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Abstract

The current paper proposes a method to detect mechanical faults in rotating machines
using three-phase electrical currents analysis. The proposed fault indicator relies on the
use of instantaneous symmetrical components (ISCs), followed by a demodulation step en-
hancing the small modulations generated in electrical signals by mechanical faults. The
limitations due to the multi-component nature of electrical signals, as well as to the noise
naturally present in the measured signals are studied and taken into account in order to
elaborate a proper and efficient algorithm to compute a mechanical fault indicator. It is
theoretically shown that the ISCs based approach results in an increase of the signal-to-
noise ratio compared to a single-phase approach, finally leading to an improvement of early
fault detection capabilities. This result is validated using both synthetic and experimental
signals where the proposed method is used to detect bearing faults and the obtained results
are compared to single-phase results.

Keywords: Instantaneous symmetrical components, three-phase electrical signals,
electrical rotating machines, bearing faults, condition monitoring

1. Introduction

Nowadays, three-phase rotating machines are widely used in most industries like manu-
facturing plants (e.g. paper mills), transportation (e.g. electric vehicles) or power generation
(e.g. wind turbines). Particularly, three-phase induction machines are most commonly used
due to their robustness and lower price. Either used as electric generators to convert me-
chanical energy to electrical energy, or as electric motors to convert the energy in the other
direction, three-phase rotating machines are a connecting component between a mechanical
system and an electrical one. Such electro-mechanical systems are subject to both electrical
and mechanical faults. In this paper the focus is set on mechanical faults generating load
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torque oscillations on the machine shaft. Such faults consist for example in bearing faults or
gearbox faults, and can be located in the machine itself, as well as in a connected mechanical
system, i.e. in the drive-train.

Several condition monitoring methods have been developed in order to detect mechanical
faults using electrical quantities involved in such machines. In particular, condition monitor-
ing through stator current analysis, also known as motor current signature analysis (MCSA),
is now well developed for single-phase currents [1]. This method relies on the fact that such
faults generate amplitude and phase modulations in stator currents [2, 3]. One important
point concerning single-phase approaches is that the information contained in each stator
current is slightly different from phase to phase due to initial phase shifts, amplitude and/or
phase unbalance, high frequency components, measurement noise, etc. Therefore, methods
based on the analysis of single-phase currents use only one part of the whole information
available in the three-phase system.

As a consequence, current research in the field of condition monitoring of three-phase
systems focuses on developing methods taking into account three-phase quantities. In order
to efficiently combine and process the information contained in the three phases as a whole,
several three-phase transforms have been used such as the Fortescue transform [4] or the
Clarke/Concordia transform [5]. In [6], all these transforms are shown to be equivalent,
finally leading to the instantaneous symmetrical components (ISCs). More particularly, the
positive-sequence ISC of the stator currents is generally demodulated to detect mechanical
faults in three-phase rotating machines. For example, the so-called Extended Park’s Vector
Approach (EPVA) [7] computes the squared modulus of this component in order to estimate
and analyze its instantaneous amplitude to detect bearing failures. In [8], the instantaneous
frequency of the positive-sequence ISC is estimated and used to monitor mechanical faults
inducing load-torque oscillations on the machine shaft. The positive-sequence ISC obtained
with a Concordia transform is amplitude and frequency demodulated in [9], [10], [11] and [12],
and the obtained results are compared to several other demodulation techniques. In all these
studies, two major points have been identified as limitations. Firstly, while the noise natu-
rally present in measured signals may hide incipient fault signatures and deteriorate early
fault detection capabilities, none of the previous study investigate its specific influence on
the ISCs. Secondly, the demodulation steps of the positive-sequence ISC proposed in the
previous papers assume that this signal is a monocomponent analytic signal, which is gen-
erally false. Indeed, the presence of harmonics and/or electrical unbalance in three-phase
signals leads to the presence of different components with positive and negative frequency
in the positive-sequence ISC, and finally to extra-oscillations in the demodulated quantities.
These problems have been identified and partly solved in [13, 14], where a technique ded-
icated to the adaptive estimation of the fundamental frequency of balanced or unbalanced
three-phase signals has been proposed. Another interesting approach relying on a principal
component analysis (PCA) directly applied to three-phase electric signals has been proposed
in [11, 12]. This method has been studied under the assumptions of three-phase signals un-
balanced in amplitude only and without any additive noise, and properly demodulates the
signals in this particular case. The main drawback of [11] is that the PCA method assumes
monocomponent signals (no harmonics or other frequency components).
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The previous observations lead to the two major contributions of this paper. The first
one is a detailed study of the content of the ISCs in terms of periodic components as well
as noises. The second contribution is to propose a mechanical fault indicator relying on a
correct implementation of an amplitude and phase demodulation of the positive-sequence
ISC, even in the presence of harmonics, electrical unbalance, and white or colored additive
noises in electrical data. Beyond these two contributions, another interesting point is also ad-
dressed: while for electrical faults the advantage of using symmetrical components methods
for condition monitoring is stated as the separation of balanced and unbalanced compo-
nents [15], what is the real advantage of using three-phase approaches over single-phase
ones for mechanical faults detection? Some answers are provided to this important question
throughout the current paper, where it is shown that the proposed method improves early
faults detection capabilities by increasing the signal-to-noise ratio in the positive-sequence
ISC compared to single-phase currents. This last result is confirmed by simulated and ex-
perimental results obtained by comparing the proposed mechanical fault indicator relying on
a three-phase approach with the same indicator computed from single-phase currents only.

The next section of this paper gives the definition of the instantaneous symmetrical com-
ponents, their interpretation and argues their advantages compared to single-phase quanti-
ties. In Section 3, a single-phase current model for mechanical fault signature in electrical
signals is extended to three-phase current signals. A mechanical fault indicator relying jointly
on the proposed three-phase signal model and on instantaneous symmetrical components is
then developed with the corresponding estimation algorithm. Its performance is illustrated
in section 4 on experimental data acquired at the stator of a three-phase generator located
on a test-bench emulating a wind turbine, and compared to single-phase results. Finally,
the last section of this paper presents the overall conclusions of this research work.

