N
N

N

HAL

open science

JBotSim: a Tool for Fast Prototyping of Distributed
Algorithms in Dynamic Networks

Arnaud Casteigts

» To cite this version:

Arnaud Casteigts. JBotSim: a Tool for Fast Prototyping of Distributed Algorithms in Dynamic
Networks. Eighth EAI International Conference on Simulation Tools and Techniques (SIMUTOOLS),

Aug 2015, Athénes, Greece. hal-01472926

HAL Id: hal-01472926
https://hal.science/hal-01472926
Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01472926
https://hal.archives-ouvertes.fr

arXiv:1001.1435v6 [csMS] 18 May 2015

JBotSim: a Tool for Fast Prototyping of Distributed
Algorithms in Dynamic Networks:

Arnaud Casteigts
LaBRI, University of Bordeaux

arnaud.casteigts@labri.fr

ABSTRACT

JBOTSIM is a java library that offers basic primitives for proto-
typing, running, and visualizing distributed algorithms in dynamic
networks. With JBOTSIM, one can implement an idea in minutes
and interact with it (e.g., add, move, or delete nodes) while it is
running. JBOTSIM is well suited to prepare live demonstrations of
algorithms to colleagues or students; it can also be used to evaluate
performance at the algorithmic level (number of messages, num-
ber of rounds, etc.). Unlike most simulation tools, JBOTSIM is not
an integrated environment. It is a lightweight library to be used in
java programs. In this paper, I present an overview of its distinctive
features and architecture.

1. INTRODUCTION

JBotSim is an open source simulation library that is dedicated
to distributed algorithms in dynamic networks. I developed it with
the purpose in mind to make it possible to implement an algorith-
mic idea in minutes and interact with it while it is running (e.g.,
add, move, or delete nodes). Besides interaction, JBOTSIM can
also be used to prepare live demos of an algorithm and to show it
to colleagues or students, as well as to assess the algorithm per-
formance. JBOTSIM is not a competitor of mainstream simulators
such as NS3 [5]], OMNet [10], or The One [8]], in the sense that it
does not aim to implement real-world networking protocols. Quite
the opposite, JBOTSIM aims to remain technology-insensitive and
to be used at the algorithmic level, in a way closer in spirit to the
ViSiDiA project (a general-purpose platform for distributed algo-
rithms). Unlike ViSiDiA, however, JBOTSIM natively supports
mobility and dynamic networks (as well as wireless communica-
tion). Another major difference with the above tools is that it is a
library rather than a software: its purpose is to be used in other pro-
grams, whether these programs are simple scenarios of full-fledged
software. Finally, JBOTSIM is distributed under the terms of the
LGPL licence, which makes it easily extensible by the community.

Whether the algorithms are centralized or distributed, the natu-
ral way of programming in JBOTSIM is event-driven: algorithms
are specified as subroutines to be executed when particular events
occur (appearance or disappearance of a link, arrival of a message,
clock pulse, efc.). Movements of the nodes can be controlled ei-
ther by program or by means of live interaction with the mouse
(adding, deleting, or moving nodes around with left-click, right-
click, or drag and drop, respectively). These movements are typi-
cally performed while the algorithm is running, in order to visualize
it or test its behavior in challenging configurations.

The present document offers a broad view of JBOTSIM’s main
features and design traits. I start with preliminary information in

* A shorter version appeared in SIMUTOOLS 2015.

Section [2] regarding installation and documentation. Section [3]re-
views JBOTSIM’s main components and specificities such as pro-
gramming paradigms, clock scheduling, user interaction, or global
architecture. Section[d]zooms on key features such as the exchange
of messages between nodes, graph-level APIs, or the creation of
online demos. Finally, I discuss in Section E] some extensions of
JBOTSIM, including TikZ exportation feature and edge-markovian
dynamic graph generator.

Besides its features, the main asset of JBotSim is its simplicity
of use — an aim that I pursued at the cost of re-writing it several
times from scratch (the API is now stable).

2. PRACTICAL ASPECTS

In this short section, I show how to install JBOTSIM and run it
with a first basic example (this step is not required to keep reading
the present document). I also provide links to online documentation
and examples, for readers who would like to explore JBOTSIM’s
features beyond this paper.

