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Abstract

This work focuses on the Local Asymptotic Mixed Normality (LAMN) property from high
frequency observations, of a continuous time process solution of a stochastic differential equation
driven by a pure jump Lévy process with index o € (0,2). The process is observed on the fixed
time interval [0,1] and the parameters appear in both the drift coefficient and scale coefficient. This
extends the results of [5] where the index o € (1,2) and the parameter appears only in the drift
coefficient. We compute the asymptotic Fisher information and find that the rate in the LAMN
property depends on the behavior of the Lévy measure near zero. The proof relies on the small

time asymptotic behavior of the transition density of the process obtained in [6].
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1 Introduction

Modeling with pure jump Lévy processes plays an important role in many fields, especially in mathe-
matical finance (see for example [3], [15], [19]) and parametric inference for such processes is a currently
active subject.

In this paper, we are concerned with parametric estimation of a stochastic differential equation
driven by a pure jump Lévy process, from high-frequency observations on a fixed observation time.
More precisely we consider the statistical experiment (R™, By, (P5) geocrz2) corresponding to the ob-

servation of a Lévy driven stochastic equation at discrete times (X f )i<i<n, solution of

t
Xtﬂ:onr/ b(XP,0)ds+ oLy, tel0,1], (1.1)
0

where (L¢).ejo,1) is a Lévy process whose Lévy measure is similar near zero to the one of an a-stable
process with exponent o € (0,2) and 8 = (6,0)7 € R x (0,00) is an unknown parameter to be
estimated. We prove in this work that the Local Asymptotic Mixed Normality property (LAMN)
holds for the parameter 3. The LAMN property has been introduced by Jeganathan [13] [14] to
extend to the markovian case the LAN property introduced in the pioneer works by Lecam and Hajek
(see [20], [9]) in the i.i.d. case. This property permits in particular to identify the optimal estimation
rate for the parameters 6 and ¢ and the asymptotic Fisher information.

Parametric inference and LAN property for pure jump Lévy processes based on high frequency
observations have been investigated in several papers, see for example Ait-Sahalia and Jacod [1] [2],
Kawai and Masuda [16] [17], Masuda [21]. In particular, in [21], the LAN property is established and
estimators are proposed for the parameters (6,0, «) in the model X; = 0t + o L§*, where (L§') is an
a-stable process. Ait-Sahalia and Jacod [1] [2] considered the model Xy = oL§ + 0Y; where (Y;) is
a Lévy process, independent of (L§') and dominated by (Lf'). More recently, Ivanenko, Kulik and
Masuda [11] proved the LAN property for the parameter (6, ) in the model Xy = 0t +0Z; 4 Uy, where
Z is a locally a-stable process and U is an independent and less active process. In all these works, the
increments (X i= X i1 )i<i<n are independent and the transition density of the discrete time process
(X i )i<i<n is almost explicit. Extensions to stochastic equations driven by pure jump Lévy processes
are not immediate and require a different approach since the transition density of the Markov chain
(X i )i<i<n is unknown. Moreover they involve a random asymptotic Fisher information and lead to
the LAMN property. Concerning the parametric estimation of a stochastic differential equation driven

by a pure jump Lévy process from high frequency observations on a fixed observation time, we can



mention the recent paper by Masuda [22] where some estimators of the parameters (6, o) are proposed

for the general equation
t t
X =x9 —I—/ b(Xs,Q)ds—l—/ c(Xs—,0)dLs,
0 0

where L is a locally a-stable process, with « € [1,2). However in that case the asymptotic efficiency
of the estimators is not yet establish and to our knowledge, the only result in that direction is given in
Clément and Gloter [5], where the LAMN property is proved for the estimation of the drift parameter
6 for the process solution of (1.1) (with o = 1), in the case o € (1,2). They show that the LAMN
property is satisfied with rate w, = n3~a and information Ty = fol 89b(X§, 0)%ds fR %du, where
©q is the density of the standard a-stable distribution with characteristic function u — e~ ¢(@ul*,