2. Effect of the instantaneous symmetrical components transform

In this section, as well as in the rest of the paper, a complex-valued three-phase signal
model was used for the theoretical development, while a real-valued signal formulation was
used for the simulations. The choice of using a C-valued model is justified by the need for
clarity and to simplify computations. However, since real world signals are R-valued, such
a formulation was used for the simulations.

2.1. Three-phase electrical signal model
In order to study the effect of the ISC transform on three-phase signals, we consider

the three-phase currents signals formulation as in Equation (1), where the complex-valued
formulation of the signals model was chosen in order to simplify further theoretical compu-
tations.

i(t) = a.ej2πf0t + n(t) (1)

In (1), the vector i(t) =
[
i1(t) i2(t) i3(t)

]T comprises the three current signals, the
vector a =

[
A1 A2 A3

]T contains the complex-valued amplitudes (or phasors) of the
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signals around the fundamental frequency f0 and n(t) =
[
n1(t) n2(t) n3(t)

]T contains the
additive noise present in the three-phase currents. As formulated, the signal model contains
a periodical part corresponding to the fundamental component and a random part describing
the noise. For clarity, the formulation is done under the assumption of stationary signals
and only the components around the fundamental frequency f0 are considered. As it will be
further shown, these assumptions do not constrain the validity of the results.

Ideal three-phase systems are perfectly balanced around their fundamental components,
meaning all three signals have the same amplitude and a phase shift of 2π

3
between each

other. In (1), this would lead to the vector a expressed as:

a = A
[
1 e−j 2π

3 ej
2π
3

]T
, with A ∈ C (2)

Real systems are never perfectly balanced and three-phase currents often contain an inherent
unbalance described as small amplitude differences and phase shifts slightly different from
the desired 2π

3
value. Thus, the complex amplitudes in a correspond to phasors of a three-

phase system with eventually unbalanced phases and amplitudes. The noise nk(t), with
k ∈ {1, 2, 3}, appearing on each phase is considered to be uncorrelated with the noise on
the other phases. This noise is also assumed second order stationary with a power spectral
density (PSD) Snk(f) not necessarily constant over f .

2.2. Instantaneous symmetrical components
Three-phase electrical systems are often analyzed with symmetrical components origi-

nally introduced by Fortescue in [4]. They allow to separate the balanced and unbalanced
parts of three-phase signals at their fundamental frequency, and are used for example to
detect winding faults in rotating machines [15]. Lyon generalized this approach in [16]
by applying the same concepts to time-dependent variables. This leads to instantaneous
symmetrical components (ISCs), further detailed in [6] and used in the rest of this paper.
Applied to the three-phase currents defined in equation (1), the corresponding transform
expresses as: 


i+(t)
i−(t)
i0(t)


 =

1

3




1 a a2

1 a2 a
1 1 1




︸ ︷︷ ︸
F−1



i1(t)
i2(t)
i3(t)


 (3)

where a = ej
2π
3 , F−1 denotes the inverse of the Fortescue matrix [4], and the instantaneous

symmetrical components of the original three-phase signal i(t) are:

• i+(t) the positive-sequence ISC,

• i−(t) the negative-sequence ISC,

• i0(t) the zero-sequence ISC.
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In the rest of this paper, the transform defined in Eq. (3) is named instantaneous symmetrical
components transform or ISC transform.

If the transform in (3) is applied to perfectly balanced three-phase signals around the
fundamental frequency (Equation (1) and taking (2) into account), the resulting positive-
sequence ISC can be expressed as:

i+(t) = Aej2πf0t + n+(t) (4)

In (4) the positive-sequence ISC contains a periodic component at the fundamental fre-
quency and n+(t) is a linear combination of the noises present in the phase signals. Indeed,
the component corresponding to the fundamental frequency of the positive-sequence ISC is
an analytic signal under balanced conditions. For the negative- and zero-sequence ISCs the
amplitude of the frequency component located at f0 would be null.

2.3. Separation of balanced and unbalanced parts
The main objective of using this transform has been stated as the property of separating

balanced and unbalanced components contained in a three-phase signal. Indeed, the bal-
anced part of the original three-phase signal is isolated in the positive-sequence component,
whereas the negative- and zero-sequence components contain its unbalanced parts. This
specific property can be understood for example by interpreting (3) as a set of projections.
By denoting the indices of the ISCs as m ∈ {+,−, 0} and αmk the coefficients of F−1 on
line m and column k, each ISC can be expressed as:

im(t) =
3∑

k=1

αmkik(t) =
3∑

k=1

(α∗
mk)

∗ ik(t) = 〈i(t),α∗
m〉 (5)

where ∗ denotes complex conjugation and 〈i(t),α∗
m〉 is the inner product between vectors

α∗
m and i(t).
Eq. (5) shows that each ISC can be expressed as an inner product between the vector of

original phase currents and the complex conjugate of the corresponding line of the inverse
Fortescue matrix. Equivalently, this relation can be considered as a projection of the phase
signals on new axes. As, for example, the complex conjugate of α+ = 1

3

[
1 a a2

]
describes

a perfectly balanced system of three-phase signals in a positive sequence order, the obtained
positive-sequence ISC i+(t) is actually a measure of similarity between the original three-
phase current and the ideal perfectly balanced one. Similar statements can also be made for
the negative- and zero-sequence ISCs. Moreover, in the case of a signal constituted by the
sum of several components and considering the linearity property of the ISC transform, it
can be concluded that each of the additive components of the original signals is projected
on the new axes. In this case, i+(t) contains the sum of the balanced parts of each additive
component composing the phase currents, while i−(t) and i0(t) contain the sum of their
unbalanced parts.
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2.4. SNR improvement
In order to show the signal-to-noise ratio (SNR) improvement provided by the use of the

ISC transform, we firstly determine the SNR of the phase currents modeled by Equation (1)
considering the given assumptions on the noises. Under these assumptions, the PSD Sik(f)
of each phase current can be expressed as in Equation (6), with δ(f − f0) denoting a Dirac
delta function located at frequency f0 and Snk(f) denoting the noise PSDs.

