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ABSTRACT
Evolution of systems during their operational life is manda-
tory and both updates and upgrades should not impair their
dependability properties. Dependable systems must evolve
to accommodate changes, such as new threats and undesir-
able events, application updates or variations in available
resources. A system that remains dependable when facing
changes is called resilient. In this paper, we present an inno-
vative approach taking advantage of component-based soft-
ware engineering technologies for tackling the on-line adap-
tation of fault tolerance mechanisms. We propose a develop-
ment process that relies on two key factors: designing fault
tolerance mechanisms for adaptation and leveraging a re-
flective component-based middleware enabling fine-grained
control and modification of the software architecture at run-
time. We thoroughly describe the methodology, the devel-
opment of adaptive fault tolerance mechanisms and evaluate
the approach in terms of performance and agility.

1. INTRODUCTION
Dependable systems are becoming increasingly complex

and their capacity to evolve in order to efficiently accommo-
date changes is a requirement of utmost importance. Changes
have different origins, such as fluctuations in available re-
sources, additional features requested by users, environmen-
tal perturbations. . . All changes that may occur during ser-
vice life are rarely foreseeable when designing the system.
Dependable systems must cope with changes while main-
taining their ability to deliver trustworthy services and their
required attributes, e.g., availability, reliability, integrity [1].

A lot of effort has been put into building applications that
can adapt themselves to changing conditions. A rich body of
research exists in the field of software engineering consisting
of concepts, tools, methodologies and best practices for de-
signing and developing adaptive software [2]. For instance,
agile software development approaches [3] emphasize the im-
portance of accommodating change during the lifecycle of
an application at a reasonable cost, rather than striving to
anticipate an exhaustive set of requirements. Component-
based approaches [4] separate service interfaces from their
actual implementation in order to increase flexibility, evolv-
ability and reuse. Although dependable systems could ben-
efit from these advancements in order to become more flex-
ible and adaptive, very little has been done in this direction
for now. In this paper, we describe an innovative approach
for tackling on-line adaptation of dependability mechanisms
that leverages component-based software engineering tech-
nologies. Component-based fault tolerance mechanisms can

be easily updated through transition packages.
The paper is organized as follows. Section 2 presents the

context and motivation of our work. Section 3.1 briefly de-
scribes the resilient system architecture we consider; next,
we describe a set of Fault Tolerance Mechanisms (FTMs)
and analyze transitions between them in Section 3.2. Sec-
tion 4 presents the process of designing FTMs for subsequent
adaptation. In Section 4.4, we detail the practical imple-
mentation of FTMs on top of a reflective component-based
support and in Section 5, we describe the implementation
of on-line transitions between FTMs. Next, we evaluate our
approach in Section 6. In Section 7, we discuss related work
and in Section 8 we present the lessons learned and conclude.

2. PROBLEM STATEMENT
Resilient computing refers to dependability in the pres-

ence of changes due to system evolution [5]. Our work fo-
cuses on Fault Tolerance Mechanisms (FTMs) that can be
influenced by changes occurring in the system or in its envi-
ronment. Ideally, fault-tolerant applications consist of two
interconnected abstraction layers. The first one (the base
level) contains the business logic that implements the func-
tional requirements . The second one (the meta level) con-
tains fault tolerant mechanisms and is attached to the first
one through clearly identified hooks. As the development
of a fault-tolerant application implies different roles/stake-
holders (application developer(s), safety expert, integrator),
separation of concerns is a key concept. Separation of con-
cerns has some limit since fault tolerance strategies often
depend on the semantics of the business logic. However,
hooks can be defined to externalize some “application de-
fined assertions” used to parameterize fault tolerance mech-
anisms. In any case, the concept of separation of concerns
is essential to implement adaptive fault tolerance without
impacting deeply the business logic.

Among the well-established and documented FTMs, e.g.,
[6, 7], the choice of an appropriate FTM for a given applica-
tion depends on the values of several parameters. We iden-
tified three classes of parameters: fault tolerance require-
ments, application characteristics and available resources.

• Fault tolerance requirements (FT). This class of pa-
rameters contains the considered fault model. A fault model
determines the category of FTM to be used (e.g., simple
replication or diversification). Our fault model classification
is well-known [1], dealing with crash faults, value faults and
development faults. We focus on hardware faults (perma-
nent and transient physical faults) but the approach can be
extended to other FTMs.
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• Application characteristics (A). The characteristics
that have an impact on the choice of an FTM are applica-
tion statefulness, state accessibility and determinism. State
accessibility is essential for checkpointing-based fault toler-
ance strategies. Determinism refers here to behavioural de-
terminism, i.e., the same inputs produce the same outputs
in the absence of faults, mandatory for active replication.

• Resources (R). FTMs require resources in terms of CPU,
battery life/energy, bandwidth, etc. A cost function can be
associated to each FTM based on the values of such pa-
rameters. For a given set of resources, several mechanisms
can be used with different trade-offs (e.g., more CPU, less
bandwidth).

The first two parameters FT and A correspond to assump-
tions to be considered for the selection of an appropriate
mechanism and to determine its validity. The resource di-
mension R states the amount of resources needed to accept
a given solution according to system resources availability.

In practice, based on the values of (FT,A,R) set at design
time, an FTM is attached to an application when the system
is installed for the first time. As far as resilient computing [5]
is concerned, the challenge lies in maintaining consistency
between the FTM(s) and the non-functional requirements
despite variations of the parameters at runtime, e.g.:
• new threats/faults and physical perturbations such as
electromagnetic interferences trigger variations of FT;
• the introduction of new versions of applications or mod-
ules may trigger variations of A;
• resource loss or addition of hardware components imply
variations of R.

