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T he method of Kron allows constructing the equations of any coupled system. It starts from the definitions of all the components of the system. We consider here the system as being a robot. Using a serie of transformations, it leads to the conception of the whole robot. The system of equations is a system of coupled equations multiphysic. This system of equations can be modified to become a manifold which is a mathematical image of the robot. The hyper-surface associated with the manifold can be transformed thanks to a matrix that includes probabilities coming from a game. This game occurs by involving the robot and a human. Some observables of the system serve as indicators for the actions of the robot. These actions are seen like decisions taken by a gamer [START_REF] Fudenberg | Game theory[END_REF]. By postponing these decisions in a payoff matrix of a game theory, we study the interaction between the robot and a human. From these interactions, the human takes some probabilistic decisions which influence the expression of the manifold. We first describe the tensorial analysis of networks applied to the robot definition. Then we show how the system of equations deduced from the first task can be seen in differential geometry. This leads to the manifold definition. We give then the technique modifying the manifold by probabilities associated with the human decisions. To end we show how the robot can influence human decision inside of the game theory, coupled with TAN for modelling of the human machine interaction. To conclude we speak of various project to be done in the future.

Primitive parts

Robots are made of various parts (we supposed here that these parts are solid parts). Before to be assembled, each part can be studied independently and characterized. We speak here of parts models. The modelling the parts comes from measurements applied on these parts. The experiment consists in submitting the part to an effort, then to measure the flux created by this effort. But this flux can be measured in various conditions of environment. So, the law obtained that gives the relation between the effort w and the flux f is a summation of many functions giving w = z(f ) for each condition of environment [START_REF] Maurice | Proposition d'un formalisme comme support pour les études théoriques en systémique[END_REF]. If T is a variable of the environment, we make the assumption that it exists a function D defined by: n(T ) D(n) = 1. For each value of n that corresponds to one interval of values associated with T , a law w = z(f ) is defined. When the environmental conditions change, the law is changed also, continuously from one interval to the other. In general, the laws have the form: w = D 1 .z 1 (f ) + D 2 .z 2 (f ) + . . . + D n .z n (f ). The logistic function can be used for F (with a, b ∈ R):

T ∈ [a, b] ⇒ [a,b] D T = 1 1 + ce -α(T -a) - 1 1 + ce -α(T -b) (1) 
For the parameter T that belongs to the interval [a, b], the law associated with the part is given by:

[a,b] D T z 1 (f ) = w. For a next interval of values [b, c] the law becomes [b,c] D T z 2 (f ) = w.
The global behaviour of the part is so given by:

w = [a,b] D T z 1 (f ) + [b,c] D T z 2 (f )
With this decomposition in domains [START_REF] Maurice | PROPOSITION D'UNE THEORIE POUR LA CEM[END_REF], the set of laws describes the whole behaviour of the part for any condition of the environment. For example taking into account of the temperature T, of the pressure p and of the altitude A the law can be expressed by (where i n are intervals in R):

w = i 1 D T i 1 D p i 1 D A z T 1p1A1 (f ) + i 1 D T i 1 D p i 2 D A z T 1p1A2 (f ) + . . .
which can be generalized following:

w = k Π n in D p k z in (f ) (2) 
where p k represents the various parameters.

Representation of the primitive part by a branch in a graph

When the effort is applied on the primitive part, it results the development of a potential associated with the equivalent work [START_REF] Maurice | Analyse tensorielle des réseaux hybridée comme outil théorique pour la CEM et l'électromagnétisme[END_REF]. A classical representation of this process is Kirchhoff's branch. In electromagnetism, the effort (w) becomes the electromotive force, the flux is the current (f ) and the potential (U ) is the potential difference in electricity. The relation between these three quantities is given by Kirchhoff's law:

w, f, V ∈ R, w = z(f ) + U (3) 
The sum of products involving the flux in (2) can be seen as an operator ζ applied to f (ζ • f ):