Sik(f) = |Ak|2δ(f − f0) + Snk(f) (6)

This equation enables the definition of a SNR for each phase current valid at the frequency
of interest f0:

SNRik(f0) =
|Ak|2
Snk(f0)

(7)

Using equations (5) and (1), each ISC can be written as:

im(t) =

(
3∑

k=1

αmkAk

)
ej2πf0t +

3∑

k=1

αmknk(t) (8)

and its power spectral density as:

Sim(f) =

∣∣∣∣∣
3∑

k=1

αmkAk

∣∣∣∣∣

2

δ(f − f0) +
3∑

k=1

|αmk|2Snk(f)

=

∣∣∣∣∣
3∑

k=1

αmkAk

∣∣∣∣∣

2

δ(f − f0) +
1

9

3∑

k=1

Snk(f) (9)

where |αmk| = 1
3
has been used in the last expression. In a similar way as for phase currents,

a SNR at frequency f0 can be deduced for each ISC:

SNRim(f0) =

∣∣∑3
k=1 αmkAk

∣∣2
1
9

∑3
k=1 Snk(f0)

=
|〈a,α∗

m〉|2
1
9

∑3
k=1 Snk(f0)

(10)

Equation (7) compares the amount of noise with the fundamental component at frequency
f0 for one phase current, while Eq. (10) does the same comparison for one ISC, i.e. after
the application of the ISC transform. The effect of this transform in terms of signal-to-noise
ratio can therefore be summarized thanks to the following SNR gain:

SNRim(f0)

SNRik(f0)
=
|〈a,α∗

m〉|2
|Ak|2

× Snk(f0)
1
9

∑3
k=1 Snk(f0)

(11)

The first term of the right hand side of Eq. (11) highlights the effect of the transform on the
fundamental component of frequency f0. More precisely, this term compares its magnitude
squared in the ISC m (numerator) and in the phase current k (denominator). The second

6



term focuses on the effect of the transform on uncorrelated noises by comparing the noise
power spectral density in the ISCs (denominator) and in the phase current k (numerator)
at frequency f0.

In order to get further insight into the effects of this transform, additional assumptions
can be done. Assume for example that the three phase currents contain the same amount
of noise at frequency f0 (Snk(f0) = Sn(f0)), and that their fundamental components are
perfectly balanced (as in Equation (2)). In that case, the quantity defined by Eq. (11) can
be explicitly expressed for each ISC as:

SNRi+(f0)

SNRik(f0)
=
|〈a,α∗

+〉|2
|A|2 × Sn(f0)

1
9

∑3
k=1 Sn(f0)

=
|A|2
|A|2 ×

Sn(f0)
1
3
Sn(f0)

= 3 (12)

SNRi−(f0)

SNRik(f0)
=

SNRi0(f0)

SNRik(f0)
= 0 (13)

This means that in this case and at frequency f0, the SNR is increased by a factor 3 in
i+(t) compared to original phase currents, and that the other two ISCs only contain noise.
In other words and as expected, the entire fundamental component of the phase currents is
projected onto i+(t) only, while the uncorrelated noises are uniformly spread over the three
ISCs. By the same way, if the fundamental component of the three-phase current contains
an unbalanced part, this part is entirely projected onto i−(t) and/or i0(t) depending on
the type of unbalance. This result is to be related to the one mentioned in [17], where
it is shown that for perfectly balanced three-phase signals the Cramer Rao Bound of the
frequency estimator is three times lower for the positive-sequence ISC than for single phase
approaches.

2.5. Spectral redundancy for real-valued signals
In practice, the proposed method is to be applied to real-valued signals which are related

to their complex-valued counterparts by the following equation:

iR(t) =
1

2
(i(t) + i∗(t)) (14)

When applied to real-valued signals (iR1 (t), iR2 (t), iR3 (t) ∈ R), Eq. (3) leads to ISCs verifying
i0(t) ∈ R and i+(t) = i∗−(t) ∈ C. In the frequency domain, these two properties express as
I0(f) = I∗0 (−f) and I−(f) = I∗+(−f) for f ∈ R. These two relations highlight a redundancy
in the spectral content of ISCs between positive and negative frequencies, which is illustrated
in Fig. 1 for the frequency f0. From this, it is clear that an exhaustive spectral analysis of
a given set of ISCs is obtained by analyzing their spectra only for positive frequencies. This
strategy is applied in the rest of this paper where an exhaustive spectral analysis of the ISCs
around the stator fundamental frequency f0 is obtained by analyzing their spectral content
only around +f0.

This spectral redundancy of the ISCs leads to one important remark regarding the pos-
itive and negative sequence components and analytic signals. That is, while i+(t) and i−(t)
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f− f0

I∗0 ( f0)

f0

I0( f0)

I0( f )

f− f0

I∗−( f0)

f0

I+( f0)

I+( f )

f− f0

I∗+( f0)

f0

I−( f0)

I−( f )

Figure 1: Graphical example of frequency redundancy in ISCs

are complex valued signals, they may have components with negative frequencies and con-
sequently are not analytic signals as graphically shown in Fig. 1. This remark leads to the
fact that classical demodulation techniques (i.e. taking the modulus and the derivative of
the phase angle) are not defined to be applied directly on the symmetrical components. In
other words, instantaneous amplitude and frequency defined on the whole quantity i+(t) do
not have a correct physical meaning [18].