If the FTM is inconsistent with the current (FT,A,R) val-
ues, it will most likely fail to tolerate the faults the system
is confronted with. Therefore, a transition towards a new
FTM is required before the current FTM becomes invalid,
which is possible in Adaptive Fault Tolerance (AFT).

On-line adaptation of FTMs has attracted research efforts
for some time now because dependable systems cannot be
fully stopped for performing off-line modifications. However,
most of the proposed solutions [8, 9, 10] tackle adaptation
in a preprogrammed manner: all FTMs necessary during
the service life of the system must be known and deployed
from the beginning and adaptation consists in choosing the
appropriate execution branch or tuning some parameters.

Nevertheless, predicting all events and threats that a sys-
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Figure 1: Adaptation process overview

tem may encounter throughout its service life and making
provisions for them is obviously impossible.

This approach is of interest for long-lived space systems
(satellites and deep-space probes) and for automotive appli-
cations regarding over-the-air software updates, a very im-
portant trend in the automotive industry today.

In this context, we propose an alternative to preprogram-
med adaptation that we denote agile adaptation of FTMs
(the term “agile” is inspired from agile software develop-
ment). Agile adaptation of FTMs enables their system-
atic evolution: new FTMs can be designed off-line at any
point during service life and integrated on-line in a flexible
manner, with limited impact on the existing software archi-
tecture. Our approach for the agile adaptation of FTMs
leverages advancements in the field of software engineer-
ing such as Component-Based Software Engineering (CBSE)
technologies [4], Service Component Architecture [11] and
Aspect-Oriented Programming [12]. Using such concepts
and technologies, we design FTMs as brick-based assemblies
(similar to “Lego” constructions) that can be methodically
modified at runtime through fine-grained modifications af-
fecting a limited number of bricks. This approach maximizes
reuse and flexibility, contrary to monolithic replacements of
FTMs found in related work, e.g., [8, 9, 10]. It is worth
noting that, whatever the approach is (pre-programmed or
agile), when the FTM evolution goes outside the foreseen
boundaries of the FTM loaded into the system, the system
may fail. The benefits of the proposed agile approach is to
provide means to react more quickly and to simplify updates
of loaded FTMs.
Summary of contributions. In this paper, after a short
description of the resilient system architecture, we describe
our methodology for agile adaptation of FTMs and its re-
sults, focussing on the following three key contributions:
• A “design for adaptation” approach of a set of FTMs,
based on a generic execution scheme.
• A component-based architecture of the considered FTMs
and fine-grained on-line transitions between them.
• Illustration of on-line FTM adaptation through several
transition scenarios.

3. RESILIENT SYSTEM DESIGN

3.1 Architecture
The core objective of a resilient system is to guarantee the

consistency of FTMs attached to applications according to
major assumptions regarding the fault model and the appli-
cation characteristics. First, this means identifying the link
between applications and FTMs, and, more importantly, dy-
namically adapting FTMs according to operational condi-
tions at runtime. As soon as FTMs are developed as assem-
blies of Lego bricks, it becomes easier to adjust their config-
uration by removing, adding, modifying individual bricks.
This means that bindings between application and FTMs,
but also inside FTMs can be managed dynamically. At run-
time, any FTM implemented as a graph of Lego bricks is
modified on-line when the FTM configuration is updated.
Some Lego bricks can be uploaded when they are missing,
after an off-line development when the FTM solution does
not exist yet. The adaptation is carried out on-line by a
specific service, called Adaptation Engine (see Figure 1).

A second important feature of a resilient system, also
shown on Figure 1, is the runtime monitoring of the state
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of the system according to several view points. This core
service of the architecture is called Monitoring Engine. The
first conventional role of the monitoring is to measure re-
source usage R. The second important role of the monitor-
ing is to analyze the non-functional behavior of the system.
This task is more complex and requires specific observers
to capture rare error events at the hardware level, the rate
of exceptions in the operating system and the applications,
errors raised by operating system calls, and other incorrect
behaviors reported in logs. From the collection of such in-
puts, triggers for FTM adaptation are computed. Monitor-
ing issues are not addressed in this paper; we consider that
triggers to signal a change in resource usage R or fault model
FT are already available.

A third service, called Resilience Management, corres-
ponds to the link with the off-line System Manager respon-
sible for the updates of the application (i.e. versioning), the
identification of their characteristics A, the development of
a new FTM as a graph of software components, the update
of components when needed, and the definition of transition
scripts to modify the on-line configuration of an FTM.

The big picture of the resilient system architecture we con-
sider is the following:
• a Middleware responsible for the execution of applications
and FTMs as assemblies of software components;
• an Adaptation Engine responsible for the management of
FTMs as graphs of software components;
• a Monitoring Engine responsible for the capture of the
system state and the computation of triggers;
• a Resilience Management Service responsible for the in-
teraction with the system manager.

This framework is consistent with the Open Systems De-
pendability concept and the principles of Dependability En-
gineering for Ever-Changing Systems [13].

3.2 Adaptation of FTMs
In this section, we describe a set of well-established FTMs

in terms of their underlying characteristics and we present
a transition scenario encompassing these FTMs. Our objec-
tive in this work is not to invent more sophisticated FTMs,
nor to discuss complex variants of the proposed mechanisms,
but to illustrate our approach for resilient computing with
quite simple implementations of conventional techniques.

3.2.1 Illustrative set of FTMs
To illustrate our approach, we use two variants of a du-

plex protocol tolerating crash faults and two mechanisms for
tolerating hardware value faults (e.g., bit flips).

