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Abstract: The goal of this paper is to verify the influence of uncertainties in the identification of Volterra
kernels applied in a single degree-of-freedom nonlinear model with cubic stiffness. Stochastic modelling and
Monte-Carlo simulations were performed for the identification of the Volterra kernels considering variations in
the parameters of the motion equations, with the aim of verify how the kernels change with the presence of
uncertainties. The results are evaluated by establishing confidence intervals in the kernels. These results allow
to propose a statistical decision if the the kernels are representative of the nonlinear behavior of the systems
even with uncertainties.
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1. INTRODUCTION

It is known that many engineering structures have geometric and operating conditions, significant relation-
ships in materials and their excitations applications and loads leading to highly nonlinear effects. Thus, it
should necessarily be considered in the analysis of the dynamic behavior of such structures, according to many
authors (Virgin, 2000; Worden and Tomlinson, 2001; Kerschen et al., 2006). Volterra series expanded in Kautz
filters is a powerfull technique to identify nonlinear systems due to several reasons (Shiki et al., 2013b; da Silva,
2011a). Several papers as Shiki et al. (2013a), da Silva et al. (2010), Shiki et al. (2014), Hansen et al. (2014a)
e Hansen et al. (2014b) have shown the practical application of this approach.

However, experimental tests are full of uncertainties due to imperfections in measuring instruments or the
difficulty data acquisition (Oden et al., 2010). There are two types of uncertainties in mathematical-mechanical
modelling of real systems, the data uncertainties and the model uncertainties (Soize, 2005). One of the goals of
quantifying uncertainties is to predict the possible variations of the responses, obtained by the model, making
it possible to identify errors that may be obtained when compared with physical results and then establish
confidence limits (Iaccarino, 2009).

Thus, this paper deals with the uncertainty analysis in the models used in the Volterra kernels identification.
Analysis also, as the uncertainties may interfere in the functions and Kautz parameters used in the estimation
of Volterra kernels. Hence, it must defined confidence limits for identifying towards a future damage detection
in mechanical systems with nonlinear behavior, assuming uncertainties in its modeling.

2. VOLTERRA SERIES

The response x(k) of a nonlinear system can be approximated by discrete-time Volterra series using multiple
convolutions (Schetzen, 1980):
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x(k) =

+∞∑
η=1

Hη(k) = x1(k) + x2(k) + x3(k) + · · · (1)

where x1(k), x2(k), x3(k), · · · are the linear, quadratic, cubic and so on contributions of the output x(k) in
k = 1, · · · ,K (K is the number of time samples) and Hη(k) is the Volterra functional given by multidimensional
convolutions:

Hη(k) =

N1∑
n1=0

. . .

Nη∑
nη=0

Hη(n1, . . . , nη)

η∏
i=1

u(k − ni)

where u(k) is the input signal and Hη(n1, . . . , nη) are the η th-order Volterra kernels considering the truncated
values N1, . . . , Nη for each kernel.

The drawback of Volterra series is the difficulty of convergence of the series when using a large number
of terms N1, ..., Nη. Fortunately, the expansion of Volterra kernels in some orthonormal basis minimize the
problem, especially with the use of Kautz functions(Kautz, 1954; Heuberger et al., 2005; da Silva, 2011b).
Thus, the Volterra kernels can be written as:

Hη(n1, . . . , nη) ≈
J1∑
i1=1

. . .

Jη∑
iη=1

Bη (i1, . . . , iη)

η∏
j=1

ψij (nj) (2)

where J1, · · · , Jη are the number of samples in each orthonormal projections of the Volterra kernels Bη (i1, . . . , iη)
and ψij (ni) are the Kautz functions.

It is important to see that the order of projection Bη (i1, . . . , iη) is lower and easier to obtain than the order
of Volterra kernel given by Hη(n1, . . . , nη).

Thus, it is possible to rewrite the eq. (1) based on the orthonormal Kautz basis:

x(k) ≈
+∞∑
η=1

Bη(k) (3)

where Bη(k) is the η−th orthonormal Volterra functional operator:

Bη(k) ≈
J1∑
i1=1

. . .

Jη∑
iη=1

Bη (i1, . . . , iη)

η∏
j=1

lij (k)

that is a multiple convolution between the orthonormal kernel given by Bη (i1, . . . , iη) and lij (k), that is a simple
filtering of input signal u(k) by the Kautz function ψij (ni):

lij (k) =

V−1∑
ni=0

ψij (ni)u(k − ni) (4)

where V = max{J1, . . . , Jη}.
The values of orthonormal Volterra kernel Bη (i1, . . . , iη) can be grouped in a vector Φ and can be found by

solving:

Φ = (ΓTΓ)−1ΓTx (5)

where the matrix Γ contains lij (k) and x = [x(1) · · ·x(K)]. It is worth to note that η can be usually truncated
in 3 kernels to represent the most part of the structural nonlinearities with smooth behavior. In this work will
be used only the first and third kernels for symmetry in the response of the studied system.