2.6. Simulation results
In order to illustrate the above presented effects of using the ISC transform, a set of three

synthetic phase current signals has been generated based on the formulation of (15). This
three-phase signal model, fully justified by the model given in Equation (19) in Section 3 and
representative for experimental data presented in Section 4, is based on existing bibliography
on mechanical faults signature in single-phase current signals which shows that mechanical
faults inducing load torque oscillations lead to phase modulations in current signals [19].

iR(t) = ia cos (2πf0t+ϕA) + ib cos (2πf0t+ϕB + p(t)) + n(t) (15)

where:

• f0 = 50 Hz is the fundamental frequency;

• nk(t), k ∈ {1, 2, 3} are three centered and uncorrelated white Gaussian noises with
different variances;

• ia contains the amplitudes of the non-modulated part of the signals whereas ϕA con-
tains the phase shifts between their non-modulated parts. These parameters are set
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as ia = 2 ∗
[
0.98 1 1

]T and ϕA =
[
π
6

π
6
− 2π

3
+ π

12
π
6
− 4π

3

]T , thus also comprising
a small quantity of unbalance as well as an initial phase shift of π

6
;

• ib contains the amplitudes of the phase-modulated part of the signals whereas ϕB
contains the corresponding phase shifts. These parameters are set as ib = 2∗

[
1 1 1

]T

and ϕB =
[
0 −2π

3
−4π

3

]T , thus describing a perfectly balanced system of three-phase
signals;

• p(t) represents the phase modulation, composed of a sum of two cosines: one cosine at
3 Hz with a small amplitude such that it can be hidden by noises, and a second cosine
at 4 Hz with an amplitude much higher than the noise levels;

• fs = 1 kHz is the sampling frequency of the generated signals and their duration is
60 seconds.

In the end the ISC transform has been applied to these signals.
Fig. 2 depicts the power spectral densities (PSDs) of the individual phase signals, as well

as those of the resulting instantaneous symmetrical components estimated with Welch aver-
aged periodograms using a Hanning window of 214 samples, leading to a spectral resolution
of approximately 0.12 Hz clearly sufficient to separate the different components of interest.
Several aspects of the ISC approach are highlighted in this figure.

• While the noise floor has different levels on each phase quantity, the three ISCs present
an equal lower noise floor, as predicted by (9).

• The unbalance in the phase currents at their fundamental frequency triggers the ap-
parition of the peak at this frequency also in the instantaneous negative- and zero-
sequence components. However, as the amount of the unbalance is small, the content
in i−(t) and i0(t) is much smaller than the one in i+(t).

• The low amplitude modulations of 3 Hz are not visible in all phase signals PSDs. Due
to the improved SNR of the positive-sequence ISC predicted by (11), these modulations
are clearly visible in the PSD of i+(t) in Fig. 2b.

• The amplitude modulations of 3 and 4 Hz present in each phase signal are only present
in the PSD of i+(t) once the ISC transform is applied. This is due to the projection
property of the ISC transform, highlighting that only the balanced components of the
synthetic phase signals are modulated, while the unbalanced part is not.

In order to quantify the obtained SNR gain for the synthetic signals, the SNR was
estimated for each phase current as well as for the positive-sequence component. The noise
levels have been estimated based on the obtained PSDs by averaging over the frequency
bands which contain only noise (40 − 44 Hz and 56 − 60 Hz), while the signal power was
obtained by summing the PSD under a given peak and the noise under the peak has been
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(a) PSD of the current in phase 1
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(b) PSD of i+(t)
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(c) PSD of the current in phase 2
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(d) PSD of i−(t)
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(e) PSD of the current in phase 3
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(f) PSD of i0(t)

Figure 2: PSDs of the simulated current signals (left: phase quantities, right: instantaneous symmetrical
components)

subtracted. The results presented in Table 1 give the local SNR gain around the fundamental
frequency.

Table 1 shows that the SNR is indeed improved in the positive-sequence component
compared to each of the phase currents. The biggest SNR improvement is with respect to
the signal on phase 2, as expected since this corresponds to the poorest SNR of the three
phase ones. The lowest gain is obtained with respect to the signal on the third phase, as it
can be seen from its PSD in Figure 2 that this signal has the best SNR of the three.

To summarize, the ISC transform defined in Eq. (3) acts differently depending on the
nature of the components present in the phase currents at the frequency of interest. The
uncorrelated noises are uniformly spread over the three ISCs, while balanced and unbalanced
parts are entirely projected onto one specific ISC and by the same way separated from each
other. These properties are used in the next section to propose a mechanical fault indicator
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Table 1: Local SNR gains computed for the synthetic signals around +f0
SNRi+(f0)

SNRiR1
(f0)

= 2.89
SNRi+(f0)

SNRiR2
(f0)

= 4.57
SNRi+(f0)

SNRiR3
(f0)

= 1.76

taking into account the whole information contained in the three-phase current of a rotating
machine.

3. Mechanical fault indicator

Models for single-phase current signals have been developed in detail for mechanical
faults in induction motors [3]. It has been shown that such faults induce amplitude and/or
phase modulations in current signals, depending on the effect of the mechanical fault. In this
section the case of phase modulations due to load torque oscillations is detailed. The choice
of this model is based on two main reasons: the model is complex enough to demonstrate
the various effects of the ISC transform, and it corresponds to the type of fault contained in
the experimental data used in Section 4. However, the same algorithm is applicable to the
detection of all mechanical faults, regardless of the type. Moreover, the proposed method is
based on a signal model containing modulations (due to mechanical faults) rather than on
a specific machine model, thus allowing it to be generic in terms of machine type.