{i 1 ,i 2 ,...} Π p k in D p k z in (f ) ⇒ ζ ≡ {i 1 ,i 2 ,...} Π p k in D p k z in ( ) (4) 
so that the relation (3) can be written:

w = ζ • f + U
To make a robot we need several primitive parts [START_REF] Maurice | Proposition d'un formalisme comme support pour les études théoriques en systémique[END_REF]. To each part, an equation of Kirchhoff is created after some physical characterizations. It means that each real object is now represented by an equation with many parameters and one variable. We consider the equations as in bijective correspondances to the real parts of the robot. We obtain finally a set of N equations to cover the whole parts of the robot. This collection is the first step that leads to the robot modelling.

The k parts are associated with k equations of the form:

w k = k ζ kk • f k + U k ( 5 
)
Each equation is defined in relation with a branch in a graph. We name C o the collection of equations and T 1 the set of the branches in a graph G. A correspondence is created between C o and T 1 , associating each element of C o to each elements of T 1 . In this approach, T 2 represents the cycles in the graph G and T 0 the nodes.

Constructing a system

The first step to construct a system, is to construct its subsystems [START_REF] Journée | Simulation et Complexité, notions et méthodes[END_REF]. A subsystem is a set of branches connected. We accept the idea that any real object is an assembling of components. Each component has been characterized and associated with a physical law as described before. The components connected on the real object are represented by branches connected in the graph created to represent the object. This construction leads to a set of branches linked through an incidence relation. The incidence matrix gives the relation between the nodes and the branches in the graph, translating by these relations the first step in the construction of the subsystem. Then an operation allows to modify advantageously the equation in order to give it more riemannian characteristics. That's the last operation to do to obtain a tensorial equation representing the robot.

If A is the incidence matrix, B the vector made with the ordered set of the branches {B} ∈ T 1 and N the vector made with the ordered set of the nodes {N } ∈ T 0 , the relation between branches and nodes is given by:

B a = d A d a N d (6) 
(6) gives all the information to understand how each subsystem is made. It has a mathematical image. Each branch being defined by its own physical law, grouping the branches in a common subsystem using an incidence matrix leads to realize a direct summation of the physical laws [START_REF]Différence fondamentale entre la description nodale et la description modale de la topologie électromagnétique dans un objectif de Diakoptic[END_REF]. If ζ (a)(a) is the physical law of one component (a) involved in the subsystem Su, {B} being the set of branches pointed out by the incidence matrix A, the global operator Θ associated with the subsystem Su is defined by (in the suite of the article we consider ζ, Θ, χ, Ω, . . . as operators):

Θ = ⊕ dim(B) n=1 ζ (n)(n) (7) 
an identical operation being done for the fluxes, we obtain for the group of subsystems one equation given by:

ω α = α Θ αα .f α + U α
In this description misses the radiative interactions or, in general, all interactions not transmitted by solid materials [START_REF] Reineix | On mathematical definition of chords between networks[END_REF]. It means that an operator χ that takes in charge these kind of interactions must be added to Θ. χ is a non diagonal operator. It results from the induced fluxes that belong to one branch B (a) coming from efforts located on another branch B (b) , a = b. The entire subsystem Su is then described by the equation:

ω α = β (Θ αβ + χ αβ ) .f β + U α (8) 
This can be resume using Ω = Θ + χ by:

ω α = β Ω αβ .f β + U α (9) 

Connecting the subsystems

A system S is then made with N subsystems Su in a similar operation in two steps. In a first step we realize the connection of the branches in cycles through an adequate connectivity. In a second step we add interactions between cycles to the previous operator elaborated in the cycles space. Each subsystem is by this way transformed in an operator defined in the cycles space. The interactions between these connex graphs realized in the cycles space leads to the definition of the whole system.