2.1 Fetching JBOTSIM

The straightest (and safest) way to obtain JBOTSIM is to fetch
the latest release, as a jar package on JBOTSIM’s website [1]. One
can also get the latest development version from SourceForge’s
GIT repository and compile it as shown below, keeping in mind
that online documentation refers to the official release rather than
this version. Here is the command:

>git clone git://git.code.sf.net/p/jbotsim/git target
where target is the local directory in which to put JBOTSIM.
From that directory, one can produce the JAR package using a sim-
ple make.

After more than seven years of development, JBOTSIM is finally
approaching version 1.0 (as of today, version 1.0-prealpha) and I
think it is ready to be tested by the community.

2.2 First steps

As a first program, one can copy the code from Listing] into a
file named HelloWorld. java.

Listing 1 HelloWorld with JBOTSIM

import jbotsim.Topology;
import jbotsim.ui.JViewer;

public class HelloWorld{
public static void main (String[] args) {
new JViewer (new Topology());
}

How to use the JAR file and run the HelloWorld example:

o Ifusing IntelliJ, go to Project structure > Modules (select the
module) > Dependencies > "+" and add jbotsim. jar.

e If using Eclipse, go to Project > Properties > Java build
path > Librairies > Add external jar and add jbotsim. jar.

e From the terminal, the following commands can be used:
javac -cp Jbotsim.jar HelloWorld. java
(compilation)
java —-cp
(execution)

. :jbotsim. jar HelloWorld

By running the program, one should see an empty gray surface
in which nodes can be added, moved, or deleted using the mouse.

2.3 Sources of documentation

In this document, I provide a general overview of what JBOTSIM
is and how it is designed. This is by no means a comprehensive pro-
gramming manual. The reader who wants to explore further some
features or develop complex programs with JBOTSIM is referred to
the API documentation (see javadoc on the website).

Examples can also be found on JBOTSIM’s website, together
with comments and explanations. These examples offer a good
starting point to learn specific components of the API from an op-
erational standpoint — the present document essentially focuses on
concepts. Most of the online examples feature embedded videos.
Finally, most of the examples in this paper are also available on
JBOTSIM’s website. Feel free to check them when the code given
here is incomplete (e.g. I often omit package imports and main ()
methods for conciseness).

3. FEATURES AND ARCHITECTURE

This section provides an overview of JBOTSIM’s key features
and discusses the reason why some design choices were made. I
review topics as varied as programming paradigms, clock schedul-
ing, user interaction, and global architecture.

3.1 Basic features of nodes and links

lII|

- T—
- —
~—

Figure 1: A highway scenario composed of vehicles, road-side
units, and central servers. Part of the network is ad hoc (and
wireless); the rest is infrastructured (and wired).

JBOTSIM consists of a small number of classes, the most cen-
tral being Node, Link, and Topology. The contexts in which
dynamic networks apply are varied. In order to accommodate a
majority of cases, these classes offer a number of conceptual varia-
tions around the notions of nodes and links. Nodes may or may not
possess wireless communication capabilities, sensing abilities, or
self-mobility. They may differ in clock frequency, color, commu-
nication range, or any other user-defined property. Links between
the nodes account for potential communication among them. The
nature of links varies as well; a link can be directed or undirected,
as well as it can be wired or wireless — in the latter case JBOTSIM’s
topology will update the set of links automatically, as a function of
nodes distances and communication ranges.

Figures[I]and[Z]illustrate two different contexts. Figure[I|depicts
a highway scenario where three types of nodes are used: vehicles,
road-side units (towers), and central servers. This scenario is semi-
infrastructured: Servers share a dedicated link with each tower.
These links are wired and thus exist irrespective of distance. On
the other hand, towers and vehicles communicates through wire-
less links that are automatically updated.

% 4

Figure 2: A swarming scenario, whereby mobiles robots and
UAVs collaborate in order to clean a public park.