2.1 Kautz functions

The Kautz functions perform well in representing the orthonormal kernels to identify the Volterra kernels in
oscillatory dynamic models, so they are used in this work (Kautz, 1954).

The Kautz functions ψ (z) are defined by conjugated complex parameters represented by β2g−1 = σ + jω
and β2g = σ − jω, where |β2g−1|,|β2g| < 1 for a stable system, where g represents the number of the kernel,
varying in this case 1 and 3. Thus, the Kautz functions of generalized form are given by:
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ψ2j−1(z) =

√
1− b2

√
1− c2

z2 + b(c− 1)z − c
[Hb,c(z)]

j−1 (6)

ψ2j(z) = ψ2j−1(z)
z − b√
1− b2

(7)

where Hb,c(z) = −cz2+b(c−1)z+1
z2+b(c−1)z−c and the values of b and c, for the parameters β2g−1, β2g considered are obtained

through relationships:

b =
β2g−1 + β2g
1 + β2g−1β2g

(8)

c = −β2g−1β2g (9)

where the definition parameters of the Kautz functions in continuous domain are a function of frequency (ωng)
and the damping factor (ξg):

βg = −ξgωng ± jωng
√

1− ξ2g (10)

A procedure for optimizing the choice of setting parameters of the Kautz functions (βg) must be used
(da Rosa et al., 2007; da Rosa, 2009).

3. APPLICATION IN A NONLINEAR BEAM

3.1 Nominal Model

Simulations were performed in a Duffing oscillator, representing the model of the cantilever beam (Figure
1). The motion equation of the beam can be described by:

3m′L

8
ẍ+

[
2EIπ4

L3
+ k

]
x+

EAπ4

8L3
xα = F (t) (11)

where E is the Young’s modulus, A is the area of the transversal section, I is the inertia’s moment, L is the
length, k is the stiffness of the resilient element, m′ is the distribution of mass m(x), F (t) is the excitation and
ẍ, ẋ e x are the acceleration, speed and displacement of the beam center, respectively. This model represents
the vibration in nonlinear regime in first mode region.

The equation for a Duffing oscillator also considering a viscous damping, is described by (Brennan and
Kovacic, 2011):

mẍ+ cẋ+ k1x+ k3x
α = F (t) (12)

where m is the the equivalent mass, c is the damping, k1 is the linear stiffness and k3 is the cubic stiffness.

Figure 1. Cantilever Beam (1st mode).

By dividing the eq. (12) by m and doing β = k3
m :

ẍ+ 2ζωnẋ+ ω2
nx+ βxα = F (t) (13)
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where ωn is the undamped natural frequency of the corresponding linear system, ζ is the damping ratio and β
is the nonlinear factor.

By comparing the three expressions of motion, it can find the system parameters through the following
expressions:

m = 3m′L
8 ωn =

√
Ehb3π4

6mL3 + k
m β = bhEπ4

8mL3 (14)

where b is the width and h is the thickness. The beam properties used in the simulations of this study are shown
in table 1.

Table 1. Geometricla and phyiscal properties of the cantilever beam.

Parameter Value
Young’s modulus (E) 62 GPa

Beam length (L) 0.92 m
Beam width (b) 25.4 mm

Beam thickness (h) 3.3 mm
Constant (k) 50 N/m

The parameters shown in the table 1 and the equations shown in 14 are used to determine the parameters
of the motion equation for the Duffing oscillator. The results are described in the table 2.

Table 2. Parameters to simulate the Duffing oscillator.

Parameter Value
α 3
ζ 0.01

ωn [Hz] 20
β [N/kg m3] 1.04× 109

This model is considered the nominal. It is worth observe that some parameters can be unknown or have some
uncertainty associated. Next sections describe some numerical simulation considering a sthocastic modelling of
some parameters to observe the changes in the Volterra kernels extracted in the system.

3.2 Stochastic model

Simulations were performed considering uncertainty in the Young’s modulus, which was modeled as a random
variable E. Considering that the Young’s modulus cannot be negative, we assumed the interval (0,∞) as the
support of this random variable. Also, it was considered that the expect value of E is a known real number
µE. For technical reasons, see Soize (2005) for details, we also suppose that the expected value of lnE is finite.
Using these conditions as known information, such as done in Cunha Jr and Sampaio (2015), the principle of
maximum entropy says that the probability density function (PDF) of this random variable is given by

pE(e) = 1(0,∞)
1

µE

(
1

δ2E

)(
1

δ2E

)
1

Γ(1/δ2E)

(
e

µE

)(
1

δ2E
−1

)
exp

(
− e

δ2E µE

)
(15)

where δE is the dispersion of the parameter, Γ indicates de gamma function, and 1(0,∞) denotes the indicator
function of the interval (0,∞). This PDF corresponds to a gamma distribution.

