
HAL Id: hal-01472903
https://hal.science/hal-01472903

Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design Patterns in Beeping Algorithms (extended
abstract)

Arnaud Casteigts, Yves Métivier, John Michael Robson, Akka Zemmari

To cite this version:
Arnaud Casteigts, Yves Métivier, John Michael Robson, Akka Zemmari. Design Patterns in Beeping
Algorithms (extended abstract). 20th International Conference on Principles of Distributed Systems
(OPODIS), Dec 2016, Madrid, Spain. �hal-01472903�

https://hal.science/hal-01472903
https://hal.archives-ouvertes.fr

Design Patterns in Beeping Algorithms
(extended abstract)∗

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari

LaBRI, University of Bordeaux
{acasteig, metivier, robson, zemmari}@labri.fr

Abstract
We consider networks of processes which interact with beeps. In the basic model defined by
Cornejo and Kuhn [5], which we refer to as the BL variant, processes can choose in each round
either to beep or to listen. Those who beep are unable to detect simultaneous beeps. Those
who listen can only distinguish between silence and the presence of at least one beep. Stronger
variants exist where the nodes can also detect collision while they are beeping (BcdL) or listening
(BLcd), or both (BcdLcd). Beeping models are weak in essence and even simple tasks are difficult
or unfeasible with them.

This paper starts with a discussion on generic building blocks (design patterns) which seem
to occur frequently in the design of beeping algorithms. They include multi-slot phases: the
fact of dividing the main loop into a number of specialised slots; exclusive beeps: having a
single node beep at a time in a neighbourhood (within one or two hops); adaptive probability:
increasing or decreasing the probability of beeping to produce more exclusive beeps; internal
(resp. peripheral) collision detection: for detecting collision while beeping (resp. listening); and
emulation of collision detection: for enabling this feature when it is not available as a primitive.

We then provide algorithms for a number of basic problems, including colouring, 2-hop colour-
ing, degree computation, 2-hop MIS, and collision detection (in BL). Using the patterns, we
formulate these algorithms in a rather concise and elegant way. Their analyses (in the full ver-
sion) are more technical, e.g. one of them relies on a Martingale technique with non-independent
variables; another improves that of the MIS algorithm in [8] by getting rid of a gigantic constant
(the asymptotic order was already optimal).

Finally, we study the relative power of several variants of beeping models. In particular,
we explain how every Las Vegas algorithm with collision detection can be converted, through
emulation, into a Monte Carlo algorithm without, at the cost of a logarithmic slowdown. We
prove that this slowdown is optimal up to a constant factor by giving a matching lower bound.

Digital Object Identifier 10.4230/LIPIcs... Keywords. Beeping models, Design patterns,
Collision detection, Colouring, 2-hop colouring, Degree computation, Emulation.

1 Introduction

Distributed computing is concerned with various assumptions, like the structure of the
network (trees, rings, planar graphs, etc.) or knowledge available to the nodes (network
size, identifiers, port numbering, etc.). Another important aspect is the size of messages,
which may range from unbounded, to logarithmic size, to constant size.

As a natural goal is to reduce assumptions as much as possible. Typically, when a
problem is solved in some strong model, the community strives to solve it in weaker models.
In a recent series of works [5, 10, 1, 7, 8, 6], new models were explored that are even weaker
than constant size messages. They are called beeping models.

∗ This research has been supported by ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE
(ANR-16-CE25-0009-03). A full version is available on arXiv (http://arxiv.org/abs/1607.02951)

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Design Patterns in Beeping Algorithms (extended abstract)

In beeping models, the only communication capabilities offered to the nodes are to beep
or to listen. Several variants exist. In [5], a node that beeps is unable to detect whether other
nodes have beeped simultaneously. When listening, it can distinguish between silence or the
presence of at least one beep, but it cannot distinguish between one and several beeps. In
Section 6 of [1], beeping nodes can detect whether other nodes are beeping simultaneously.
In [10] and Section 4 of [1], yet another variant is considered where listening nodes can tell
the difference between silence, one beep, and several beeps.

In this paper, we denote the ability to detect collision while beeping (internal collision) by
Bcd and that of detecting collision while listening (peripheral collision) by Lcd. The absence
of such ability is denoted by B and L, respectively. The existing models can be reformulated
using the cartesian product of these capabilities. Hence, the basic model introduced by
Cornejo and Kuhn in [5] is BL; the model considered by Afek et al. in [1] (Section 6) and
Jeavons et al. in [8] is BcdL; and the model considered in [10] and in Section 4 of [1] is BLcd.
To the best of our knowledge, BcdLcd was only used in a previous work of the authors [3].

Although some variants are stronger than others, all beeping models remain extremely
weak in essence. Yet, they are relevant to account for real-world applications or phenomena.
For instance, they reflect the features of a network at the lowest levels (physical and MAC
layers), where a node can probe or emit signals, with or without collision detection. At
a higher level of abstraction, beeping models also reflect some communication patterns in
biology [4, 1, 9].

1.1 Contributions
The contributions of this paper are manifold. As a warm-up, we start by identifying generic
building blocks (design patterns) which seem to occur often in the design of beeping algo-
rithms. Then we present a number of algorithms for various graph problems which improve
upon previous solutions. Finally, we generalise existing emulation techniques for using col-
lision detection if it is not available, and we prove them optimal w.h.p. up to a constant
factor.

Due to space limitations, this version of the paper omits (in its core) most complexity
analyses and some proofs. However, both are available respectively in Appendix A and B of
the present paper, as well as in the arXiv version whose reference is given in the first page.

1.1.1 Design patterns.
We identify a number of common building blocks in beeping algorithms, including multi-slot
phases: the fact of dividing the main loop into a (typically constant) number of slots having
specific roles (e.g., contention among neighbours, collision detection, termination detection);
exclusive beeps: the fact of having a single node beep at a time in a neighbourhood (within
one or two hops, depending on the needs); adaptive probability: increasing or decreasing
the probability of beeping in order to maximise the number of exclusive beeps; internal
(resp. peripheral) collision detection: the fact of detecting collision while beeping (resp.
listening); and emulation of collision detection: the fact of detecting collisions even when it
is not available as a primitive. As we show in the paper, these patterns make it possible to
formulate the algorithms in a rather concise and elegant way.

1.1.2 Algorithms and analyses for basic graph problems.
We present, or analyse algorithms for a number of basic graph problems, including colouring,
2-hop colouring, degree computation, Maximal Independent Set (MIS) and 2-hop MIS. Quite

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:3

Model Time (# slots) Message size Knowledge # colours
BcdL O(log n + ∆)

expected and w.h.p.
' 1 bit

(BcdL beeps)
None O(log n + ∆)

BcdL O
(
K(log n + log2 K)

)
w.h.p.

' 1 bit
(BcdL beeps)

Upper bound K on
the max degree of G

K

Table 1 Randomised Las Vegas colouring algorithms on graphs with n vertices.

often, the design of algorithms is easier and more natural if collision detection is assumed
as a primitive, e.g., in BcdLcd or BcdL. Furthermore, emulation techniques such as those
described later in this paper enable safe and automatic translations of algorithms into weaker
models like BL. For this reason, our algorithms are expressed using whichever model is the
most convenient.

First, we present a Las Vegas (i.e. guaranteed result, uncertain time) colouring algorithm
in the BcdL model, with time complexity of O(logn + ∆) slots w.h.p., where ∆ is the
maximum degree in G. Its analysis relies on a martingale technique with non-independent
random variables, which makes use of a result by Azuma [2] (details in appendix). In fact,
the phenomenon is quite ubiquitous in beeping models: the algorithm terminates in the
first moment when every node has produced an exclusive beep at least once within its (1-
hop) neighbourhood. This stopping time is made more complex by the use of the adaptive
probability pattern mentioned above. Another algorithm for 2-hop colouring is given, this
time in the BcdLcd model, with slot complexity O(logn+∆2) w.h.p. Both algorithms require
no knowledge on G. However, both can result in arbitrarily many colours (in fact, one per
slot). If the nodes know an upper bound K ≥ ∆, a different strategy is proposed that uses at
most K + 1 colours. However, the slot complexity becomes O(K(logn+ log2 K)) w.h.p. for
colouring (trade K for K2 in the 2-hop variant). Note that this complexity is not thought
to be tight. The results are summarised on Table 1.

