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Abstract – We consider a biased Normal-Superconducting junction with various types of super-
conductivity. Depending on the class of superconductivity, a Majorana bound state may appear
at the interface. We show that this has important consequences on the statistical distribution of
time delays between detection of consecutive electrons flowing out of such an interface, namely the
waiting time distribution. Therefore, this quantity is shown to be a clear fingerprint of Majorana
bound state physics and may be considered as an experimental signature of its presence.

Introduction. – During the last two decades, Majo-
rana fermionic states in condensed matter physics, have
received a lot of interest because of their exotic properties
such as non-Abelian statistics, that open the perspective
of using them for quantum computation. These exotic
states have been studied extensively in various systems
[1–18] with among them, a conceptually simple one made
with a semiconducting nanowire of InAs or InSb, with
strong spin-orbit coupling, subjected to an external Zee-
man field and in the proximity of an s-wave supercon-
ductor (SC) [3, 4, 19, 20]. In this situation, a Majorana
Bound State (MBS) may appear at the interface of a nor-
mal/superconducting junction, under proper conditions,
and strongly affects the electronic conduction properties
(see Fig. 1). Several experiments have reported the ob-
servation of a zero-bias conductance peak in such physical
setups, which are in good qualitative agreement with all
theoretical predictions based on Majorana physics so far
but still not fully consistent with the predicted conduc-
tance and magnetic field value needed for the existence of
a MBS [21–24]. Therefore, several works have been con-
ducted in order to understand these inconsistencies based
on alternative interpretations by including other physi-
cal processes [25–29]. However, a clear consensus is still
lacking mostly because of the absence of an experimental
smoking gun for Majoranas. Generally these MBS appear
in hybrid junction by tuning one of the parameter of the
system (i.e. phase difference or Zeeman field) in a topo-
logical phase. Along this transition, these states mutate

from Andreev Bound State (ABS) in the non-topological
phase to MBS in the topological one and understanding
their differences is thus of fundamental importance in or-
der to distinguish them. So far, many efforts have focused
on the relation and the evolution of ABS onto MBS by
tuning the system parameters [8, 30, 31] but less on their
own properties [20, 32–34] and the consequences on phys-
ical observables which is the purpose of this contribution.

Recently, an intriguing feature due to MBS was identi-
fied in Ref. [35] and named selective equal-spin Andreev re-
flection (SESAR). The presence of a MBS drastically mod-
ifies Andreev reflection and leads to a spin polarization of
the current as well as to interesting correlations between
different spin components which are visible in the zero fre-
quency noise [36] for instance. However, such fingerprints
are based on the possibility to observe fine quantitative dif-
ferences between spin resolved current-current cross cor-
relations which seems to be complicated experimentally in
the present situation. In this letter, we show that a very
clear qualitative difference is visible in the Waiting Time
Distribution (WTD) of electrons flowing out of the in-
terface making it an interesting and alternative signature
of MBS. The WTD is the statistical distribution of time
delay between the detection of two consecutive electrons
and has been shown to be a very informative and power-
ful quantity for understanding correlations in mesoscopic
quantum conductors [37–50].

Model. – We consider two types of hybrid junctions
as depicted on Fig. 1 at zero temperature. The first
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Fig. 1: (color online) Schematic picture of the Andreev re-
flection processes in the two different junctions. a) Normal-
(trivial)Superconducting junction: a hole with spin ↑n̂ (↓n̂)
is converted into an electron with opposite spin ↓n̂ (↑n̂) and
b) Normal-(topological)Superconducting junction: a hole with
spin ↑n̂ is converted into an electron with same spin ↑n̂ and a
hole with spin ↓n̂ is reflected as a hole also with the same spin
↓n̂. In the first case n̂ denotes any possible direction whereas in
the second case a Majorana bound state appears at the inter-
face and sets a special spin direction n̂ for scattering (see text).
In both cases a bias voltage eV is imposed and brings the su-
perconducting chemical potential µS above the Fermi energy
EF of the normal metal with the restriction that eV � ∆ the
superconducting gap.