First step

For any graph of definition (G, A), it exists a spanning tree that reaches all the nodes of the graph [START_REF] Reineix | Kron's method and cell complexes for magnetomotive and electromotive forces[END_REF]. If {N } is the ordered set of the nodes, in the order explored by the spanning tree T, the cycles are constructed by going back, each time it is possible, to the node considered in the tree T. The tree is described by the set of nodes {x 1 , x 2 , . . .} (the tree is first a set of branches that implies through A a set of nodes). Starting from the node x 1 , we travel through the tree until there is a possibility to reach x 1 using a branch that does not belong to the tree. This branch added to the branches passed through constitutes a cycle. Once there are no other possible cycle starting from node x 1 , the process is repeated starting from node x 2 . This mechanism is done until all the branches may be linked with cycles.

The number of cycles dim {M } , {M } ∈ T 2 is determined by Euler-Poincaré's law:

dim {M } = dim {B} -dim {N } + dim {R} (10) 
{R} being the set of connex graph, or in other words, the number of subsystems Su in the system S.

As the cycles are determined using one chosen spanning tree, more than one possibility of set of cycles exists. We can wonder if some choice are better than others? Some empirical rules were established:

• the resulting functions associated with a cycle should not reach infinite values;

• when branches are boundaries between two subsystems, and when these branches are associated with filters, the retained cycles should share these branches;

• the cycles should show physically the energy flow with fluxes which start from efforts and go back to the same efforts.

Anyway, whatever a set of cycles retained, if the final operator obtained with this choice in the space of cycles is not well conditioned, another set of cycles may be searched.

Once the cycles are defined, the connectivity Λ giving the relations between branches and cycles is also defined, all the more if the same directions are chosen for branches and cycles. If f k are the fluxes in the branches space and J β the fluxes in the cycles space, we have the relation:

f k = β Λ kβ J β (11) 
by replacing [START_REF]Différence fondamentale entre la description nodale et la description modale de la topologie électromagnétique dans un objectif de Diakoptic[END_REF] in ( 9) we obtain:

ω α = β Ω αβ . η Λ βη J η + U α (12) 
The relation between f and J can be translated to the relation between w and e, e being the effort at the cycle level:

e κ = α Λ κα ω α
multiplying both members of ( 12) by Λ κα gives:

α Λ κα ω α = α Λ κα β Ω αβ . η Λ βη J η + α Λ κα U α (13) 
but α Λ κα U α = 0 and if we make the assumption that:

β Ω αβ . η Λ βη J η = βη Ω αβ Λ βη .J η
we finally obtain:

e κ = αβη Λ κα Ω αβ Λ βη .J η (14) 
by noting Λ κα Ω αβ Λ βη = h κη , ( 14) becomes:

e κ = η h κη .J η (15) 

Second step

Some interactions can exist between cycles to construct the complete subsystems. To do this, we add an extra-diagonal matrix µ to h that includes the interactions [START_REF]De l'expérimentation sur des systèmes complexes en compatibilité électromagnétique, à leurs représentations et leurs analyses dans un espace géométrique abstrait[END_REF]:

e κ = η (h κη + µ κη ) .J η
Noting H κη = h κη + µ κη we obtain the equations of the subsystems given by:

e κ = η H κη .J η (16) 
Now we have a set of subsystems (e κ , H κη ). To construct the whole system, we need coupling using cords or by sharing some branches. We look at these two techniques. First of all, the system is made using as previously the direct summation of the subsystems. This is made for the functions e and for the operators H:

e κ = ⊕ κ e κ H κη = ⊕ (κ, η) H κη
If cords have to be added, a matrix of these links Φ is added to H .

H κη = H κη + Φ κη
Other possibilities exist. One consists in sharing a common frontier which is a branch and its two nodes between the two subsystems. In the next explanation, the branch b ∈ T 1 wears the operator b.