Based on the observation that degree computation is strongly related to 2-hop colouring,
we present an adaptation of the algorithm for this problem, with same slot complexity,
that is, O(logn + ∆2) w.h.p. In fact, the random process induced by this algorithm is
the same as that of colouring, except that it occurs in the square of the graph (whence
the ∆2 term). Algorithmically, the main loop contains more specialised slots (e.g., one
for peripheral collision reporting), but still a constant number of them, which keeps the
asymptotics unchanged. We then turn our attention to the 2-hop MIS problem, which shares
common traits and patterns with 2-hop colouring and degree computation and, regarding
the high-level purpose of each phase, with the MIS algorithm from [8]. The running time
is however shorter than that of 2-hop coulouring and degree computation (and the analysis
quite different) due to the fact that exclusive beeps cause whole neighbourhoods to terminate
at once. In fact, we prove that the slot complexity of this algorithm is O(logn) w.h.p. with
a “reasonable” constant factor of 76. Noteworthily, the number of phases (i.e. iterations of
the main loop) for the 2-hop MIS is exactly the same as what the analogue for classical MIS
would produce in the square of the graph. As a consequence, our analysis also improves
substantially that of the MIS algorithm presented in [8], where a gigantic constant factor (i.e.
one larger than e25) is used. An earlier analysis in [11] yielded a better, yet huge constant
of 2× 1011. Although constant factors are less meaningful in general, the gap in this case is
one between practical and unpractical running times. Furthermore, the contribution it not
as much in the constant itself than in the analysis techniques that achieve it.

XX:4 Design Patterns in Beeping Algorithms (extended abstract)

1.1.3 Collision detection and emulation techniques.

Classical considerations on symmetry breaking in anonymous beeping networks, see for
example [1] (Lemma 4.1), imply that there is no Las Vegas internal collision detection
algorithm in the beeping models BL and BLcd. Likewise, there is no Las Vegas peripheral
collision detection algorithm in the beeping models BL and BcdL. Since collision detection is
required to detect exclusive beeps with certainty, and this pattern is central in most beeping
algorithms, this implies that a large range of algorithms cannot exist in a Las Vegas version
in these models.

We study the cost of detecting collision when it is not available, typically in BL, and
present generic techniques to emulate collision detection probabilistically in order to trans-
form Las Vegas algorithms with collision detection into Monte Carlo algorithms (uncertain
result, guaranteed time) in BL. These techniques generalise that of Algorithm 3 in [1],
where a similar strategy is encapsulated into the algorithm. We show how, given 0 < ε < 1,
any collision in the neighbourhood of a given node can be detected in O(log(1

ε)) slots with
error at most ε, and similarly it can be detected in O(logn) slots w.h.p. Ensuring that this
is true for any node requires more time. By union bound, it holds that O(log(nε)) slots
are sufficient with error ε and that O(logn) slots are sufficient w.h.p. We prove that this
technique is essentially optimal (asymptotically and up to a constant factor) by giving a
matching lower bound. Precisely, we prove that some topologies require Ω(logn) slots to
break symmetries w.h.p. Finally, we provide two generic procedures that can be used in an
algorithm to emulate collision detection when it is not available (e.g. in BL). These proce-
dures are EmulateBcdinBL(), to detect collision while beeping, and EmulateLcdinBL(), to
detect collision while listening. We illustrate their use in the case of the computation of a
MIS given in BcdL, thus obtaining a Monte Carlo algorithm in BL.

1.2 Organisation of the paper

In Section 2 we present the model and give further definitions. Section 3 introduces design
patterns in a tutorial manner. These patterns are then used in Section 4 to describe the
various algorithms. For the sake of readability, the corresponding analyses are put together
in Section A. Finally, Section 5 presents our contribution on collision detection and emulation
techniques. An extra bibliography is provided in Section ?? on related questions.

2 Network Model and Definitions

We consider a wireless network and we follow definitions given in [1] and [5]. The network
is anonymous: unique identifiers are not available to distinguish the processes. Possible
communications are encoded by a graph G = (V,E) where the nodes V represent processes
and the edges E represent pairs of processes that can hear each other. We denote by ∆ the
maximum degree of G. The neighbourhood of a vertex v, denoted N(v), is the set of vertices
adjacent to v (at distance 1 from v). We define N(v) by including v itself in N(v). We also
use the set of vertices at distance at most 2 from v called the 2-neighbourhood of v and
denoted N2(v) (or N2(v) if it includes v). Finally, we write logn for the binary logarithm
of n.

Time is divided into discrete synchronised time intervals (rounds) also called slots (follow-
ing the usual terminology in wireless networks). All processes wake up and start computation
in the same slot. In each slot, all processors act in parallel and either beep or listen. In

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:5

addition, processors can perform an unrestricted amount of local computation in-between
two slots (in effect, our algorithms require little computation).
I Remark. In general, nodes are active or passive. When they are active they beep or listen;
in the description of algorithms we say explicitly when a node beeps meaning that a non
beeping active node listens.

The time complexity, also called slot complexity, is the maximum number of slots needed
until every node has terminated. Our algorithms are typically structured into phases, each
of which corresponds to a small (constant or logarithmic) number of slots. In the algorithm,
we specify which one is the current slot by means of a switch instruction with as many
case statements as there are slots in the phase. Phases repeat until some condition holds
for termination.
I Remark. An algorithm given in a beeping model induces an algorithm in the (synchronous)
message passing model. Thus, given a problem, any lower bound on the round complexity
in the message passing model also holds for slot complexity in the beeping model.

Distributed Randomised Algorithm.

A randomised (or probabilistic) algorithm is an algorithm which makes choices based on
given probability distributions. A distributed randomised algorithm is a collection of local
randomised algorithms (in our case, all identical).

A Las Vegas algorithm is a randomised algorithm whose running time is not determin-
istic, but still finite with probability 1, and that always produces a correct result. A Monte
Carlo algorithm is a randomised algorithm whose running time is deterministic, but whose
result may be incorrect with a certain probability. Put differently, Las Vegas algorithms
have uncertain execution time but certain result, and Monte Carlo algorithms have cer-
tain execution time but uncertain result. Classical considerations on symmetry breaking in
anonymous beeping networks (see for instance Lemma 4.1 in [1]), imply that:
I Remark. There is no Las Vegas (and a fortiori no deterministic) algorithm in BL which
allows a node to distinguish between an execution where it is isolated and one where it has
exactly one neighbour.

From this remark we deduce that there is no Las Vegas counting algorithm in BL, which
advocates the use of stronger models. In what follows, we consider whichever model is
the most convenient and provide Las Vegas algorithms in these models. We then present
canonical emulation techniques to turn any such algorithm into a Monte Carlo one in BL.

3 Design patterns for beeping algorithms

As a warm-up, this section presents a number of design patterns which seem to occur
frequently in the design of beeping algorithms. The concept of pattern refers here to reusable
solutions to common problems. These patterns are then used to describe algorithms in the
other sections.

Exclusive beeps.

Beeping algorithms operate in synchronous periods called slots, which are equivalent to the
concept of rounds in message passing models. Most problems in distributed computing
require some node v to take exclusive decisions at times (i.e., with respect to vertices of
N(v) or N2(v)), which requires some type of symmetry breaking. In beeping networks, this

XX:6 Design Patterns in Beeping Algorithms (extended abstract)

goal is all the more difficult to achieve that the nodes cannot use identifiers nor even port
numbers in their basic exchanges. If we assume that a node that is beeping can detect
whether another node beeps simultaneously (Bcd), then this feature can be used to take
exclusive decision if indeed it beeps alone. We call this an exclusive beep. Algorithm 1
illustrates an empty shell of algorithm that relies on repeated attempts to produce exclusive
beeps. Most, if not all algorithms rely implicitly on this pattern as a basis.

Algorithm 1: Exclusive beeps (using Bcd).
repeat

beep with some probability;
if I beeped alone then

do something exclusive;
...

until finished;

2-hop exclusive beeps.

For some problems like 2-hop colouring, 2-hop MIS, or computation of the degree (all dis-
cussed in this paper), the level of mutual exclusion offered by exclusive beeps is not sufficient
and the algorithm requires that a node be the only one to beep at distance 2. Assuming
collision can also be detected upon listening (Lcd), one can design a 2-slots pattern whereby
non-beeping neighbours report if they have heard more than one beep. Hence, if a node
produced an exclusive beep in the first slot, and none of its neighbours reported a collision
in the second, then it knows that it has produced a 2-hop exclusive beep (see Algorithm 2).

Algorithm 2: Two-hops exclusive beeps (using BcdLcd).
repeat

switch slot do
slot 1 // contending

beep with some probability;
slot 2 // detection of peripheral collision

if several neighbours beeped in slot 1 then
beep

after slot 2
if I beeped alone in slot 1 and no neighbour beeped in slot 2 then

do something 2-hop exclusive
...

until finished;

Multi-slot phases.

The example in Algorithm 2 illustrates another common aspect of beeping algorithms,
namely multi-slot phases. The expressivity of a single beep is rather poor, but several
combined slots can achieve elaborate behavior. In Algorithm 2, one slot is devoted to con-
tending and another to peripheral collision detection. The whole compound is then called
a phase. Another common task is termination detection. In a termination slot, all nodes

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:7

which have not yet performed some action beep. If the slot remain silent, then a form of
local termination is detected: nodes are in a terminal state.

