Frank Vega

ON UP VERSUS NP AND INFINITE TURING MACHINES

Keywords: 2000 Mathematics Subject Classification. Primary 68Q15, Secondary 11A07 P, NP, UP, NP-complete, Quadratic Congruences

We define a problem that we call General Quadratic Congruences. We show General Quadratic Congruences is an NP-complete problem. Moreover, we prove General Quadratic Congruences is also in UP. In this way, we demonstrate that UP = NP.

Introduction

P versus N P is a major unsolved problem in computer science [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. This problem was introduced in 1971 by Stephen Cook [START_REF] Arora | Computational complexity: A modern approach[END_REF]. It is considered by many to be the most important open problem in the field [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF].

In 1936, Turing developed his theoretical computational model [START_REF] Arora | Computational complexity: A modern approach[END_REF]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation. A deterministic Turing machine has only one next action for each step defined in its program or transition function [START_REF] Papadimitriou | Computational Complexity[END_REF]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [START_REF] Papadimitriou | Computational Complexity[END_REF].

Another huge advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [START_REF] Thomas | Introduction to Algorithms[END_REF]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [START_REF] Thomas | Introduction to Algorithms[END_REF].

In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF]. The class N P consists in those languages that can be decided in polynomial time by a nondeterministic Turing machine [START_REF] Goldreich | Np-Completeness[END_REF].

The biggest open question in theoretical computer science concerns the relationship between these classes: Is P equal to N P ? In 2002, a poll of 100 researchers showed that 61 believed that the answer was not, 9 believed that the answer was yes, and 22 were unsure; 8 believed the question may be independent of the currently accepted axioms and so impossible to prove or disprove [START_REF] William | The P=?NP poll[END_REF].

Another major complexity class is U P . The class U P has all the languages that are decided in polynomial time by a nondeterministic Turing machines with at most one accepting computation for each input [START_REF] Valiant | Relative Complexity of Checking and Evaluating[END_REF]. It is obvious that P ⊆ U P ⊆ N P [START_REF] Papadimitriou | Computational Complexity[END_REF]. Whether P = U P is another fundamental question that it is as important as it is unresolved [START_REF] Papadimitriou | Computational Complexity[END_REF]. All efforts to solve the P versus U P problem have failed [START_REF] Papadimitriou | Computational Complexity[END_REF]. Nevertheless, we prove U P = N P .

Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Arora | Computational complexity: A modern approach[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Arora | Computational complexity: A modern approach[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is, M (w) = "yes" [START_REF] Arora | Computational complexity: A modern approach[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, or if the computation fails to terminate [START_REF] Arora | Computational complexity: A modern approach[END_REF].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M (w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Arora | Computational complexity: A modern approach[END_REF].

For n ∈ N we denote by T M (n) the worst case run time of M ; that is

T M (n) = max{t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Arora | Computational complexity: A modern approach[END_REF]. We say that M runs in polynomial time if there exists k such that for all n, T M (n

) ≤ n k + k [1]. Definition 1.1. A language L is in class P if L = L(M)
for some deterministic Turing machine M which runs in polynomial time [START_REF] Arora | Computational complexity: A modern approach[END_REF].

We state the complexity class N P using the following definition. Definition 1.2. A verifier for a language L is a deterministic Turing machine M , where L = {w : M (w, c) = "yes" for some string c}. We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate.

Observe that, for polynomial time verifiers, the certificate is polynomially bounded by the length of w, because that is all the verifier can access in its time bound [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

Definition 1.3. N P is the class of languages that have polynomial time verifiers [START_REF] Sipser | Introduction to the Theory of Computation[END_REF].

In addition, we can define another complexity class called U P . Definition 1.4. A language L is in U P if every instance of L with a given certificate can be verified by a polynomial time verifier, and this verifier machine only accepts at most one certificate for each problem instance [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF]. More formally, a language L belongs to U P if there exists a polynomial time verifier M and a constant c such that if x ∈ L, then there exists a unique certificate

y with |y| = O(|x| c) such that M (x, y) = "yes", if x / ∈ L, there is no certificate y with |y| = O(|x| c) such that M (x, y) = "yes" [8].
A function f : Σ * → Σ * is a polynomial time computable function if some deterministic Turing machine M , on every input w, halts in polynomial time with just f (w) on its tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Let {0, 1} * be the infinite set of binary strings, we say that a language L 1 ⊆ {0, 1} * is polynomial time reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ p L 2 , if there exists a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 iff f (x) ∈ L 2
where iff means "if and only if". An important complexity class is NP-complete [START_REF] Goldreich | Np-Completeness[END_REF]. A language L ⊆ {0, 1} * is NP-complete if