We consider a first subsystem Su 1 with a frontier

[(n 1 , n 2 ) , b] n 1 , n 2 ∈ {n i , n i-1 , . . . , n 2 , n 1 } ⊂ T 0 , b ∈ {b i , b i-1 , .
. . , b} ⊂ T 1 and a second one Su 2 with the same frontier. When we make the direct summation of the two subsystems, it means that we construct an operator H including both operators H 1 and H 2 of the two subsystems. This leads to a matrix that has the form:

H =     . . . . . . . . . z + b 0 0 0 0 0 0 0 0 b + t . . . . . . . . .    
z and t being any operators included in H 1 and H 2 . b is the shared branch. b is the shared branch. So, when connecting the two subsystems that share the branch b and its nodes (it means that b and its nodes belongs to the common sets of branches and nodes of the unified system), the branch b becomes the interaction operator and the matrix H takes the form:

H =     . . . . . . . . . z + b 0 0 -b 0 0 -b 0 0 b + t . . . . . . . . .    
In that case, this is equivalent to say that the matrix of interactions Φ is composed of the shared branches operators (here for dimension 2):

Φ = 0 -b -b 0
Finally, the system is completely described by the equation:

e κ = η H κη .J η (17)

Standardised system definition

The elements of the operator H contain the functions defined on domains (even cords can be defined on domains). The intervals associated with the domain definitions give all the informations on the limit values of the parameters. The system is at this stage completely defined by the equation and the intervals. But it remains difficult to analyse the system because the matrix H can be non symmetric [START_REF] Leman | Use of the circuit approach to solve large EMC problems[END_REF].

For example, if we consider a simple problem of automatic: a feedback loop of direct gain G. The graph of this kind of system is made of three cycles. Noting x k the sources and y m the flux, a first cycle of law H 11 = 1 gives y 1 = x 1 , without any other feedback. A source is reported by a cord on the second cycle: x 2 = Gy 1 . Choosing a law H 22 = 1 for the second cycle also, this implies that: y 2 = Gy 1 . Now for a feedback loop of gain -R, we report on the first cycle a source x 1 = Ry 2 . The output of the system can be extracted with a third cycle (H 33 = 1) giving the result in y 3 , and a cord that links y 2 with y 3 through a function -h. Finally:

   x 1 = y 1 -Ry 2 0 = Gy 1 + y 2 0 = -hy 2 + y 3 (18)
Compared to [START_REF] Maurice | Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory[END_REF] with e ↔ x, y ↔ J, it leads to:

H =   1 -R 0 G 1 0 0 -h 1   which is not symmetric.
But we can consider e = H(J) where the e are the local coordinates of a tangent plan T pS to the hypersurface S described by the curvilinear coordinates J. To do that, we make a local parametrization of S with:

1. a domain I, the parametrization domain;

2. a map ψ : I → R n of class C 1 and which verifies ψ (I) ⊂ S.

Once these definitions are given, we can calculate the base vectors b k associated with the local tangent plan T pS:

b k = ∂ψ ∂J k (J k ) (19) 
In the previous example we should obtain:

b 1 =   1 G 0   b 2 =   -R 1 -h   b 3 =   0 0 1  
From these basic vectors we can define a metric G:

G km = b k , b m (20) 
Now in the idea to obtain some similar approach as Riemann's approach, we would like to write something like (by using now Einstein's convention in the rest of the document):

T α = G αβ .J β
T being a tensor for inertia and sources/efforts. In [START_REF] Maurice | Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory[END_REF] when there are time derivations of fluxes, their derivation versus the fluxes leads to zero. For the electric for example, we have the electromotive forces L∂ t i (L is the inductance, i the electrical current). Making ∂ i L∂ t i gives 0. So, to retrieve ( 17) using (20) we need to add some terms each time the derivation versus the fluxes or any other operation doesn't allow to obtain [START_REF] Maurice | Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory[END_REF] with only (20).