• Tolerance to crash faults: Simple replication of the
server on two distinct hosts (master and slave(s)) is a solu-
tion: a crash of the master is detected by a dedicated entity
(e.g., heartbeat, watchdog) and triggers a recovery action by
which the slave becomes master. There are two main types
of duplex protocols: passive and active, and many variants.
Primary-Backup Replication (PBR) is a passive strategy:
only the master processes client requests and sends check-
points containing its state to the slave(s). Leader-Follower
Replication (LFR) is an active strategy: all replicas process
input requests but only the master replies to the client.
• Tolerance to value faults: A solution can rely on rep-
etition of request processing or duplex processing with ac-
ceptance tests/assertions. For instance, Time Redundancy
(TR) tolerates transient value faults by processing repetition

on a single host. A request is processed twice and results
are compared. If results differ, due to a transient fault, the
request is processed again and if two results out of three are
identical, the reply is sent.

Another technique can be used to tolerate transient faults
using assertions derived from safety properties of the appli-
cation: the Assertion&Duplex (A&Duplex) strategy. When
the first execution fails (the assertion is false), then the re-
execution is done on a different node. The synchronization
between replicas can be based on any duplex protocol vari-
ant mentioned above, tolerating thus crash faults as well.
The assertion can be determined by a safety analysis of the
system, e.g. a Failure Mode, Effects, and Critical Analysis
(FMECA). This technique is similar to distributed recovery
blocks [14] that can tolerate both hardware and software
faults when replicas are diversified.
• Assumptions and performance analysis: The under-
lying characteristics of the considered FTMs, in terms of
(FT,A,R), are shown in Table 1. For instance, PBR and
LFR tolerate the same fault model, but have different A
and R. PBR allows non-determinism of applications because
only the Primary computes client requests while LFR only
works for deterministic applications as both replicas com-
pute all requests. PBR requires state access for checkpoints
and higher network bandwidth (in general), while LFR does
not require state access but generally incurs higher CPU
costs (and, consequently, higher energy consumption) as
both replicas perform all computations. TR requires state
access because application state must be captured before the
first request processing and restored between two consecu-
tive executions. As it runs on only one host, it cannot toler-
ate crash and it has no bandwidth requirements. A&Duplex
can tolerate both crash faults and value faults as two CPUs
are used to run the replicas. Both TR and A&Duplex re-
quire more computation power (i.e., more energy) than PBR
because of multiple request processing.

Characteristics
FTM

PBR LFR TR A&Duplex

Fault Model (FT)

Crash 3 3 3
Transient value 3 3

Permanent value 3

Application
Characteristics

(A)

Deterministic 3 3 3 3
Non-deterministic 3 3

Requires state access 3 3

Resources (R)
Bandwidth high low n/a low

CPU low low high high

Table 1: (FT, A, R) parameters of considered FTMs

• Dealing with more complex fault tolerance strate-
gies: We voluntarily use simple definitions of the mecha-
nisms here for the sake of clarity. However, many variants
of passive and active strategy exist. A more detailed dis-
cussion about replication techniques in distributed systems
can be found in [15]. Variants of the LFR strategy where
non-deterministic decisions are captured and forwarded from
the Leader to the Follower do exist. We could also con-
sider multiple Backups or Followers making thus the use of
Atomic Broadcast protocols highly useful in the implemen-
tation. With the Assertion&Duplex (A&Duplex) strategy,
one can decide to use a diversified implementation of the
function to handle software faults. Clearly, Fault Tolerance
Design Patterns can be implemented in many ways.

Considering several software fault tolerance techniques like
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Recovery Blocks (RB) and Triple Modular Redundancy (TMR),
the proposed approach, promoting dynamic updates using
Lego bricks, is of interest without changing the execution
logic of the mechanism — for RB, an update consists of
changing the acceptance test; for TMR, an update consists
of replacing the decision algorithm. Both updates help im-
proving the fault tolerance coverage of such techniques.

The resource parameters, monitored on-line, obviously de-
pend on the application, the physical architecture of the sys-
tem (CPU, networks, HW configuration, etc.).

3.2.2 Possible transitions
During the service life of the system, the values of the pa-

rameters enumerated in Table 1 can change. An application
may become non-deterministic because a new version is in-
stalled. The fault model may change from crash fault only
to crash and value fault, due to hardware aging or physi-
cal perturbations. Available resources may also vary, e.g.,
bandwidth drop or constraints in energy consumption. Fig-
ure 2 shows a graph of possible transitions between the pre-
viously defined FTMs variants. The vertices represent the
FTMs and the edges are labeled with the parameter (FT, A,
R) whose variation triggers the transition. For instance, the
PBR→LFR transition is triggered by a change in application
characteristics or in resources, while the PBR→A&Duplex
transition is triggered by a change in the considered fault
model, i.e. the need to check a user-defined safety property
with an assertion. Transitions can occur in both directions,
according to parameter variation.

PBRstart PBR⊕TR

LFR LFR⊕TR

A&
Duplex

A,R

FT

FTA,FT

A,R

FT

FTA,FT

Figure 2: Transitions between FTMs

The variation of the fault model often requires a composi-
tion of FTMs, e.g., if we start by tolerating only crash faults
with PBR and we want to add tolerance to transient value
faults, we will compose PBR with TR and obtain a com-
posed FTM combining the features specific to PBR with
those specific to TR. In this paper, the ⊕ operator denotes
composition (e.g., PBR⊕TR in Figure 2).

