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Abstract. The study of the stochastic dynamics of continuous structures coupled with discrete elements is of
interest in some fields of structural engineering. In this way, this papers deals with the analysis of the effects
induced by a cubic spring, with gamma distributed random stiffness, on the longitudinal dynamics of an elastic
bar which is also coupled with linear spring and a lumped mass. This system is subjected to a viscous dissipation
mechanism and is excited by a Gaussian white noise. The model equations are discretized using the Galerkin
method, and the propagation of uncertainties through the model are computed by the Monte Carlo method.
Numerical simulations, indexed by the mean value of the cubic spring random stiffness, are conducted and
show that this random cubic nonlinearity induces an increase in the level of uncertainty of the system response,
in comparison with the linear case. Also, the random nonlinearity generates system responses which exhibit
asymmetric and multimodal probability distributions.

Keywords. nonlinear dynamics, continuous-discrete system, uncertainty quantification, Monte Carlo method,
parametric probabilistic approach

1 INTRODUCTION

Many structures of interest in engineering applications are modeled as distributed parameter systems coupled
with discrete elements. This case is extremely common when one leades with a large structure, coupled with a
small structural element, and this small device influences significantly the global behavior of the structure. Just
to cite some examples, drillstrings (Ritto et al., 2013), carbon nanotubes (Murmu and Adhikari, 2011), naval
structure (Rossit and Laura, 2001), etc. may be modeled in this way.

Due to the variability of parameters such physical constants, geometry, etc, these models are subject to a type
uncertainty called data uncertainty. Also, wrong hypotheses about the physics of the system under analysis can
be done, which results in the so called model uncertainty. To increase the reliability of these predictive models,
it is extremely important to quantify these uncertainties (Soize, 2013).

This work intends to analyze the influence of a random cubic spring in the longitudinal dynamics of a elastic
bar, excited by a Gaussian white noise. It a theoretical study, which uses a parametric probabilistic approach
(Schuëller, 1997, 2007) to analyze the influence of a coupled discrete element into the stochastic dynamics of a
nonlinear mechanical system.

The organization of the paper is as follows. The section 2 the deterministic and the stochastic modeling
of the physical system of interest. In the section 3, some configurations of the model are analyzed in order to
characterize the effect of the random cubic spring in the longitudinal dynamics of the system. Finally, in the
section 4, the conclusions of the work are reemphasized.

2 MATHEMATICAL MODELING

2.1 Nominal (deterministic) model

The physical system of interest in this work, sketched in the Fig. 1, consists of an elastic bar which the left
side is fixed at a rigid wall, and the right side is attached to a lumped mass and two springs (one linear and one
nonlinear). This bar has a length L, cross section area A, and is made of a material with mass density ρ and
elastic modulus E. It loses energy through a mechanism of viscous dissipation, with damping coefficient c. The
stiffness constants of the linear and the nonlinear springs are respectively denoted by k and kNL. The lumped
mass on the right extreme is m.
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Figure 1: Sketch of a bar fixed at one and attached to two springs and a lumped mass on the other extreme.

Accordingly, the bar displacement u(x, t) evolves according to

ρA
∂2u

∂t2
+ c

∂u

∂t
=

∂

∂x

(
EA

∂u

∂x

)
+ f(x, t) (1)

−

(
ku+ kNLu

3 +m
∂2u

∂t2

)
δ(x− L),

where the symbol δ(x − L) denotes the delta of Dirac distribution at x = L, and f is a distributed external
force, which depends on the position x and time t.

The boundary conditions for this problem are

u(0, t) = 0, and EA
∂u

∂x
(L, t) = 0, (2)

while the initial conditions read as

u(x, 0) = u0(x), and
∂u

∂t
(x, 0) = v0(x), (3)

being u0 and v0 known functions of x.
Using the Galerkin method (Hughes, 2000) to construct an approximation to the solution of the bound-

ary/initial value problem above, one has

u(x, t) ≈
N∑

n=1

un(t)φn(x), (4)

where the time-dependent functions un are the unknowns of the discretization, and the basis functions are

φn(x) = sin

(
νn x

cL

)
, (5)

with νn the n− th natural frequency of the system, and cL =
√
E/ρ.

