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Abstract 

The strategy of transportability in multiphase flow systems for oil & gas production requires a solid understanding of the 

coupling between thermodynamics and hydrodynamics to design the flow pattern along the pipe sections. Engineers are 

using commercial software in order to evaluate the coupling between production flow rates, pressure drops, and flow 

patterns. 

Along the flow, from the well head to the on-shore or off-shore facilities, engineers have also to estimate the risk of hydrates 

formation, and to propose a solution to prevent their formation. It is the classical conservative approach implying to insulate 

the pipes in some sections, or to inject specific thermodynamic additives to shift the crystallization thermodynamic 

conditions out of the operative conditions of pressure and temperature. These solutions do not modify radically the 

anticipated flow pattern. 

Another less conservative solution is to accept the risk of solid hydrate formation, but to manage it by using other kinds of 

additives to disperse the solids and to prevent their agglomeration, sticking and plugging. It adds a new degree of complexity 

in the pipe design because the flow pattern becomes coupled to the solid content via kinetics, and inversely. 

This contribution presents our efforts to develop and connect the models of thermodynamics, hydrodynamics and kinetics of 

hydrate formation. Our case study is based on the description of stratified flow, but the modeling framework can be applied 

to any other geometry and flow condition. One of the key outcomes of this work is to give the equations and procedures to 

be implemented in in-house softwares so that academics can master completely their flow modelling, including the coupling 

with kinetics. In addition, this work also shows that the hypothesis of thermodynamic equilibrium is shifted from the bulk 

phase to the interfaces between the phases. In turn, the bulk composition becomes dependent on the kinetics of hydrate 

formation and the geometry of the system. 

In the first part of the model, calculations are done to determine the partition coefficient (from thermodynamics) at the 

interfaces between the respective Liquid Water, Liquid Oil and Gas phases. Then, the calculations for the geometry of the 

system could be performed. This work reviews the literature models to model the flow patterns. It identifies the two current 

models. One based on a well-established flow mechanic approach, and the other based on a recent energetic approach. We 

propose a special focus on the energetic approach, up to now applied to diphasic flow only, and we give the general equation 

to applying it to a three-phase system. One of the main advantages of the energetic approach is that it avoids implementing 

closure relationships, which are generally expressed under the form of a shear stress at interfaces, which often remains a 

private known-how of commercial softwares. The final part deals with the kinetics, and uses the geometry (interfacial areas), 

for determining the crystallization of hydrates. The crystallization model is based on a non-equilibrium hypothesis where the 

thermodynamic equilibrium is assumed only at the local scale, that is, at the liquid-solid interface. Finally, some examples 

are given to explain how the composition of hydrates is affected by the flow pattern and vice-versa. 
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1. Introduction 

The description of multiphase flow characteristics for gas, oil, water, including the possible formation of solid 

gas hydrates, is a main concern in the flow assurance for the oil and gas industry. Gas hydrates crystallization in 

multiphase systems consumes water and light gases (e.g., methane, ethane, propane, n-butane, i-butane, carbon 

dioxide, nitrogen, hydrogen sulfide), which are combined non-stoichiometrically to form either structure I or 

structure II hydrates. Upon hydrate formation in these multiphase flow systems, the solid hydrates can 

agglomerate, form a bed, and/or deposit on the pipe walls, as a consequence of the flow regime. Hydrate 

prevention (no formation of any quantity of hydrate) strategies involve major capital expenses, CAPEX 

(insulation of pipelines, chemical injection lines) and operational expenses, OPEX (continuous injection of 

inhibitors, such as alcohols, glycols, or low dose hydrate inhibitors). The large and increasing cost associated 

with hydrate prevention is increasingly worrisome to the industry producing fields transitioning from low to 

high water cut (amount of water). The source of water in oil production comes from well production itself 

(known as “connate water”), water layers from adjacent oil reservoirs, injected water to maintain the reservoir 

pressure and enhance oil recovery, and condensed water formed from hot fluids cooling inside production lines 

(Abubakar et al, 2015). 

Depending on the producing field (gas or oil) and on its age (young fields with low water cut to mature fields 

with high water cut), multiphase production flow is concerned with the different proportions of gas (G), liquid 

oil (LO), and liquid water (LW), plus other solid phases (e.g., solid minerals (sand), precipitated mineral 

(carbonates), precipitated organics (waxes, asphaltenes, naphtenates)), which are not of concern and discussed in 

this particular work. Modelling and simulation of the corresponding three (G-LO-LW) phase flow regime is a 

critical part in the design and operation of flow lines. In addition, multiphase flow simulation is essential to 

check production stability steady-state time in the case for hydrate formation, to understand transient periods 

involving shut-in and restart, to optimize mixing of flow lines coming from different wells, to monitor flow rate 

fluctuations of a single well, etc. 

The flow pattern, without hydrates, depends of numerous factors, including flow rates Q  of each phase  and 

their respective physical properties. In engineering flow simulators, such as Olga
®
,  LEDAflow

®
 and PipeSim

®
, 

the first required input set of variables is the vector of superficial velocities, v Q A  , 
2 / 4A D , 

where D is the internal pipe section diameter. These simulator packages are coupled with thermodynamic 

models to estimate the corresponding properties of the phases at equilibrium, among which dynamic viscosity, 

density and surface tension are the three other indispensable vectors of properties required as input variables. 

Once the inclination angle  of a section of a pipe is defined, the simulators can predict the flow pattern and 

corresponding pressure drop at a given temperature, pressure, and fluid composition.  