4. DESIGN FOR ADAPTATION OF FTMs
The second step of our development process is an analysis

of the previously described FTMs in order to extract com-
mon parts and variable features between them. This leads to
a generic execution scheme of fault tolerance strategies and
a framework of Fault Tolerance Design Patterns (FTDPs).
We follow a “design for adaptation” approach consisting of
several design loops. Each loop represents a refinement step
towards the optimal representation of the various concerns
and protocols. The result is a pattern system [16] for fault
tolerance because the considered FTMs are reusable and cus-
tomizable solutions to specific problems and we highlight the

structural and conceptual dependencies between them.
In its first stage, the framework contained only the de-

sign (and corresponding implementation) of a PBR strategy
whose core was concentrated in a class encompassing gen-
eral fault tolerance concerns, duplex concerns and specific
PBR concerns. Our aim was to reach a clean separation
between all these concerns in order to maximize reuse when
developing new duplex variants and other FTMs.

4.1 First design loop
By analyzing the above described FTMs, we identified

a generic execution scheme which captures their common
parts and their variable features. Upon reception of a re-
quest from the client, a fault-tolerant server executes some
actions before processing. Then it proceeds with request pro-
cessing. After processing, it executes some actions and fi-
nally it sends the reply to the client. We call this the Before-
Proceed-After generic execution scheme, inspired from aspect-
oriented programming [12]. The Before-Proceed-After soft-
ware bricks comply with the Server coordination phase (syn-
chronisation before), the Execution phase (proceed) and the
Agreement coordination phase (synchronization after) de-
scribed in [15]. Table 2 describes the content of each before-
proceed-after execution step for the FTMs we consider.

FTM Before Proceed After

PBR (Primary) Nothing Compute Checkpoint to Backup
PBR (Backup) Nothing Nothing Process checkpoint
LFR (Leader) Forward request Compute Notify Follower
LFR (Follower) Receive request Compute Process notification
TR Capture state Compute Restore state
A&Duplex Nothing Compute Assert output

Table 2: Generic execution scheme of considered FTMs

When designing a duplex mechanism, this scheme can be
translated in Before-Proceed-After, because an inter-replica
synchronization takes place before request processing and
another one after. This generic execution scheme enabled
us to factorize in a class what is common to all duplex pro-
tocols, DuplexProtocol and then specialize, through inheri-
tance, the concrete FTMs, PBR and LFR (see Figure 3). Other
duplex variants can be added to the framework, either by
inheriting from the abstract base class DuplexProtocol or
by overloading concrete classes.

4.2 Second design loop
Another separation can be done between what is common

to all FTMs and what is specific to duplex ones. Com-
munication with the client, preservation of “at-most-once”
semantics and request forwarding to the concrete functional
service in the processing step are now encapsulated in a class,
FaultToleranceProtocol in Figure 3. This second factor-
ization enabled us to introduce in our framework non-duplex
protocols targeting other fault models than crash, more pre-
cisely value faults (transient and permanent): TimeRedun-

dancy and Assertion, which follow the same generic ex-
ecution scheme. New protocols can be easily added to the
framework either by extending the abstract base class Fault-
ToleranceProtocol or one of the concrete classes.
Composing FTMs — As a direct consequence of the two
design loops, the composition of FTMs is intuitive and al-
most immediate. By inheriting from a duplex protocol (tol-
erating crash faults) and from a value fault tolerance mech-
anism, we obtain four composed FTMs (Figure 3): PBR_TR

4



«virtual» «virtual» «virtual»

«interface»
StateManager Server Remote

RemoteServer

RecoverableRemoteServer

FaultToleranceProtocol

TimeRedundancy DuplexProtocol Assertion

PBR LFR

PBR_A

LFR_A

LFR_TR

PBR_TR

1

Figure 3: Excerpt of Fault Tolerance Design Patterns

and LFR_TR, corresponding to PBR⊕TR and LFR⊕TR re-
spectively in Figure 2, and PBR_A and LFR_A which are two
variants of A&Duplex. Figure 3 shows an excerpt of the
final framework resulting from the two design loops.
Variable features — The elements of our generic execu-
tion scheme represent the variable features between FTMs.
Comparing, for instance, the execution scheme of PBR with
the one of LFR (see Table 2) gives us the intuition that by
dividing the inter-replica protocol in isolated bricks/com-
ponents which can be identified and manipulated on-line,
we could execute a differential transition between PBR and
LFR. This means replacing only the components contain-
ing the variable features between the two FTMs, without
modifying the rest of the system (e.g., communication with
the client, the actual processing to which proceed only for-
wards the requests). By identifying the variable features, we
can easily develop FTM variants from existing ones (off-line)
and, using a component-based middleware support, execute
transitions between FTMs with few modifications (on-line).

4.3 Validation of the design
All the above design versions developed in UML with IBM

Rational Software Architect have been implemented and val-
idated in C++. As further explained, the benefits of the
“design for adaptation”approach lie in reducing the develop-
ment time and effort necessary for implementing new FTMs
and in increasing readability and separation of concerns/-
functionalities. The implementation of composed mecha-
nisms is almost immediate thanks to the two design loops.

Figure 4 shows that the effort spent on factorization and
design refinement during the two design loops is 4 to 5 times
more significant than the effort to develop one FTM. How-
ever, once the right design is achieved, the development of
both individual and composed FTMs is extremely easy. For
instance, while the second design loop took 5 days, the de-
velopment of Assertion and Time Redundancy each took
half a day. The composition of FTMs, which is probably
the most interesting result of this endeavor, only took half
a day thanks to the two design loops.

During the development of this system of patterns, we ob-
served that our design approach was very efficient, in terms
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of development time of new FTMs (see Figure 4), in terms
of code reuse and lines of code to be produced (see Figure 5).