Figure 2] illustrates a purely ad hoc scenario, whereby a hetero-
geneous swarm of UAVs and robots strives to clean a public park
collectively. In this scenario, robots can detect and clean wastes
of a certain type (red or blue) only if these are within their sens-
ing range (depicted by a surrounding circle). However, they are
pretty slow to move and cannot detect remote wastes. In the mean-
time, a set of UAVs is patrolling over the park at higher speed and
with larger sensing range. Whenever they detect a waste of some
type, they store its position and start searching for a capable robot.
In addition to sensing capabilities, UAVs can exchange messages
with each other to optimize the process.

Besides nodes and links, the concept of topology is central in
JBoOTSIM. Topologies can be thought of as containers for nodes
and links, together with dedicated operations like updating wireless
links. They also play a central role in JBOTSIM’s event architec-
ture, as explained later on.

3.2 Distributed vs. centralized algorithms

JBOTSIM supports the manipulation of centralized or distributed
algorithms (possibly simultaneously). The natural way to imple-
ment a distributed algorithm is by extending the Node class, in
which the desired behavior is implemented. Centralized algorithms
are not constrained to a particular model, they can take the form of
any standard java class.

Distributed algorithm.

JBOTSIM comes with a default type of node that is implemented
in the Node class. This class provides the most general features
a node could have, including primitives for moving, exchanging
messages, or tuning basic parameters (e.g. communication range
and sensing range). Distributed algorithms are naturally imple-
mented through adding specific features to this class. Listing [2]
provides a basic example in which the nodes are endowed with
self-mobility. The class relies on a key mechanism in JBOTSIM:
performing periodic operations that are triggered by the pulse of the
system clock. This is done by overriding the onClock () method,
which is called periodically by JBotSim’s engine (by default, at
every pulse of the clock). The rest of the code is responsible for
moving the node, setting a random direction at construction time

Listing 2 Extending the Node class

Listing 5 Centralized version of Random Waypoint

import jbotsim.Node;

public class MovingNode extends Node {
public MovingNode () {
setDirection (Math.random() = 2+Math.PI);
}
public void onClock () {
move (2) ;

}

(in radian), then moving in this direction periodically. (More de-
tails about the movement API can be found online.)

Once this class is defined, new nodes of this type can be added
to the topology in the same way as if they were of class Node, as il-
lustrated in Listing[3] Here, a new topology is created first, then 10

Listing 3 Adding nodes manually

public static void main (String[] args) {
Topology tp = new Topology (400,300);
for (int i=0; i<10; i++)
tp.addNode (-1,-1, mew MovingNode ()) ;
new JViewer (tp);

nodes of the desired type (here, MovingNode) are added through
the addNode () method at random locations (using —1 for z-
coordinate or y-coordinate generates a random location for that co-
ordinate; here both are random). In order to use MovingNode
through the GUI, for instance when clicking with the mouse to add
new nodes, this class must be registered as a node model. This
is done by calling method setDefaultNodeModel () with the
class itself as an argument, as shown on Listing[d JBOTSIM will
create new instances on the fly, using reflexivity. Several models
can be registered simultaneously, using setNodeModel () with
an additional argument that corresponds to the model name. If sev-
eral models exist, JBOTSIM’s GUI (the viewer) displays a selec-
tion list when a node is added by the user (in this example, only
one model is set and it is used by default). In the scenario of Fig-

Listing 4 Using a defined node as default

public static void main (String[] args) {
Topology tp = new Topology (400, 300);
tp.setDefaultNodeModel (MovingNode.class) ;
new JViewer (tp);

ure] however, left-clicking on the surface would give the choice
between car, tower, and server, the names of the three registered
models for that scenario.

Centralized algorithms.

There are many reasons why a centralized algorithm can be pre-
ferred over a distributed one. The object of study might be central-
ized in itself (e.g. network optimization, scheduling, graph algo-
rithms in general). It may also be simpler to simulate distributed
things in a centralized way. Listing [3] implements such a version
of the random waypoint mobility model, in which nodes repeat-
edly move toward a randomly selected destination, called target.
Unlike a distributed implementation, the movements of nodes are
here driven by a global loop at every pulse of the clock. For each
node, a target is created if it does not exists yet or if it has just been
reached; then the node’s direction is set accordingly and the node