To compute the propagation of uncertainties of the random parameter E through the model, the Monte Carlo
(MC) method (Robert and Casella, 2010) is employed, using 2048 realizations of the deterministic dynamic
system, with µE = 62 GPa and δE = 0.1. All numerical simulations were performed using a sampling frequency
of 500 Hz and 4096 samples. The identification of the Volterra kernels was performed in two steps by using a
chirp signal with low amplitude (0.05 N), and high amplitude (0.5 N), both with frequency range from 15 to 25
Hz. The identification of the kernels was performed considering the variation of the system response, caused by
the presence of uncertainty in parameter E.
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3.3 Study of MC convergence

Cunha Jr and Sampaio (2014) used a method for determining the number of samples needed for the conver-
gence of the Monte-Carlo (MC) method when we consider the dynamic response of a mechanical system. The
method is based on Euclidean norm of the response signal used, be described as follows:

conv(ns) =

√√√√ 1

ns

ns∑
n=1

∫ tf

t=t0

||x(t, n)||2dt (16)

being, ns the number of samples used in MC simulations, || · || represents the standard Euclidean norm and
x(t, n) the response signal of the system.

For more details about this criteria can be found in Soize (2005). The convergence metric for MC simulations,
as a function of the number of realizations, can be seen in Figure 2. In these tests the output signal was obtained
by the Volterra kernels considering the high level chirp excitation. Note that convergence was achieved.
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Figure 2. Convergence test for the number of samples used in MC simulations.

3.4 Propagation of uncertainties through the system

Estimations for the normalized PDFs of �n and � are presented in Figure 3. In this context, normalized means
a distribution with zero mean and unit standard deviation. Also, in Figure 4 is shown the normalized PDFs
of the Kautz functions parameters �1, �3, �1, and �3, which were obtained by solving an optimization process.
We can observe certain similarity in the shape of �1, �3, and �n distributions. However, the distribution of �1
presents bimodal behavior, with maxima occurring at the (compact) support border. This support is compact
because limits were imposed for it, in the optimization process, to ensure that the model describes the system
behavior in linear terms. On the other hand, the PDF of �3 has multi-modal behavior and is completely different
from those observed in other distributions. This occurs, possibly, because this parameter is influenced by �n
and � during its determination process.

A band of reliability, defined as the mean value plus or minus one standard deviation, for the first kernel
and the main diagonal of the third kernel can be seen in Figure 5. One can note a certain level of dispersion in
the first kernel, due to the dependency of �n on E. The third kernel also shows significant dispersion around
the mean, because the Young’s modulus is related with �, and this parameter is related only with the nonlinear
fraction response.
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Figure 3. Estimations to the PDFs of �n and �.
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Figure 4. Estimations to the PDFs of �1, �3, �1 and �3.

The confidence band shown in Figure 6 are associated with the response and prediction of error obtained
using the Volterra kernels, for a chirp excitation, with frequency ranging from 15 to 25 Hz and low amplitude
(0.05 N). It may be noted a great variation in the output, which was expected by the large change of the first
kernel. The variation of the prediction error is acceptable, which justifies the limits used in the optimization
process.
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In Figure 7 is presented the linear and cubic contribution of the total response, obtained through the Volterra
kernels for a low input, and a confidence band (similar to the previous one) around then. Clearly, the system
behavior is linear in this case. The large variation in the linear contribution is due to the large dispersion
observed in the first kernel.
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Figure 5. Confidence band for Volterra kernels considering the mean ± one standard deviation. The mean is
represented by -.
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Figure 6. Confidence band for the response obtained by Volterra kernels considering low input. The mean is
represented by - and the mean ± one standard deviation is represented by -.

The confidence bands for the response and prediction error, obtained using the Volterra kernels for a chirp
excitation with frequency sweeping up from 15 to 25 Hz, considering the high force amplitude (0.5 N) are shown
in Figure 8. In Figure 9 is shown the linear and cubic contribution of the response for the same input. There
is no quadratic contribution by the symmetry of response. The prediction error is small, which shows a good
description of the model. There is large variation in the response which reflects the wide variation both linear
as cubic contribution. Because of the dispersion values of Young’s modulus are large, there is a big propagation
of uncertainty, leading to large variations in the response obtained, which should be reflected in difficulty in
damage detection.