The development of any FTM is carried out off-line. Any
update impacts the FTM that must be validated off-line
before it can be used. The analysis of possible inconsisten-
cies in FTMs composition is part of the off-line validation
process and is thus performed before any on-line adapta-
tion. Inconsistency analysis of FTMs composition has been
addressed in our previous works. The interested reader is
referred to [17, 18] for details.

4.4 Component-based FTMs
In this step of the development process, the fine-grained

design of FTMs based on the generic Before-Proceed-After
execution scheme was mapped on FraSCAti [19], an open-
source reflective component-based middleware. FraSCAti
provides runtime support for applications designed accord-
ing to the Service Component Architecture (SCA) specifi-
cations [11]. FraSCAti enriches the basic SCA specifica-
tion with support for on-line exploration and reconfigura-
tion of component-based assemblies. To this aim, it inte-
grates FScript [20], a script language for writing reconfig-
uration procedures. FraSCAti and FScript provide what
we have identified as the minimal API for performing the
fine-grained adaptation of FTMs, namely:

• control over component lifecycle at runtime (add, re-
move, start, stop);

• control over interactions between components for cre-
ating and removing reference-service connections;

• consistency of reconfigurations performed by scripts
written in FScript.
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It is worth noting that our approach is reproducible on any
other platform that provides these features.
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Figure 6: Component-based architecture of PBR

Figure 6 shows the resulting component-based architec-
ture of PBR. The steps of the generic execution scheme are
isolated in the components syncBefore, proceed, syncAfter.
Thanks to the “design for adaptation” process, these vari-
able features, that are subject to change during transitions,
are mapped on small stateless components. The actual state
of the FTMs (e.g., request id, computation result) and the
common parts of FTMs that were captured in the two base
classes in the object-oriented design (i.e., FaultTolerance-
Protocol and DuplexProtocol in Figure 3) are now mapped
on components that are not modified during transitions be-
tween FTMs, i.e., protocol, replyLog and server.

5. ADAPTATION OF FTMs AT RUNTIME

5.1 Adaptation process implementation
Figure 7 outlines the adaptation process implementation

for executing fine-grained transitions between FTMs, un-
der the supervision of the System Manager. The target
system runs an application to which are attached appro-
priate FTM(s) (i.e., consistent with the current values of
(FT,A,R)).
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Figure 7: Adaptation process implementation

When there is an inconsistency between the values of
(FT,A,R) and the current FTM, the Resilience Management
Service triggers the Adaptation Engine giving it as input the
new FTM towards which a transition must be executed (if

such an FTM exists). The Adaptation Engine gets the re-
quired transition package from the FTM&Adaptation Repos-
itory. This package contains the new bricks that must be
integrated into the existing software architecture in order to
execute a differential transition from the current FTM to the
new one and a script that operates the transition. Next, the
transition package feeds the Script interpreter that modifies
the current FTM.

In our view, the process encompasses two aspects: cold
resilient computing, covering off-line activities (the develop-
ment of the transition packages from the repository), and
hot resilient computing, consisting of all the other entities
and their interactions that occur on-line. Together, these
two aspects form a loop: the cold one feeds transition pack-
ages to the hot one, and the hot one provides feedback for
improving and enriching the cold one.

5.2 On-line fine-grained transitions
To illustrate the feasibility of the approach, we performed

several fine-grained transitions between selected FTMs, cor-
responding to the transition scenario from Figure 2. The
PBR→LFR transition is triggered by variations in A or R
(based on Table 1) and requires changing the syncBefore
and syncAfter components (based on the generic scheme in
Table 2). All the other components corresponding to the
massive common parts are left untouched.

Each transition implies the deployment of a transition
package containing the new components that must be intro-
duced in the existing architecture (in this example, syncBe-
fore and syncAfter of LFR) and a script written in FScript
that removes the components that are no longer necessary
(here, syncBefore and syncAfter of PBR) and replaces them
with the new ones. In short, the script written in FScript
that performs the PBR→LFR transition does the following:

• disconnect the old syncBefore and syncAfter from all
their services and references;

• delete old components and add the new ones;

• connect the new syncBefore and syncAfter to all the
necessary services and references.

The LFR→LFR⊕TR transition (i.e., the composition of
LFR with TR) is triggered by the evolution of the fault
model, from crash fault to crash fault and transient value
faults. Such an evolution of the fault model may occur
due to hardware aging or physical perturbations. Table 2
outlines the specificities of TR, namely the state capture
and restoration before and after processing, respectively. To
simplify the mapping on the component-based architecture,
the behavior of TR is implemented by a proceed compo-
nent that repeats processing and compares results. The
LFR→LFR⊕TR transition thus consists in replacing the el-
ementary proceed component of LFR.