public class CentralizedRWP implements ClockListener{
Topology tp;
public CentralizedRWP (Topology tp) {
this.tp = tp;
tp.addClockListener (this) ;
}
public void onClock () {
for (Node n : tp.getNodes()) {
Point2D target=(Point2D)n.getProperty ("target");
if (target == null || n.distance(target)<1) {
target = new Point2D.Double (Math.random () x400,
Math.random () *300) ;
n.setProperty ("target", target);
n.setDirection (target);
}
n.move () ;
}
}
public static void main (String[] args) {
Topology tp = mew Topology (400,300);
new CentralizedRWP (tp);
new JViewer (tp);
}

is moved (by default, by 1 unit of distance). For convenience, the
main () method is included in the same class.

Notice the use of setProperty () and getProperty () in
this example. These methods allow to store any object directly into
a node, using a key/value scheme (where key is a string). Both
Link and Topology objects offer the same feature.

3.3 Architecture of the event system

So far, we have seen one type of event: clock pulses, to be lis-
tened to through the ClockListener interface. JBOTSIM offers
a number of such events and interfaces, some of which become are

ubiquitous. The main ones are depicted on Figure
This architecture allows one to specify dedicated op-

erations in reaction to various events. For instance, one may ask
to be notified whenever a link appears or disappears somewhere.
Same for messages, which are typically listened to by the nodes
themselves or can be watched at a global scale (e.g. to keep a log
of all communications). In fact, every node is automatically noti-
fied for its own events; it just needs to override the corresponding
methods from the parent class Node in order to specify event han-
dlings (e.g. onClock (), onMessage (), onLinkAdded (),
onSensingIn (), onSelection (), efc.). Explicit listeners,
on the other hand, like the ones in Figure [3] are meant to be used
by centralized programs which do not extend class Node.

Listing [6] gives one such example, consisting of a mobility trace
recorder. This program listens to topological events of various
kinds, including appearance or disappearance of nodes or links, and
movements of the nodes. Upon each of these events, it outputs a
string representation of the event using a dedicated human readable
format called DGS [7]. Similar code could be written for Gephi [3]].

Other events exist besides those represented in Figure E[, such
as the SelectionListener interface, which makes it possible
to be notified when a node is selected (middle-click) and make it
initiate some tasks, for instance broadcast, distinguished role, etc.

3.4 Single threading: why and how?

It seems convenient at first, to assign every node a dedicated
thread, however JBOTSIM was designed differently. JBOTSIM is
single-threaded, and definitely so. This section explains the why
and the how. Understanding these aspects are instrumental in de-
veloping well-organized and bug-free programs.

MovementListener
onMove()

onLinkAdded()
ConnectivityListener
onLinkRemoved()

onClock() ClockListener

onNodeAdded()
TopologyListener
onNodeRemoved()

Node

MessageListener PropertyListener

onMessage() Link propertyChanged()

Figure 3: Main sources of events and corresponding interfaces in JBOTSIM.

Listing 6 Example of a mobility trace recorder

public class MyRecorder implements TopologyListener,
ConnectivityListener,
MovementListener{
public MyRecorder (Topology tp) {
tp.addTopologyListener (this) ;
tp.addConnectivityListener (this) ;
tp.addMovementListener (this) ;

// TopologyListener
public void onNodeAdded (Node node) {

println("an_" + node.hashCode () +

" x:" + node.getX() + "_y:" + node.get¥Y());

}
public void onNodeRemoved (Node node) {

println("dn_" + node.hashCode());
}

// ConnectivityListener
public void onLinkAdded (Link link) {
println("ae_" + link.hashCode() + " " +
link.endpoint (0) + "_" + link.endpoint(1));
}
public void onLinkRemoved (Link link) {
println("de " + link.hashCode());
}

// MovementListener
public void onNodeMoved (Node node) {
println("cn_" + node.hashCode() +
" x:" + node.getX() + "_y:" + node.getY());