Based on the main ideas of [5] and using the results of [6], we extend in the present paper

these results to a € (0,2) and prove that the LAMN property holds for the parameters (6,0)

n%_é 0 711 O
with rate u, = ) and information matrix Z = where 777 = %Ig and
0 n 2 0 Iy
7 2
Too = % fR Wdu. The proof is mainly based on the L?-regularity property of the transi-

tion density (see Jeganathan [13]) and on Malliavin calculus (see for example Gobet [8] for the use of
Malliavin calculus in the case of a diffusion process). The L?-regularity property is established here
by using the asymptotic behavior of the density of the process solution of (1.1) in small time as well
as its derivative with respect to the parameter, given in [6] and based on the Malliavin calculus for
jump processes developed by Bichteler, Gravereaux and Jacod [4]. It also requires a careful study of
the asymptotic behavior of the information matrix based on one observation of the process, this is the
subject of Section 3. This paper contains also an independent and interesting result stating a conti-
nuity property with respect to the conditioning variable in a conditional expectation (see Proposition
6.1).

This paper is organized as follows. The main results (asymptotic expansion of the log-likelihood
function and LAMN property) are stated in Section 2. Section 3 studies the asymptotic behavior of
the Fisher information matrix based on the observation of X f (as n goes to infinity). The proof of

the main results are given in Section 4 and Section 5. Finally, Section 6 and Section 7 contain some

additional technical proof required to establish the results of Section 3.



2 Main results

We consider the process (Xf )te[o,1) described by
t
Xtﬁ =T —i—/ b(XP,0)ds +oL; tel0,1],
0

where (Lt);e(o,1) is @ pure jump Lévy process defined on some probability space (£2,.4,P) and we
assume that the following assumptions are fulfilled.

H;: (a) The function b has bounded derivatives up to order five with respect to both variables.

(bi) The Lévy process (L )yefo,1] is given by Ly = fg f[—l,l] 2{f(ds,dz)—v(ds, dz) }—l—fo f 11¢ 2A(ds, dz)
where 1 is a Poisson random measure, with compensator v(dt, dz) = dt x F'(z)dz where F(z) is given
on R by F(z) = W%Hl‘z#or(z), a € (0,2). We assume that 7 is a non negative smooth function
equal to 1 on [-1,1], vanishing on [—2, Q]C such that 0 < 7 < 1.
r(w)du < co, [ |

7(u)

(bis) We assume that Vp > 1, [ 7;((1‘

T(u)du < 0.

Remark 2.1. The introduction of the truncation function T in the density of the Lévy measure is a
technical tool to ensure the integrability of |L|P,¥p > 1. The above assumption will guarantee that

(1.1) has an unique solution belonging to LP ,¥'p > 1, moreover, Xf admits a smooth density, fort > 0.

We are interested in the statistical properties of the process (Xtﬁ ), based on the discrete time
observations (X 5n)i:0,...n- Before stating our main results, we introduce some notations which are
used throughout this paper. For a vector h € R? h' denotes the transpose of h, and |h| denotes
the euclidean norm. For a function f defined on R x R? depending on both variables (z,3), here
B=(0,0)" € R x (0,4+00), we denote by f’ the derivative of f with respect to the variable z, by 9y f
the derivative of f with respect to the parameter 6, by d,f the derivative of f with respect to the

O f

9o f
We denote by p;.B/n(:c,y) the transition density of the homogeneous Markov chain (X /n) =0,..ns DY
(Fi/n)i the o-field such that F;/, = O'(X?, s <i/n)=0c(Ls,s <i/n) and by P? the law of the vector
(X%, ..., X7) on R".

parameter o, and Vgf =

Our first result is an asymptotic expansion of the log-likelihood ratio.