3.1. Signal model
In case of load torque variations in induction motors, a signal model for the stator current

in an arbitrary phase has been proposed in [19] and [3], and is often used to propose and
justify mechanical fault indicators. The literature model suggests that in case of mechanical
faults which induce load torque variations, the stator current is a sum of two components:
a non-modulated component and a modulated one, as expressed in Equation (16).

iR(t) =Is cos(2πf0t+ ϕs)

+ Ir cos(2πf0t+ ϕr + β cos(2πfmt+ ϕm)) (16)

Eq. (16) shows the two components, where iR(t) is the stator current in one arbitrary
phase, Is and Ir are the amplitudes of the current components resulting from the stator
and the rotor magnetic fields, f0 is the stator fundamental frequency, ϕs and ϕr are initial
phase shifts and the fault signature is characterized by the phase modulation index β, its
characteristic frequency fm and its initial phase shift ϕm. Obviously, the healthy case is
obtained by setting β = 0 in this equation.

The current signal formulation given in Eq. (16) can be rewritten in a more compact
form using phasor notations, leading to Equation (17).

i(t) = Aej2πf0t +Bej(2πf0t+p(t)) (17)

In Eq. (17), the described quantities are:

• i(t) - the current signal in one arbitrary phase;
11



• f0 - the fundamental frequency;

• A and B - the complex amplitudes of the non-modulated and modulated parts of the
signal, containing the amplitude of the respective components, as well as their initial
phase;

• p(t) - which models the fault signature and may contain several modulating frequencies
(as a sum of cosines for example).

In this equation, the amplitudes and fundamental frequency are constant because the model
is developed under the assumption of stationary operating conditions, which has been made
for the sake of simplicity.

Furthermore, in order to consider the three signals that can be measured in a three-phase
electrical system, (17) can be updated to account for phase specific parameters, as described
in (18).

ik(t) = Ake
j2πf0t +Bke

j(2πf0t+p(t)) (18)

As k ∈ {1, 2, 3} denotes the index of each specific phase number, ik(t) represents the signal
in each phase. Ideal three-phase systems are defined as being perfectly balanced; however,
real systems also contain an inherent unbalance described as small amplitude differences
and phase shifts slightly different from the desired 2π

3
value. Thus, the complex coefficients

Ak and Bk in (18) contain the balanced amounts, as well as the eventual unbalance terms.
For a more compact expression, Eq. (19) gives a vectorial formulation of three-phase

currents, where the component n(t) has been added to model the additive and stationary
noise contained in three-phase signals (such as measurement noise). Thus, the signal model
proposed by (19) is composed of a periodic part described by the first two factors and a
random part described by the noise component.

i(t) = aej2πf0t + bej(2πf0t+p(t)) + n(t) (19)

In (19), the vector i(t) =
[
i1(t) i2(t) i3(t)

]T comprises the three current signals, the
vectors a =

[
A1 A2 A3

]T and b =
[
B1 B2 B3

]T contain the complex-valued amplitudes
of the non-modulated and phase modulated parts of the signals around the fundamental
frequency f0 and n(t) =

[
n1(t) n2(t) n3(t)

]T contains the additive noise present in the
three-phase currents.

The two components of frequency f0 appearing in Eq. (19) can equivalently be merged
into one single component of frequency f0 with a time-varying complex amplitude:

i(t) = c(t)ej2πf0t + n(t) (20)

where c(t) = a + bejp(t). The consequence of Eq. (20) is that electrical signatures of load
torque variations in the three phase currents of the machine are both amplitude and phase
modulations of the fundamental component when considered as a single sine wave, as already
noticed in [19] and [9]. This remark justifies classical demodulation techniques often used
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on phase currents to detect such faults [20]. The goal of this section is now to apply the
same strategy to the instantaneous symmetrical components in order to take advantage of
their properties. Based on the fact that working three-phase electrical systems are mostly
balanced, the positive-sequence ISC of the currents contains most of the information, thus
making it a reasonable choice for mechanical fault detection. According to Eq. (20) and (8),
i+(t) can be written as:

i+(t) = C+(t)ej2πf0t + n+(t) (21)

where C+(t) is a time-varying complex amplitude, with time-varying modulus and phase.
This expression shows that as for the phase currents, phase modulations induced by load
torque variations are not only visible in the instantaneous phase or frequency of the fun-
damental component of i+(t), but in its instantaneous amplitude as well. The term n+(t)
describing the noise represents the resulting noise after applying the ISC transform on the
noise components present in the phase currents.

3.2. Estimation algorithm
In order to estimate the instantaneous amplitude and frequency of i+(t) around f0 and

extract fault signatures, a demodulation step can be used. As detailed in [21], if i+(t) is
narrowband i.e. with a spectral content concentrated around f0 and a bandwidth much
smaller than f0, it verifies the Bedrosian theorem and its instantaneous amplitude and
phase can be closely estimated through its analytic signal and the Hilbert transform [18].
In the rest of this paper, fault frequencies due to load torque oscillations are assumed to
be small compared to f0, ensuring that i+(t) is narrowband around f0 and that a Hilbert
demodulation technique reaches good performance in this case. This remark justifies the
structure of the algorithm described in Fig. 3 used to compute the desired fault indicators.

1
3




1 a a2

1 a2 a
1 1 1




ff0

|· |
· → 1

2π
d·
dt

PSD
estimation

∫
S( f )d fiR(t)

i+(t)
|i+(t)| f0

f+(t)
m|i+(t)| f0
m f+

Hilbert demodulation technique fault indicators computation

Figure 3: Structure of the algorithm for mechanical fault indicators computation

The first step of this algorithm is the application of the ISC transform defined in Eq. (3)
to the phase currents, which is a simple matrix product between the inverse Fortescue matrix
and the three-phase measured currents. This first operation returns the three instantaneous
symmetrical components corresponding to the three-phase current. The second and third
steps consist in applying a Hilbert demodulation technique to i+(t) around +f0 in order to
estimate the instantaneous amplitude and frequency of its fundamental component. This
is realized thanks to a complex-valued frequency-selective filter, with a central frequency
+f0 and a small bandwidth. The effect of this filter is to leave unchanged the component
of i+(t) around +f0 and greatly attenuate its other components. As explained in [22], this
operation is equivalent to extract the analytic signal of i+(t) around +f0 only, and can be
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realized thanks to a simple finite impulse response (FIR) digital filter with complex-valued
coefficients, designed using the window method. Based on Eq. (21), the output of this filter
mostly consists in C+(t)ej2πf0t added to a small residual noise. The instantaneous amplitude
and frequency of this analytic narrowband signal is then obtained thanks to its absolute
value and the time derivative of its instantaneous phase. The phase time derivative was
estimated using a central-difference differentiator, which has the advantage of limiting the
amplification of the high-frequency noise due to the differentiation operation. Equation (22)
gives the formula for such a differentiator, for a generic discrete signal denoted x [n].