In JBOTSIM, all the nodes, and in fact all of JBOTSIM’s life
(GUI excepted) is articulated around a single thread, which is driven
by the central clock. The clock pulses at regular interval (whose
period can be tuned) and notifies its listeners in a specific order.
JBOTSIM’s internal engines, such as the message engine, are served
first. Then come those nodes whose wait period has expired (re-
mind that nodes can choose to register to the clock with different
periods). These nodes are notified in a random order. Hence, if
all nodes listen to the clock at a rate of 1 (the default value), they
will all be notified in a random order in each round, which makes
JBOTSIM’s scheduler a non-deterministic 2-bounded fair sched-
uler. (Other policies will be available eventually.) A simplified
version of the current scheduling process is depicted on Figure[d]

One consequence of single-threading is that all computations
(GUI excepted) take place in a sequential order that makes it pos-
sible to use unsynchronized data structures and simpler code. This
also improves the scalability of JBOTSIM when the number of
nodes grows large. One can rely on other user-defined threads in
the program, however one should be careful that these thread do not
interfer with JBOTSIM’s. The canonical example is when a sce-

Topology’s clock

«— setClockSpeed()

1 time unit (default 10ms)

k— addClockListener()

increment time

for each listener L in random order
decrement countdown<<L >
if countdown<L>= 0

notifies L and reset countdown<L> ——— onClock()

Figure 4: Simplified version of the internal scheduler.

nario is set up by program from within the thread of the main ()
method. If the initialization makes extensive use of JBOTSIM’s
API from within that thread and the clock starts triggering events
at the same time, then problems might occur (and a Concurrent
ModificationException be raised). The easy way around
is to pause the clock before executing these instructions and to re-
sume it after (using the pause () and the resume () methods on
the topology, respectively).

3.5 Interactivity

I designed JBOTSIM with a clear separation in mind between
GUI and internal features. In particular, it can be run without GUI
(i.e. without creating the JViewer object), and things will work
exactly the same, though invisibly. As such, JBOTSIM can be used
to perform batch simulations (e.g. sequences of unattended runs
that log the effects of some varying parameter). This also enables
to withstand heavier simulations in terms of the number of nodes
and links.

This being said, one of the most distinctive features of JBOTSIM
remains interactivity, e.g., the ability to challenge the algorithm in
difficult configurations through adding, removing, or moving nodes
during the execution. This approach proves useful to think of a
problem visually and intuitively. It also makes it possible to explain
someone an algorithm through showing its behavior.

The architecture of JBOTSIM’s viewer is depicted on Figure 5]
As one can see, the viewer relies heavily on events related to nodes,
links, and topology. The influence also goes the other way, with
mouse actions being translated into topological operations. These
features are realized by a class called JTopology. This class
can often be ignored by the developer, which creates and manip-
ulates the viewer through the higher JViewer class. The latter
adds external features such as tuning slide bars, popup menus, or
self-containment in a system window.

While natural to JBOTSIM’s users, the viewer remains, in all
technical aspects, an independent piece of software. Alternative
viewers could very well be designed with specific uses in mind.

k— removeClockListener()

JViewer

JTopology

removeNode () | TRight click

—Middle click
——+—1Left click
| {Drag & drop

selectNode ()

addNode () MouseListener

setLocation ()

onNodeMoved ()

Node | 1

(via MovementListener)

propertyChanged ()
Link |——-7

(via PropertyListener)

V1Y

Update
visualization

onNodeAdded ()
onNodeRemoved ()

Topology —T"

(via TopologyListener)

t—| onLinkadded ()
onLinkRemoved ()

(via ConnectivityListener)

Figure 5: Internals of JBotSim’s GUI

4. A ZOOM ON SELECTED FEATURES

This section provides more details on a handful of selected fea-
tures. It covers, namely, the topics of message passing, graph-level
algorithms, and java applets for online web demos.

4.1 Exchanging messages

The way messages are used in JBOTSIM is independent from
the communication technology considered. Indeed, the APl is quite
simple, messages are sent directly by the sender, through calling the
send () method on its own instance (inherited from Node). Mes-
sages are typically received through overriding the onMe ssage ()
method (also from class Node). Another way to receive messages,
which is not event-based, is for a node to check its mailbox man-
ually through the getMailbox () method, for instance when it
is executing the onClock () method (this is the natural way to
implement round-based communication models).