1 1
n2 « 0
Theorem 2.1. We assume that Hy holds. Let u, = NE then for every h € R?
0 n-z
dBr " By _ T L L
logW(X o X7) =R Jn(B)2NR(B) — §h Jn(B)h + op(1), (2.1)



with

In(B) =t Y E [61n (D)€ )]

f
éz,n(/@) i ;

B
1
n

P
We can precise the asymptotic behavior of J,(5) and N, (8). Let ¢, be the density of L{, where
(L{) is a centered a-stable Lévy process whose Lévy measure is V(i%h z|#0- We define the following

quantity which will be the random asymptotic information of the statistical model:

Z(B) = (2.2)

where

1 / 2 / 2
I = 12/ Dpb(X72,0)%ds x / Pol1) du, Ioy = 12 X / (Pa () + upn(u)) du.
o R ¥a(u) o’ Jr Pa(u)

Remark 2.2. i) Ait-Sahalia and Jacod [2] proved that the parameter § of the process X{ = 0t + Ly

is estimated with rate n3~a and Fisher information fR iaa&)) du. The parameter o of the process

1 2
X? = oL is estimated with the usual rate n=/? and Fisher information Jz Wdu.
i1) It is worth to notice that the information does not depend on the truncation function T, but depends
on « through the Fisher information of the translated «-stable process and multiplicative a-stable

process.

Theorem 2.2. With the notations and assumptions of Theorem 2.1, the following convergences hold:

Jn(B8) 22225 T(B)  in probability, (2.3)
Ve > 0, ZE [|un£l n | 1{|Un§zn(5)|>6} TH—OO> 0. (2.4)

Theorem 2.3. We have the convergence in law

Jn(B)2 Nu(B) = un Z &in(B) = N(0,Z(8)) (2.5)

where the limit variable is conditionally Gaussian and the convergence is stable with respect to the

o-field o(Ls,s < 1).



The stable convergence in law (2.5) and the convergence in probability (2.3) yield the convergence

in law of the couple (J,(8), Nn(5)):

(Jn(8), Nu(8)) = (Z(5), N),

where N is a standard Gaussian variable independent of Z(/3). As a consequence of the asymptotic
expansion given in Theorem 2.1 and the preceding limit theorems, we deduce the LAMN property.
1_1
5 n2- « 0
Corollary 2.4. The family (Py,) satisfies the LAMN property with rate u, = , and
0 n-

N

information Z(B) given by (2.2).

The rate of estimation of the drift parameter depends on « : when « tends to 2, the rate is
extremely low, however, when « goes to zero, it becomes high, especially for o < 1 where it is faster
than the usual one y/n. On the other hand, the rate of estimation of the volatility parameter o is
n~2 and does not depend on a.

The remainder of the paper is devoted to the proofs of the main theorems above. The first step of our
approach consists in studying the asymptotic Fisher information matrix by using Malliavin calculus

techniques.

3 The asymptotic Fisher information matrix in small time

3.1 The asymptotic properties of the Fisher information matrix

Our main concern in this section is to study the asymptotic properties of the Fisher information carried

by the observation of the random variable Xf In’ We recall the definition of the Fisher information

matrix:
5 Ifflﬁyxo I?éﬁvxo
TP = (3.1)
Igﬁ,ﬂco Igéﬁﬁbo
where
-
s 0o’ (w0, X1),) . 0o (w0, X)) Do (w0, X1),)
Ly =E gn xP , I3 =E gn xP Bn ¥? )
p%(l‘o, l/n) p%($0> l/n) p%(l‘o, 1/n)
o 0, (z0.X%,0\ |
d L™ =R L
an 22 pi (xO’Xlﬂ/n)

The following proposition gives the asymptotic behavior of the Fisher information based on the ob-

servation of the random variable X 16 I 8S % tends to zero.

6



n—oo

Proposition 3.1. Let (8,) be a sequence such that 3, —— 3, @ C R x (0,00) a compact set and
1 1

n2 a 0
Uy = ) then
0 n-2
L 9b(zo, 0)? [, £t gy 0
i) nuyTProy,, 12 | 0 ’ R ¢a(u) ;
1 o (u)+ueg (u)
0 PIRW(%(E)( I du

and this convergence is uniform with respect to xg.

2
o', (w0, X7,
0

. . 2—-2 B0 __ 2—-2
i) SUDy, geqzo 17 LY = SUD, gy 17 R | — xP? )2
P (3E 5 1/n)

2
806 m,XB
ZZZ) su In,ﬁ,xo = su E M < 00
Pn,BeQ,zo £22 = SUPp BeQ,zo B (20,XP, ) ‘
pl 0 1/n

o1, (QJO,Xf/n) 9o '] (xo,Xlﬁ/n)
51( < 0.