The formation of hydrates ( H  ) as a solid phase introduces significant complexity to the multiphase flow, 

from at least two concerns. First, there is a coupling between the kinetics of crystallization and flow 

morphology. The flow simulator can determine the geometry of the system prior to the crystallisation and it 

must also capture the change in flow pattern caused by the amount of solid, for example, by increasing the 

viscosity of the fluid phase(s), by consuming water and gas and modifying the repartition of the phases, or by 

destabilising the emulsion in some cases. A second concern for the flow simulator comes from the fact that the 

phases are no longer at thermodynamic equilibrium, meaning that the distribution and composition of the phases 

determined by the flash calculations is no longer representative of the complete system. For example, if the 

dissolved methane in the oil phase is depleted in the process of hydrate formation, the viscosity of the oil phase 

increases in a way which no longer corresponds to the value at equilibrium where the concentration is fixed only 

by the thermodynamic conditions. As a conclusion, the kinetic-controlled vector of local composition becomes 

an input parameter for the flow simulator. It is not only calculated from a thermodynamic flash algorithm from 

the local Temperature and Pressure only, but also depends on local kinetics. 

In this document, we discuss how to implement a kinetic module (kinetics of crystallization and mass transfers) 

to couple the rate of crystallisation of gas hydrates with a general module of flow pattern modelling. The case 

study is the stratified flow. 

The two first sections discuss the flow pattern modelling and the coupled flash calculation, as done by flow 

simulators, such as Olga
®
,  LEDAflow

®
 and PipeSim

®
. These softwares are couple to an thermodynamic 

module to describe the phases at equilibrium.  

In the first section, we recall how the flash calculation is performed and we propose an example based on the 

Peng and Robinson Cubic Equation of State. The flash calculation gives the input variables to further model the 

flow pattern. In addition, it also calculates the local equilibrium partition constants at the Gas/Liquid, or 

Liquid/Liquid interfaces, that is, between phases which are no longer at thermodynamic equilibrium but under 

kinetic control. 

The second section is devoted to the flow modelling. The commercial flow simulators, such as Olga
®

,  

LEDAflow
®
 and PipeSim

®
 remain evasive in the way they model the flow patterns. The fundamental equations 

are not stated, and the engineers use these softwares as tools. So, this paper comes back to the fundamental 

equations to explain how the flow pattern can be modelled in order to emphasize the main modelling variables. 
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Then, in a second step we can point the fundamental variables which can be further interfaced with a kinetic 

model. Our case study is a stratified flow. 

The second section reviews the method to describe the flow pattern simulator, generally based on a fluid 

mechanic approach. These approaches imply a closure equation to describe the shear stress at fluid interfaces. 

These equation remains a know-how of commercial softwares. We propose an alternative route to academic 

teams based and improved from a recent developed energetic approach which doesn’t need any closure 

equation. We show a comparison of the simulations with commercial software results to emphasize its 

reliability.  

The third section discusses the coupling of the kinetic model to the flow pattern, including the mass transfer and 

the rate of hydrate crystallization. We point the controlling variables which can be interfaced between a flow 

simulator module and a kinetic module. 

The fourth section describes the coupling between the rate of crystallization and the composition of gas 

hydrates. Finally, a parametric study is proposed to evaluate the coupling between the flow pattern and the 

hydrate crystallization. 

2. Description of geometries 

2.1. Description of the geometry of phases 

 

 

Figure 1: Distribution of phases, continuous and dispersed. Left side is for hold-up and right side for interfacial area. 

In the discussion pertaining here, the case study corresponds to stratified flow, which is defined as the flow of 

the fluids as layered without bulk mixing. The system of interest is composed of three phases: gas ( G  ), 

liquid oil ( OL  ), and liquid water (  WL ).  Each phase is partitioned under the form of a continuous 

carrying phase    transporting dispersed phases, denoted as   , with , , ;O wG L L    . Each 

continuous carrying phase    is also composed by the dispersed phases, denoted as ,cH . The following 

relationships can be written: 

  
 

,

, , ,

, , ,
O W

O W c

G L L

G L L H H H   
  

 

 

       (1) 

 

 , ,

1
O WG L L

H


   (2) 

 

  
 

,

, , ,

, , ,
O W

O W c

G L L

G L L H H H   
  

  

 

       (3) 

 

 , ,

1
O WG L L

H






   (4) 

The notations 
2 3a m m 

   stands for the density of interfacial area of the dispersed phase  in the 

continuous phase  . For example, 
W OL La 

stands for the total interfacial area of water droplets dispersed in the 

continuous Liquid Oil stratified phase. 
2

/ /S m m 
    stands for the density of surface area per length unit of 

pipe between the continuous   and   phases. 

Because the flow regime is assumed to be stratified, we assume there is no gas bubbles dispersed in the liquid 

phases. Therefore, the density of liquid phases is given by: 
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 ( )
W W W W O W O O WL L L L L L L L LH H H H           (5) 

 ( )
O O O O W O W W OL L L L L L L L LH H H H           (6) 

However, the gas phase is assumed to contain a fraction of both dispersed oil and water: 

 ( )
W O W W O OG G G G L G L G L L G L L GH H H H H H                (7) 

2.2. Flow Geometry Description 

 

Figure 2 : Cross sectional view of a pipe. 

 

For the geometry of the flow system, we consider the general case of stratified flow in an inclined pipe. The 

superficial velocities, , ,
O WL L Gv v v   /m s  of pure phases are at the entry of the pipe at condition specified 

temperature and pressure. A is the cross sectional area
2m    for each phase in stratified flow. S  is the 

surface area 
2 /m m    of each phase on the pipe wall per unit of pipe length, and     is the corresponding 

shear stress. / /   is the shear stress at the / /   interface. The geometry of the system is completely fixed 

from two variables, the two angular positions of the interfaces / / OG L  and / /O WL L , and from the fraction of the 

dispersed phases 
O WL LH  , 

W OL LH  , 
OL GH  , 

WL GH  , as given in Appendix. 