Adaptive probability.

As far as feasibility and expressivity are concerned, the next design pattern is not crucial.
However, it plays a central role in terms of performance. Adaptive probability consists in
adapting the probability to beep in the next phase depending on the outcome of previous
phases. Typically, if a collision occurs, the probability is reduced, and if no one beeps, it is
increased. Since the nodes do not know how many neighbours are contending with them,
this technique proves useful in optimizing the odds of producing exclusive beeps. The values

Algorithm 3: Adaptive beeping probability (using BcdLcd).
Float p← 1/2 // say
repeat

beep with probability p;
if I beeped alone then

do something exclusive;

else
if no one beeped then

increase p;
else

decrease p;

until finished;

given to the probabilities in Algorithm 3 are left unspecified. There are several options.
In this paper, we use a doubling/halving pattern, that is, p is increased to 2p (up to 1/2),
and it is decreased to p/2 (without limit). A similar doubling/halving pattern was used
in [11]. One could also increment or decrement the denominator of p as done in [3]. The
consequences of choosing one over the other are not discussed here.

Collision detection.

Most algorithms in this paper use collision detection as a built-in primitive, referred to as
Bcd for detection on beeping and Lcd for detection on listening. However, this feature is
not always available as a primitive. An important question is the transformation of a (high-
level) algorithm using Bcd or Lcd (or both) into one that works in the weakest BL model.
This question is the topic of Section 5, in which we study generic mechanisms to achieve this
goal. Essentially, each slot that requires collision detection can be replaced with a logarithmic
number of slots (in the size of various quantities depending on the desired guarantees) where
the ties are broken w.h.p. We provide dedicated procedures that generalise the technique
used internally to one of the algorithms in [1]. Besides complexity, the price to pay is that
the algorithm becomes Monte Carlo instead of Las Vegas, that is, the result is correct only
probabilistically (though possibly w.h.p.). We present a matching lower bound showing that
these procedures are essentially optimal.

XX:8 Design Patterns in Beeping Algorithms (extended abstract)

4 Algorithms for basic graph problems

We now present algorithms for a number of problems, including colouring (with or without
knowledge on the degree), 2-hop colouring, computation of the degree and 2-hop MIS. These
algorithms are based on various combinations of the patterns presented in Section 3. All
algorithms are Las Vegas, and they rely on medium to strong primitives (BcdL to BcdLcd
models) depending on the needs. The adaptation of these algorithms in the weakest model
(BL) is discussed in Section 5. We also recall Jeavons et al.’s Las Vegas algorithm for the
MIS [8] problem and discuss its relations with our 2-hop MIS algorithm.

Whenever using the adaptive probability pattern in algorithms, for generality, we stick
to the terms increase and decrease (as opposed to our analyses, in which these actions are
instantiated to doubling and halving the probability).

4.1 Colouring
The colouring problem consists of assigning a colour to every node in the network, such that
no two neighbours have the same colour. We first consider the case that no extra information
is available to the nodes. Then we consider that (an upper bound on) the maximum degree
is known.

Colouring without knowledge.

Informally, the algorithm proceeds as follows (see Algorithm 4 for details). Initially, every
node is uncoloured (nil). In every phase, each node increments a counter. Uncoloured nodes
contend with each other to produce an exclusive beep, and when one succeeds, it takes the
current value of the counter as its colour and retires. An adaptive probability is used to
regulate the probability of beeping among uncoloured nodes. Local termination (a node and
its neighbours are coloured) detection is not explicitly handled here, though we could add a
termination slot where uncoloured nodes are the only ones to beep.

Algorithm 4: A Las Vegas colouring algorithm in BcdL (without knowledge).
Float p← 1/2;
Integer colour ← nil;
Integer counter ← 0;
repeat

beep with probability p;
if I beeped alone then

colour ← counter

else
if no one beeped then

increase p;
else

decrease p;
counter ← counter + 1;

until colour 6= nil;

The running time of this algorithm is of O(logn+ ∆) phases w.h.p as well as on average
(none of both imply the other trivially). Note that this is also the number of slots, since each
phase consists of a constant number of slots. As for the number of colours, it is incremented

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:9

with time, thus it is at most the same (at most, because some phases may not produce
exclusive beeps).

Colouring with a bound K on the maximum degree ∆.

If a bound K ≥ ∆ is known, then one can obtain a better colouring using at most K + 1
colours. The algorithm follows the same lines as Algorithm 4, i.e. a colour counter is
incremented in each phase, and its current value is chosen by those nodes who produced
an exclusive beep. The main difference (see Algorithm 5 for details) is that only those
colours within {0, . . . ,K} are considered and thus the counter is incremented modulo K+1.
Conflicts of colours are avoided by keeping a phase idle if the corresponding value was already
taken in the past (locally). To do so, when a node takes a colour, it re-beeps in a new slot
called confirmation slot to inform its neighbours that they must remove the current colour
from their list of authorized colours. Accordingly, the uncoloured will contend in a phase
only if the current colour is still available (otherwise, they wait). An adaptive probability
is used similarly to Algorithm 4, except that idle phases are not considered as silent (the
probability is not updated in these phases).

Algorithm 5: A Las Vegas colouring algorithm in BcdL (knowing K ≥ ∆).
Colours = {0, · · · ,K};
Float p← 1/2;
Integer colour ← nil;
Integer counter ← 0;
repeat

if counter ∈ Colours then
switch slot do

slot 1 // contending
beep with probability p

slot 2 // confirmation

if I beeped alone in slot 1 then
colour ← counter;
beep;

else
if no one beeped then

increase p;
else

decrease p;

if someone beeped in slot 2 then
Colours← Colours \ {counter}

counter ← (counter + 1) mod (K + 1);
until colour 6= nil;

Regarding performance, the only difference between this algorithm and Algorithm 4 is
that a growing number of phases are idle in each neighbourhood, inflicting a slow down
to the algorithm. Managing the dependencies here proved more difficult and we “only”
managed to prove that the number of phases is O

(
K(logn+ log2 K)

)
w.h.p. However, the

algorithm is believed to be faster.

XX:10 Design Patterns in Beeping Algorithms (extended abstract)

4.2 2-hop colouring

A 2-hop colouring of a graph G is a colouring such that any two nodes at distance ≤ 2 have
different colours. In other words, it is a colouring of the square of G, the graph where an
edge exists between nodes which are neighbours in G or share a common neighbour in G.

2-hop colouring without knowledge.

A similar strategy is used as in Algorithm 4 (colouring), except that exclusive beeps are
replaced with 2-hop exclusive beeps. Whenever a node produces such a beep, it takes the
current value of the counter as colour. Since no other node has beeped within distance 2,
the colouring is legal. Contrary to the 1-hop colouring, the collaboration of a node remains
crucial even after it becomes coloured. Indeed, this node must keep on reporting peripheral
collisions to its neighbours. As a result, instead of retiring from computation, coloured nodes
keep on listening until all of their neighbours are coloured, which is detected using an extra
termination slot. Details are given in Algorithm 6. Four slots are used in total, the first
two being devoted to the management of 2-hop exclusive beeps (see Section 3 for details).
The third slot manages a (2-hop) adaptive probability based on beeps heard at distance one
(slot 1) or at distance two (slot 3 itself). Finally, slot 4 is the termination slot.

Algorithm 6: A Las Vegas 2-hop-colouring algorithm in BcdLcd (without knowledge).
Float p← 1/2;
Integer colour ← nil;
Integer counter ← 0;
repeat

switch slot do
slot 1 // contending slot

if colour = nil then
beep with probability p;

slot 2 // peripheral collision detection (and consequences)

if several neighbours beeped in slot 1 then
beep

if I beeped alone in slot 1 and heard no beep in slot 2 then
colour ← counter

slot 3 // adaptive probability

if someone beeped in slot 1 then
beep

if colour = nil then
if no beep heard in slot 1 nor 3 then

increase p
else

decrease p

slot 4 // termination slot

if colour = nil then
beep

counter ← counter + 1
until no beep heard in slot 4;

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:11

Once we realize that the execution produced here is the same as what Algorithm 4
would produce in the square of G, analysis of this algorithm is straightforward. The only
difference is that the maximal number of contenders of a node becomes ∆2 instead of ∆.
Thus Algorithm 6 takes O(logn+ ∆2) phases (and slots) w.h.p., and the number of colours
cannot exceed the same value.

With a bound K on the maximum degree ∆.

The same idea can be applied as in the 1-hop variant, i.e., taking colours between 0 and
K2 + 1 (instead of K + 1) and incrementing the counter accordingly (mod K2 + 1). As a
result, at most K2 + 1 colours are used, with time complexity O(K2(logn+ log2 K)) w.h.p.