Remarking that ∂e κ ∂Jη gives the jacobien matrix J η κ , we can first write (17) under the form:

e κ = η J η κ .J η + N η κ ∂J η ∂t + . . .
under the assumption that this new form gives back equation ( 17) thanks to added terms like N . We can multiply each member by the transposed matrix of J : Γ, which leads to:

κ Γ κ σ e κ = κ Γ κ σ η J η κ .J η + N η κ ∂J η ∂t + . . .
By making a direct equivalence between the fluxes J η and their contravariant correspondences J η and by noting:

T σ = κ Γ κ σ e κ - κ η Γ κ σ N η κ ∂J η ∂t + . . . knowing that: G ση ≡ κ Γ κ σ J η κ ( 17 
) can now be written:

T σ = G ση .J η (21) 
This equation, completely identical to 16, presents the advantage that this time, the metric G is symmetric and it gives to Kron's equation more of characteristics of a riemannian space, including eigenvalues. But we must remember that the expression of G is many more complicated than in usual riemannian cases. The relation (4) leads to basic vectors of the same form and to fluxes defined on intervals. By the fact, equation (21) can be seen as the one of a manifold M [START_REF] Maurice | Seconde Géometrisation pour la CEM[END_REF].

At this step we can accept that the complete physical behavior of any robot can be modeled using (21) associated with a set of intervalls given for each variables:

M ≡    T σ = G ση .J η i 1 (p 1 ) = [v 1 , v 2 ] . . . ( 22 
)
This manifold is also represented by its associated graph (G, A).

Basics for game theory

The other part of the formalism uses game theory. The game here is between the robot and some living being. Major principles of game theory are incorporated in a tabular which leads to the matrix Θ which includes the payoff matrix D and that bayesian -markovian matrix P . In the robot we identify some particular outputs that correspond to the robot's actions. On another side, some particular sollicitations of the robot sensors imply specific reactions taken by the robot. The reactions of the robot are translated through particular values of fluxes acting on the outputs. The set of fluxes for outputs is noted {J r }. The robot is one of the gamer. But to give to its actions some symbols more understandable, we use a neuronal network Ξ which takes in charge the correspondences between the set of values for outputs {J r } and the action symbols C k . These symbols are seen as some choices for the robot:

C k = o Ξ k o J o , J o ∈ {J r } (23)
The property of the neuronal network [START_REF] Howard | Neural network design[END_REF] is to transform the continuous values of J o into discrete choices for C k . Note that J belongs to a natural space as C which comes from J through the matrix Ξ. It can be considered as a part of the robot itself, like an added layer for the outputs. In front of the robot reactions, we have the reactions of the living being, for an assumption of psychological profile. These reactions are identified in a set of possible discrete actions {π h }. This set makes a dual space to the choices of the robot as complex behavior of the living being cannot be directly transcripted. It can be projected in a vectorial space having directions of psychological behaviors, but needs to be synthesized in real values to identify each family of reactions. The purpose of the mixed probability and payoff matrix Θ ασ is to give, for each couple of choices (C σ , π α ) the gain that the living being should win. For each choice of the living being, we can compute the average hope of earnings depending on the choices of the robot and of their probabilities. But in fact the matrix Θ ασ computes the partial hopes of earnings for the living being [START_REF] Maurice | Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory[END_REF]. If ε is the average hope of earnings:

ε α (π α ) = Θ ασ (P (σ, α) (C σ | π α,t -, E)) C σ (24) 
where P (σ, α) (C σ | π σ,t -, E) is the bayesian probability for the robot playing action C σ knowing that the living being has previously played π α,t -and under environmental conditions E. Under some rational assumptions, the living being should make the choice of the highest hope of earnings. And this choice should imply some reaction of the robot, feeling this decision taken by the living being (through its sensors). So, some given choices from the living beings must be translated in signals (commands or signals perceived by the robot's sensors) for the robot. To do that, we use a sophisticated neuronal network ℵ α κ that will translates the hope of earnings ε α in signals for the robot:

e i = ℵ α i P (α, σ) (π α | C σ,t -, E ε α , e i ∈ {e κ } , e κ → {e κ } (25)
{e κ } being the set of components for commands included in the covector e κ , and P (α, σ) (π α | C σ,t -, E as previously the bayesian probability that the living being plays π α depending on the action made by the robot on past times and depending on the environmental conditions.