2.3. Hydrate Crystallization Geometry Description 

We consider particles of gas hydrate growing at a rate 
1.G m s    in the system from the consumption of gas 

and water to form the solid. The crystallization can be assumed to occur close to a Liquid Water/Liquid Oil 

interface where the reactants are present, with water coming from Liquid Water and solute gases coming from 

the Liquid Oil after dissolution from at the Gas/Liquid Oil interface, or from the Liquid Water after dissolution 

from the Liquid Oil/Liquid Water interface. 

 

3. Modelling the Thermodynamic Fluid Properties  

The fluids at the entry of the pipe are considered at thermodynamic equilibrium at the given pressure P and 

given temperature T. The total mole flow rate of hydrocarbon molecules is 
1.

OL GF mole s
   . Its mole 

fraction composition is  1.. #
gj Sz  . gS is the number of hydrocarbon molecules, not including water. 

1.
WLF mole s   is the input water mole flow rate. In our approach, the flash calculation does not take into 

account the mole number of hydrocarbon molecules solubilised in the water, which is considered negligible.  

The mole composition of each phase at equilibrium is given by the schematic procedure in Figure 3. The details 

of the calculation are given in Danesh (1998). It allows outputting the Gas and Liquid Oil mole flow 

rates
3 1.GF m s   ,

3 1.
OLF m s   , the compositions at thermodynamic equilibrium 1.. ,gj S Gx  and 1.. ,g Oj S Lx  , 

and compressibility factors GZ  and GZ . From these outputs, we can calculate (Figure 4) the input parameters 
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to model the flow pattern. These inputs are the volume flow rates and densities of phases. 

Two additional input variables for the flow simulator are physico-chemical properties: the viscosity of the pure 

phases and the surface tension between the pure phases. They can be computed from correlations. Surface 

tensions can be calculated from the Parachor Method or the corresponding state correlations (Danesh, 1998). 

The viscosity of hydrocarbon phases can also be correlated to the composition (Danesh, 1998). The viscosity of 

continuous water can be considered as Temperature dependent only. 

 

 

Figure 3 : Flow diagram for flash calculation from equation of state to obtain fluid properties. 
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Figure 4 : Input parameters for the flow pattern calculation. 

 

 

4. Modelling Phases Geometry   

From the outputs given above, the flow simulators allows calculating the superficial and real velocities of the 

continuous phase ( ,c ), dispersed phase (  ), and carrying phase   . In addition, the fraction of phases, 

position and interfaces are also calculated. 

All the simulator write first the momentum conservation for steady state flow assuming no acceleration, as 

initially proposed by Taitel and Duckler (1976), but here considering three (gas, liquid oil, and liquid water) 

phases: 

 , / / / sin 0
O OG G G i G L G L G G

dP
A S S A g

dz
              (8) 

 , / / / / / , / sin 0
O O O O O O W O W O OL L L i G L G L L L i L L L L

dP
A S S S A g

dz
                (9) 

 / / , / sin 0
W W W O W O W W WL L L L L i L L L L

dP
A S S A g

dz
              (10) 

4.1. Modeling the wall shear stress 

The shear stresses G  , 
OL   and 

WL  at the walls can be implemented following the original approach of 

Taitel and Duckler (1976), also used by Lee et al. (2013) and Sharma et al. (2011). The shear stress is evaluated 

as follows for the three carrying phases  , ,O WG L L     : 
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2

2

u
f

 

 


    (11) 

The liquid and gas friction factors are evaluated from correlations. 

 Re
n

f C 

 


   (12) 

For laminar flow ( Re 2000  ): 

 16 Ref    (13) 

For turbulent flow ( Re 2000  ): 

 
0.20.046 Ref    (14) 

With 

 Re
u d  








   (15) 

Equivalent hydraulic diameters are determined on the basis of which phase is moving faster. In other words, 

closed and open channel flows are assumed for faster and slower moving phases, respectively. For equal 

velocities, both phases are assumed to behave as open channel flow. The equivalent hydraulic diameter Gd  of 

the continuous gas phase, considered as an open channel is given by  

 
4 G

G

G i

A
d

S S









  (16)  

The equivalent hydraulic diameters of both continuous liquid phases, considered as closed channels are given by  

 
4

O

O

O

L

L

L

A
d

S







  ; 
4

W

W

W

L

L

L

A
d

S







  (17)   

4.2. Modeling the viscosity of dispersed phases 

The viscosity   of the liquids with dispersed phases can be complex to model. At low fraction of well 

dispersed phases, a simple Einstein (1906) equation is enough to evaluate the viscosity according to  

  1 2.5H        (18) 

At high fraction of a well dispersed phase, this equation can be transformed in a correlation by adding new 

fitting parameters, as the famous of Thomas (1965) 

   21 2.5 10.05 0.00273exp 16.6H H H              (19) 

If agglomeration occurs, different authors like Mills (1985) or Graham, Steele and Bird (1984) consider an 

effective volume fraction of solid particles which includes the proper volume of the elementary particles and a 

volume of immobilized suspending medium.  

 

This effective volume fraction can justify viscosity values higher than those predicted by usual relations. The 

corresponding total volume of the agglomerate is the volume occupied by the solid particles plus the liquid 

volume immobilized in between them. This approach states that the solid are fractal-like and was originally 

proposed by Mills (1985): 

  
2

1 1
eff

eff

MAX

H
H

H









  
   

 
  (20) 

MAXH is the volume fraction corresponding to close packing, the value of which is equal to 4/7 if the system is 

well dispersed and has homogenous size spheres. 
effH is the effective volume fraction in the dispersed phase. It 

takes into account the compactness or porosity of agglomerates. The modelling of effH is dependent on the 

agglomeration mechanisms. It can be achieved after a complete modeling of the agglomeration, implying a 

population balance approach, as  developed by Palermo et al (2005) with an agglomeration Kernel of order 2, or 

by Fidel-Dufour et al (2006) with an agglomeration Kernel of order 3.  