4.3 Degree computation
Let us recall that 2-hop exclusive beeps allow a node v to perform an exclusive action within
a radius of distance 2. This feature was used in Section 4.2 to assign unique colours. At it
turns out, the pattern is very versatile and it can be used to count the degree of a node as
well. The strategy consists in replacing the colour-related action in slot 2 (second if-then
block) by an action aiming at having v counted in the degree of its neighbours (then v stops
contending and keeps on reporting collisions, as before). Precisely, a new confirmation slot is
inserted wherein v re-beeps if indeed it produced a 2-hop exclusive beep. Upon hearing the
confirmation beep, all of v’s neighbours increment a local counter that eventually amounts
to their degree. Termination proceeds in the same way as for the 2-hop-colouring algorithm
(i.e. uncounted nodes beep in a termination slot).

Up to a constant factor which accounts for the additional confirmation slot in each phase,
the running time of this algorithm is again O(logn+ ∆2) w.h.p.

4.4 Jeavons et al.’s Las Vegas Algorithm for the MIS in BcdL

We recall here Jeavons et al.’s Las Vegas Algorithm for the MIS [8]. This algorithm uses an
adaptive probability to maximize the frequency of exclusive beeps (with a doubling/halving
pattern for p, starting at 1/2). If a node v produces an exclusive beep, it enters the MIS
(by the end of the first slot), then it uses a confirmation slot to inform its neighbours, all
of which terminate together with v. Since the whole neighbourhood shuts down at once,
the algorithm progresses faster than, for instance, the basic colouring algorithm discussed
above. This algorithm was already proven by Jeavons et al. to terminate within O(logn)
slots with a huge constant factor (larger than e25).

4.5 Computing a 2-hop MIS
In this problem, we must select a set of nodes (the MIS) such that no pair of selected
nodes are within distance 2 and no node can be added further to the set. This algorithm
is a combination of those of other 2-hop algorithms seen above, and Jeavons et al’s MIS
algorithm. That is, the same structure of algorithm is used as for 2-hop colouring or degree
computation, except that whenever a node produces a 2-hop exclusive beep, it enters the
MIS and informs its neighbours (using the confirmation slot) that they will not be in the
MIS. This algorithm takes the same number of phases than what the (1-hop) MIS algorithm
would produce in the square of the graph, that is, O(logn) w.h.p.. The number of slots
is higher due to using additional slots for managing 2-hop exclusive beeps, but it remains

XX:12 Design Patterns in Beeping Algorithms (extended abstract)

within a (small) constant factor. Interestingly, our analysis of this algorithm improves much
over that of [8], taking the huge constant down to 76 (i.e., making the algorithm practical).

5 Collision detection and emulation techniques

In Section 4, we have considered collision detection as a built-in primitive. Depending on
the algorithms, we assumed that collision detection was possible while beeping (Bcd) or
while listening (Lcd). This assumption is convenient because it allows one to design Las
Vegas algorithms for all the considered problems. Unfortunately, we know since [1] that
no Las Vegas algorithms can be designed for most problems without collision detection,
that is, in the BL model. One has to turn to Monte Carlo instead, which means that the
result is correct only with some probability (possibly w.h.p.). In this section, we investigate
the cost of building a probabilistic collision detection primitive in the BL model, inspired
by a technique from [1]. Then we adapt it into two generic emulation procedures, one for
detecting collision while beeping, the other while listening. These procedures can then be
used to translate any Las Vegas algorithml in BcdL, BLcd, or BcdLcd, into a Monte Carlo
algorithm in BL. The cost is a logarithmic slowdown of the execution, which we prove is
essentially optimal (for sufficiently large n).

5.1 Collision detection
The impossibility for a node in BL to distinguish between begin alone or having neighbours
has strong implications. For instance, in the colouring problem, it means that two neighbours
could possibly end up with the same colour. In the MIS problem, two neighbours could enter
the MIS. In fact, there is no guarantee on the correctness of basic patterns like exclusive beeps
or 2-hop exclusive beeps, which are at the basis of most (if not all) Las Vegas algorithms.

We present a (Monte Carlo) algorithm for detecting collisions in BL. This procedure
generalises the technique used in Algorithm 3 of [1], which consists of replacing each slot that
requires collision detection in the original model, with several BL slots in which symmetries
are probabilistically broken. Of course, the more slots, the more reliable the detection.

The algorithm.

Each slot that requires collision detection (Bcd or Lcd) is replaced with a number of sub-
phases, each consisting of two BL slots. For instance, if a node wishes to beep with collision
detection in the original algorithm, it will choose one of the two slots (u.a.r.) in each of the
sub-phases and will beep in that slot (listen in the other). If it hears a beep while listening in
the other slot, then an internal collision is detected. Similarly, if a node wishes to listen with
collision detection in the original algorithm, it will listen in both slots of each sub-phase.
A peripheral collision is detected if a beep is heard in both slots of a same sub-phase. The
procedure is detailed by Algorithm 7, where k is the number of sub-phases used.

False positives never happen, but real collisions might still go unnoticed, with probability
inversely related to k. We are interested in determining how large k should be to guarantee
that a given node detects a collision in its neighbourhood with a given probability. The
stronger question asks how many sub-phases are required to guarantee that none of the
nodes fails to detect a collision.

I Lemma 1. Let v be a node. If a collision occurs in the neighbourhood of v, then v detects
it in O

(
log(1

ε)
)
sub-phases (slots) with probability at least 1− ε, and in O (logn) sub-phases

(slots) with probability 1− o
(1
n2

)
.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:13

Algorithm 7: Collision detection algorithm in BL (with parameter k)
Boolean collision← false;
Integer i← 0;
while i < k do

if v wishes to beep then
Flip a coin;
if heads then

beep in slot 1;
listen in slot 2;

else
listen in slot 1;
beep in slot 2;

if another beep was heard then
collision← true

else
listen in both slots;
if beeps are heard in both slots then

collision← true;
i← i+ 1;

return collision;

Proof. Assume a collision occurs between some nodes u1 and u2 in the neighbourhood of
v (one of them being possibly v itself). It is detected if u1 and u2 choose a different slot
in at least one of the k sub-phases. The probability that this does not happen is

(1
2
)k.

This probability is less than ε (resp. o
(1
n2

)
) for any k ≥ log(1

ε) (resp. 2 log(n)). Observe
that if collisions occur between more than two nodes in the neighbourhood of v, this cannot
decrease the odds of a successful detection (to the contrary, the odds can only increase). J

I Corollary 2. Let G be a graph. If collisions occur in the neighbourhood of an arbitrary
number of nodes, then all of them detect collision after at most O

(
log(nε)

)
sub-phases (slots)

with probability at least 1− ε, and after at most O (logn) sub-phases (slots) w.h.p.

Proof. Assume collisions occur in G and let T denote the number of sub-phases before all
concerned nodes detect collision. Clearly T = max{Tv | v ∈ V }, where Tv is the time it
takes to any node v to decide collision. By the same argument as in the proof of Lemma 1,
together with union bound, it holds that

Pr
(
T > log

(n
ε

))
≤ n× Pr

(
Tv > log

(n
ε

))
(1)

= n× 1
2log(nε) = ε (2)

which proves the first claim. The same argument, combined with the second claim of Lemma
1 proves the second claim. J

5.2 Emulation procedures
Based on this tie-breaking mechanism, we define two probabilistic emulation procedures
whose purpose is to replace beep or listen instructions with collision detection in BL.

XX:14 Design Patterns in Beeping Algorithms (extended abstract)

Both are Monte Carlo in the sense that detection is only guaranteed with some proba-
bility. The first procedure, EmulateBcdinBL(), is given by Algorithm 8 and the second,
EmulateLcdinBL(), by Algorithm 9. Both procedures are parametrized by an integer k > 1,
which accounts for the number of sub-phases that are used in each invocation of the proce-
dure (k controls the error bound). They return true if a collision has been detected, false
otherwise.

Before the execution each vertex generates a sequence s of k random bits (u.a.r.) which
will be the ones used in each sub-phase. The reason why this is made once at the beginning
rather than in each invocation is a technicality that relates to preventing an additional
union bound in the analysis (more k would be needed to guarantee that each invocation is
successful if the numbers are drawn every time).

Algorithm 8: A Procedure to emulate a Bcd in the BL model.
Procedure EmulateLcdinBL(in : Integer k,Array s; out : Boolean collision)
Boolean collision← false;
Integeri← 0;
repeat

if s[i] then beep in slot 1; listen in slot 2;
else listen in slot 1; beep in slot 2;
if another beep was heard then collision← true;
i← i+ 1

until i = k;
End Procedure

Algorithm 9: A Procedure to emulate a Lcd in the BL model.
Procedure EmulateLcdinBL(in : Integer k; out : Boolean beep,Boolean collision)
Boolean beep← false;
Boolean collision← false;
Integer i← 0;
repeat

switch slot do
slots 1 and 2

listen
end of phase:

if a beep was heard in any slot then
beep← true

if a beep was heard in both slots then
collision← true

i← i+ 1
until i = k;
End Procedure

Hence, the value of k depends on the bound we require on the probability of error, a
straightforward adaptation of the above analysis gives us the values of Lemma 3.

