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I. INTRODUCTION

This document is a technical attachment to [1] as an
extension of the differential flatness and simulation sections.

The reader interested in the analysis and control of teth-
ered aerial vehicles is also referred to [1], where flatness,
controllability and observability is studied, to [2] where the
case of a moving base is thoroughly analyzed, to [3] where
real experiments for tethered landing on sloped surfaces is
shown, and to [4], [5] where the case of multiple tethered
vehicles is investigated.

A. Aerial physical interaction

Tethered aerial vehicles constitute an example of aerial
vehicles physically interacting with the external environment.
For the reader interested in this rapidly expanding and broad
topic we also suggest the reading of [6], where a force
nonlinear observer for aerial vehicles is proposed, of [7],
where an IDA-PBC controller is used for modulating the
physical interaction of aerial robots, of [8], [9] where fully
actuated platforms for full wrench exertion are presented,
of [10]–[12] where the capabilities of exerting forces with
a tool are studied, and finally of [13]–[15] where aerial
manipulators with elastic-joint arms are modeled and their
controllability properties discovered.

II. DETAILED DIFFERENTIAL FLATNESS DERIVATION

In this section we provide a more detailed and step-by-
step derivation of the proof of the flatness property of the
system.

A. Flatness with Respect to ya

From the definition of ya we directly have that x =[
ya

1 ẏa
1 ya

2 ẏa
2
]T . Then, inverting the equations:

ẋ1 = a1cx1 +a2cx1+x3u1

ẋ4 = a4u2, (1)
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we can write the inputs as a function of the output and some
of its derivatives

u1 =
ẋ2−a1cx1

a2cx1+x3

=
ÿa

1−a1cya
1

a2cya
1+ya

2

= u1(ya
1, ẏ

a
1, ÿ

a
1,y

a
2)

u2 = ẋ4/a3 = ÿa
2/a3 = u2(ÿa

2).

B. Flatness with Respect to yb

First of all we have directly x1 = ϕ = yb
1 and x2 = ϕ̇ = ẏb

1.
Then let us define

r =−mRp̈B(yb
1, ẏ

b
1, ÿ

b
1,y

b
2)− yb

2d(yb
1)−mRgzW ,

that depends only on yb
1, ẏ

b
1, ÿ

b
1,y

b
2 and some constant param-

eters of the system since

p̈B =−ldϕ̇
2 + ld⊥ϕ̈ = p̈B(yb

1, ẏ
b
1, ÿ

b
1,y

b
2).

Then, using the force balance equation, i.e.,

mRp̈B = mR(−ldϕ̇
2 + ld⊥ϕ̈) =− fLd− fRzB−mRgzW ,

we get

fRzB = u1zB = u1[−sx3 0 − cx3 ]
T = r(yb

1, ẏ
b
1, ÿ

b
1,y

b
2), (2)

where r(·, ·, ·, ·) = [r1 r2 r3]
T represents the function from

R2×R2×R2×R2 to R3. If ‖r‖ 6= 0, from (2) we can retrieve
u1 and x3 as

u1 = ‖r‖= u1(yb
1, ẏ

b
1, ÿ

b
1,y

b
2)

x3 = atan2(r1/‖r‖,r3/‖r‖) = x3(yb
1, ẏ

b
1, ÿ

b
1,y

b
2).

(3)

Differentiating x3 w.r.t. time we obtain x4

x4 =
d
dt

x3(yb
1, ẏ

b
1, ÿ

b
1,y

b
2)

=
r3nṙ1n− r1nṙ3n

r2
1n + r2

3n

= x4(yb
1, ẏ

b
1, ÿ

b
1,y

b
1
(3)
,yb

2, ẏ
b
2),

where we have defined r1n = r1/‖r‖ and r3n = r3/‖r‖.
Further differentiating x4 and using (1) we finally obtain u2

u2 = JR
d
dt

x4(yb
1, . . . ,y

b
1
(3)
,yb

2, ẏ
b
2) = u2(yb

1, . . . ,y
b
1
(4)
,yb

2, ẏ
b
2, ÿ

b
2).
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(a) Controller Results.
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(b) Observer Results: Only the first two seconds are shown since after this
time the estimation follows the state with high fidelity for all the rest of the
simulation.

Fig. 1: Controller Γa′ with initial tracking and estimation error. In this plot
and in the following the superscript ·n represents the nominal state and
inputs, computed thanks to the differential flatness, needed to track the
desired trajectories.

III. ADDITIONAL SIMULATIONS

Within this section we shall provide some additional
results obtained by simulations in order to prove the validity
of the proposed method.

Regarding the parameters of the system we used the same
values presented in Sec. VI of [1]. Analogously for the
desired trajectories. To have a more complete validation, in
the following we show the results of the convergence and
robustness of the proposed method under different non ideal
conditions, such as: a) initial tracking and estimation error,
b) parametric variations, c) noisy sensor measurements, and
d) motor time constant.