Coupling the robot and the living being

The psychological profile of the living being is principally translated through the object ℵ. ℵ is a sophisticated matrix which gives to each hope of earnings, a signal in direction of the robot. This signal is linked with some reaction of the living being which is perceived by the robot's sensors. But it can be also a direct command that a person applies to the robot. ℵ depends on the bayesian probability P σ (π α | C σ,t -, E . It means that in the neuronal network ℵ the probabilities are the weighting coefficients on one of its layers. These weightings are partly established by the past behaviour of the robot.

In each case of the probabilities P or P , the past means to go back more or less far in the previous actions depending on the system complexity and depending on its capacity to memorize the past. Both matrices Ξ et ℵ can contain complicated functions to transform the fluxes into actions and the decisions into signals for the robot. The whole system including the material model, the two neuronal network and the matrix of game covers both psychological and material parts of the coupled system.

In both cases of Ξ and ℵ, logistic functions allow to transform continuous values into discrete values. By using thresholds, a weak probability attached to a strong hope of earnings can lead to zero if the threshold for a signal is not reached. This gives a model to understand why the best cooperation is not always obtained between living beings and machines. This comes from the fact that the reactions of the living beings may answer to individual gains rather than to the interest of the whole system.

Model of the living being

In case of a person having a rational behaviour, the fact to take the hope of earning maximum as a criterion to determine his choice is an efficient method (this process is similar to put to one or zero the probability coefficients). But in a more general case, the relation between the vector of hope of earnings and the signal perceived by the robot is many more complex. Various assumptions can be studied including suicide behaviours etc. and knowing that the environment can influence the decisions. So, for each family of psychological profiles, interactions between the robot and the living being will be studied. We consider living beings in general, because all living beings have complex strategies in response to various situations. When taking into account the psychological profiles that represent some probabilities in the whole population, several cases are studied in parallel with in each case different interactions between the robot and the living being. The bayesian probability associated with the robot decision allows to take into account the uncertainties of its sensors, the influence of the environment, the influence of other possible gamers, etc., and, of course, of the previous decision of the living being.

In this model we consider that some quite complicated algorithm are implemented in the robot that justifies the use of bayesian probabilities to model its reactions. Anyway, everyone will be able to adapt the two layers Ξ et ℵ depending on the model he wants to develop. Note that the payoff matrix Θ is already difficult to be constructed. The gain can depend on social considerations, on humanist considerations or simply on technical considerations.

In cobotic we often consider the environment of firms or private residences or agricultural environments. In these cases the higher hope of earnings is a good criterion all the more if it is in relation with the wanted objectives considered as standards. Average and standard deviation in comparisons between computations and experiments may give the same statistics under these assumptions. For animals, we can think that the conditions are ob-tained if the animals are living near to their natural environment.

Illustration

We consider a very simple robot. It's a mobile system that can go ahead or stop. The mobile can get some information from the environment with a sensor that is sensitive to the movement. We begin to model the robot. In this simple case, it is no use to develop any neural network. The input and output of the mobile are directly associate through cords to the game theory mixed matrix Θ. The robot working can be represented by the next graph. We can see a first bloc associated with the robot perception. This sensor can command an electronic in charge of the machine movement. A last bloc is the machine. Figure 1 shows the whole system we consider. For the moment we only focused on the high part of the graph, without looking at the matrix in the low part. First cycle numbered 1 is associated with the perception function.For a signal received on its input, the electronic gives an answer saying if the input signal has changed between two time samples. This sensor says if something has moved in the scene in front of the mobile. We consider that the pedestrian in front of the mobile is static, except if he wants to cross the road. If he crosses the road, the output of the first cycle sends a signal to the second cycle. The transmission is taken in charge by a cord which reports an electromotive force (emf) on the second cycle in relation with the current in the first cycle. This emf comes to suppress the command of the machine existing on cycle 2. The output of the second cycle comes to command the third one which is the machine circuit. We can gives each cycle an arbitrary impedance operator equal to one. Without the coupling function (cords), the impedance matrix is an identity matrix of dimension three. To this matrix we add the interaction operators t ij that link cycles 2 and 1, 3 and 2. This leads to the matrix ζ:

ζ =   1 0 0 t 21 1 0 0 t 32 1   (26) 
The equation e α = ζ ασ f σ gives the solution through the fluxes f σ . Depending on the flux values, high or low, the correspondence to know what the robot will do consists in making a link between the flux value and the robot action: to go ahead or stop. These two choices can be seen as the choices of a gamer: the robot. The relation between the machine and the pedestrian can be seen as a game. The second gamer is the pedestrian while the first one is the robot. The robot actions a comes from output fluxes f . As we don't use a neural network in this simple illustration, a simple connection matrix Ξ selects the fluxes f used for the actions a: a σ = Ξ σ σ f σ . We can define the probability for the pedestrian to go ahead knowing that the robot stops. Four probabilities must be define by the same way. We write in general:

P (α, σ) = P (r α | a σ ) (27)
r j being the action of the pedestrian. The output of the game are the partial hopes of earnings for each choices of the pedestrian. This means that we can associate to each combination of choices a value of earning. We note Θ ασ the mixed payoff and bayesian matrix. The partial hope of earnings α are given by:

α = Θ ασ a σ (28) 
The α being translated in sources e α for the cycles through the matrix ℵ α α : e α = ℵ α α α , because we don't use neural networks in this simple illustration. Θ ασ = D ασ P (α, σ), D being the gains that the living being can hope for each of his actions r in reponse to the robot actions a and P (α, σ) the probability of each couple of choices.

Finally, the couple of equations that describes the system is given by :

   e α = ζ ασ f σ e α = ℵ α α Θ ασ Ξ σ σ f σ (29) 
These two equations can be reduced in an unique equation. In fact, the game part is a special and complex cord but leads to the interaction between the output f 3 of the robot and its command e 2 . The global object ℵ α α Θ ασ Ξ σ σ takes place as the coupling operator ζ 23 , as shown in the graph. In our case, e α is reduced to e 2 . So:

ζ =   1 0 0 t 21 1 ℵ α 2 Θ ασ Ξ σ 3 0 t 32 1   (30) 
The payoff matrix can be quite easily established, once some criteria defined. It's more difficult to determine the probabilities. Measurements can be done, or hypothesis, based on previous experiences and psychological arguments. What is clear is that the probability law is a function that depends on a σ and r α . The dependance on r α can be replaced by a dependance on β αα f α where f α in this case is a known flux. This allows to compute after the theoretical analysis of the system by derivating the function e α (f σ ).

We write

ℵ α 2 Θ ασ Ξ σ 3 (f ν ) = η (u [f ν ]
). We can compute the Jacobian J of the system e α = ζ ασ f σ . It gives for each of its columns the base vectors of the parametrized hypersurface e α :

J ν α = ∂ f ν e α =       1 0 0 t 21 1 u (f ν ) η (u) 0 t 32 1       (31) 
From the jacobian we can deduce the metric G:

G = J T J =       1 + (t 21 ) 2 t 21 t 21 u η t 21 1 + (t 32 ) 2 u η + t 32 t 21 u η u η + t 32 1 + (u η ) 2       (32) 
The source becomes:

T = J T e = E p t 21 E p + E c + u η E m t 32 E c + E m (33) 
E x are the source for each mesh. The new equation that represents the problem is now:

T α = G ασ f σ (34) 
This is the equation that we study.