I Lemma 3. For any ε > 0, and any n > 0:

1. if k = dlog
(1
ε

)
e, the procedures are correct for a given node with probability 1− ε

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:15

4ms

2ms

1s
2s

2ms+ 2s

4s

2ms+ 4s ...

2ms+ 2is

2is...
. . .

2ms+ 1s

...

Figure 1 The wheel gadget used in the proof of optimality for emulation.

2. if k = dlog
(
n
ε

)
e, the procedures are correct for any node with probability 1− ε

3. if k = d2 log(n)e, the procedures are correct for any node w.h.p.

Observe that in general, the size of the network n is not known to the nodes, which is an
obstacle to achieving the second and third types of guarantees. However, it is reasonable in
practice to assume that the nodes know an upper bound on n, e.g., when a network of wireless
sensors is deployed. The upper bound may even be loose without much consequence: so
long as it is polynomial in n, the slowdown factor remains of the same order.

Using the procedures.

In the listings of our algorithms (see Section 4), listen instructions are implicit. By default,
a node listens if it does not beep. Emulation procedures should be used explicitly for both
beep and listen primitives, in order for the nodes to remain synchronized (since each of them
takes logarithmically many rounds to be carried out). Therefore, whenever a node calls
EmulateBcdinBL or EmulateLcdinBL, the other nodes should call one of these or wait the
corresponding amount of time. Likewise, the procedures should not be interrupted even after
a collision with a given neighbor is detected, to preserve synchrony with other neighbours
or farther nodes.

5.3 Optimality of the emulation
In this section we prove that the emulation procedures presented in Section 5.2 are essentially
optimal (i.e. asymptotically and up to a constant factor), namely, we prove a Ω (logn) lower
bound on the number of slots required to detect collision in some graphs called wheels. A
(m, s)-wheel, illustrated in Figure 1, is a graph W = (V,E) such that V = u1, . . . u4ms,
the edges E are all the (ui−1, ui) (arithmetic modulo 4ms) plus m spokes, that is edges
(uis, u(i+2m)s) (1 ≤ i ≤ 2m), where the wheel can be odd (all spokes with i odd) or even
(all spokes with i even). The even and odd (m, s)-wheels are isomorphic. We consider only
situations in which all vertices uis are in the same state, a state in which they wish to
beep and all other vertices are in the same internal state, a state in which they do not wish
to beep. Thus vertices at the ends of spokes and no others must conclude that there is a
collision. The slot complexity of any algorithm which detects collision in such a graph with
high probability is to be Ω(logn). Due to space limitations, the full proofs are relegated to
Appendix B. We provide, however, a minimal sentence of insight for each.

Considering a computation of a collision detecting algorithm on a wheel, we define, for
any t > 0, bit as the signal (beep or not) from ui to all its neighbours at time t, and, for any

XX:16 Design Patterns in Beeping Algorithms (extended abstract)

t ≥ 0, Bit the sequence bi1 · · · bit . Then, we define the event Et for a spoke uis, u(i+2m)s as
follows:

Et =
{

(Bist = B
(i+2m)s
t) ∧ (Bis+1

t = B
(i+2m)s+1
t) ∧ (Bis−1

t = B
(i+2m)s−1
t)

}
.

I Lemma 4. For any t (0 ≤ t < s), it holds that Pr (Et) ≥ 2−3t.

The proof proceeds by induction on t, with base case t = 0. (Full proof in Appendix B.)
If Et holds for the spoke (uis, u(i+2m)s), we say that the spoke fails to break symmetry

within time t. This happens with probability at least 2−3t and, if it happens, the existence
of the spoke has had no influence on the computation up to time t. In particular, whenever
uis beeped, u(i+2m)s also beeped and so neither has ever heard the other beep.

I Theorem 5. For any Monte Carlo algorithm A which detects collision in W , if A halts in
less than log2 n/4 rounds with probability greater than 3/4 then for some situations in some
wheels, A gives incorrect results for some vertices with probability greater than 1/4.

The proof proceeds using the wheel gadget of Figure 1 and Lemma 4 to characterize the
rate at which the symmetry induced by the spokes can be broken. (Full proof in Appendix B.)

I Corollary 6. The complexity of a Monte Carlo algorithm which detects collision with high
probability in the BL model is Ω(logn).

References
1 Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a maximal

independent set. Distributed Computing, 26(4):195–208, 2013.
2 K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical

Journal, Second Series, 19(3):357–367, 1967.
3 A. Casteigts, Y. Métivier, J. Michael Robson, and A. Zemmari. Counting in one-hop

beeping networks. CoRR, abs/1605.09516, 2016.
4 J. Collier, N. Monk, P. Maini, and J. Lewis. Pattern formation by lateral inhibition with

feedback: a mathematical model of delta-notch intercellular signalling. Journal of Theo-
retical Biology, 183(4):429–446, 1996.

5 A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In DISC, pages 148–162,
2010.

6 S. Gilbert and C. Newport. The computational power of beeps. In Proc. of 29th Interna-
tional Symposium on Distributed Computing (DISC), 2015.

7 B. Huang and Th. Moscibroda. Conflict resolution and membership problem in beeping
channels. In DISC, pages 314–328, 2013.

8 P. Jeavons, A. Scott, and L. Xu. Feedback from nature: simple randomised distributed
algorithms for maximal independent set selection and greedy colouring. Distributed Com-
puting, DOI 10.1007/s00446-016-0269-8, 2016.

9 S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological and com-
putational systems. Commun. ACM, 58(1):94–102, 2015.

10 J. Schneider and R. Wattenhofer. What is the use of collision detection (in wireless net-
works)? In DISC, pages 133–147, 2010.

11 A. Scott, P. Jeavons, and L. Xu. Feedback from nature: an optimal distributed algorithm
for maximal independent set selection. In PODC, pages 147–156, 2013.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:17

A Complexity analysis

This appendix section provides the analysis and proofs of the running time complexity of
the algorithms presented in Section 4.

A.1 Colouring algorithm without knowledge
Informally the execution progresses as follows. There is a first period of adjustment in which
the probabilities will converge towards “good values”. Then the probability that an exclusive
beep is produced in a given phase in a given neighbourhood remains bounded in some ways.
Loosely speaking, the final bound is essentially obtained by a repetition of the corresponding
periods ∆ times. More precisely, we prove the following theorem:

I Theorem 7. There are constants α, β and γ such that for any graph G = (V,E) of n
vertices and maximum degree ∆, the number of phases of Algorithm 4 to colour all the nodes
in G is:

1. less than α(∆ + logn) with probability 1− o
(
n−1),

2. less than β(∆ + logn) on average,
3. less than γ(∆ + logn) with probability 1− o (n−c), for any c > 1. (This result is stronger

than 1, but the proof is more difficult, which is why we keep both.)

A.1.1 Local Average Time Complexity.
First, we give an overview. We define pv as the probability that vertex v claims the colour in
a given round and qv as the sum of p over all neighbours of v which we will call ui (1 ≤ i ≤ d)
where d is v’s degree in the residual graph (taken as 0 if v has been eliminated from the
graph).

We define a measure M of the distance from a given situation to the goal where p =
1/2, qv ≤ 1/2, d = 0 as follows: M = − log(p) + f(q) + 10d where f is the function defined
as follows:

f(x) = 4x if x ≤ 1,
for x > 1, f is the piecewise linear approximation to 2 log2 4x wheref is interpolated
linearly between f(2i) = 2i+ 4 and f(2i+1) = 2i+ 6.

We note the following properties of f which will be used in what follows:
f(x) is continuous for x > 0,
except at powers of 2, f is differentiable with derivative ≤ 4,
f(x)− f(x/2) = 2 for x ≥ 1,
f(x)− f(x/2) = 2x for x ≤ 1.

We show that in any round, the mean decrease in M is at least 1. Then after a number
of rounds equal to the initial M (≤ 1 + 2 log(2d) + 10d), M is reduced on average to 0
unless the algorithm has already terminated at v and after O(logn) further rounds, the
algorithm has terminated at v with probability o(n−2) and so it has terminated everywhere
with probability o(n−1).

Intuitively, we expect both p and q to decrease initially until q < 1/2, after which p will
re-ascend until it is at least close to 1/2 and then d will start to descend.

We actually analyse the variation in a random variable M ′ which dominates the r.v. M .
The r.v. M ′ is initially equal to M but its changes may be slightly different from those of
M in the following ways:

XX:18 Design Patterns in Beeping Algorithms (extended abstract)

if the degree of v decreases by more than 1, the change in M ′ only includes −10 in total
for the change in d rather than −10 for each neighbour removed;
if v takes a colour, M ′ is decreased by just 10 whatever the values of p at v and its
neighbours;
in a round where v is already coloured, M ′ is decreased by 1.