(1) L ∈ N P , and

(2) L ≤ p L for every L ∈ N P . Furthermore, if L is a language such that L ≤ p L for some L ∈ NP-complete, then L is in NP-hard [START_REF] Thomas | Introduction to Algorithms[END_REF]. Moreover, if L ∈ N P , then L ∈ NP-complete [START_REF] Thomas | Introduction to Algorithms[END_REF]. If any single NP-complete problem can be solved in polynomial time, then every N P problem has a polynomial time algorithm [START_REF] Thomas | Introduction to Algorithms[END_REF]. No polynomial time algorithm has yet been discovered for any NP-complete problem [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. The distinct prime factors of a positive integer n >= 2 are defined as the ω(n) numbers p 1 , . . . , p ω(n) in the prime factorization

Results

n = p a1 1 × p a2 2 × . . . × p a ω(n)
ω(n) . Lemma 2.5. There will exist a constant α, such that there are infinite positive integers n which complies with ω(n) ≤ α × ln ln n.

Proof. The average order of ω(n) is ω(n) ∼ ln ln n [START_REF] Hardy | Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work[END_REF]. Consequently, it will exist the constant α. If the congruence x 2 ≡ i 2 (mod b) has a solution, that solution is necessarily a solution to each of the prime power congruences x 2 ≡ i 2 (mod p ei i) when p ei i divides b [START_REF] Nagell | Introduction to Number Theory[END_REF]. For any prime p r , a necessary condition for x 2 ≡ i 2 (mod p er r) to have a solution is for x 2 ≡ i 2 (mod p r) to have a solution (to see this, note that if x 2 -i 2 is divisible by p er r then it is certainly divisible by p r). Now, suppose x 2 ≡ i 2 (mod p er r) where p er r is a prime power which divides b . Then x 2 -i 2 ≡ (x -i) × (x + i) ≡ 0(mod p er r). Thus p er r divides the product (x -i) × (x + i) and so p r divides the product as well. If p r = 2 and p r divides (x -i) × (x + i), then this is because x ≡ i(mod p r) since the sum and the subtraction of two integers is even when both are even or odd at the same time. If p r is an odd prime and divides both (x -i) and (x + i), then p r would divide both their sum and their difference, 2 × x and -2 × i. Since p r is an odd prime, p r does not divide 2 and so p r would divide both x and i which can be translated to x ≡ i(mod p r). It follows that p r either divides (x -i) or (x + i) but not both. Since p r divides (x -i) × (x + i), it only divides one of (x -i) and (x + i). Therefore, either x ≡ i(mod p r) or x ≡ -i(mod p r).

In this way, we prove for every prime p r that divides b we will have either x ≡ i(mod p r) or x ≡ -i(mod p r). Conversely, if we find all the possible solutions to each of the prime congruences, then we can use the Chinese Remainder Theorem to produce a solution to the original problem, that is to find the value of i [START_REF] Thomas | Introduction to Algorithms[END_REF]. Since the Chinese Remainder Theorem can be solved in polynomial time O(ln β b), then the remaining order will depend on the computation of all possible solutions. Since we only have two possible choices for each prime factor, then the order will depend on O(2 ω(b)). Since ω(b) ≤ ω(b) ≤ α × ln ln b, then the final order will be of O(ln) such that M (a, b, c, d, x) = "yes" [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF].

β b × 2 α×ln ln b) = O(ln β b × ln α b) = O(ln k b) for a constant k = β + α.
The constant e exists because SQC ∈ N P . We denote this problem as CQC i .

Theorem 2.10. For every positive integer i we have that CQC i ∈ U P .

Proof. For i = 1, then CQC 1 = SQC and thus CQC 1 ∈ U P . Suppose for some i = k, then CQC k ∈ U P . Let's prove CQC k+1 ∈ U P . We will take an arbitrary instance (a, b, c, d) and some prime number p > 2 which does not divide b. The prime p can be taken in polynomial time in relation to log 2 b. Certainly, this can be done choosing a candidate from 3 to log 2 2 b because ω(b) ≤ log 2 b and the nth prime number is approximately equal to n × ln n < n 2 [START_REF] Nagell | Introduction to Number Theory[END_REF]. Let's take the number q = p ln 2 b . Since the congruence property

d × x 2 ≡ a(mod b) complies with q × d × x 2 ≡ q × a(mod q × b)
then Q(a, b, c, d, x) = true if and only if Q(q × a, q × b, c, q × d, x) = true. However, if the instance (a, b, c, d) ∈ CQC k+1 , then the instance (q×a, q×b, c, q×