4. FINAL REMARKS

The results obtained have shown that the Volterra kernels are sensible and with a large variation in function
of the parametric uncertainty in the value of the Young’s modulus. Experimental errors obtained in the data
acquisition have shown that the estimation of the Volterra kernel could difficult the process of identification
seeking damage detection. Further tests need to be performed to establish confidence limits to identify the
Volterra kernels.
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Figure 7. Confidence band for the contribution of Volterra kernels considering low input. The mean is repre-
sented by - and the mean ± one standard deviation is represented by -.
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Figure 8. Confidence band for the response obtained by Volterra kernels considering high input. The mean is
represented by - and the mean ± one standard deviation is represented by -.
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Figure 9. Confidence band for the contribution of Volterra kernels considering high input. The mean is repre-
sented by - and the mean ± one standard deviation is represented by -.
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Shiki, S.B., Noël, J., Kerschen, G., Lopes Junior, V. and da Silva, S., 2013a. “Identification of mechanical systems

with local nonlinearities through discrete-time Volterra series and Kautz functions”. In 11th International
Conference on Recent Advances in Structural Dynamics - RASD. Pisa, Italy. URL http://hdl.handle.

net/2268/151792.
Shiki, S.B., Hansen, C. and da Silva, S., 2014. “Nonlinear features identified by Volterra series for damage

http://unicamp.sibi.usp.br/handle/SBURI/12158
http://www.sciencedirect.com/science/article/pii/S0005109807000738
http://www.sciencedirect.com/science/article/pii/S0005109807000738
http://www.sciencedirect.com/science/article/pii/S0020746210001472
http://www.sciencedirect.com/science/article/pii/S0020746210001472
http://www.sciencedirect.com/science/article/pii/S0888327010004139
http://www.sciencedirect.com/science/article/pii/S0888327010004139
http://www.sciencedirect.com/science/article/pii/S0888327009001897
http://paginas.fe.up.pt/~eurodyn2014/CD/papers/279_MS11_ABS_1710.pdf
http://paginas.fe.up.pt/~eurodyn2014/CD/papers/279_MS11_ABS_1710.pdf
http://hal.archives-ouvertes.fr/hal-01022991/
http://www.sciencedirect.com/science/article/pii/S0888327005000828
http://www.sciencedirect.com/science/article/pii/S0888327005000828
http://siam.org/pdf/news/1842.pdf
http://hdl.handle.net/2268/151792
http://hdl.handle.net/2268/151792


Luis G. G. Villani, Samuel da Silva, Americo Cunha Jr
Uncertainty Analysis in Volterra Series Applied in a Nonlinear System

detection in a buckled beam”. In International Conference on Structural Nonlinear Dynamics and Diagnosis
- CSNDD 2014. Agadir, Morocco. URL http://www.matec-conferences.org/articles/matecconf/abs/

2014/07/matecconf_csndd2014_02003/matecconf_csndd2014_02003.html.
Shiki, S.B., Junior, V.L. and da Silva, S., 2013b. “Damage detection in nonlinear structures using discrete-time

Volterra series”. Key Engineering Materials, Vol. 569-570, pp. 876–883. URL http://www.scientific.

net/KEM.569-570.876.
Soize, C., 2005. “A comprehensive overview of a non-parametric probabilistic approach of model uncertainties

for predictive models in structural dynamics”. Journal of Sound and Vibration, Vol. 288, No. 3, pp. 623 – 652.
ISSN 0022-460X. doi:http://dx.doi.org/10.1016/j.jsv.2005.07.009. URL http://www.sciencedirect.com/

science/article/pii/S0022460X05004542. Uncertainty in structural dynamics Uncertainty in structural
dynamics.

Virgin, L.N., 2000. Introduction to Experimental Nonlinear Dynamics. Cambridge University Press.
Worden, K. and Tomlinson, G.R., 2001. Nonlinearity in Structural Dynamics. Institute of Physics Publishing.

7. RESPONSIBILITY NOTICE

The authors are the only responsible for the printed material included in this paper.

http://www.matec-conferences.org/articles/matecconf/abs/2014/07/matecconf_csndd2014_02003/matecconf_csndd2014_02003.html
http://www.matec-conferences.org/articles/matecconf/abs/2014/07/matecconf_csndd2014_02003/matecconf_csndd2014_02003.html
http://www.scientific.net/KEM.569-570.876
http://www.scientific.net/KEM.569-570.876
http://www.sciencedirect.com/science/article/pii/S0022460X05004542
http://www.sciencedirect.com/science/article/pii/S0022460X05004542

	INTRODUCTION
	VOLTERRA SERIES
	Kautz functions

	APPLICATION IN A NONLINEAR BEAM
	Nominal Model
	Stochastic model
	Study of MC convergence
	Propagation of uncertainties through the system

	FINAL REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES
	RESPONSIBILITY NOTICE