5.3 Consistency of distributed adaptation
As evolvability must not affect the reliability of fault-

tolerant application, the consistency of transitions between
FTMs must be ensured.
Local consistency— FraSCAti and its integrated FScript
engine guarantee the consistency of local reconfigurations
performed using scripts. FScript enforces an all-or-nothing
semantics [20]. The reliability of the reconfiguration is achieved
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using a model of component-based configurations and recon-
figurations (i.e., transitions between two consistent configu-
rations), verifying integrity constraints and performing re-
configurations in a transactional manner [20]. In case of
constraint violation during the reconfiguration process, a
ScriptException is thrown, the transaction is rolled back
and the FTM remains in its initial configuration.
Consistency of request processing— Stopping a com-
ponent that must be replaced implies waiting for it to reach
a quiescent state where all its internal processing is finished,
blocking its inputs and buffering them. This means that a
client request received before adaptation is processed and
the client receives the reply before the subsequent requests
are blocked and buffered and the interaction between repli-
cas is locked. When the lock is released, the buffered client
requests are processed in the new configuration of the FTM.
Distributed consistency — The FTMs consist of two
replicas and a specific inter-replica protocol, therefore tran-
sitions between FTMs is performed on two hosts. On each
one, a script component performs the required reconfigu-
ration, which can either terminate successfully or with a
ScriptException, if integrity constraints are violated. The
script component on each host is wrapped in a Java class
which kills the local replica if an exception is thrown, to
enforce the fail-silent assumption and to prevent the overall
FTM from reaching an inconsistent configuration. There-
fore, a local reconfiguration can either terminate successfully
or crash. The failure detection mechanism incorporated in
all duplex strategies detects the crash and informs the re-
maining replica. If this replica has successfully reconfigured,
it becomes master-alone.
Recovery of adaptation— Replicated computing units
may crash during transitions. Upon successful completion
of the reconfiguration of one replica (either master or slave),
the current configuration (i.e., the target FTM) is logged
on a stable storage. Should the other replica crash (either
because of a ScriptException or because of a physical fault)
before completing its own reconfiguration, a new replica is
restarted in the same configuration as its counterpart, which
has successfully completed the transition. This information
is recovered from the stable storage which keeps track of the
currently active configuration.

5.4 Detailed analysis of transition scenarios
Figure 8 shows an excerpt of the graph of possible tran-

sitions (on the left) and an extended graph of transition
scenarios between the FTMs in our subset resulting from it
(on the right). We call it a graph of scenarios because there
are several events which lead to a transition between FTMs.

For the sake of clarity, we present a simplified view of
adaptation triggers. In general, they consist in more com-
plex logical expressions, which are out of the scope of this pa-
per. As previously explained, PBR requires state access and
can be used both for deterministic and non-deterministic ap-
plications. LFR requires application determinism and can
be used both for applications that provide state access and
those that do not (see Table 1). This explains the two PBR
states and the two LFR states in Figure 8. The “No generic
solution”state corresponds to non-deterministic applications
that do not provide state access.
Mandatory vs. possible transitions — Figure 8 shows
three types of transitions: mandatory transitions (continu-
ous red lines), possible transitions (dashed green lines) and

intra-FTM transitions (dotted black lines).

• Mandatory transitions: Parameters whose variation in-
validates the initial FTM or affects its performance and
therefore requires a transition towards an appropriate
one. These are mandatory transitions. When starting
from PBR, there are two such cases: bandwidth drop
(which introduces undesired overheads) and state in-
accessibility (which makes checkpointing impossible).

• Possible transitions: Parameters whose variation only
makes optional the use of another FTM, without in-
validating the initial one, lead to possible transitions.
When starting from PBR, there are two such cases: in-
crease in available CPU (because LFR demands more
processing than PBR) and application determinism
(because both PBR and LFR work in this case).

While mandatory transitions can be executed automat-
ically, possible transitions are executed only if the system
manager decides to. The intra-FTM transitions are only
represented in Figure 8 for the sake of completeness. If a
possible transition towards a new FTM is not executed (e.g.,
to go from “PBR with non-determinism” to “LFR with state
access” when the application becomes deterministic), the
current FTM will still change its configuration, i.e., execute
an intra-FTM transition (e.g., “PBR with non-determinism”
goes to “PBR with determinism” ).
Stability of transitions and triggers— A problem which
can be encountered in adaptive fault tolerance, perceived as
a closed loop system, is the oscillation between FTMs: if a
transition is triggered by the variation of a parameter that
oscillates near the reconfiguration threshold, the system can
become unstable and reconfigure itself too often, thus reduc-
ing its availability. By distinguishing between mandatory
and possible transitions, this issue is solved for our FTM
examples: as Figure 8 shows, the reverse of a mandatory
transition is always a possible one. The risk of oscillation is
eliminated because once the system executes a mandatory
transition due to the variation of a parameter, it will not
be able to revert to the previous FTM, unless the system
manager decides to.

Figure 8 also shows that changes of some parameters can
be detected automatically by using probes 
, while others
likely require input/observations from the application devel-
oper or from the system manager �. The former encom-
passes R variations, the latter concerns A and FT variations.
Reactive vs. proactive — A fundamental difference in
the nature of transitions concerns when they must be trig-
gered, either as a reaction to an event which has occurred
or in advance, before the foreseen occurrence of an event.
Changes in available resources R usually impact the perfor-
mance overhead entailed by a given FTM. Therefore, the
system manager can search for a more appropriate FTM as
a reaction to fluctuations in resources. In the case of appli-
cation changes A due to versioning, the system manager can
select/define a suitable FTM for the new version, taking in-
put from application designers wrt the new characteristics.
The transition encompasses changing the application version
together with the FTM (if the new characteristics invalidate
the previous FTM). As such, the FTM is changed as a re-
action to application changes.

The case of fault model FT changes is the most complex.
In the context of operational phases, one can understand
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Figure 8: Excerpt of Figure 2 (left) and extended graph of transition scenarios between FTMs (right)
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tween LFR and LFR�TR and between LFR and A&Duplex,
caused by variations in FT, have a proactive nature.

6. EVALUATION
In this section, we analyze the performance and agility

of our di↵erential approach and associated on-line transi-
tions between FTMs. Firstly, we assess the advantages of
performing di↵erential modifications through some measure-
ments. Next, the agility of transitions is discussed.

