likely that the WKB geometry will coincide nicely with the picture
presented here, only for certain positions of the points ti—in other chambers
of the moduli space of 5-pointed projective lines, other compactifications of
MB are probably needed. Optimally this should be taken care of by the
theory of [18, 19].
The P = W conjecture: Can one give an explanation of the P = W
phenomenon [9, 21, 22, 23, 33] in terms of the geometrical description?
There are several difficulties, for example the fact that we had to combine
together several strata for the degenerate Hitchin fibers, and the fact that
the circles tend sometimes to meet in the Betti picture.
Real structures and branes: In the spirit of [2, 3], it is natural to ask
about the position of real subvarieties on both sides of the picture.

Our Fricke-Klein equation is naturally adapted to a real structure on P1

whose real circle contains the points t1, . . . , t5 in cyclic order. The antiholo-
morphic involution σ from P1 − {t1, . . . , t5} to itself provides an algebraic
involution of MB that preserves our coordinate functions. It is, by the way,
the involution associated to our 2 : 1 covering φ.

The fixed-point set of the involution is the ramification locus B. On the
Hitchin side, it will correspond to the real locus of MH with respect to this
real structure. It should be interesting to investigate more precisely the
relative positioning of this real locus with respect to the discriminant locus
and degenerate Hitchin fibers.

In the other direction, MB is defined over Q so it also has a real structure
given by antiholomorphic involution. In our picture, recall that the lines
Mj and Nj were defined with a

√
−1, so this involution will interchange

them. On the Hitchin side it is well-known that this involution corresponds
to multiplying the Higgs field by −1, giving an involution of the spectral
curve. From our picture (see the footnote in the proof of Proposition 7.2)
we expect that this should exchange the two vanishing cycles in the fiberwise
degenerations.
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The Hitchin component: Continuing on the subject of real structures, it
will be interesting to understand the position of the Hitchin section, as well
as other components of the locus of real representations, with respect to the
Hitchin fibration from the Betti viewpoint.
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Université Côte d’Azur, CNRS, LJAD UMR 7351