This ensures that:
if the algorithm has not terminated at v, M ′ ≥M , meaning that M ′ dominates M ;
if M ′ ≤ 0, the algorithm has terminated at v;
M ′ decreases at each round by a value in [−3 . . . 11] (since, log p can only change by ±1,
f(q) can only change by up to ±2, and if d decreases because a neighbour u takes the
colour, u beeped in the round and so p has halved).

A.1.2 Available Neighbours.

In a given round any ui has a well defined probability ai of being available that is able to
take the current colour since no neighbour claims it. These probabilities are far from being
independent. We will argue that, except for cases where pdec (the probability of a decrease
in d) is at least 2/5, the average decrease in M ′ is always minimised when all ai = 0.

Consider a situation where pdec < 2/5 and some ai > 0. We can decrease ai to 0 with
no change to the other aj by adding an infinite number of vertices adjacent to ui but to
no other vertex in N(v). This will change the average increase/decrease in q and d; qi will
be halved instead of doubled with probability ai, decreasing q by 3qi/2 and so decreasing
f(q) by at most 6aiqi on average. The probability of a decrease in d is decreased by ai
times the probability that ui claims and no other uj takes the colour. This last probability
is the product of qi and the conditional probability that no other uj takes the colour given
that ui claims. But, since the probabilities of ui claiming and of some uj (j 6= i) taking
the colour are negatively correlated or independent, this conditional probability is at most
the unconditional probability that no uj (j 6= i) takes the colour and so greater than the
probability that no uj takes the colour, namely 1 − pdec ≥ 3/5, giving an average decrease
in d (respectively M ′) reduced by more than 3aiqi/5 (resp. 6aiqi).

Thus the decrease in the measure is decreased more by the d component than it is
increased by the change in q.

Repeating this process at most d times we arrive at a situation with a smaller mean
decrease in M ′ than the initial one and either pdec ≥ 2/5 or all ai = 0 so, to lower-bound
the decrease in M ′, we need only consider such situations.

A.1.3 The mean decrease in M ′.

We consider cases depending on the value q. First note that if pdec ≥ 2/5, the mean decrease
in M ′ is at least 10(2/5) − 2 − 1 = 1. So in the other cases we suppose that all ai = 0 so
that q is halved.

In the case where q < 1, we need to consider what happens when no ui claims the colour.
If p < 1/2 this is that p increases, decreasing M ′ by 1; if p = 1/2 it is that, with probability
1/2, v takes the colour so that d decreases by 1, decreasing M ′ by 10 so that on average M ′
decreases by 5. Accordingly we suppose that the former happens.

q ≥ 1: q decreases to q/2, reducing f(q) by 2 and log p can decrease by at most 1 so that
M ′ is decreased by at least 2− 1 = 1.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:19

q < 1: q decreases to q/2, decreasing f(q) by 2q while p doubles with probability at least
1 − q (and halves with probability at most q). This gives a mean decrease in M ′ of at
least 2q + (1− 2q) = 1.

A.1.4 Time Complexity w.h.p..
We define the sequence of r.v.’s (Mk)0≤k≤t as follows M ′0 = M0 and for any k ≥ 1, Mk is the
value of M ′ after time k. We also define the sequence (Gk)0≤k≤t as the sequence of residual
graphs, i.e., G0 = G and Gk+1 is the graph obtained from Gk after round k+ 1 (each vertex
which succeeds in beeping alone is removed from the graph).

Then for any k ≥ 1:

E (Mk | G1, G2, · · · , Gk−1) ≤Mk−1 − 1. (3)

Hence, (Mk)k≥0 is a super-martingale with respect to (Gk)k≥0.
We define the r.v. Dk = Mk −Mk−1 for any k ≥ 1 and we denote µ = E (Dk). We also

introduce the r.v.:
D′′k = − 4

µ− 3Dk + 3µ+ 3
µ− 3 .

Then, it is easy to see that E (D′′k) = −1 and Pr (−11 ≤ D′′k ≤ 3) = 1.
Now, define the r.v. (M ′′k)k≥0 as follows: M ′′0 = M0 and for any k ≥ 1, M ′′k = M ′′k−1 +

D′′k + 1. Then (M ′′k)k≥0 is a martingale with respect to (Gk)k≥0.
We apply Theorem 18 of [2] to our martingale M ′′t with expectation M0. Since the

increments (D′′k +1)k≥0 are in [−10..4] and have mean 0, their variance is upper bounded by
the case of a distribution with values −10 and 4 with probabilities 2/7 and 5/7 respectively,
giving variance of 40 and maximum discrepancy from the mean of 10. Applying the theorem
with t = 2M0 + 174 lnn and λ = t −M0, we see that the probability that Mt ≥ 0 is less
than Pr (M ′′t ≥ t) which is at most:

e(−λ
2/2(40t+10λ/3)),

and we claim that this is o(n−2). This is because λ2/2(40t+ 10λ/3) >> 2 lnn, i.e. λ2 >>

4 lnn(40t+ 10λ/3).
(Proof of this claim: λ2/13 >> 4 lnn(10λ/3) because λ >> 520 lnn/3;
12λ2/13 > 12(t2 − 2M0t)/13 = 12t(t − 2M0)/13 = 12t(174 lnn)/13 >> 160t lnn. Adding
these two gives the claim.)

Then taking α = 174, this proves the first claim of Theorem 7.

A.1.5 Average Time Complexity.
We first prove the following lemma:

I Lemma 8. Let v be any vertex in G, and t > 0. We have:

Pr (v is not coloured at time t) ≤ e− 3
260 (t−2M0).

Proof. Let Tv denote the time before v gets coloured. Then, by discussions above, taking
λ = t−M0 in Theorem 18 of [2]:

Pr (Tv −M0 > λ) ≤ e
− λ2

2(40t+ 10
3 λ) .

XX:20 Design Patterns in Beeping Algorithms (extended abstract)

On the other hand, λ ≥ t− 2M0 and hence, a simple computation yields:

λ2 >
3
13(t− 2M0)(4t+ λ

3),

which proves the lemma. J

Back to Theorem 7. Let T denote the time before all the vertices in the graph are
coloured. Then:

E (T) =
∑
t≥1

Pr (T ≥ t) .

Now, let t0 = 2M0 + 260
3 lnn then:

E (T) =
t0∑
t=1

Pr (T ≥ t) +
∑
t>t0

Pr (T > t)

≤ 2M0 + 260
3 lnn+

∑
t>t0

Pr (T > t) .

On the other hand, for any t > 0:

Pr (T > t) ≤
∑
v∈V

Pr (Tv > t) ≤ ne− 3
260 (t−2M0).

Yielding:

E (T) ≤ 2M0 + 260
3 lnn+ n

∑
t>t0

e−
3

260 (t−2M0)

= 2M0 + 260
3 lnn+ n

∑
t>0

e−
3

260 (t+t0−2M0)

= 2M0 + 260
3 lnn+

∑
t>0

e−
3t

260

= 2M0 + 260
3 lnn+ 1

1− e− 3
260

.

Taking β = 87, this proves the second claim of Theorem 7.

A.1.6 Time Complexity With Very High Probability.
To prove the last claim, let c > 1 and take t = 260

3 (c+ 1) lnn+ 2M0 in Lemma 8, this gives:

Pr
(
Tv >

260
3 (c+ 1) lnn+ 2M0

)
≤ 1
nc+1 = o

(
1
nc

)
.

Thus, taking γ = 87 proves the last claim of Theorem 7.

A.2 Colouring algorithm knowing K ≥ ∆.
I Remark. We can consider the modified colouring algorithm, deduced from Algorithm 5,
defined in the following way. By a cycle we mean K rounds considering the K colours. Now,
every vertex uses the value of |Colours| at the start of each cycle to decide the beeping
probability it uses throughout this cycle.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:21

We have the following theorem:

I Theorem 9. Let G be a graph of size n, let K be an upper bound on the maximum degree
of G. Algorithm 5 computes a K + 1 colouring of G in at most O

(
K(logn+ log2 K)

)
slots

w.h.p.

Proof. We consider the Colouring algorithm in which every node has the same upper bound
K on the maximum degree. We consider both the basic algorithm in which v uses the current
value of |Colours| to decide its beeping probability and also the modified algorithm in which
it uses the value at the start of the current cycle. We recall that by a cycle we mean K

phases considering the |Colours| colours.
We consider Pk the probability that vertex v survives uncoloured over k cycles.
In what follows:
i ranges over 1..k,

c ranges over the Ci colours possible for v at the start of cycle i,

u ranges over the neighbours of v still uncoloured at the start of cycle i,

pu(i, c) is the probability that u beeps at colour c in cycle i.
First we consider the probability p that v survives uncoloured in a single phase using a
colour c ∈ colours(v). Then:

p = Pr (v does not beep at colour c in cycle i)
+ Pr (v does beep and some neighbour u also beeps) ,

but Pr (v does beep) ≥ 1/2Ci and the beeping probabilities of v and its neighbours are
independent giving:

p ≤ (1− 1/2Ci) + Pr (some neighbour beeps) /2Ci
= (1− 1/2Ci) (1 + Pr (some neighbour beeps) /(2Ci − 1))

≤ (1− 1/2Ci)
(

1 +
∑
u

pu(i, c)/(2Ci − 1)
)
.