A. Initial errors

In this section we want to show the closed loop stability
of the system in dynamic condition even with some initial
tracking and estimation error. In Fig. 1 and Fig. 2, one can
see that after the convergence of the observer, taking less
than one second, both controllers Γa′ and Γb exponentially
steer the outputs along the desired trajectories.
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(b) Observer Results: Only the first 0.6 seconds are shown since after this
time the estimation follows the state with high fidelity for all the rest of the
simulation.

Fig. 2: Controller Γb with initial tracking and estimation error.

B. Parametric variations

The purpose of the next sections is to investigate the ro-
bustness of the proposed methods. In particular we consider
some parameter variation between the real model and con-
troller/observer. Indeed in a real scenario we can not know
exactly each parameter of the system, thus the controller and
observer would be based on some nominal parameter values
different from the real one.

Fig. 3 and Fig. 4 show the performances of the controller
Γa′ and Γb with a relative variation of 0.05 for each parameter
(∆mR, ∆l and ∆JR). We can notice that due to the uncertainty
of the model we have some nonzero errors in the tracking
and on the estimation of the state. Nevertheless the system
remains stable and the tracking and estimation errors result
bounded. In principle an integrator term in the controller
could overcome the constant steady state error, thought the
control action is computed from an estimation of actual
output based on the input and on the estimation of the state.
The last one does not converge to the real one since the
observer has a steady state error and so also the estimation
of the output.

The addition of an integrator term in the controller does
not imply an improvement of the performances since the
observer output has a bias due to the estimation error. On
the contrary, in the case the feedback control could be done
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(b) Observer Results.

Fig. 3: Controller Γa′ : possible real parametric variation with a relative
variation of 0.05 (i.e., 5%) for each parameter.

based on the real outputs, then the integrator term would
solve the steady state error due to the parameter variations.
Indeed, in Fig. 5, where the performances are showed in
the case that the real output is assumed measured and an
integrator term is added on the controller, one can observe
that the mean tracking error reduces a lot, especially in the
steady state phase.

C. Noise on the Measurements

In this last section we investigate the robustness of the
proposed method with the presence of noise in the measure-
ments. We considered the accelerometer and the gyroscope
with white noise component of variance 0.1[m/s2] and
0.01[rad/s], respectively, that correspond to typical values
of real sensors.

From Fig. 6, for the controller Γa′ , we can observe that the
estimated state shows some noise but the corresponding error
remains always limited. Due to the noisy component on the
estimated state the control action presents some oscillations
that imply a non exact tracking of the desired trajectory.
Nevertheless the tracking error remains small and always
bounded. To achieve these results we had to reduce the gains
of both controller and observer. Indeed, high gain values
increase the convergence speed but also the negative effects
of the noisy measurements. In general the two controllers
Γa′ and Γb do not show particular different behaviors.
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(b) Observer Results.

Fig. 4: Controller Γb: possible real parametric variation with a relative
variation of 0.05 (i.e., 5%) for each parameter.

D. Motors Time Constant

In a real scenario, one motor can not instantaneously
change the spinning velocity of the propeller, and in turn the
thrust produced. Indeed, this discontinuous variation of the
speed would require the application of an infinite torque by
the motor, that is clearly not possible. Instead the dynamics
of the motor is characterized by a certain time constant,
τM ∈R, that quantifies the time needed to change the motor
speed. In this section we analyze this additional non ideality
testing the proposed method with different non ideal motors
characterized by an increasing time constant. In Fig. 7 we
show the relative mean and variance of the tracking error
for the different time constant values τM . The plots clearly
shows that increasing the time constant the tracking error
increases as well, especially during the dynamic part of the
desired trajectory (Phase 2). Indeed, for motors with higher
time constant, the error between commanded and actuated
thrust on each propeller increases causing a bigger tracking
error.

This analysis is important for the scalability of the system.
Indeed, bigger vehicles with higher mass imply the need of
an higher lift that can be in general generated by bigger
propellers. This in turn requires the use of bigger motors
that are characterized by an larger time constant. Finally,
as shown in Fig 7, the larger mass of the system and the
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Fig. 5: Parametric variation - Controller Γb with real output and an integrator
term. The subscript 1,2, and 3 corresponds to the three different trajectory
times: 1) 7[s], 2) 5[s] and 3) 3[s], respectively. Over the displayed range of
parametric variation the performances are very bad or the system results to
be even unstable.

larger time constant of the motors reduce the agility of the
system. Therefore, when we increase the dimensions and the
mass of the vehicle, in order to still obtain good tracking
performances, it is necessary to reduce the agility of the
desired maneuver reducing the demanded accelerations.
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