xd [n− 1] =
x [n]− x [n− 2]

2
(22)

The last part of the algorithm consists in analyzing the variations of these two quantities
and highlighting the fault frequencies to deduce efficient fault indicators. This is realized by
first estimating their PSD, and then computing the sum of these PSDs over a given frequency
band around fault frequencies. Indeed, the mechanical fault frequencies to be detected are
considered to be known, based on system kinematics and operating conditions (i.e. shaft
rotating speed). Consequently, by summing the obtained PSDs over a small frequency band
B around each fault frequency, eventual faulty components can be detected. A normalized
version m of such an indicator [23] is given in (23).

m =

∫
(B)

S(f) df
∫
(B)

Sh(f) df
, (23)

where B denotes the chosen frequency band, Sh(f) denotes a reference PSD obtained for a
healthy system and S(f) is the current PSD obtained for the system in an unknown state.
In the case of an healthy condition, such an indicator stays obviously close to one, and tends
to increase if faulty components appear in signals.

3.3. Simulation results
Two sets of simulations are presented in this section. The first simulation uses the

developed signal model for mechanical faults inducing load torque oscillations to show how
such fault signatures are visible in the positive-sequence ISC and emphasize the role of
the three-phase transform. The second simulation shows the detection capabilities of the
proposed fault indicator and compares the results obtained by applying the algorithm on
the positive-sequence component to applying it directly on the phase quantities. Both sets
of simulations use the signal model for three-phase currents in induction motors given by
Equation (15) containing load torque oscillations.

3.3.1. Mechanical faults inducing load torque oscillations
In order to illustrate the performance of the proposed approach, the signals previously

described in sub-section 2.6 have been further processed. The positive-sequence component
has been demodulated using the technique previously described (Fig. 3). In order to compare
the results to the ones obtained for single-phase approach, the same processing has been
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applied to each phase signal. The complex-valued filter has been designed using the following
characteristics: central frequency of 50 Hz, pass-band of 22 Hz and transition bandwidth
of 4 Hz. After demodulation, the PSDs of the instantaneous amplitude and frequency of
the currents positive-sequence ISC, as well as the ones for each phase current, are depicted
in Fig. 4. The PSD estimations are obtained with Welch averaged periodograms using the
same settings as in sub-section 2.6. As a reminder, the frequencies of interest, which can be
assumed to correspond to faults, are 3 and 4 Hz.
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Figure 4: PSD of the demodulated i+(t) and each of the three-phase currents

In Fig. 4 it can be observed that for both PSDs the ISCs approach provides better
results in terms of SNR, compared to the single-phase approach. As expected considering
the different noise levels contained by each simulated current signal, the results depicted in
Fig. 4a provide different SNRs for each phase current. Considering the frequency component
at 4 Hz, the SNR varies from 12 to 15 dB for the phase quantities and is 19 dB for the
instantaneous amplitude of the positive-sequence component. The same observation can be
made in the PSDs of the instantaneous frequency of the phase currents and the positive-
sequence component depicted in Fig. 4b. In terms of SNR, the results are different for each
phase signal and nonetheless using the instantaneous frequency of i+(t) provides a better
SNR, thus the faulty components can be more easily detected.

Finally, the algorithm developed in this section only relies on simple and usual operations
such as matrix product, filters and power spectral density estimation and can be simply
implemented. Its global structure is similar to the usual current demodulation approaches
used for example in [3] or [24], the main difference being that the processed quantity in
not one phase current, but the positive-sequence ISC i+(t), giving access to the interesting
properties of the ISCs presented in the previous section. It can be noticed that for this
particular application, the other two ISCs i−(t) and i0(t) are not useful, but they could
be used for different purposes such as stator electrical unbalance characterization as in [23]
and [25].

3.3.2. Detection capabilities of the proposed fault indicators
In this subsection the detection capabilities of the proposed mechanical fault indicator

are evaluated statistically. Moreover, the results of using the positive-sequence ISC are once
more compared to the ones obtained using the single-phase quantities. For this statistical
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approach 1000 simulations were performed. For each simulation cycle several sets of signals
have been generated using the same model as in (15) using the following different parameters:

• n(t) have the same standard deviation of 0.15;

• The parameters for the non-modulated part are set as ia = 2 ∗
[
1 1 1

]T and ϕA =[
π
6

π
6
− 2π

3
π
6
− 4π

3

]T , thus perfectly balanced with an initial phase shift of π
6
;

• p(t) represents the phase modulation expressed as β cos(2πfmt). The modulating
frequency fm is equal to 4 Hz. The modulation index β takes different values according
to Table 2.

To summarise the main changes from previous paragraph, the three-phase signals are per-
fectly balanced and they have the same noise levels on each phase. Thus, for each simulation
cycle 5 three-phase signals have been generated with the only differences being the random
noise (though the noise statistical characteristics have not changed) and the modulation
index β according to Table 2.