Listing [/] shows a message-based implementation of the flood-
ing principle. Initially, none of the nodes are informed. Then, if a
node is selected (either through middle-click or through direct call
to the selectNode () method), then this node is notified in the
onSelection () method and initiates a basic broadcast scheme.
Here, the algorithm consists in retransmitting the received message
upon first reception to all the local neighbors (sendall ()). In
this example, the message is empty, however in general any ob-
ject can be inserted in the message (no copy is made and the very
same object is to be delivered, unless a copy is made at sending
time). By default, a message takes one time unit to be transmitted
(i.e. it is delivered at the next clock pulse). The delivery happens
only for those links which exist by the time of reception. Since
any object can be used as message content, it often has to be cast
upon reception. All these aspects correspond to JBOTSIM’s de-
fault message engine. Other message engines can be written, and
indeed some exist in the jbotsimx package. For instance, the
DelayMessageEngine makes it possible to add deterministic
or random delays to the delivery of messages, possibly even in a
non FIFO manner.

4.2 Working at the graph level

Listing 7 Example of message passing algorithm

public class FloodingNode extends Node {
boolean informed = false;

@Override
public void onSelection () {
informed = true;
sendAll (new Message());
}

@Override
public void onMessage (Message message) {
if (!informed) {
informed = true;
sendAll (message) ;

Implementing an algorithm in the message passing model is some-
times difficult. JBOTSIM makes it possible to sketch an idea, play
with it, and share it with others, in minutes, thanks to working
at a (more abstract) graph-level. This level of abstraction also
is relevant in its own right, when the object of study is itself at
the graph level, such as classical graph algorithms or distributed
coarse-grain models like graph relabeling systems [9] or popula-
tion protocols |2].

To illustrate the simplicity of the graph level, let us consider a
scenario where a type of node called SocialNode, dislikes being
isolated. Such a node is happy (green) if it has at least one neigh-
bor, unhappy (red) otherwise. In the message passing paradigm,
this principle would require to send periodic messages (beacons)
and track the reception of these messages, as well as using a timer
to decide when a node becomes isolated. Listing [8]shows a possi-
ble implementation at the graph level, which is pretty concise and
self-explanatory. Topological events are directly detected by the

Listing 8 Example of graph-based algorithm

public class SocialNode extends Node {
public SocialNode () {
setColor (Color.red);
}
public void onLinkAdded (Link 1) {
setColor (Color.green);
}
public void onLinkRemoved (Link 1) {
if (!hasNeighbors())
setColor (Color.red);

nodes, which can update their status. (These events could also be
listened to globally through the ConnectivityListener ()
interface. This is the way one might want to implement centralized
dynamic graph algorithms.) Of course, from a message passing
perspective, this implementation is cheating. Thus, methods like
onLinkAdded (), hasNeighbors (), or getNeighbors ()
should not be used in a message-passing setting.

4.3 Embedding JBOTSIM in a java applet

One of the features of JBOTSIM’s viewer is to create a win-
dowed frame automatically for the topology. This is the default
behavior of Jviewer’s constructor when a single parameter of
type Topology or JTopology is used. Other behaviors can be
obtained by using different versions of the constructor. In partic-
ular, one can specify that no windowed frame should be created,
and the JTopology object be plugged manually into a different

container. This feature enables the customization of JBOTSIM’s Ul
at will, as well as the creation of java applets.

Listing 0] shows an example java applet corresponding to the
HelloWorld program from Listing [T} Here, a JTopology object

Listing 9 Embedding a JBOTSIM demo into a java applet

import javax.swing.JApplet;

import jbotsim.Clock;

import jbotsim.Topology;
import jbotsim.ui.JTopology;
import jbotsim.ui.JViewer;

@SuppressWarnings ("serial")
public class HelloWorld_Applet extends JApplet {
Topology tp;
public void init () {
tp = new Topology();
JTopology jtp = nmew JTopology (tp);
new JViewer (jtp, false);
this.add (jtp) ;
}
public void destroy () {
tp.pause();
}

(which is a JPanel) is created manually from the topology. Its
reference is then used to augment it with standard viewer features,
and finally added to the applet container. Another important step
is to pause the clock in the destroy () method (otherwise JBot-
Sim’s engine would keep running in background).