. 1—1/aqn,B20 _ 1-1/a
w) SUPn.eQ.zo ™ I& = SUPngeQuao = o Xf/ ) Py (@0 Xf/ )
’ n 1 ’ n

Remark 3.1. From Proposition 3.1, we see that the Fisher information contained in one observation

_1U_2

o~ and the Fisher information based on n observations is of magnitude qu. This

18 of magnitude n

is consistent with the fact that u, is the rate in the LAMN property stated in Corollary 2.4.

The rest of this section is devoted to the proof of Proposition 3.1.

3.2 Proof of Proposition 3.1

The proof of Proposition 3.1 relies on a representation of the score function using Malliavin calculus.
We recall in Section 3.2.1 all the necessary definitions and results established in [6].

3.2.1 Representation of the score function using Malliavin calculus

We consider uf(dt,dz,du) a Poisson measure on [0,00) x R x [0,1] with compensating measure

ve(dt,dz, du) = dtl‘Z#O'Z‘dﬁdu and for n > 1, we define the Poisson random measure p(™ by

nl/a

vAC.00) xR uOA) = [ Lt s (s du),
[0,00) /R J[0,1] B

We note that the compensator of (™ (dt, dz) is v\ (dt, dz) = dt x T(ﬁ)l‘z#mz‘dﬁ = dt x F,(z)dz
and the compensated Poisson random measure (™ (dt, dz) = p™ (dt, dz) — 0™ (dt, dz).
We define the process (L}') by:

t t
L= / / 2™ (ds, dz) + / / 2ut™ (ds, dz). (32)
0 J[-nl/apnl/a] 0 J[-nl/anl/a)®

7



We now consider the process (??’B’IO) solution of the equation

7 r telo1). (3.3)

—n,B,T0 1 t —n,5,T0
thv :xo—f—n/ob(ysvv ,9)d8+m

We observe that the process (L) (recall Hy(b;)) equals in law (ﬁL”) since the associated jump

measures have the same compensator. As a consequence, (X', A )telo,1] equals in law Yy b )

148,20

tefo,1] Let

then the connection between the densities of X i and Yl’ﬂ’xo is given

n

q"%%0 be the density of Y
by
Py (o, ) = g5 (). (3.4)

Moreover, when n grows, the process (L}') converges almost surely to an a-stable process defined by

t t
Ly :/ / zfi(ds, dz) +/ / zu(ds,dz), (3.5)
0 J-1,1] 0 J-1,11°

where p is the Poisson random measure defined by,

VA C[0,00) xR, p(A) —/ // 1a(t, 2)pc(dt, dz, du).
[0,00) JR J[0,1]

The compensator of p(dt,dz) is v(dt,dz) = dt x 1|Z|7£O|Z|C{% and we note the compensated Poisson
random measure fi(dt,dz) = p(dt,dz) — v(dt,dz).
The connection between L™ and the a-stable process L% is given more clearly by the following lemma.
Lemma 3.1. [Clément-Gloter-Nguyen [6]] On the event A, = {pu({(t,2)[0 <t < 1,]z| > nt/e}) = 0},
we have

p™ =y, LP =LY,
and P(A,) =14 O(1/n).
Furthermore, let (fn)nen and f be measurable functions from Q x [0,1] X R to R such that there exists

C withP(C) =1 and Vw € C, Vs € [0,1],V|z] > 1 fn(w,s,2) nzeo, f(w,s,2). Then
1
/ Falw, s, 2)p™ (ds, dz) == / fw, s, z)u(ds, dz).
|z|>1 |z|>1

n—o0
Moreover, we have LY ——— LY.
a.s

We remark that ?711,/3,:50 admits derivatives with respect to the parameters # and o, denoted by

(athﬁ )¢ and (&,Ytﬂ )¢, respectively, solution of

— 1 [t _ 1 [t _
By 0 = - /O b’(?";"”‘”’“,e)agyg"ﬁ’g”ods+E /0 Bpb(Y " 9)ds, (3.6)

n

. o L
9, Y0 = n/o ¥, 0)9, 7 0 ds + (3.7)

nl/a

Furthermore, the derivatives of 7711’6’% with respect to the parameters satisfy the following properties.