6.1 Performance
In order to assess the performance of agile fine-grained

transitions between FTMs, we mapped all the FTMs in the
illustrative set on a component-based architecture. More
precisely, we developed PBR, LFR, PBR�TR, LFR�TR,
A&PBR and A&LFR as stand-alone FTMs that can be di-
rectly deployed and all the di↵erential transitions between
them, both direct and inverse.

In Table 3, we compare the time necessary for deploying
full FTMs (first line) and the time necessary for executing
di↵erential transitions between them. These results repre-
sent averages over 100 test runs on a PC for each cell of
the table. As deployment of FTMs and transitions are per-
formed in parallel on two replicas, in this table we show the
time corresponding to one replica. We can easily notice that
our di↵erential approach not only eliminates state transfer
issues inherent to monolithic replacements of FTMs but also
is more e�cient in terms of execution time, making the sys-
tem more reactive to changes.

Clearly, the ratio between the transition time and the de-
ployment time is more relevant than absolute values.

FTM1

FTM2 PBR LFR PBR�TR LFR�TR A&PBR A&LFR

; 3819 3751 3852 3783 3824 3786
PBR 0 1003 840 1146 856 1090
LFR 1011 0 1151 838 1085 840

PBR�TR 836 1148 0 1012 937 1191
LFR�TR 1145 830 1019 0 1186 930
A&PBR 851 1081 938 1184 0 1007
A&LFR 1085 834 1186 932 1005 0

Table 3: FTM deployment from scratch w.r.t. transition
execution time (ms)

Transitions consist in three main steps: deployment of
transition packages, execution of reconfiguration scripts and
removal of residual components. This process is orchestrated
by the Adaptation Engine (see Figure 7). Figure 9 shows the
contribution of each step to the total duration for three tran-
sitions a↵ecting di↵erent number of components (i.e., from
one variable features to all three). The actual execution
of the reconfiguration script, which can be considered the
most complex step, takes 19% of the total time for the re-
placement of 1 component, 35% for 2 components and 40%
for 3 components. This means that even in the most com-
plex transitions, a↵ecting all three variable features, the ex-
ecution of the transition script (i.e., of the reconfiguration
mechanics) takes less then half of the total transition time.
These quantitative measurements also give us indications as
to what could speed up the transition process, namely the
optimization of the deployment step, which currently takes
approximately half of the total transition time.
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that the fault model for a given phase has been anticipated
and, for critical phases, it is stronger than for non-critical
ones. For unanticipated changes, the situation is more subtle
because unpredicted faults may be out of the scope of the
current FTM, which is thus unable to tolerate them. In
this context, the evolution of the fault model in operation
must be addressed in a proactive way that performs FTM
updates in advance, either because the system is getting to
a new operational phase or because of an early detection of
fault model changes.

Figure 8 highlights the reactive/proactive nature of tran-
sitions: the transition between PBR and LFR, caused by
variations in A or R, is reactive, while the transitions be-
tween LFR and LFR⊕TR and between LFR and A&Duplex,
caused by variations in FT, have a proactive nature.

Again, any transition not present in the graph corresponds
to an unanticipated evolution trajectory. As a matter of fact,
the system cannot perform the corresponding FTM update.
However, our approach enables this update to be developed
and installed faster than with monolithic approaches.

6. EVALUATION
In this section, we analyze the performance and agility

of our differential approach and associated on-line transi-
tions between FTMs. Firstly, we assess the advantages of
performing differential modifications through some measure-
ments. Next, the agility of transitions is discussed.

6.1 Performance
In order to assess the performance of agile fine-grained

transitions between FTMs, we mapped all the FTMs in the
illustrative set on a component-based architecture. More
precisely, we developed PBR, LFR, PBR⊕TR, LFR⊕TR,

A&PBR and A&LFR as stand-alone FTMs that can be di-
rectly deployed and all the differential transitions between
them, both direct and inverse.

In Table 3, we compare the time necessary for deploying
full FTMs (first line) and the time necessary for executing
differential transitions between them. These results repre-
sent averages over 100 test runs on a PC for each cell of
the table. As deployment of FTMs and transitions are per-
formed in parallel on two replicas, in this table we show
the time corresponding to one replica. We can easily no-
tice that our differential approach not only eliminates state
transfer issues inherent to monolithic replacements of FTMs
but also is more efficient in terms of execution time, making
the system more reactive to changes. Clearly, the ratio be-
tween the transition time and the deployment time is more
relevant than absolute values.

Transitions consist in three main steps: deployment of
transition packages, execution of reconfiguration scripts and
removal of residual components. This process is orchestrated
by the Adaptation Engine (see Figure 7). Figure 9 shows the
contribution of each step to the total duration for three tran-
sitions affecting different number of components (i.e., from
one variable features to all three). The actual execution
of the reconfiguration script, which can be considered the
most complex step, takes 19% of the total time for the re-
placement of 1 component, 35% for 2 components and 40%
for 3 components. This means that even in the most com-
plex transitions, affecting all three variable features, the ex-
ecution of the transition script (i.e., of the reconfiguration
mechanics) takes less then half of the total transition time.
These quantitative measurements also give us indications as
to what could speed up the transition process, namely the
optimization of the deployment step, which currently takes

8



Deploy  
package 

59% 
Execute 

transition 
script 
19% 

Remove 
 package 

22% 

(a) LFR→LFR⊕TR (1)

Deploy  
package 

48% 
Execute 

transition 
script 
35% 

Remove  
package 

17% 

(b) PBR→LFR (2)

Deploy 
package 

45% 

Execute 
transition 

script 
40% 

Remove 
 package 

15% 

(c) PBR→LFR⊕TR (3)

Figure 9: Transition time distribution w.r.t. number of components replaced

approximately half of the total transition time.