But, it can be stated that the strategy of oil companies is to avoid the agglomeration because of its dramatic 

consequence on the viscosity. If the modelling of the agglomeration is interesting from an academic point of 
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view, it is not for an oil company which is operating the production with additives to prevent it. In this case, 

only equation Eq.(18) , or an appropriate modified Eq.(19), are releavent. An oil-dependent and modified 

expression from Eq.(19) with adapted parameters constitutes a known-how of oil companies.  

 

4.3. Modeling shear stress at phase interfaces 

To solve equations (8), (9) and (10), ones have to add closure equations to fix the shear stresses at the fluid 

interfaces, / / OG L  and / /O WL L . These closure equations constitute a main known-how of the commercial 

softwares. They need to be expressed in term of the controlling variables, i.e. the superficial or real velocities of 

the continuous phases for example, or velocities dependent variables. 

For example, in the case of a Liquid/Liquid stratified flow, the interfacial shear stress is calculated  by Sharma et 

al (2011) and Zhang et al (2003, 2010) from a mixing rule of the wall shear stress, following the form: 

      
1 1 1

2 2 2
1

W W O O W W O O W W O O

O W

i L L L L L L L L L L L L

L L

H H f H f H H H
u u

             

 

   


  (21) 

Another example, for Gas/Liquid stratified flow, the shear stress at the Gas/Liquid interface is evaluated from : 

 
 2 2

2

G G i

i i

u u
f





   (22) 

According to Taitel and Duckler (1976), citing the work of Gazley (1949), it has been established that for 

smooth stratified flow: 

 i Gf f   (23) 

4.4. An energetic approach  

Another approach has been proposed based on an energetic understanding for two-phase flows from Lee et al. 

(2013) for Gas/Single liquid, and from Sharma (2011) for two liquids. It is extended here to three-phase flow. 

The principle is to sum Eq.(8), (9) and (10): 

   sin
O O W W O O W WG G L L L L G G L L L L

dP
A S S S A A A g

dz
                          (24) 

The shear stresses at the interfaces Gas/Liquid Oil and Liquid Oil/Liquid Water ( / / OG L  and / /O WL L ) do not 

appear in the final balance given in Eq.(24). The advantage of this approach is that it avoids the need to have a 

closure equation for the shear stresses. Based on energetic consideration developed hereafter, it consists in 

finding the minimum of /dP dz . 

The total energy per unit length of pipe can be calculated following Sharma et al. (2011) as the summation of 

potential energies ( hE ) of both continuous phases, summation of kinetic energies ( kE ) of both continuous 

phases, and summation of surface energies ( E ) of water droplets in the oil phase, oil droplets in the water 

phase, and interface 

 h kE E E E     (25) 

Following Sharma (2011), the potential energy is the contribution of potential energies of each of the stratified 

sections, and so in our model, it becomes: 

  cos
W W W O O Oh L L L L L L G G GE A gh A gh A gh                (26) 

By assuming that the dispersed phases flow at the same rate than their respective bulks, the kinetic energy 

contribution to the overall system energy is given in the same way as done by Sharma (2011) by: 

 
2 2 21 1 1

2 2 2W W W O O Oc L L L L L L G G GE A u A u A u               (27) 

The total surface energy per unit of length can be calculated as the summation of the surface energies of water 

droplets in the oil phase, and oil droplets in the water phase, and interface: 

 
/ / / /

/ /

6 6
sin sin

2 2

O W W O O W O

O W O

W O O W

L L L L L L G L

L L G L

L L L L

AH AH
E D D

l l


 
 

 

 

 
    

 
 

  (28) 

This equation assumes an average diameter (
O WL Ll  , 

W OL Ll  ) of the respective dispersed phases. 

The solution is the condition where the total energy is a minimum (Eq.(25)), corresponding to a minimum in the 
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pressure drop (Eq.(24)). This type of approach has been validated for Gas/Single liquid flow modelling by Lee 

et al. (2013) and for Two Liquid flow modelling by Sharma (2011). In this review, we propose to extend this 

approach to three-phase flow modelling, by minimisation of the following product: 

  min h k

dP
E E E A

dz


 
   

 
  (29) 

In the end, Eq.(29) becomes dependent on the two angular positions of the interfaces / / OG L   and 

/ /O WL L (Figure 2), and dependent also on four fractions of the dispersed phases 
O WL LH  , 

W OL LH  , 
OL GH  , 

WL GH  .  

5. Crystallization Model Implementation  

As stated before, the controlling variables of a flow model description are at the number of six, and the two 

angular positions of the interfaces / / OG L   and / /O WL L (Figure 2), and the four fractions of the dispersed 

phases 
O WL LH  , 

W OL LH  , 
OL GH  , 

WL GH  .  These variables determine completely the other variables, such 

as the interfacial areas and the velocities according to equation given in the apendix. 

In the following part, we give the method to couple a model of crystallization to these fundamental variables. 

Stating for a crystallization model, the first variables to define are the growing rate 
1.G m s    and a moving 

surface resulting from this growing rate. As discussed in the introduction, the moving surface can be localised in 

the Liquid Water ( ,wL cH ), at the interface 
/ /O WL LS  between the carrying Liquid Water ( wL  ) and carrying 

Liquid Oil ( OL  ), or dispersed at the interface 
W OL La 

 between the Liquid Water droplets of volume fraction 

W OL LH 
dispersed in the continuous Liquid Oil of volume fraction 

,OL cH . 

One has to assume a geometric model describing the specific understanding of the crystallization. We retain 

here an example to support the discussion. We assume that water covers and continuously wets the hydrate 

surface at the vicinity of the Liquid Oil. If Liquid Water is the continuous phase (
,WL cH ), the presence of water 

is unquestionable and the crystallization occurs at 
/ / ,O WL L cS . 