Lemma 3.2. [Clément-Gloter-Nguyen [6]] For all p > 1,

Z) |89?717J:67330‘ S %’

i) SUPgeo,1] 8072’[3@0 n:T:OH).

We now recall the definition of the Malliavin operators L and I" on the Poisson space associated to
the measure ,u('”) and their basic properties (see Bichteler, Gravereaux, Jacod [4], Chapter IV, Section

8-9-10). For a test function f : [0,1] x E +— R ( f is measurable, C? with respect to the second variable,

with bounded derivative, and f € Np>1LP(v)) we set u(" fo Je f )(dt,dz). We introduce
an auxiliary function p™ as
2 if [zl <1
p"(2) =4 ¢(2) if 1<]z]<2 (3.8)

Z%’(ﬁ) if |z >2
where 7 is defined in the assumption Hj (b;), and ¢ is a non negative function belonging to C* such
that the function p™ belongs to C*>. Note that ¢ is defined such that p™(z) admits a derivative and

" (p™), p"? Ezg belong to Np>1LP(F,(2)dz). From the conditions on 7, we can easily deduce that

2?2 if 2§]z\§2n1/a

Z2T(2,§/a) -

0 if |z| > 4nl/e
Moreover, we can see that p"(z) —— p(z) where
2 if 2] <1
p(z) =qQ¢(z) if 1<z <2 (3.9)
22 i 2] > 2.
Note that from the definition of p™ and p, we can easily see that p™(z) = p(2) if |2| < 2nl/e.

With these notations, we define the Malliavin operator L, on a simple functional ,u(”)( f), in the same

way as in [5] by the following equations :

L(pt™(f)) = %u(") ((p”)’f' + p"%f’ + p”f”> :

where f’ and f” are the derivatives with respect to the second variable. For ® = F (™ (f1), .., n{™ (fz)),

with F' of class C?, we set

)L Z ax,axj D)ot F ) (0" 1)

J_



These definitions permit to construct a linear operator L on a space D C My>1L? whose basic properties

are the following.
i) L is self-adjoint: V®, ¥ € D, we have EOLY = ELOV.
ii) L®? > 2L .
iii) EL® = 0.
We associate to L, the symmetric bilinear operator I':
[(®,0)=L(®V) - LY — VL. (3.10)

This operator satisfies the following properties (see [4, equation (8-3)])

[(F(®),¥) = F'()I(D, U), (3.11)
D(F(®q, ®5),U) = 8, F(®1, o) (®1, U) + g, F (B, Bo)T(Py, ¥), (3.12)
IT(®, T)| < T(®,®)/20 (W, 0)1/2, (3.13)

Remark 3.2. The operators L and I' depend on n through the functions p" and F, but to simplify

the notation we omit the dependence in n.

The operator L and the operator I' permit to establish the following integration by parts formula

(see [4, Propositions 8-10, p.103]).

Proposition 3.2. For ® and ¥ in D, and f bounded with bounded derivative up to order two, if
[(®, ) is invertible and T =1 (®, ®) € Ny>1 LP then we have

Ef ()% =Ef(®)He (), (3.14)
with
He(¥) = —20T1(®, &)L — (P, VT 1(®, D)) (3.15)
= 20T (9, 9)LP — F(qj@)r(@, ) + P(;J@)QF@’ o) (3.16)
~1(aw) e () 47
B30

We recall now the representation of the logarithmic derivative of the density of ?ZL as a condi-

tional expectation proved in [6] which will be used throughout the proof of the main theorems of this

paper.