one is a normal metal(N)/s-wave superconductor(S) car-
rying an ABS at the interface and the second one is a
N/topological superconductor(TS) where the topological
junction is made of a Rashba nanowire in proximity with
an s-wave superconductor and in presence of Zeeman field
Vz carrying a MBS at each boundary. However, we as-
sume the nanowire to be long enough to decouple the two
MBS. In both situations, the Fermi energy of the normal
metal is EF , the superconducting gap is ∆ and the su-
perconducting chemical potential µS is biased in such a
way that EF = µS − eV and eV � ∆ as shown on Fig.
1. As a consequence, a stream of non-interacting holes
is approaching the interface from the Normal part where
it is scattered as a coherent superposition of electron and
holes. This incoming scattering state reads

|ψin〉 =

kV∏
k=0

ck,n̂ck,−n̂|0〉, (1)

where ck,n̂ is the destruction operator of electron with mo-
mentum k, energy E = h̄vF |k| and spin orientation n̂ (or
creation of holes with opposite properties), |0〉 stands for
the Fermi sea filled with states of energies up to µs and
kV = eV/h̄vF with vF the Fermi velocity. So far, n̂ de-
notes any unitary vector and not necessary ẑ or x̂ for in-
stance. Below we will connect it to the polarization axes
of the MBS but up to now this is just a choice of basis. It
is important to note that spin components ↑z / ↓z or more
generally ↑n̂ / ↓n̂ are equally distributed namely the in-
coming quantum state is isotropic in spin space. The key
difference between these two junctions is how Andreev re-
flection occurs. In the case of a NS junction, the usual

Andreev reflection takes place, meaning that a hole with
a given spin is reflected as an electron with an opposite
spin leading to the presence of ABS in such a junction
(See Fig. 1 a)). Replacing the s-wave superconductor by
a topological one strongly changes scattering properties
and especially the Andreev reflection. If the Zeeman field
is strong enough to enter the topological phase (Vz ≥ ∆),
the p-wave pairing dominates and the Andreev reflection
is spin selective [35] meaning that a hole with spin up
is reflected as an electron with the same spin and a hole
with spin down is normally reflected as a hole with spin
down (See Fig. 1 b)). More precisely, the presence of a
MBS in the latter case, leads to a spin scattering sym-
metry breaking. There is a special spin orientation n̂,
called the Majorana’s polarization, along which electrons
or holes are totally Andreev reflected as a hole or electron
respectively with spin conservation whereas particles with
opposite spin are normally reflected. This is the essence
of SESAR effect [35] that leads to spin polarized current
in this kind of hybrid junction. However, this precise di-
rection cannot be determined from first principles and,
in general, incoming particles are not spin oriented along
this direction which leads to formally more complicated
scattering although everything can be understood by de-
composing the state onto this spin basis.

In order to evaluate the WTD and use it as a tool to
probe the scattering properties of ABS and MBS in hy-
brid junctions we now need the expressions of the different
outgoing scattering states. In such a junction, the inter-
face plays an important role on the transmission which
gives a finite width to the states [51–53]. In Appendix A,
we discuss this effect. However, for the sake of simplic-
ity we focus on the zero temperature and perfect Andreev
reflection limit and following Ref. [35, 48] write down the
different out-going quantum states.

Outgoing states for N/S junction. – In this case,
the interface acts as a perfect Andreev mirror where all the
holes with a given spin are Andreev reflected as electrons
with opposite spin [48]

|ψABS

out 〉 =

kV∏
k=0

c†−k,−n̂c
†
−k,n̂|0〉. (2)

Again, this quantum state is isotropic in spin space and
simply corresponds to a stream of one-dimensional free
electrons with energies between µs and µs + eV and two
possible spin states (two channels of free fermions).

Outgoing states for N/TS junction. – The pres-
ence of the MBS deeply affects the outgoing state. As
mentioned before, the key point is that a hole with a spin
n̂ is totally reflected as an electron with the same spin
whereas a spin −n̂ hole is subjected to perfect specular re-
flection with the same spin as well. It is therefore simpler
to write the outgoing state in the Majorana polarization
frame which reads
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|ψMBS

out 〉 =

kV∏
k=0

c†−k,n̂c−k,−n̂|0〉, (3)

where it is now obvious that the outgoing stream of elec-
trons is totally spin-polarized in the n̂ direction. There-
fore, if one were able to measure the electronic current in
this spin direction, one would get the result of a perfect
single quantum channel. On the contrary, if one mea-
sures it in a random direction, for instance ẑ, one would
measure partition noise just because the spin operators
Ŝz does not commute with Ŝn̂. In that sense, such an
experiment is very similar to the so called Stern and Ger-
lach historical experiment as we will discuss later. Apart
from this remark the many body state can be simply ob-
tained from (3), by replacing the c†n̂ with the proper lin-

ear combination of c†↑ and c†↓ of the right basis. This can
be done using the scattering matrix obtained in [35] de-
pending on the value of the Zeeman field Vz. However,
in the simple case where the Zeeman field is large com-
pared to the superconducting gap, the Majorana is fully
polarized in the z-direction which means that n̂ and ẑ are
the same. Another simple case is right at the topolog-
ical transition when the Zeeman field is just above the
gap where c†−k,↑n̂ = 1√