d) ∈ CQC k because ω(q × b) = ω(b) + 1 ≤ (k + 1) × α × ln ln b + 1. Since p > 2 then q = p ln 2 b > b ln b . Therefore k × α × ln ln(q × b) > k × α × ln ln b ln b and this complies for k > 1 with k × α × ln ln b ln b = k × α × ln(ln b × ln b) = k × α × ln ln 2 b = 2 × k × α × ln ln b > (k + 1) × α × ln ln b + 1 ≥ ω(q × b).
In this way, we can reduce in polynomial time CQC k+1 to CQC k , since the calculation of q will be polynomial in relation to ln b if we use the exponentiating by squaring [START_REF] Thomas | Introduction to Algorithms[END_REF]. Since U P is closed under reductions and CQC k ∈ U P , it follows that CQC k+1 ∈ U P . Hence, by mathematical induction we have proved CQC i ∈ U P for every positive integer i [9]. Definition 2.11. A Turing machine is a quadruple M = (K, Σ, δ, s). K is a finite set of states; s ∈ K is the initial state. Σ is a finite set of symbols (we say Σ is the alphabet of M). We assume K and Σ are disjoint sets. Σ always contains the special symbols and : The blank and first symbol. Finally, δ is a transition function, which maps K ×Σ to (K ∪{h, "yes", "no"})×Σ×{←, →, -}. We assume that h (the halting state), "yes" (the accepting state), "no" (the rejecting state), and the cursors directions ← for "lef t", → for "right" and -for "stay", are not in K ∪ Σ.

We can define the infinite Turing machine formally using the above notions. Definition 2.12. An infinite Turing machine is a quadruple M = (K, Σ, δ, s), where Σ and s are exactly as an ordinary Turing machine, but the set K must contain infinite states. δ is a transition function that must reflect the complexities of infinite states. Intuitively, δ decides the next state as before, but also contains infinite actions (steps). Nevertheless, the final states are unique, that is there should be only one h (the halting state), "yes" (the accepting state) and "no" (the rejecting state) in M . Definition 2.13. We define the bit length of a Turing machine M as the string length of the encoding of M by the binary alphabet of the Universal Turing machine. A Turing machine M has an infinite bit length if M is an infinite Turing machine. We say that a Turing machine has a finite bit length when M is an ordinary Turing machine.

Theorem 2.14. If a language L is not in U P , then it would have a polynomial time verifier M j of infinite bit length such that this verifier machine only accepts at most one certificate for each problem instance of L.

Proof. In this case, the certificate is not longer useful and thus we can always pass a single constant string as certificate such that we will have M j (x, ρ) = "yes" if and only if x ∈ L and ρ = or M j (x, ρ) = "no" if and only if x / ∈ L or ρ = . Indeed, M j (x, ρ) can be decided in polynomial time because M j could decide every x ∈ L in polynomial time since it may store an infinite amount of program actions for the decision of elements in L and this will be a valid verification too. In addition, for every string ρ, M j can compute in polynomial time whether ρ = . Furthermore, since is a constant string, then there exists a constant e such that | | = O(|x| e) for every x ∈ L. Therefore, this kind of Turing machine M j of infinite bit length only accepts at most one certificate for each problem instance of L. Lemma 2.15. A language L is in U P if and only if it would have a polynomial time verifier M j of finite bit length such that this verifier machine only accepts at most one certificate for each problem instance of L.

Proof. This is a consequence of the self definition of the class U P . Theorem 2.16. GQC ∈ U P .

Proof. For every positive integer i the set CQC i contains infinite elements. Indeed, for some positive integer b there are infinite numbers n such that ω(b) = ω(n), because there are infinite prime numbers [START_REF] Nagell | Introduction to Number Theory[END_REF]. Since for every positive integer i we have that CQC i ∈ U P , then every language CQC i will have a polynomial time verifier M i , and this verifier machine only accepts at most one certificate for each problem instance of CQC i [START_REF] Hemaspaandra | Unambiguous Computation: Boolean Hierarchies and Sparse Turing-Complete Sets[END_REF]. We denote l(M i) as the bit length of M i . We also denote |CQC i | as the cardinality of CQC i . Certainly, lim i→∞ Theorem 2.17. U P = N P .

Proof. Since GQC will be complete for N P , thus all language in N P will reduce to U P . Since U P is closed under reductions, it follows that U P = N P .

Conclusions

There is a previous known result which states that P = U P if and only if there are no one-way functions [START_REF] Papadimitriou | Computational Complexity[END_REF]. Indeed, for many years it has been accepted the P versus U P question as the correct complexity context for the discussion of the cryptography and one-way functions [START_REF] Papadimitriou | Computational Complexity[END_REF]. For that reason, the proof of Theorem 2.17 negates this current idea and also the belief that U P = N P is a very unlikely event. In addition, this demonstration might be a shortcut to prove P = N P , because if anybody proves that P = U P , then he will be proving the outstanding and difficult P versus N P problem at the same time [START_REF] Fortnow | The Golden Ticket: P, NP, and the Search for the Impossible[END_REF]. Furthermore, if we obtain a possible proof of P = N P , then this work would also contribute to show P = U P .