However, if Liquid Water is dispersed as an emulsion in the Liquid Oil, this case is more complex.  Upon 

hydrate formation, a crust can form isolating the Liquid Oil from the Liquid Water.  If this crust is consolidated 

and thick, it creates a barrier for diffusion and further hydrate growth becomes diffusion-limited by either gas 

and/or water inside or outside the droplet. This type of model has very low rates of crystallization which 

becomes the limiting rate and control the gas consumption rate in the end. This specific has been  previously 

studied by Gong (2010) and it is not the focus of the current example in which we want to emphasize the role 

mass transfers in the fluid phases. Here, even if hydrates are dispersed as a crust around the water droplets, this 

dispersion is wetted with water that permeates through channels from the interior of the water droplets via 

microchanels (Mori and Mochizuki , 1997) or for an another source of water, such as after collision of the 

hydrate particle with a unconverted water droplet. 

As such, the crystallization occurs in a water medium, even if the water layer around the solid hydrate is thin. In 

this water layer has a finite amount of solutes (gas). The concentration of these solutes depends on the gas 

consumption rate from the growth of particle and on the gas diffusion along the different barriers, that is, the 

Gas/Liquid Oil interface and interface around the particles. This section presents the hydrate growth model, the 

following section will present the diffusion model from the Gas phase along the barriers discussed herein, and 

the final section will present the coupling between the growth rate and gas diffusion. 

If we consider the surface of the growing hydrate, the water molecules form a network of cavities that 

encapsulate the gas molecules, constantly generating new site of encapsulation. The combination of water and 

gas to form hydrates is non-stoichiometric and can be written as 

 

1

5.75
gS

j j s

j

n Gas Water Hydrate


     (30) 

1..., ,5.75
gSn n  are the stoichiometry factors of the formation, and 

1

1
gS

s j

j

n n


   is a non-stoichiometry 

factor relative to the probably that cavities are empty/occupied with a guest molecule.  

The fundamental equation expressing the hydrate stability is deduced from statistical thermodynamics, as 

originally developed by van der Waals and Platteew. It demonstrates that the hydrates become stable once the 

cavities are sufficiently filled, without considering the chemical nature of the components. This point is an 
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important concept of our understanding, because the model yields a kinetic control of the gas composition, and a 

thermodynamic control of the total gas content. The fundamental rule of clathrate hydrate stability is: 

  
cav

H

w ( , )
ln 1

β

i i

i S

T P

RT


 






   (31) 

where, R is the universal molar gas constant and i  is the vector of independent occupancy factors of the 

cavities. The summation is over all types of cavities (e.g., the two types of cavities, 5
12

 and 5
12

6
2
 in case of a sI 

hydrate with a stoichiometry of 1 =2 and 2  6, respectively. 
H

w

β   is the chemical potential difference of 

water in the hydrate phase and water in an hypothetical empty hydrate lattice, denoted as  . It can be calculated 

since, at equilibrium, the chemical potential of water in the solid phase and in the liquid phase are equal. The 

difference between the chemical potential of water in the liquid phase and in the  -phase, 
L

w ( , )T p  , is 

calculated by means of the following relation originating from classical thermodynamics, explained in detail in 

Sloan (1998) and Sloan and Koh (2007). 

 
PT

P

P
T

T

T

PPT
aRTdPvdT

T

h
T

T
T

,

L

w

L

w2

L

w

0

,

L

w
L

w ln
00

000







 




 






  (32) 

The activity of water in the liquid phase, 
L

wa , is given as the product of the mole fraction of water in the liquid 

phase, wx , and the activity coefficient of water in that phase, 
L

w , hence 
L

ww

L

w xa  . In a good 

approximation, in aqueous phase can be regarded as ideal and the activity coefficient therefore be set to a fixed 

value of 1, resulting in w

L

w xa  . However, in the presence of polar molecules or even salts, the system usually 

shows strong deviations from ideality. In that event, 
L

w  needs an appropriate description, as provided for 

example by a simple Pitzer-Debye-Hückel model accounting for the long range electrostatic interactions, or a 

more elaborate model like the eNRTL as discussed in Kwaterki and Herri (2012). In the approach discussed 

here, we consider the Liquid Water to be pure water and so 
L

w 1  .  

The value of 
T

v  L

w  has been measured with high accuracy by von Stackelberg (1951) from X-ray 

diffraction. The value of 
0

L

w
P

h   is given by Sloan (1998, 2007). The last parameter of the equation 

00 ,

L

w
PT

   is given by Handa and Tse (1986). Complete details on the method of calculation of 
L

w

   can 

be found in Herri et al. (2011). 

 

Eq.(31) can be written under another form, similar to a chemical equilibrium: 

  
 

cav

g

,

1

,

1

i

i

i S

eq Hyd

W j

j S

K T P

x













 
 

 
 





 (33) 

Where the equilibrium constant is given from thermodynamic: 

  
0 0 0

0 0

L L
w w, L

, w0 2

1
, exp

T P

T P P
eq Hyd

T
T P

h
K T P dT v dP

RT RT RT

 


  



  
    
 
 

   (34) 

Considering a kinetic control of the composition of the gas in the hydrate structure, and a thermodynamic 

control of the total content in the cavities, the occupancy of the cavities can be correlated to the local 

composition from the following equation, given in Herri and Kwaterki (2012) 

 

g

,

1
1

1 (1 )
i

x j i j j

j S

C x G k




 
 

 (35) 
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where, 
1.jk m s    is an intrinsic kinetic constant relative to each of the components entering the structure, 

,x j iC  is the Langmuir constant of the solute j for the type of cavity i, 
1.G m s    is the growth rate, and jx  is 

the mole fraction of the guest at the immediate vicinity of the growing hydrate.  At thermodynamic equilibrium 