This procedure results in the following initial value problem

[M ] ü(t) + [C] u̇(t) + [K]u(t) = f(t) + fNL

(
u̇(t)

)
, (6)

u(0) = u0 and u̇(0) = v0, (7)

which is integrated using a Newmark scheme (Hughes, 2000). In this initial value problem, u(t) is the vector of
unknowns, [M ] is the mass matrix, [C] is the damping matrix, [K] is the stiffness matrix. Also, f(t), fNL

(
u(t)

)
,

u0, and v0 are vectors which, respectively, represent the external force, the nonlinear force, the initial position,
and the initial velocity.
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2.2 Stochastic model

To introduce randomness in the physical system, the nonlinear spring stiffness kNL is modeled as a gamma
distributed random variable, which has probability density function (PDF) given by

pkNL
(ξ) = 1(0,∞)

1

µkNL

(
1

δ2kNL

) 1

δ2kNL


1

Γ(1/δ2kNL
)

(
ξ

µkNL

) 1

δ2kNL

− 1


exp

(
− ξ

δ2kNL
µkNL

)
, (8)

where µkNL
is the mean value, and 1 ≤ δkNL

≤ 1/
√

2 a dispersion parameter.
For the sake of modeling consistency, this distribution was specified using the maximum entropy principle,

as suggested by Soize (2013). This approach takes into account only the information that is assumed to know
about the distribution of the random parameter. In the absence of experimental data, to the best of the authors’
knowledge, this is the most conservative way to specify a probability distribution.

On the other hand, the distributed external force acting on the bar is arbitrarily assumed to be

F (x, t, θ) = σφ1(x)N(t, θ), (9)

where σ is the force amplitude, φ1 the first elastic mode of the bar, and N(t, θ) is a Gaussian white-noise with
zero mean and unit variance.

Thus, the stochastic dynamics of the structure (after the discretization in space) is described by the following
stochastic initial value problem

[M ] Ü(t, θ) + [C] U̇(t, θ) + [K]U(t, θ) = F(t, θ) + fNL

(
U̇(t, θ)

)
, (10)

U(0, θ) = u0 and U̇(0, θ) = v0, (11)

where the random processes U and F respectively represent the vector of unknowns and the external force.
To calculate the propagation of uncertainties of the random parameters through the nonlinear dynamics of

the bar, the Monte Carlo (MC) method (Robert and Casella, 2010), (Cunha Jr et al., 2014) is used.

3 NUMERICAL EXPERIMENTATION

The frequency band of interest in this problem is fixed as B = [0, 23.8] kHz. In this way, the evolution of the
nonlinear dynamical system is investigated for a “temporal window” defined by the interval [t0, tf ] = [0, 30] ms,

using a time step ∆t = 2.16 × 10−5 s, and the deterministic parameters presented in Table 1. The initial
conditions are assumed to be zero velocity, and a non-zero displacement, which is the sum of the third order of
the system with a linear displacement. This initial displacement reaches the maximum at the right end of the
bar, and is used to “activate” the cubic non-linearity.

Table 1: . Nominal parameters used in the simulations.

parameter value unit

ρ 7900 kg/m3

E 203 GPa
A 625π mm2

L 1 m
c 5 N/s
k 650 N/m
σ 5 kN

A numerical study, indexed by the mean value of kNL, denoted by µkNL
, is performed in order to investigate

the effect of the nonlinearity (introduced in the system by the cubic spring) in the stochastic dynamics. To this
end, four values are considered µkNL

= 650× {0, 1012, 1013, 1014} N/m3.
Note that for the first case µkNL

= 0 and the problem is linear. Also, in all the cases in which µkNL
6= 0, the

dispersion factor of the distribution is δkNL
= 0.2. It is considered as the nominal (deterministic) model, the

one which has the parameters of the Table 1, kNL = µkNL
, and f(x, t) = σφ1(x).
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= 650× 1014

Figure 2: This figure illustrates the convergence metric of MC simulation as a function of the number of realizations, for
several values of µkNL .

3.1 Study of convergence of the approximations

Initially it is analyzed the convergence of the approximations constructed for the deterministic and stochastic
models. For the deterministic case, one takes into account the convergence of the Galerkin method, which is
evaluated using as metric the L2 norm of the difference between two successive approximations. In this case,
an approximation built with 10 bases functions is sufficient to ensure a residue of O (10−6), and is used in all
the simulations reported in this work.

On the other hand, in the stochastic case, is necessary to assess the convergence of MC simulation. For this
purpose, it is taken into consideration the following metric

conv(ns) =

 1

ns

ns∑
n=1

∫ tf

t=t0

∥∥U(t, θn)
∥∥2 dt

1/2

, (12)

where ns is the number of MC realizations, and ‖·‖ denotes the standard Euclidean norm. This metric allows
one to evaluate the convergence of the approximation U(t, θn) in the mean-square sense. See Soize (2005) for
further details.