6.2 Agility
The agile fine-grained approach aims to equip an applica-

tion with the FTMs which are necessary only, and provide
system developers and managers with means to adapt these
FTMs when needed to accommodate change.

The current implementation of our framework proves the
feasibility of agile adaptation of FTMs. As illustrated in
Figure 7, transitions which were either unknown or consid-
ered unnecessary at design time can be performed during
the lifetime of the system by developing off-line the neces-
sary transition package and integrating it on-line. All the
transitions between FTMs are performed by minimizing the
impact on the overall component-based architecture, i.e., by
replacing only the variable features. Furthermore, at no
point in time is the system loaded with unnecessary FTMs
or parts of FTMs (resulting in “dead code”) as in the case
of preprogrammed adaptations.

In our investigation of related work on AFT, we found
examples of quantitative evaluations of transitions between
FTMs. In [10], the switch from an active to a passive strat-
egy takes 4.5ms. The stabilization between passive and ac-
tive replication takes 360ms and the reverse takes 390ms
in [9]. In both cases adaptation is preprogrammed, i.e.,
the supported FTMs are known at initial design time and
hard-coded at system deployment. In [8], it takes 260ms to
alternate between passive and active strategy. Although the
authors leverage a component model, reconfiguration does
not appear to be performed agilely at runtime. While in our
case the transition from passive to active replication takes
1003ms in total , the substantial difference lies in the fact
that this is an agile adaptation, not a preprogrammed one.
As expected, agility comes with an additional cost in terms
of deployment time. However, compared to [9, 8], this cost
does not appear to be excessive, given that our approach
brings flexibility and the ability to accommodate changes
unforeseen at design time.

7. RELATED WORK
There is a substantial body of work on adaptive soft-

ware [2]. For example, RAINBOW [21] builds on the use
of architectural models for problem diagnosis and repair.
An architecture manager is in charge of maintaining the
architectural model at runtime and of detecting the viola-
tion of constraints on system elements. The project includes
an ADL called ACME [22], a system in charge of verifying
constraints, called ARMANI, a library of gauges, etc. The
Plastik framework [23] results from the mapping of an en-

riched version of ACME to the OpenCOM component-based
middleware and enables programmed and ad-hoc changes at
runtime while maintaining certain constraints. Although in-
teresting from a methodological point of view, these projects
do not tackle the particularities of fine-grained adaptation
of Fault Tolerance Mechanisms (FTMs).

The need for Adaptive Fault Tolerance (AFT) rising from
the dynamically changing fault tolerance requirements and
from the inefficiency of allocating a fixed amount of resources
to FTMs throughout the service life of a system was stated
in [24]. AFT is gaining more importance with the increas-
ing concern for lowering the amount of energy consumed by
cyber-physical systems and the amount of heat they gen-
erate [25]. Conceptual frameworks for adaptive fault tol-
erance (AFT) describing algorithms and target systems are
presented in [26, 27]. Several CORBA-based middleware ex-
ist [28, 9, 8] but evolution is tackled differently: adaptation
has a parametric form (e.g., number of replicas) or it is per-
formed off-line or, if done on-line, has a coarse-grained na-
ture. Zheng and Lyu present in [29] an interesting approach
for adapting FTMs for Web services (i.e., mechanisms tol-
erating software faults) based on a user-collaborated QoS-
aware middleware. In [30], the authors also leverage con-
cepts from software engineering such as software product
lines (SPL) to provide a representation of FTMs targeting
software faults that captures their common parts and their
variable features. However, they do not go as far as imple-
menting agile transitions between them.

8. LESSONS LEARNED & CONCLUSION
Compared to existing solutions in which adaptation con-

sists in switching among a set of statically predefined mech-
anisms, we propose a development process that enables sys-
tematic agile fine-grained adaptation of FTMs without bur-
dening applications with inactive code. Our approach relies
on several key factors.

First of all, the “design for adaptation” of FTMs is a pro-
cess during which common parts and variable features be-
tween them are identified. By analyzing an illustrative set
of FTMs, a generic execution scheme called Before-Proceed-
After was identified. The steps of this scheme, which can be
directly reused on other FTMs (e.g., N-Version Program-
ming [7]) and non-functional mechanisms (e.g., encryption),
capture the variable features between mechanisms that are
subject to change during transitions.

Secondly, the features provided by the component-based
middleware serving as a runtime support are essential. The
runtime support must implement the minimal API for fine-
grained adaptation we have identified (componentization and
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dynamic binding at runtime) and it must guarantee the con-
sistency of runtime modifications of the component-based
architecture. Our approach can be implemented on any run-
time support providing such capabilities.

An important element of our approach is the presence of a
system manager in the adaptation loop. Although monitor-
ing and adaptation triggers are out of the scope of this work,
we discussed several important aspects regarding transitions
and their nature. The most interesting outcomes of this
analysis are that transitions caused by fault model changes
must be triggered in a proactive manner (i.e., before the
actual change) and that a man-in-the-loop can prevent os-
cillations due to variations of a single parameter.

The main benefit of our approach lies in the agility pro-
vided to fault-tolerant systems. In this context, agility —
the capacity to add new FTMs on-the-fly during operational
life and to tune existing ones — is more important than sim-
ple quantitative measurements of the time it takes to per-
form a transition. Clearly, the transition duration must be
as short as possible in order to reduce service disruption.

This work demonstrates that component-based software
engineering techniques enable adaptive fault tolerance mech-
anisms to be developed. Our future work is carried out with
partners in the European automotive industry.
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