2
(c†−k,↑ẑ + c†−k,↓ẑ ). Finally, it is im-

portant to note that in the non-topological case, namely
when Vz � ∆, the outgoing state behaves like in the s-
wave junction (usual Andreev reflection on an ABS) [35]
and along the transition, the scattering matrix is not con-
tinuous.

Waiting time distribution. – We now turn to the
calculation of the WTD. To do so, we need to specify the
detection process. A time-resolved single electron detector
is placed far away from the interface and is assumed to be
sensitive to electrons only with energy above the super-
conducting chemical potential µS . In addition the detec-
tor can be spin selective or not. Following Ref. [46,48] the
WTD is obtained from the Idle Time Probability (ITP),
namely the probability of not detecting any electron dur-
ing a time slot τ . The precise definition of it depends on
the detector capabilities. Without spin filtering it reads

Π(τ) = 〈ψout| : e−Q↑,E>µs :: e−Q↓,E>µs : |ψout〉, (4)

where : · · · : stands for the normal ordering and Qσ,E>µs =∫ x0+vF τ

x0
c†σ(x)cσ(x)Θ(E − µS) dx is nothing else than the

probability of presence of a charge Q during a time slot
τ with E > µS and spin projection σ =↑ / ↓ along a
given direction (eg x̂, ẑ...). In Appendix B, we discuss in
more details the derivation of Q and Π depending on the
applied filtering, energy or/and spin. In the case of spin
filtered detection (for instance spin up with respect to a
given direction), this quantity is

Π(τ) = 〈ψout| : e−Q↑,E>µs : |ψout〉. (5)

In both cases, the WTD is obtained from the second

derivative of the ITP with respect to τ ,W(τ) = 〈τ〉d
2Π(τ)
dτ2 ,

where 〈τ〉 is the mean waiting time given by 1/〈τ〉 =
dΠ
dτ (τ = 0). Eq. (4) and (5) are evaluated numerically
for both many-body scattering states (2) and (3) with the
same method as Ref. [46, 48]. However, before discussing
our results it is useful to recall several established results
on WTD in quantum coherent conductors. In Ref. [39,46],
it was shown that for a single quantum channel with a volt-
age bias eV (spinless electrons), the scattering quantum
state is a train of non interacting fermions whose WTD is
approximately the Wigner Surmise

WWS(τ) =
32

π2

τ2

τ3 exp

[
− 4

π

(τ
τ

)2
]
, (6)

with τ = h/eV is the average waiting time, which means
that due to Pauli’s exclusion principle, electrons are sepa-
rated in time by τ on average. An important feature of this
WTD is the fact that it vanishes for τ � τ which is the
hallmark of fermionic statistics. If now this stream of elec-
tron is partitioned by a scatterer with energy independent
transmission coefficient T , this WTD is continuously mod-
ified until it reaches an exponential form T exp(−Tτ/τ)/τ
when T � 1. This exponential shape is the signature of
uncorrelated events since detected electrons are well sep-
arated in time and therefore uncorrelated. In this case,
the mean waiting time is 〈τ〉 = τ/T and therefore the

average current e/〈τ〉 = e2

h V T in agreement with the so
called Landauer’s formula [54]. Finally, when spin 1/2 are
considered there are two conducting channel at disposal
and the WTD no longer vanishes for small waiting times.
At perfect transmission, it is described by the generalized
Wigner-Dyson statistics [46].

WTD without spin filtering. – We start with the
simplest situation where the single electron detector is spin
insensitive. In the absence of MBS, it was shown [48] that
the situation reduces to a stream of one dimensional free
electrons with two spin components. Indeed, at perfect
Andreev reflection, all the incoming holes are converted
into electrons (Andreev mirror) with spin flip and energy
between µS and µS + eV . The WTD is therefore the one
of two perfect and independent quantum channels and is
described by the generalized Wigner-Dyson distribution
[46] depicted on Fig. 2a. The average waiting time is 〈τ〉 =

h/2eV or in other words the average current is 2e2

h V . On
the other hand, in the topological case, the SESAR effect
selects only one spin species reducing the possibilities to
a single perfect quantum channel (with spin orientation
+n̂). As a consequence, the WTD boils down to the so
called Wigner surmise [39] also depicted on Fig. 2a. The

average waiting time is h/eV and the average current e2

h V
therefore twice smaller than for the topological case. This
is in agreement with the common interpretation that a
Majorana behaves as “half an electron” [55].