The evolution of conv(ns) as a function of ns, for several values of µkNL
, can be seen in Fig. 2. Note that

for ns = 4096 the metric value has reached a steady value in all cases studied. So, all the stochastic simulations
reported in this work use ns = 4096.

3.2 Propagation of uncertainties through the system

In this section it is analyzed, in a qualitative manner, how the uncertainties (due to randomness of kNL and
the external forcing) are propagated through the model.

One can observe in Fig. 3, for different values of µkNL
, the evolution of the of the bar right extreme dis-

placement. Are represented in the same graph, the displacement mean value (blue line), its nominal value (red
line), and an envelope of reliability (grey shadow), wherein a realization of the stochastic system has 98% of
probability of being contained. Figure 4 presents the same information for the bar right extreme velocity.

Note that, when µkNL
= 0, the difference between the nominal and the mean value of the responses are

virtually nonexistent. This is due to the linearity of this system, combined with the symmetry of the external
forcing with respect to its mean value. This combination almost cancels the random effects.

A completely different situation can be envisioned when µkNL
6= 0, once now there is a nonlinearity active

in the dynamical system. Note that now the confidence interval is clearly visible in the graphs, which indicates
a higher level of uncertainty in the system response.
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= 650× 1013
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(d) µkNL
= 650× 1014

Figure 3: This figure illustrates the mean value (blue line), the nominal value (red line), and a 98% of probability interval
of confidence (grey shadow) for the bar right extreme displacement, as function of the time, for several values of µkNL .

One can observe that, for all nonlinear cases studied, the amplitude of the confidence interval increases with
the time, which indicates that so does the level of uncertainty. This is also shown by the difference between
the nominal and the mean value of the response, which initiate close and over time become very different. This
increase in the amplitude of the confidence interval, and consequently, in the level of uncertainty of the response,
is a direct result of the accumulation of uncertainties over the evolution of the dynamical system.
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(c) µkNL
= 650× 1013
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Figure 4: This figure illustrates the mean value (blue line), the nominal value (red line), and a 98% of probability interval
of confidence (grey shadow) for the bar right extreme velocity, as function of the time, for several values of µkNL .
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= 650× 1014

Figure 5: This figure illustrates estimations to the PDFs of the (normalized) bar right extreme displacement at the
instant of time t = 30 ms, for several values of µkNL .

3.3 Probability distribution of the system response

This section presents the analysis of the probability density function (PDF) associated with the the response
of the dynamical system under study. In Fig. 5, one can observe, for different values of µkNL

, estimations for the
PDFs of the (normalized1) displacements of the bar right extreme at the instant t = 30 ms. Figure 6 presents
the same information for the bar right extreme velocity at t = 30 ms.

Note that for the linear system (µkNL
= 0) the PDF estimation remind a Gaussian. This is not surprising, as

the forcing acting on the system is of Gaussian nature, and this one is invariant under linear systems. However,
something interesting happens in the cases where there is a nonlinearity. Asymmetries with respect to the
mean value begin to be observed. When µkNL

= 650 × 1012, the asymmetry in the displacement is small,
but more pronounced for µkNL

= 650 × {1013, 1014}. It is also possible to see a multimodal behavior on the
displacement PDFs, which indicates a high number of realizations close to the values that correspond to the
peaks. Regarding the velocity PDFs, asymmetries and multimodality are evident and, well pronounced, when
µkNL

= 650× {1012, 1013}, but discrete or non-existent in the case of µkNL
= 650× 1014.

4 CONCLUDING REMARKS

In this work it was discussed the the effects induced by a random cubic spring, on the longitudinal damped
dynamics of an elastic bar, which is also coupled with linear spring and a lumped mass, excited by a Gaussian
white noise. This continuous mechanical system, coupled with discrete elements, is relevant in the study of
structures that are coupled to small elements, whose dimensions are negligible when compared to the dimensions
of the structure, but the coupling effects has influence on the dynamic behavior of the physical system. The
analysis of the system was performed, indexed by the mean value of the cubic spring stiffness, and shows that
the level of uncertainty of the system response, in comparison with the linear case, increases a lot with the
time. The study developed also shows that the random cubic nonlinearity induces asymmetric and multimodal
probability distributions in the system response.
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Figure 6: This figure illustrates estimations to the PDFs of the (normalized) bar right extreme velocity at the instant of
time t = 30 ms, for several values of µkNL .
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