After the first phase, pu(i, c) and Ci are random variables dependent on what has happened
so far, and we consider the tree of all possible executions up to k cycles, where each tree
node has its own value of p. It is easily shown by induction that Pk is upper bounded
by the maximum over all paths in this tree of the product of the values of p along the
path. We fix a path which gives this maximum and bound the product for this path. We
have the probability of surviving cycle i ≤ (exp(−1/2) ∗

∏
c(1 +

∑
u pu(i, c)/(2Ci − 1))) ≤

exp(−1/2+
∑
c

∑
u pu(i, c)/(2Ci−1)) and so Pk ≤ exp(−k/2+

∑
i

∑
c

∑
u pu(i, c)/(2Ci−1)).

We will give an upper bound on
∑
i

∑
c

∑
u pu(i, c)/(2Ci − 1).

We number v’s neighbours in the initial graph from 1 to deg(v) in decreasing order of
their lifetime, that is the number of phases in which they remain uncoloured.
Thus as long as uj is not coloured the degree of v in the residual graph is at least j and so
|colours(v)| > j.

We write pu(i, c) as base+δ where base = 1/2Ci and δ is what has been added as a result
of colours(u) being decreased before colour c and we will bound

∑
i

∑
u

∑
c base/(2Ci − 1)

and
∑
u

∑
i

∑
c δ/(2Ci − 1) separately.

XX:22 Design Patterns in Beeping Algorithms (extended abstract)

Firstly base: in cycle i, v has Ci colours available and so has less than Ci neighbours;
each neighbour u has

∑
c base ≤ 1/2, giving, for this cycle,

∑
u

∑
c base/(2Ci − 1) ≤ 1/4 so

that
∑
i

∑
u

∑
c base/(2Ci − 1) ≤ k/4.

Secondly δ: For the modified algorithm δ = 0. In the basic algorithm, a node uj
initially has K colours available and when (if) this number decreases from l to l− 1, pu(i, c)
increases from 1/2l to 1/2(l − 1) and this increase of 1/2l(l − 1) affects δ only for the, at
most, l − 1 colours still to be considered in this cycle so that

∑
c δ for a cycle is at most∑

l 1/2l, the sum being taken over those l for which the number of colours is reduced from
l. This gives an upper bound on

∑
i

∑
c δ/(2Ci − 1) of logK/2(2j + 1) since Ci > j and so∑

u

∑
i

∑
c δ/(2Ci − 1) <

∑
j logK/2(2j + 1) < log2 K/4.

Hence, by standard arguments, after k = O(logn + log2 K) cycles for the basic algo-
rithm or O(logn) cycles for the modified algorithm, v has probability o(1/n2) of remaining
uncoloured and the graph has probability o(1/n) of having any uncoloured node.

J

A.3 2-hop colouring
To calculate a 2-hop colouring of a graph G, we need to calculate a colouring of the “square”
of G, that is the graph with the same vertices as G and an edge between any pair v and
w of vertices which either are neighbours in G or have a common neighbour in G. In this
context, Theorem 7 becomes:

I Theorem 10. There are constants α, β and γ such that for any graph G = (V,E) of n
vertices and maximum degree ∆, the number of phases of Algorithm 6 to calculate a 2-hop
colouring in G is:

1. less than α(∆2 + logn) with probability 1− o
(
n−1),

2. less than β(∆2 + logn) on average,
3. less than γ(∆2 + logn) with probability 1− o (n−c), for any c > 1.
I Remark. The same transformation can be done starting from Algorithm 5 when we know
an upper bound of the maximum degree.

A.4 Analysis of Jeavons et al.’s Las Vegas Algorithm for the MIS in
BcdL

In [8], Jeavons et al. give and analyse a Las Vegas beeping algorithm to compute a MIS in the
model BcdL. They prove that for any graph G with n vertices, their algorithm terminates
in at most K0 logn phases, with probability at least 1− o(n−1) and K0 ≥ e25.

The starting point of our work is the observation made by Scott et al. at the end of
Section 4 in [11]: “Our simulations show that in practice the constants are rather lower”.
We verify this observation by proving that the number of phases taken by the Jeavons et al.
algorithm on any graph with n vertices is at most 76 logn w.h.p.

We first introduce some notation that we will use in this section.
If a neighbour of v beeps (in a slot), we say that v is “inhibited” (in that slot). For any

vertex v, we define the following sum:

qv =
∑

u∈N(v)

pu.

We also note q∗v = max{qv, 1/5} and finally t0 = 3 log(5q∗v) − 2 log pv. We omit the
subscript v where there is no risk of ambiguity.

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:23

We finally write l(q) for log(5 max{q, 1/5}), that is l(q) = max{log(5q), 0}.
Then, we have the following theorem:

I Theorem 11. For any t ≥ 0 and for any vertex v, its probability of remaining active after
the next t phases is at most αt0−t for the constant α = 21/36 ≈ 1.01944.

Proof. Note that α3 log q = q3 logα = q1/12. The proof will be by induction on t. We have
t0 ≥ 2, so that if t = 0, αt0−t > 1 and the claim is trivially true.

Let t > 0. After one phase which does not add v or a neighbour to the MIS we have
by induction that the probability of remaining active for the following t − 1 phases is at
most αt′0−t+1 where t′0 is the new value of t0, namely 3l(q′)− 2 log p′. So we conclude that
the probability of survival is upper bounded by the mean of the random variable which is
αt

′
0−t+1 if v survives the first phase and 0 otherwise. We refer to this mean as the bound

and note that it is dependent on what happens outside the neighbourhood of v. J

We will come back to the proof of the Theorem, but we first prove the following lemma:

I Lemma 12. The bound is maximised when what happens outside the neighbourhood of v
is that every neighbour u of v is inhibited from joining the MIS by some external neighbour
beeping and no neighbour of v becomes inactive through another vertex (outside N(v)) joining
the MIS.

Proof. Clearly a vertex ouside N(v) joining the MIS can only affect the bound by reducing
q which reduces the bound.

Consider any external behaviour E in which some u is not inhibited; we will show that
the bound is increased or unchanged if the behaviour is changed to E′ in which u is inhibited
and there is no change for any other neighbours of v. (In a given graph there may be no
such E′ but we consider the maximum possible over any graph containing the neighbourhood
N(v).) We consider fixed beeping decisions of all vertices in N(v) except u and show that
with these decisions E′ gives a value of the bound greater than or equal to that of E. We
consider three cases:

Some neighbour of v which is neither u nor a neighbour of u enters the independent set:
Note that this is determined by the fixed beeping decisions and the external behaviour
other than as it affects u. Hence this happens for E iff it also happens for E′ and in each
case the bound is 0.
Some neighbour of u in N(v) beeps:
pu will be halved whether or not u is inhibited by E′ and so both p′ and q′ and the
probability of survival are the same for E and E′. The bound is identical in the two
cases.
Otherwise:
Let the value of p′ be p0 if u does not beep and p1 if u does beep. p1 ≤ p0.
Let the value of q′ be q0 if u does not beep and is not inhibited, q1 if it beeps and is
inhibited and q2 if it does not beep and is inhibited. Note that if u beeps and is not
inhibited, u enters the independent set and v does not survive. We have q1 ≥ q0/4 since,
at most, u’s beeping can result in a vertex w halving qw when otherwise it would have
doubled it. Similarly q2 ≥ q0/4 and q2 ≥ q0 − 3pu/2 since the inhibition results in pu
being halved rather than potentially doubled.
The bounds are thus puα3l(q1)−2 log(p1)−t+1 + (1− pu)α3l(q2)−2 log(p0)−t+1 in the inhibited
case and (1− pu)α3l(q0)−2 log(p0)−t+1 in the uninhibited case. We claim that the ratio of
the inhibited bound to the uninhibited is at least 1. This ratio ≥ puα

3l(q1)+(1−pu)α3l(q2)

(1−pu)α3l(q0)

XX:24 Design Patterns in Beeping Algorithms (extended abstract)

(since p1 ≤ p0)
Remember that pu is a power of 1/2. We consider four subcases:
q0 ≤ 1/5: l(q1) = l(q2) = l(q0) = 0 and the ratio ≥ (pu + 1− pu)/(1− pu) > 1.
1/5 < q0 and pu ≥ 1/8: We use the bounds q1 ≥ q0/4 and q2 ≥ q0/4 giving that the
ratio is at least (pu + 1− pu)α−6/(1− pu) = α−6/(1− pu) ≥ α−6(8/7) ≥ 1.
1/5 < q0 ≤ 4/5 and pu ≤ 1/16: We use the bounds q1 ≥ q0/4 and q2 ≥ q0 − 3pu/2
and the fact that for 0 < x ≤ 15/32, (1− x)1/12 > 1− 4/3(x/12) so that the ratio is
at least puα−6/(1− pu) + (1− 3pu/2q0)3 logα ≥ puα−6 + (1− 15pu/2)1/12 ≥ puα−6 +
(1− (15pu/2)/12× (4/3)) ≥ 1 + pu(α−6 − 5/6) > 1.
q0 > 4/5 and pu ≤ 1/16: Using the same bounds as in the previous subcase the ratio
is greater than pu

1−puα
−6 +α3(l(q0−3pu/2)−l(q0)) > pu

1−puα
−6 +α3(l(4/5−3pu/2)−l(4/5)) and

this is the bound already used for the case with q0 = 4/5 and the same value of pu
and so is greater than or equal to 1.