0G   and Eq.(35) simplifies to 

g

,1 1/ (1 )i x j i j

j S

C x


   , which can be defined everywhere, except in the 

case of unity of the Langmuir constant. In fact, the Langmuir constant is given here in terms of the mole fraction 

jx  of the guest component j  whereas, in thermodynamic calculations at equilibrium, it is generally calculated 

as 
,f j iC in terms of the corresponding fugacity

jf . Expressing the relationship between the Langmuir constant 

,x j iC  and 
,f j iC  as 

, ,x j i j f j i iC x C f , an approximate relationship can be derived for calculating 
,x j iC  as a 

function of 
,f j iC  by using a simplified version of Henry’s law in the form of 

H, m,( )exp( )j j j jf x K T pV RT  , as 

detailed in the Appendix. By following this procedure, the approximate expression 

, , , w m,exp( )x ji f j i H j jC C k pV RT   is obtained. The Langmuir constant is calculated following classical methods 

given in Sloan (1998), Sloan and Koh (2007). It implies to determine the so-called Kihara parameters given by 

Herri et al. (2011), Herri and Chassefière (2012), and Chassefière et al. (2012) for the different types of gases of 

interest. 

Therefore, the local thermodynamic equilibrium is obtained by satisfying the following equation: 

 
 

g gcav

,

,

1
1 1 (1 )

,

i

W j x ji j j

j S j Si Seq Hyd

x C x G k
K T P




 

   
      

 
    

   (36) 

where, jx  is the local composition outside the hydrate, and as stated earlier, it depends on the relative rate of 

gas consumption from hydrate growth, and gas diffusion from the Gas phase to the immediate surroundings of 

the hydrate particle crossing different barriers detailed on Figure 5, the Gas/Liquid Oil interface, rather than the 

Liquid-Water-surrounding-Hydrate/Liquid Oil interface. jx  is assumed to be at steady state and its value is 

determined from a mass balance considering the the gas diffusion rate. This calculation is performed in the 

following section. 

6. Calculation of Overall Diffusion Rate Across Interfaces 

 

Figure 5. Model of diffusion barriers from the gas phase to the water phase. 
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Local G/LO/LW  Phase Equilibrium 

Equilibrium is assumed at the interfaces only and only local equilibrium matters in our kinetic model approach. 

Firstly, there is chemical equilibrium at the Gas/Liquid interface ( , / int,O Oj G L Lx ), and at the /W OL L interface 

( , / / int,O W Oj L L Lx  and , / / int,O W Wj L L Lx ). The local equilibrium at the Gas/Liquid interface is evaluated from the 

partition coefficient. 

 
, / int,

, /

,

O O

O

j G L L

j L G

j G

x
K

x
  (37) 

, /Oj L GK  is the so-called partition coefficient, and is determined from an equation of state. Secondly, there is 

chemical equilibrium at the interface between the solutes in the bulk OL and WL  phases, 

 
, / / int,

, , /

, / / int,

O W O

O W

O W W

j L L L

x j L L

j L L L

x
X

x
  (38) 

, , /O Wx j L LX is a partition coefficient of solutes j expressed in term of molar fraction x between the OL and WL  

phases, and it can be calculated from the Henry’s constant in water: 

 

 

,

, / / int, , , /

, , /
, ,, / / int,

H, , , ,exp

O W O O

O W

O W W

W O

j G

j L L L x j G L

x j L L
j G j Gj L L L

x j L j L

x

x X
X

x Px

k Pv RT


 

   (39) 

 

 
 H, , , ,

, , /

, , , /

exp 1W O

O W

O

x j L j L

x j L L

j G x j G L

k Pv RT
X

P X

 

  (40) 

where H, , , Wx j Lk
is the Henry’s constant of component j in liquid water and ,j G  is the coefficient of fugacity j 

in the gas phase at pressure P. 

 

Mass Transfer at the G//L O  Interface 

The gas transfer rate at the Gas// OL interface is given as the product of the interfacial area 
2

/ / /
OG LS m m    

and the surface mass transfer rate. The surface mass transfer rate
1 2. .mole s m     is given by: 

    1 2

/ , , , , / / int, , , , / / in, ,. .
O O

G L
G L j x G j G j G L G j x L j G L L j L

G L

J mole s m k x x k x x
M M

          (41) 
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(a)  

(b) 
 

Figure 6 : Mass transfer across a gas/liquid interface: (a) both liquid side and gas side are limiting rate, and (b) only liquid side is limiting 

rate. 

Micro-models are required to model this interphase transport of mass that often takes place in combination with 

a chemical reaction. Frequently applied micro-models are the stagnant film model in which mass transfer is 

postulated to proceed via stationary molecular diffusion in a stagnant film of thickness l  (Lewis and Whitman 

,1924, /k l D ), the penetration model in which the residence time of a fluid element at the interface is the 

characteristic parameter (Higbie,1935), and the surface renewal model in which a probability of replacement is 

introduced (Danckwerts, 1951). 

All of these micro-models assume the presence of a well-mixed bulk liquid. Mass transfer under the specific 

case of laminar flow has been studied over the last decades by Boyadjiev and co-workers. Their original study 

dated from 1978, proposed an original treatment of the equation of mass transfer that has been simplified over 

the years. Their main concern is that in the conditions of fast mass transfer, the kinetics of mass transfer exhibits 

effects which cannot be described by the linear theory of diffusion in the boundary layer approximation.  They 

therefore developed a non-linear theory of mass transfer and applied it in the study of “gas-liquid” systems. 

They also conducted many experimental studies to support the model. All that work is summarized in Boyadjiev 

and Babak (2000).  We present here only the specific cases where diffusion is limited on the gas side or on the 

liquid side. For the case with diffusion limited in the liquid side,  

 L L 2

2
Sh Pe 



 
  

 
 (42) 

 

with the following definition of dimensionless numbers: 

 Sherwood number Sh
kl

D
  (43) 

 Peclet number Pe
ul

D
  (44) 

where the functions 1 and 2  are, 

 1
L

G

u

u
   (45) 

 

1/2 1/2

3/2 3/2

2,2000 1 2,1978 1
G G G G

L L L L

   
   

   




    
      
     

 (46) 

There are two forms proposed for 2  in Boyadjiev and Babak (2000) and Mitev and Boyadjiev (1978), but for 

one purposes, we use 2,2000  as the applicable one. 
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1/2 1/2

3/2

2,2000 1
G G

L L

 
 

 



   
    
   

 (47) 

 

The other variable given in Boyadjiev and Babak (2000) is 0.33205  . 