We therefore conclude that not only the WTD repro-
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Fig. 2: (color online) WTDs versus τ/τ of electrons flowing out
of the interface without spin filtering a) and with spin filtering
orthogonal to the majorana polarization b). The solid gray
line (resp. red line) corresponds to an NS junction without
(resp. with a) MBS (see text) at perfect Andreev reflection.
The dashed black line represents the WTD of a single channel
normal conductor with transmission probability one (a)) and
one-half (b)) for comparison [39].

duces well known differences about the average current
but also exhibits a qualitative mismatch between the two
situations. With MBS, the WTD is exactly zero at τ = 0
because of Pauli’s exclusion principle whereas it is not in
the ABS case since two channels are available [46]. How-
ever, this discrepancy must be visible in any statistical
measure of the electronic current like noise, third cumu-
lant and Full Counting Statistics (FCS) in the same way
that it is between one and two channel standard meso-
scopic conductors.

WTD with spin filtering. – We now turn to a richer
situation where we assume the single electron detector to
be spin sensitive along a direction d̂ and therefore collects
only electrons with spin projection ↑d̂. The following dis-
cussion is basically equivalent to the interpretation of the
famous Stern and Gerlach experiment. The key point is
that quantum state (2) is spin isotropic whereas (3) is spin
polarized in the n̂ direction. In particular, all possible ob-
servables are totally independent of the detector spin ori-
entation in the ABS case. This is in strong contrast with
the MBS where, for instance, filtering spin along ±n̂ leads
obviously to orthogonal results. We illustrate this state-
ment on the WTD but it is very important to note that it
applies to any other observables such as the spin resolved
average current [35] or noise [4] and FCS in general.

For ABS, the single particle detector, whatever its spin
orientation d̂, filters one spin species, namely ↑d̂. Since
they are equally populated and independent, the outgoing
state (2) reduces to a single perfect quantum channel and

its WTD is therefore Wigner surmise (see Fig. 2b). This
WTD is characterized by a single peak centered around
τ = τ with broad fluctuations and exactly zero value at
zero which is the hallmark of Pauli exclusion principle as
already mentioned. When a MBS is present, the precise
shape of the WTD crucially depends on the detector spin
orientation. Although quite academical, we can start by
setting it to n̂. In that case, the detector collects every
electron coming from the interface and the WTD is also
the one of a single quantum channel. In this situation both
ABS and MBS yield the same spin resolved WTD. If we
choose now d̂ = −n̂ the detector collects nothing and if d̂
slightly deviates from −n̂ only a few electrons are kept and
the WTD is expected to be exponential with rate eV

h Pd̂
where Pd̂ is the overlap |〈↑d̂ | ↑n̂〉|2.

For arbitrary d̂, the detector will partition the single
quantum channel according to spin. The situation is al-
most formally equivalent to the one of a spinless single
quantum channel flowing across a Quantum Point Con-
tact (QPC) with energy independent transmission proba-
bility [39]. Here this transmission probability will simply
be given by the overlap Pd̂ between | ↑d̂〉 and | ↑n̂〉. In the

special case where d̂ ⊥ n̂, the quantum state (3) is a bal-
anced mixture of | ↑d̂〉 and | ↓d̂〉 and then will be filtered
exactly like a single quantum channel across a QPC with
transmission probability 1/2. The situation can be imple-
mented experimentally either by tuning Vz just above ∆
and setting d̂ = ẑ or in the limit Vz � ∆ where n̂ = ẑ
and filtering spin along x or y. This is shown on Fig. 2b
where we have evaluated Eq. 5 along ẑ right above the
topological transition by brute force numerics (limited to
a quite small number of basis state (thirteen here) which
explains the small discrepancy) and compared it to the
expected result with very good agreement.

At this point, it is important to give some explanations
on the experimental feasibility. The substrate, namely
the heterojunction, has already been fabricated during the
quest for Majorana quasi-particle [21–23] and consists of
a Rashba nanowire partially in contact with an s-wave
superconductor and in presence of a Zeeman field. The
crucial point is to detect reflected electrons one by one in
the normal part. Although still quite challenging, single
electron detection technology is progressing very fast and
might become a routine in the near future as reviewed in
[45, 49]. Otherwise, partial information on waiting times
can be extracted from the average current, shot noise or
second order coherence function obtained from Hong-Ou-
Mandel experiment [45,56,57].