Table 2: Values of the modulation index for each simulation cycle
H S0 S1 S2 S3

β 0 0 0.002 0.004 0.006

The first dataset (denoted H in Table 2) was used to estimate the reference PSD used
for the fault indicator. The other 4 sets (denoted starting with the letter S) were used to
compute the mechanical fault indicator. The parameters for the mechanical fault indicator
are: only 1 measurement used for the estimation of the reference PSD and the considered
bandwidth B = 4±0.12 Hz, with 0.12 Hz being the spectral resolution. Since the three-phase
currents are perfectly balanced, only the current signal on phase 1 is used for comparison
with i+(t).

As previously mentioned, 1000 such simulations have been performed. For each simu-
lation cycle the mechanical fault indicators’ values have been saved and will be used for
the statistical analysis. In order to build the Receiver Operating Characteristic (ROC)
curves [26] for the indicators the detection thresholds have to be set. The considered thresh-
olds belong to the interval [0 4], with an increment of 0.01. The value of the indicator
surpassing the threshold marks a fault detection. For each threshold for each value of the
modulation index (denoted starting with S in Table 2) the true positive rate was computed
as the proportion of detection out of the whole datasets for which the modulation was intro-
duced. The false positive rate was computed using the healthy simulations (denoted S0 in
Table 2) and represents the proportion of false detections (the number of detections when
there was no modulation over the total number of simulations in healthy case). Figure 5
depicts the obtained ROC curves. The ideal situation is to detect all modulations while
never triggering a false alarm. This corresponds to the point (0, 1) on the ROC curve.

As the value of the modulation index increases, the ROC curves get closer to the ideal
(0, 1) point. For the indicators computed using the instantaneous amplitude and especially

16



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

 

 

i
1
R(t); β = S1

i
1
R(t); β = S2

i
1
R(t); β = S3

i
+
(t); β = S1

i
+
(t); β = S2

i
+
(t); β = S3

(a) ROC curve for the fault indicators using the IA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te
0 0.02 0.04 0.06 0.08 0.1

0.9

0.92

0.94

0.96

0.98

1

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

Zoom in

(b) ROC curve for the fault indicators using the IF

Figure 5: ROC curve for the fault indicators for different values of the modulation index (the false positive
rate was estimated using S0)

for the lowest values of β the detection outcome is approximately random, being located on
the main diagonal. However, for each of the values of the modulation index the use of the
positive-sequence ISC provides better results than the use of the single current, as expected.
By comparing the detection capabilities of the indicators computed using the instantaneous
amplitude and instantaneous frequency, it is clear that for this kind of modulations the
instantaneous frequency provides better results. Also, the ROC curve for the fault indicators
using the instantaneous frequency shows that the detection performance increases with the
increase of β and that the positive-sequence ISC provides the best results. In order to further
validate this approach and demonstrate its good performance, this algorithm is applied on
experimental data in the next section.

4. Experimental results

4.1. Experimental set-up
The proposed condition monitoring method has been tested on experimental data com-

ing from a test-bench purposely designed and developed in the CETIM laboratory (Senlis,
France) [27]. The bench emulates the structure and behaviour of a wind turbine, with an
electrical motor replacing the wind turbine rotor, followed by a low speed shaft with the
main bearing, a gearbox, high speed shaft and three-phase electrical generator (three-phase
induction machine SEW Eurodrive DRL160MC4 used as a generator with a maximum power
of 10kW), as seen in Fig. 6a. The operating conditions are determined by the speed of the
low speed shaft. It should be noted that the test bench generator is not connected to the
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main grid, thus its resulting stator frequency is not imposed by the grid but by the rotating
speed of the high speed shaft.

An experiment was conducted for ≈ 200 hours during which an accelerated deterioration
of the main bearing was induced by applying axial and radial forces on the main bearing.
Usually the literature presents artificial faults, like for example, drilling a hole of a given
diameter into the inner race of a bearing. The advantages of such an approach are that the
fault type is known a priori (i.e. inner race fault) and that the values of the fault indicators
could be linked to the fault severity. By applying different load forces on the bearing and
letting the fault evolve naturally, the outcome of the experiment is not controlled. Otherwise
said, one does not necessarily know a priory which type of fault would occur. On the other
hand, this approach allows drawing a picture of the fault signature evolution with respect
to time.

Throughout the experiment, three-phase current signals have been acquired at the stator
of the generator and 21 measurement sets are considered in this paper. The duration of the
signals is ≈ 140 seconds and the sampling frequency of ≈ 1 kHz. The signals correspond to
stationary operating conditions, with a constant input rotating speed of the low speed shaft
of 20 rpm.

From the point of view of condition monitoring, the forces applied on the main bearing
caused the progressive appearance of an inner race bearing fault (see Fig. 6b) with a corre-
sponding fault frequency of 3.45 Hz, for the considered rotating speed. This fault generates
small torque fluctuations on the low speed shaft, which propagate through the gearbox to
the high speed and generator shaft and finally lead to small amplitude and frequency mod-
ulations in the generator currents. These modulations should be visible in the spectra of
the different currents as modulation sidebands located around the fundamental frequency
of 67.17 Hz. The advantage of having a fundamental frequency different from 50 Hz is that
the computed indicators are not sensitive to eventual grid disturbances.

(a) Experimental test-bench (b) Wide-spread flaking on the main bearing inner
race

Figure 6: Experimental setup and resulting bearing fault
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4.2. Frequency content of the instantaneous symmetrical components
In this section, the PSDs of the three-phase currents are compared to the frequency

content of the computed ISCs. Fig. 7 depicts the PSDs of the experimentally acquired
signals, as well as those of the computed ISCs. Each sub-figure contains the superposed PSD
obtained for each of the 21 measurements using the same settings as for simulated signals
(a Hanning window of 214 samples corresponding to a spectral resolution of approximately
0.12 Hz). The important points that can be noticed thanks to these experimental results
are the following ones.
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Figure 7: Superposition of the PSDs of the 21 sets of current signals acquired at the output of the generator
located on the test-bench (left: phase quantities, right: instantaneous symmetrical components)

• Most of the periodic components are most visible in the PSD of the positive-sequence
component. This is particularly true for the two components at 57.9 Hz and 59.17 Hz
which are almost completely hidden in the noise floor of the PSDs of the current signals
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on phases 1 and 2. This is also the case for the small modulation sidebands located
around the fundamental component (at 63.72 Hz and 70.62 Hz), which should contain
the bearing fault signature. This highlights their balanced nature, and the ability of
the ISC transform to improve the SNR regarding these balanced components.