Definition 2 . 1 .

 21 Given five positive integers a, b ,c, d and x, the boolean function Q(a, b, c, d, x) is true if and only if x < c and d × x 2 ≡ a(mod b) [9]. Definition 2.2. QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b and c, such that we have the prime factorization of b. QUESTION: Is there a positive integer x such that Q(a, b, c, 1, x) = true? We denote this problem as QC. QC ∈ NP-complete [4]. Let's define another problem. Definition 2.3. GENERAL QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b, c and d, such that we have the prime factorization of b. QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true? We denote this problem as GQC. Theorem 2.4. GQC ∈ NP-complete. Proof. Since we can check Q(a, b, c, d, x) = true in polynomial time, then GQC ∈ N P . Indeed, the certificate x will be polynomially bounded by any instance (a, b, c, d) when Q(a, b, c, d, x) = true because x < c. In addition, we can reduce every instance (a, b, c) of QC into an instance (a, b, c, 1) of GQC in polynomial time where (a, b, c) ∈ QC iff (a, b, c, 1) ∈ GQC. Since QC ∈ NP-complete then GQC ∈ NP-complete.

Theorem 2 . 6 .

 26 Given four positive integers a, b, c and d, such that we have the prime factorization of b and ω(b) ≤ α × ln ln b, then we can check whether a positive integer x is the minimum that complies Q(a, b, c, d, x) = true in order O(ln k b) for a constant k. Proof. Suppose we have a positive integer i such that 0 < i < x and Q(a, b, c, d, i) = true. Hence, we will obtain d × x 2 ≡ d × i 2 (mod b). Moreover, by a property of congruences we have x 2 ≡ i 2 (mod b) where b = b (d,b) and (d, b) is the greatest common divisor of d and b [9]. We can find (d, b) in polynomial time in relation to ln b just multiplying into a single number each maximum prime power p ei i that divides b when also p ei i divides d. This is possible because we have the prime factorization of b. We are going to assume b = 1, because in case of (d, b) = b then x should be necessarily equal to 1.

Definition 2 . 7 .Theorem 2 . 8 .

 2728 SIMPLE QUADRATIC CONGRUENCES INSTANCE: Positive integers a, b, c and d, such that we have the prime factorization of b and ω(b) ≤ α × ln ln b. QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true? We denote this problem as SQC. SQC ∈ U P . Proof. We show a polynomial time verifier, and this verifier machine only accepts at most one certificate for each problem instance of SQC [8]. Given five positive integers a, b, c, d and x, we define the verifier machine M for SQC as follows: M (a, b, c, d, x) = "yes"iff x is the minimum such that Q(a, b, c, d, x) = true. SQC belongs to U P because the verifier M can run in polynomial time as we proved in Theorem 2.6 and there will be a constant e such that if (a, b, c, d) ∈ SQC, then there is a unique certificate x with |x| = O(|(a, b, c, d)| e) such that M (a, b, c, d, x) = "yes", if (a, b, c, d) / ∈ SQC, there is no certificate x with |x| = O(|(a, b, c, d)| e

Definition 2 . 9 .

 29 COMPLEX QUADRATIC CONGRUENCES ON I INSTANCE: Positive integers a, b, c and d, such that we have the prime factorization of b and ω(b) ≤ i × α × ln ln b for a positive integer i. QUESTION: Is there a positive integer x such that Q(a, b, c, d, x) = true?

 every CQC i has infinite elements and the bit length of M i is finite becauseCQC i ∈ U P . Thus lim i→∞ l(Mi) |CQCi| = limi→∞ l(Mi)limi→∞ |CQCi| = 0. Moreover, we can assure that lim i→∞ |CQC i | = |GQC|, because lim i→∞ CQC i = GQC. Therefore, we obtain limi→∞ l(Mi) |GQC| = 0. By the definition of M i , we get lim i→∞ M i = M GQC where M GQC is a polynomial time verifier such that this verifier machine only accepts at most one certificate for each problem instance of GQC. However, M GQC might have an infinite bit length. Indeed, M GQC has a finite bit length if and only if GQC ∈ U P . Consequently, limi→∞ l(Mi) |GQC| = l(M GQC) |GQC| = 0. Since GQC contains infinite elements and l(M GQC) |GQC| = 0, then M GQC has a finite bit length and thus GQC ∈ U P .