 

Mass Transfer at the LO//LW  Interface 

We can assume a dispersion of a phase (the water) in another phase (the liquid oil). Moreover, we have to 

assume an average diameter of the dispersed water in oil to be given by 
W OL Ll  , with the water droplet 

considered as a particle. The rate of gas consumption (per unit length of pipe) of component j around a particle 

is given by: 

  1

, , , , bulk , int. L
j j x j j

L

r mole m d a A x x
M

      



   
     , (48) 

where 
2A m

    is the cross sectional interfacial area of the carrying phase    (see figure Figure 2) and 

2 3.a m m 




   is the surface area of droplets of phase   dispersed in carrying phase   , , bulkjx  is the 

mole fraction of j  in the bulk phase, and , ,j x Ld  (
1ms ) the mass transfer coefficient of the guest species j  

around the particle, respectively. , ,j xd   can be estimated from a classical correlation between the 

dimensionless Reynolds, Sherwood and Schmidt numbers of/around the crystal particle (index “P”), ReP , ShP  

and Sc , for example, as done by Armenante and Kirwan (1989), 

 
0.52 1 3Sh 2 0.52Re ScP P   (49) 

 
, ,

PSh
j x

j

d l

D

 
 , 

4/3 1/3

ReP

l 


 , Sc

jD


  (50) 

In the equations above, l is the particle diameter and /    is the kinematic viscosity of the liquid phase, 

approximated by the kinematic viscosity of the pure solvent. jD  (
2 1[ ] m sjD  ) denotes the diffusivity of the 

gas in the solvent.  

The dissipation energy per unit mass   can be estimated from Angelli and Hewitt (2000) 

 

3

2

u
f

d







   (51) 

where f  is calculated from Eq.(12)-(15) and the hydraulic diameter is from Eq.(16)-(17). 

 

 

7. Overall Gas Diffusion Rate 

The modelling of the overall diffusion rate is the connecting equation between the thermodynamic, the flow 

mechanics and the kinetics because it fixes the relationships between the compositions. 

Once the interface gas transfer properties are fixed, it is possible to write successive mass balance at steady state 

across the different interfaces. On one hand, gas is fed at the gas/liquid interface, Eq.(41), and on the other hand, 

it is transferred to the growing hydrate via the water diffusion layer around the particles, Eq. (48). The specific 

example presented here considers a dispersion of water droplets in the oil. During crystallisation, the droplets 

are covered with hydrates but a thin liquid water layer remains around the particles.  It is finally possible to 

express all the intermediate gas molar fraction as a function of the two limit conditions, first being the gas molar 

fractions ,j Gx , and second being the molar fractions of species at the immediate vicinity of the growing hydrate 

, / / int,W Wj H L Lx , for example: 
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,

, , / , / / int,

, , /

, ,
1

O W O W W

O

O

j G

x j L L j L L L j

x j G L

j bulk L

j

x
X x B

X
x

B






 (52) 

 
O W

, , / ,

, L //L int, , / / int,

, , /

1
1 1

O W

W W W

O

x j L L j j j G

j L j H L L

j j j j x j G L

X B B x
x x

A B B A X

 
      

  (53) 

With  

 

 with 

0

,

,

W W O

O W

j L L L

j

j L L L

d M
A

d M




   (54) 

 

0

, , / /

, / /

O O

W O

j x L G L

j

j L L L

k S
B

d S
  (55) 

Constants jA and jB  contains the geometrical properties of the interfaces / / OG LS  and / / WH LS (given from the 

flow model), the partition coefficients (given from the local thermodynamic model), and physical properties, 

such as the diffusion coefficients, densities and molar mass.  

As a result, this mass transport-based equation is coupled to the local thermodynamic equilibrium at the hydrate 

surface, which is given in the next subsection. 

 

8. Dynamic Hydrate Equilibrium 

We propose here a local description of the growth which is independent of the different approaches of the 

litterature. We can consider only the Solid/Liquid interface with its interface layers, and write a mass balance. 

In fact, the composition of the gas hydrate can be evaluated from the mass balance in the liquid layer around the 

particle. At steady state, there is equality between the integration rate due to the Langmuir type of enclathration 

(left-hand-side) and the gas diffusion (right-hand-side): 

  
O W

g
cav

/ / , / / , L //L int, , / / int,
W

W W W O W W W

W

L

H L i j i j L L L j L j H L L
j S

i S L

GS c d S x x
M







 
   
 
 

 , (56) 

where 
O W, L //L int, Wj Lx  is the mole fraction of j  at the interface between the water liquid surrounding the hydrate 

particle and the oil, , / / int,W Wj H L Lx  is the mole fraction of j  at the interface between the water liquid 

surrounding the hydrate particle and the hydrate surface. , Wj Ld  (
1

,[ ] ms
Wj Ld  ) is the mass transfer 

coefficient of the guest species j  around the crystal, respectively. 
wL  and 

wLM  stands for the density 

(
w

3[ ] kg mL
 ) and the molar mass (

w

1[ ] g molLM  ) of the solvent (water), respectively. 