This ends the proof that E′ gives a value for the bound at least as great as that for E. The
lemma is then proved by a simple induction on the number of uninhibited vertices.

J

We return to the inductive proof. Using the lemma we will always take q′ = q/2 giving
probability of survival ≤ α3l(q/2)−2 log p′−t+1.

We consider five cases.
q ≥ 2/5: We have l(q/2) = l(q)−1 and p′ ≥ p/2 giving P (survival) ≤ α3(l(q)−1)−2(log p−1)−t+1

= α3l(q)−2(log p)−t as claimed.
1/5 ≤ q < 2/5 and p < 1/2: The probability that a neighbour of v beeps is less than
q so that pv is doubled with probability at least 1 − q and halved in the remaining
cases. In all cases l(q/2) = 0. Hence P (survival) ≤ α−2 log(p)−t+1((1 − q)α−2 + qα2)
and our claim is that it is at most α3 log(5q)−2 log(p)−t. That is the claim is valid since
(1 − q)α−1 + qα3 ≤ α3 log(5q) in the range 1/5 ≤ q < 2/5. (It is valid at q = 1/5 since
4α−1 +α3 < 5 and at q = 2/5 since 3α−1 + 2α3 < 5α3; between these two limits, the left
hand side is linear and the right hand side ((5q)3 logα) has a negative second derivative
so the inequality holds there also.)
1/5 ≤ q < 2/5 and p = 1/2: With probability greater than 1− q no neighbour of v beeps
and then v has probability 1/2 of entering the independent set; otherwise pv remains 1/2.
On the other hand, if a neighbour does beep, pv becomes 1/4. In all cases l(q/2) = 0.
Thus the probability of survival ≤ α2−t+1((1− q)/2 + qα2) and the claim is that it is at
most α3log2(5q)+2−t. That is the claim is valid if (1 − q)α/2 + qα3 ≤ α3 log(5q) a weaker
condition than in the previous case.
q < 1/5 and p < 1/2: The probability that a neighbour of v beeps is less than 1/5 so
that pv is doubled with probability at least 4/5 and halved in the remaining cases. In all
cases l(q) decreases or is unchanged. Hence P (survival) ≤ α3l(q)−2 log(p)−t+1((4/5)α−2 +
(1/5)α2) and this is less than α3l(q)−2 log p−t as claimed, again since 4α−1 + α3 < 5.
q < 1/5 and p = 1/2: With probability greater than 4/5 no neighbour of v beeps and
then v has probability 1/2 of entering the independent set; otherwise pv remains 1/2.
On the other hand, if a neighbour does beep, q decreases and pv becomes 1/4. Hence
P (survival) ≤ (2α3l(q/2)−2 log(1/2)−t+1+α3l(q/2)−2 log(1/4)−t+1)/5≤ α3l(q)−2 log(1/2)−t+1(2+
α2)/5 which is at most α3l(q)−2 log(1/2)−t as claimed since 2 + α2 < 5α−1.

This completes the proof of the theorem.
We end this section by the following corollary:

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari XX:25

I Corollary 13. The number of phases taken by Jeavons et al.’s algorithm on any graph with
n nodes is, in fact, less than 76 logn w.h.p.

Proof. Since initially pv = 1/2 and qv < n/2 where the graph has n vertices, we conclude
that t0 < 3 log(5n/2) − 2 log(1/2) < 3 logn + 6 so that after t = 76 log2 n phases, every
vertex v has probability n−2 of still being active and therefore the algorithm has terminated
with probability 1− o(n−1). J

I Remark. The number of phases before the probability is 1 − o(n−1) compares well with
the value of K0 ≥ e25 proved in [8].

A.5 The Case of the 2-hop MIS Las Vegas Algorithm in BcdLcd

The 2-hop MIS algorithm simulates the MIS algorithm in the square of G; knowing that
the complexity depends only on the number of vertices of the graph we deduce from the
previous section:

I Theorem 14. The number of phases taken by the 2-hop MIS algorithm on any graph with
n nodes is less than 76 logn w.h.p.

B Missing proofs

This appendix section provides the missing proofs of Section 5.

Proof of Lemma 4. By induction on t. Clearly the claim is true for t = 0. We suppose
that Et−1 is true and we consider probabilities conditional on the values of Bt−1 for is− 1,
is, is+ 1, (i+ 2m)s− 1, (i+ 2m)s and (i+ 2m)s+ 1.

We will show that the probability that bist = b
(i+2m)s
t and bis−1

t = b
(i+2m)s−1
t and bis+1

t =
b

(i+2m)s+1
t is at least 2−3.

The three events:
bist = s

(i+2m)s
b

bis−1
t = b

(i+2m)s−1
t

bis+1
t = b

(i+2m)s+1
t

are independent.
For the first, uim and u(i+2m)s started in the same state and have sent and heard identical

signals. Thus they have the same probability of beeping at the next round and so have
probability at least 1/2 of either both beeping or neither.

For the second, the two chains (u(i−1)s · · ·uis−1) and (u(i+2m−1)s · · ·u(i+2m)s−1) started
in the same states, have received the same signals from uis and u(i+2m)s, and have sent the
same signals. Thus, again the two vertices uis−1 and u(i+2m)s−1 have the same conditional
probability of beeping and so probability at least 1/2 of making the same choice.

The argument for the third event is identical.
This proves that the three events happen with probability at least 2−3 yielding that the

probability of event Et is lower bounded by 2−3t. J

Proof of Theorem 5. For simplicity we consider wheels (m, s) where s is a power of 2 and
m = 24s−2/s so that s = log2 n/4. We consider a computation on this wheel without
specifying whether it is the odd or even wheel. By Lemma 4, the probability that a given
spoke i breaks symmetry within time s − 1 is at most 1 − 23−3s < exp(−23−3s) and this
is independent for all spokes so that the probability that every spoke breaks symmetry in
the even case in time s − 1, is at most exp(−23−3sm) = exp(−2s+1/s) < 1/4. Hence the

XX:26 Design Patterns in Beeping Algorithms (extended abstract)

probability that the algorithm halts and some spoke fails to break symmetry is greater than
1/2. If, in the even case, spoke i fails to break symmetry, vertex ui hears the same signals
from its neighbours in the odd and even cases and, so, if it terminates the algorithm in this
time, it has the same probability of deciding collision in the two cases. Hence it gives the
wrong response in one case with probability at least 1/2. Hence there is a vertex which gives
the wrong response in the odd or even case with probability greater than 1/4.

Thus if an algorithm halts in time o(logn) with probability ≥ 3/4, for sufficiently large
n it halts in time less than s and so its probability of giving an incorrect result is at least
1/4 for some initial conditions. It follows that the same is true for any algorithm halting in
expected time o(logn). J

	Introduction
	Contributions
	Design patterns.
	Algorithms and analyses for basic graph problems.
	Collision detection and emulation techniques.

	Organisation of the paper

	Network Model and Definitions
	Design patterns for beeping algorithms
	Algorithms for basic graph problems
	Colouring
	2-hop colouring
	Degree computation
	Jeavons et al.'s Las Vegas Algorithm for the MIS in BcdL
	Computing a 2-hop MIS

	Collision detection and emulation techniques
	Collision detection
	Emulation procedures
	Optimality of the emulation

	Complexity analysis
	Colouring algorithm without knowledge
	Local Average Time Complexity.
	Available Neighbours.
	The mean decrease in M'.
	Time Complexity w.h.p..
	Average Time Complexity.
	Time Complexity With Very High Probability.

	Colouring algorithm knowing K.
	2-hop colouring
	Analysis of Jeavons et al.'s Las Vegas Algorithm for the MIS in BcdL
	The Case of the 2-hop MIS Las Vegas Algorithm in BcdLcd

	Missing proofs