5. CONCLUDING REMARKS

I my view, JBOTSIM is a kernel, in the sense that it encapsu-
lates a number of generic features whose purpose is to be used by
higher programs. As of today, the plan is to keep it this way and
try containing the growth of the number of features, to the profit of
quality and simplicity. This does not mean, of course, that JBOT-
S1iM should not be extended externally.

In particular, JBOTSIM’s distribution already incorporates an ex-
tension package called jbotsimx, in which more specific fea-
tures could be found. For instance, it incorporates a static class
called Tikz that makes it possible to export the current topol-
ogy as a TikZ picture — a powerful format for drawing pictures in
ISTEX documents. Figure [6]illustrates this with two pictures that I

(b) Robot relocation

(a) Geocasting in sensor networks

Figure 6: Two examples of pictures whose underlying topology
was generated using JBOTSIM Tikz extension. The topology
on the left was created by adding and moving nodes using the
mouse; the topology on the right was generated by program.
Once exported as a Tikz picture, they were twicked manually
to add shading, color, etc.

have generated. The Tikz class is composed of a single method,

exportAsTikz (), which takes a mandatory Topology argu-
ment, and an optional scaling argument.

Other extensions include basic topology algorithms for testing,
e.g., if a given topology is connected or 2-connected, if a given node
is critical (its removal would disconnect the graph) or compute the
diameter. A set of extensions dedicated to dynamic graph are cur-
rently being developped (by myself and others). For instance, the
EMEGPlayer takes as input a birth rate, death rate, and an un-
derlying graph (given as a Topology), and generates an edge-
markovian dynamic graph based on these parameters, the dynamics
of which can be listened to through the ConnectivityListener
interface.

Contributions are most welcome, as well as suggestions of im-
provement or feature requests.

References
[1] JBOTSIM’s website: http://jbotsim.sf.net/,

[2] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Per-
alta, “Computation in networks of passively mobile finite-state
sensors,” Distributed Computing, vol. 18, no. 4, pp. 235-253,
2006.

[3] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open
source software for exploring and manipulating networks,” in
International AAAI conference on weblogs and social media,
vol. 2. AAAI Press Menlo Park, CA, 2009.

[4] M. Bauderon and M. Mosbah, “A unified framework for de-
signing, implementing and visualizing distributed algorithms,”
Electr. Notes Theor. Comput. Sci., vol. 72, no. 3, pp. 13-24,
2003.

[5] Collective Authors, “The NS-3 network simulator,” http://
www.nsnam.org/, 2009.

[6] B. Derbel, “A Brief Introduction to ViSiDiA,” USTL, Tech.
Rep., 2007.
[7] A.Dutot, F. Guinand, D. Olivier, and Y. Pigné, “GraphStream:

A Tool for bridging the gap between Complex Systems and
Dynamic Graphs,” EPNACS: Emergent Properties in Natural
and Artificial Complex Systems, 2007.

[8] A. Keridnen, J. Ott, and T. Kéarkkdinen, “The one simulator
for dtn protocol evaluation,” in Proceedings of the 2nd In-
ternational Conference on Simulation Tools and Techniques.
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2009, p. 55.

I. Litovsky, Y. Métivier, and E. Sopena, “Graph relabelling sys-
tems and distributed algorithms,” Handbook of graph gram-
mars and computing by graph transformation, vol. 3, pp. 1-56,
1999.

[9

[

[10] A. Varga et al., “The OMNeT++ discrete event simulation
system,” in Proceedings of the European Simulation Multicon-
ference (ESM’01), 2001, pp. 319-324.

http://jbotsim.sf.net/
http://www.nsnam.org/
http://www.nsnam.org/

	1 Introduction
	2 Practical aspects
	2.1 Fetching JBotSim
	2.2 First steps
	2.3 Sources of documentation

	3 Features and architecture
	3.1 Basic features of nodes and links
	3.2 Distributed vs. centralized algorithms
	3.3 Architecture of the event system
	3.4 Single threading: why and how?
	3.5 Interactivity

	4 A zoom on selected features
	4.1 Exchanging messages
	4.2 Working at the graph level
	4.3 Embedding JBotSim in a java applet

	5 Concluding remarks