Conclusion. – We have studied the consequences of
the presence or not of a MBS at the interface between a
normal and a superconducting conductor on the electronic
WTD. When a single electron detector is placed far away
from the interface and detects electrons above the super-
conducting chemical potential µS without spin filtering
we observe a clear qualitative distinction between the
topological and non topological situations. In addition,
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Fig. 3: (color online) WTDs versus τ/τ of electrons flowing
out of the interface of a N/S (gray line) and a N/TS (red line).
The dashed and solid line correspond to two different width of
the states as mentioned in the legend.

we have shown that the non topological situation (ABS)
is immune to spin filtering in sharp contrast with the
topological one due to SESAR effect. This conclusion is
valid for the WTD which makes it a clear fingerprint of
MBS but is also true for other quantities like the average
current or higher moments of the FCS which can be
easier to measure in actual experiments. Extension of
this work could be the study of the influence of Coulomb
repulsion when the superconducting part is not grounded
but floating or the poisoning by another Majorana [58,59]
and temperature or disorder effects.
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Appendix A: Finite width of the outgoing states.
– We study here the effect of a finite energy width of the
Majorana bound state and show that it does not qual-
itatively change the waiting time distribution. Due to
the finite hopping strength at the interface, the Majorana
bound state located at zero energy has a finite width Γ.
The main consequence of this is the energy dependence
of the Andreev reflection coefficient at the interface which
becomes [60]

RA(E) =

∣∣∣∣ Γ

E + iΓ

∣∣∣∣2 . (7)

However, we can recover the same states (2) and (3) as in
the main text when taking the limit eV � Γ. Using this
assumption, we can calculate the ITP and thus the WTD
when the states have a finite width (see Fig. 3) using the
energy dependent coefficients [46].

In fig. 3, we can see that the effect of the broadening of
the states has no dramatic effects on the WTD. For this
reason, we do not focus on this effect in the main text.

Appendix B: Derivation of the Idle Time Prob-
ability. – In this appendix we explain how to calculate
the idle time probability, following the notations of Ref.
[46]. It is important to note that the energy range of de-
tected particles is assumed to be small enough that the dis-
persion relation of electrons or holes is linear E = h̄vF k.
In that case, charge measurements over a time window
∆t are equivalent to charge measurements over a space
window ∆x/vF thanks to Galilean invariance. The key
point to calculate Qσ,E is to specify the detection proce-
dure. This includes the possibility to only detect posi-
tive/negative energies, spin projection up/down with re-
spect to a given quantization axis. In an actual experi-
ment, the detection can be done by connecting the super-
conductor or the topological superconductor to two quan-
tum dots instead of a normal metal. By doing so one can
filter energy by applying an external gate on the two dots
or select the spin by using interacting quantum dots with
strong repulsion in order to get rid of the spin degeneracy
[61,62] . Analytically these properties can be implemented
easily in the definition of Q. This operator can be repre-
sented in the basis of the scattering states as

QE>µs =

∫
t(k)t∗(k′)

ei(k−k
′)vF τ − 1

i(k − k′)
dk

2π

dk′

2π
(8)

where the t(k) are the energy dependent transmission am-
plitudes of a scattering state and may be chosen in that
case as t(k) = 1 if E(k) > µs and t(k) = 0 if E(k) < µs.
In order to compute the ITP, the transport window has to
be discretized into N energy compartments of size eV/N
with corresponding momentum intervals of size κ = eV

Nh̄vF

with vF = h̄kF
m is the Fermi velocity defined with m the

electron mass. Using this discretization leads to the fol-
lowing matrix elements for QE>µs in the large N limit

[Q]m,n =
κt∗κmtκn

π
e−

i
2κ(n−m)vF τ

sin
[

(κn−κm)vF τ
2

]
(κn− κm)

(9)

with m,n = 1, ...., N . From this definition of the ITP
and when the average is taken over a Slater determinant
of free fermions, the WTD can be cast as a determinant
of the form [41,46]

Π(τ) = det(1−Qτ ), (10)

which can be evaluated with a computer. Then, it is
straigthforward to extend this detection procedure to a
spin selective one by setting spin dependent transmission
coefficients.
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