3.ic mole m    is the concentration of cavity type i in the structure of the hydrate. j i  is the occupancy factor 

of this cavity type i by a component type j. As given by Herri and Kwaterski (2012), under non-equilibrium 

condition, the occupancy assumes a similar form to Eq.(35):  

 

g

, , int

, , int '

(1 )

1 (1 )

x j i j j

j i

x j i j j

j S

C x G k

C x G k


 






 
, (57) 

Once numerical values for jk  (
1[ ] msjk  ) and for G  are determined, the , / / int,W Wj H L Lx  values can be 

calculated as the solution for the system of N  non-linear equations. This set of equations is obtained by 

substituting the expressions for j i  into Eq.(56) 



16  

  
O W

g
cav

g

, , / / int,

, , L //L int, , / / int,

, , / / int, '

(1 )

1 (1 )

W W W

W W W W

W W W

x j i j H L L j L

i j L j L j H L L
j S

i S x j i j H L L j L

j S

C x G k
G c d x x

C x G k M




  



 
 

   
  

 




 (58) 

where the quantity , W W Wj L L Ld M  has the dimension of a molar flux and thus 

2 1

,[ ] mol m s
W W Wj L L Ld M   . This last equation completely accounts as the relationship expressing the 

hydrate stability in Eq. (36).  

Finally, the local equilibrium is defined when the values of G  and , / / int,W Wj H L Lx  for all gj S  satisfying 

both Eq.(58) and Eq. (36). The calculation procedure is outlined in detail in Figure 7. At each step of 

calculation, all the composition variables in the Gas/Liquid system are fixed from , / / int,W Wj H L Lx  and ,j Gx :  

,int / , , / ,O Oj G L L j G L j Gx K x  is calculated from local thermodynamic equilibrium at the / OG L  interface from the 

partition coefficient , / Oj G LK . 
O W, L //L int, Wj Lx is calculated from Eq.(53),  

O W, L //L int, Oj Lx from Eq.(38),  and 

, , Oj bulk Lx from Eq.(52). The composition in the gas ,j Gx is fixed. The final value of , / / int,W Wj H L Lx needs to 

satisfy both Eq. (58) and Eq. (36). 

The initial values of  , / / int,
0W Wj H L Lx is determined assuming the corresponding solubilities are at 

thermodynamic equilibrium at pressure  ,,eq j GP T x , temperature T, and composition of gas ,j Gx .  

The procedure for the calculation is with a double convergence loop. At a given growth rate G, in the first 

loop, iterations are performed on , / / int,W Wj H L Lx in order to satisfy Eq.(58). Once converged, the mass transfer 

rates in each of the interface layers are identical. Then a second convergence loop is performed on the growth 

rate to satisfy the hydrate local thermodynamic equilibrium given in Eq.(36). 

From a physical point of view, G  is the value at which the structure can grow by incorporation of solute gas 

to such an amount that is sufficient for stabilising the hydrate structure (i.e., the minimum occupancy of the 

cavities). The relative proportion to which the different gas molecules j  enter the hydrate structure is 

determined in the first convergence loop, which is an indirect consequence of the competition between the 

diffusion rates around the crystals and integration rates in the structure. By this competition the , intjx  values are 

fixed. 
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Figure 7. Procedure of calculation of the thermo-kinetic equilibrium. 

9. Conclusion 

The complete modelling of flow properties during a transient kinetic process implies to couple three types of 

models, a thermodynamic model, a flow model, and lastly a kinetic model. This paper emphasizes the common 

variables between them. 

In comparison to simulations at thermodynamic equilibrium of phases, the introduction of a reaction between 

the phases implies to define vectors of compositions as an independent set of data which is no longer fixed only 

by the local pressure and temperature, but also depends on kinetics. Only the vectors of local compositions into 

the bulk phases become new sets of variable in a global model because the compositions at Gas/Liquid and 

Liquid/Liquid interfaces can be calculated after, from local a thermodynamic equilibrium assumption, with 

partition coefficient inherited classical thermodynamic models. The composition of phases being fixed, the fluid 

properties are also fixed (viscosity, surface tension…) and the flow pattern simulation can be run after.  

The flow model can be run from a mechanic approach or an energetic approach. In both the approaches, the 

relevant variables are the two angular positions of the interfaces / / OG L   and / /O WL L , and the four fractions of 

the dispersed phases 
O WL LH  , 

W OL LH  , 
OL GH  , 

WL GH  .  These variables determine completely the other 

variables, such as the interfacial areas and the velocities according to equations given in the appendix. They are 

not independent. The flow mechanic approach needs closure equations given as the shear stresses at phase 

interfaces. We give some of them, but they widely remain as known-how of commercial software. Also we 

present a recent energetic approach, without closure equations, but adding a new step of calculation by 

minimizing both the pressure drop and the local level of energy. 

Given the local composition and the geometry of the system, the last part of the document shows how to 

implement a kinetic process, here the gas hydrate crystallization. Because the system is no longer at equilibrium 

but only at local thermodynamic equilibrium at interfaces, we give the method to evaluate the composition of 

gas hydrates, by writing the overall mass transfer balance (from gas phase where gas is consumed, to the hydrate 

phase where gas is integrated on a solid growing surface) and checking that the local solid equilibrium is 
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achieved at the local solid surface. 
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APPENDIX : geometry of phases 

For geometrical considerations we can write the following equations: 
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OLh  , 
WLh   and Gh   are the centres of mass of each of the stratified sections in a horizontal pipe. Gh  . 

WLh   

can be directly taken from the work of Sharma et al (2011), corresponding to the upper phase of the stratified 

flow 
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Gh   can be normally taken also from the work of Sharma et al (2011), corresponding to the upper part of their 

diphasic stratified flow, but we think there is a mistake in their formula. So we prefer to write 
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This gives 
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In our model, the height of the centre of mass of the additional intermediate section (
OLh  ), corresponding to 

the oil phase, comprised between the angles / OG L  and /O wL L  can be calculated   from the above equations 
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because we can write: 
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For mass balance considerations, and assuming that Oil and Water dispersed in the Gas phase is negligible, we 

can write also a system of two equations, assuming a constant density of liquids along the pipe:  
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We get 
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The mass balance on the gas side gives: 
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Else if 0
WLH    then  
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