Before to go further we need to define the bayesian probabilities and to detail θ mechanism.

If w is the action of waiting for, for the pedestrian, and T the action of going ahead and if S is the action of stop for the machine and A the action of rolling, we can define the probabilities following:

                   P (w|S) = e -ad ωA dtf 3 (t) P (w|A) = 1 -e -ad ωA dtf 3 (t) P (T |A) = e -βvm , v m = f 3 χv 0 P (T |S) = 1 -e -βvm (35)
d ωA is the distance between the car and the pedestrian, v m the car speed. From these equations we can generate the law giving the source reported on mesh 2. The source is given by:

           e ω = γ 1 0 D f 3 θ 00 P (w|S) + 1 D f 3 θ 01 P (w|A) e T = γ 2 0 D f 3 θ 10 P (T |S) + 1 D f 3 θ 11 P (T |A) (36) 
γ i are factors for adjusting the values to the request command for the machine. The source reported on mesh 2 is the higher of the two values e ω et e T . We see in that case that the relation linked with the cord ζ 32 is a complex operator involving probabilities and game theory. We have:

u η = ∂ f 3 max e ω (f 3 ) f 3 , e T (f 3 ) f 3 (37) 
We compute:

∂e ω ∂f 3 = ėω = 1 D f 3 θ 01 - 0 D f 3 θ 00 γ 1 ad ωA f 3 e -ad ωA dtf 3 (t) (38) and ėT 
= 0 D f 3 θ 10 + 1 D f 3 θ 11 βγ 2 χv 0 e -βvm (39) 
knowing both e ω and e T we can compute the component u η :

u η = max ėω f 3 -e ω [f 3 ] 2 , ėT f 3 -e T [f 3 ] 2 (40)

Analysis

We can verify how the machine command changes depending on the output of the machine by calculating:

∂T 2 ∂f 3 = ∂ ∂f 3 [G 2γ .f γ ] (41) 
We have, as no flux depends on other fluxes:

∂T 2 ∂f 3 = ∂ ∂f 3 u η .f 3 + t 32 (42) 
Now, f 3 being a machine command, so a power one, we can make the assumption that f 3 >> 1. In that case, 

It appears clearly that e ω > e T , if θ ij > 0, ∀i, j. It means that the pedestrian has has all interest in waiting that the vehicle passes far. The higher the distance, the higher is gain in waiting. This shows that our law for the bayesian probability is logical but not human! But our naive example shows also how the formalism can lead to rigorous and mathematical conclusions, once the good laws for the behaviors are found. It shows also how the technique works to include game theory inside the system of analytical equations that are the lagrangian expression of the problem. Various cases should be improved to test the formalism even if the psychological modeling is not relevant. It will give to the method robustness and reliability, allowing after a deeper work focused on the psychological side. This psychological side is taken in charge by the interactions (or cords) using game theory and neural networks.

Conclusion

The xTAN method and formalism presented seems for us to be a good candidate for modeling complex systems. It can include all physics making links between characterizations under various environments using domains. It can include multiscale problems through cords that take in charge operators of integration that make the change of scales. Using xTAN for the cobotic seems under these facts like a natural conclusion. In the society that begun to be constructed, the cobotic will be a major dimension in cyber-physical systems. In order to analyze and study the behaviors of this complex systems and their relation with humans and animals, we need a mathematical tool that allow to model them. xTAN can be this tool or, at least, merit to be test for this objective.

Future projects will consist in testing xTAN in various situations for the cobotic in cyber-physical systems and societies. More, taking into account the electromagnetic environment, we will be able to study the risk of disturbing these systems in front of different menaces, may them be volontaries or not. We can think in of electromagnetism conflict inside cities where many electromagnetic sources exist. In time of e-cities, this kind of problem will be of major interest for all societies.
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