• Some periodic components are partly unbalanced. For example, the presence of the
fundamental component in the PSDs of the negative- and zero-sequence components
indicates the presence of an electrical unbalance in the three-phase system. However,
their small magnitudes could be accounted for by a natural inherent unbalance present
in all real three-phase systems. Another case is the component at 63.17 Hz, which is
only present in two of the three phase currents and therefore clearly visible in the
negative- and zero-sequence components. This result highlights the ability of the
ISC transform to separate balanced and unbalanced parts of the different components
constituting the signals.

• The noise levels on i+(t) and i−(t) are equal, as expected for uncorrelated phenomena.
However, the slightly increased level on i0(t) suggests that there is a small correlated
synchronous noise in the three phase currents. This might be due to a small amount
of crosstalk usually present in synchronous multichannel acquisition systems.

4.3. Mechanical fault indicators
Based on the ISC approach, the positive-sequence ISC of the currents is demodulated

according to the algorithm depicted in Section 3.2. The complex-valued filter has a central
frequency of 67.17 Hz equal to the fundamental frequency, its passband is of 22 Hz and
transition band of 4 Hz. Considering the stationarity of the operating conditions, two
mechanical fault indicators are computed by summing the PSD of the obtained instantaneous
amplitude and frequency around the fault frequency of 3.45 Hz over a frequency band equal to
0.12 Hz, the spectral resolution. In case of small non-stationarity of the operating conditions
like in [28], the proposed indicators can be easily adapted by increasing the frequency band
over which they are computed. The healthy condition estimate is obtained by averaging the
signal power under the peak for the first 5 measurements, for each of the considered quantities
individually. In order to achieve the comparison with a usual single-phase approach, the
same processing is applied directly on the phase currents, leading to three additional fault
indicators.

Fig. 8 depicts the obtained results. Firstly, one can observe that the use of the instan-
taneous frequency provides better overall results for this type of fault, compared to the
instantaneous amplitude. Secondly, the use of the positive-sequence component gives better
results than considering each phase signal individually. This result is expected due to the
improved SNR obtained when the whole three-phase currents are considered, rather than
single phase. Due to its poorest SNR, the current signal on phase 2 provides the worst re-
sults and does not enable the detection of the mechanical fault in the case of a single-phase
approach.

Another interesting remark concerning Figure 8 is that it shows the time evolution of
the fault signature in electrical signals throughout the experiment. Because no maintenance
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(a) Fault indicator using the instantaneous amplitude
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(b) Fault indicator using the instantaneous frequency

Figure 8: Mechanical fault indicators computed from the currents signals (over the frequency band B =
3.45± 0.06 Hz)

work has been done during the experiment, a continuous increase of the deterioration of
the bearing is expected. However, the fault signature does not show a continuous increase,
especially around the 180th hour of the experiment. This remark highlights the fact that the
fault indicator describes the signature profile of the load torque oscillations induced by the
mechanical faults and not the fault severity itself.

5. Conclusions

In this paper a method for mechanical fault detection in electrical rotating machines using
three-phase electrical signals has been presented. The method is based on a signal model
which takes into account the multi-component nature of current signals, as well as the use
of instantaneous symmetrical components. More specifically, the instantaneous amplitude
and frequency the positive-sequence ISC are used for mechanical faults detection. For the
demodulation step the proposed method uses a complex-valued filter to select only the
positive frequencies present in the positive-sequence ISC. The computation of the mechanical
fault indicators is then based on the demodulated quantities. However, one limitation of
this approach is given by the bandwidth of the employed filter which limits the maximum
value of the detectable fault frequency.

The three main advantages of using symmetrical components compared to single-phase
quantities are: the use of the whole information contained in three-phase electrical systems,
the separation of balanced and unbalanced parts of three-phase signals, and the improve-
ment of the signal-to-noise ratio. This paper focuses on the latter, theoretically showing that
the SNR is improved, as well as validating the results using both synthetic and experimental
signals. As a direct consequence of the SNR improvement, the proposed fault indicators
based on ISCs offer better detection capabilities than the ones based on single-phase ap-
proaches. Another positive point is that the proposed algorithm is well suited to on-line
implementation on an embedded condition monitoring system due to its employment of low
complexity operations.

The method proposed for detection of mechanical faults is particularly suitable for three-
phase induction machines as shown in this article, and a dedicated study is still to be done
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for other types of machines (such as synchronous machines or others). The proposed fault
indicator relies on the phase modulations of the fundamental component of three-phase
stator signals. The type of connection of the stator windings (∆ or Y ) does not limit the
validity of the approach since it only influences the maximum amplitude and original phase
shift of these components and not their modulations. Moreover, the method focuses on the
fundamental component only and filters out every other component. Consequently, using a
machine connected to the network directly or to an inverter would not influence the results,
considering that only the fundamental frequency is used.

In terms of mechanical fault indicator, there are several perspectives for improvement.
Indeed, while the proposed algorithm can still be employed in case of small non-stationarity
by increasing the frequency band over which the indicator is computed, in case of large
variations in operating conditions the last step relying on spectral analysis must be adapted
to non-stationary signals, for example by using time-frequency representations. However, the
general principle of using the ISCs and their advantages instead of phase or line quantities
still stands. Also, the case of faults generating modulations of electrical signals with a
frequency higher than the fundamental frequency will be included in future works.
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