10



Theorem 3.1. [Theorem 2.2 and Theorem 3.1 in Clément-Gloter-Nguyen [6]]
Let ¢"P be the density of Yl"B’ then we have the representation of the logarithmic derivative of

the density as a conditional expectation:

Vspl ¥ g )

n ﬁq 7, BEEN 7’”’7B’1‘ 4”7/8711

0w = S = | T = B (VY TTVIN =) (3.18)
Px (1)

H*n 8,0 (a@yn P IO)

,an 8,0 (8 Yl Bl’O)

207y " . DV, 9,75 0)
= /Hin’ﬁ’mo 1) - —n,B,20 —=Nn,B,x
9,7 | T P YT \n o, 0, v )
(3.19)
and o
» 1) = F<Y1 371053,%0 F(Yl’ﬂ »T0 ?nﬁxo)) ) Lynﬂ,xo
?n,ﬁ,zo = — B x - —n,B,x0 —n,B,x
' (DT Frieoy)? LYy vyt (3.20)
1 (0% n n n n
= 0O HE(1) + R (1) + RE 5(1) + RE (D).
The main term ﬁg(l) is given by
1 n _ n n n 1 n — n a,.n n
oy Jo Jr(€9) 20" (2 (P )’( it (ds,dz) [y Je(ed) ™ [(p '(Z) - e p (2)] p"(ds, dz)
Hi(1) = - (3.21)
€l [fo Jr(em)=2p"(2)pm(ds, dz)] ef fo Jr(ed pr(ds, dz)
with
n __ L (%, =nBwo
ee=exp|— [ b, ,0)du|. (3.22)
n Jo
The remainder terms satisfies
n ¢ n G n Cy
vp>2, E[R7s1)|" < g Rzl < —, Rss(Ml = —=, (3.23)

where C, C1 and Cy are some deterministic constants.

Remark 3.3. i) From the proof of Theorem 3.2 in [6], we get that 7-["( ) is bounded by a random

variable independent of n and belonging to Ny>1LP and it converges in LP,Np > 1 to Hpa(1) given by

Jo Je ol Ju(ds, dz) fol Je [P'(2) = E£2p(2)] p(ds, dz) (3.24)

Hia(1) =
' [fo fR w(ds dz)} fo fR p(ds, dz)

11



Moreover, Hro(1) and L{H (1) belong to LP,Vp > 1.
it) In the case b= 0 and o = 1, we have €] =1 and from [6] the remainder terms Ry 5(1), R% 5(1) are
equal to zero. Moreover, we see that (3.20) can be rewritten as ﬁg(l) + ﬁR?,@(l) = Hrr(1), then

LP
we can deduce that Hpr(1) -~ Hre(1).
p>

3.2.2 Preliminary lemmas

The proof of Proposition 3.1 is based on the following three lemmas. The first lemma shows the

convergence of the normalized iterated Malliavin weight H—n B,z0 (VBYl’ﬂ xo)

n—oo

Lemma 3.3. Let (8,)n>1 be a sequence such that B, —— B. Then, the following convergence holds

uniformly with respect to xg

VU g (00T Proy L Ogb(xo, 0)H e (1)

n—oo

BT LP Vp>2 ’ (3.25)
Hymnzo (0¥ 1) T\ S (LHLe(1) - 1)

—=n,B,x H*nﬂxo (aeynﬁxo)
where anazo (VY7 = s, are given by (3.19) and LY, Hr«(1) are defined
an ,8,x0 (6 Yn 10)

by (3.5), (3.24), respectively.

The next two lemmas are related to a continuity property with respect to the conditioning variable,

in a conditional expectation.

n—oo

Lemma 3.4. Let (B,)n>1 be a sequence such that B, —— 3. Then, the following convergence holds

uniformly with respect to xq.
i) 022 BB [H 0. (07 VT TP 225 [9gb(o, 0))° E [E[HLa (1)|LET?]
i1) E[E[H 00,00 (0, Y777 VT2 2225 LE [EILY M0 (1) - LS

n—oo

Lemma 3.5. Let (8,)n>1 be a sequence such that B, —— 3. Then, the following convergence holds

uniformly with respect to xg,

0! VOB Hpn g (007 1) VT I g (0,Y ) [T

= = 1 E[E[H e (DILYTE[LYH e (1) — 1[LT]]. (3.26)

The proofs of the above lemmas are postponed to Appendix 1.
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3.2.3 Proof of Proposition 3.1

1 1
n2 o 0
Proof. i) We need to prove that for (/3,,) a sequence such that 3, 27 3 and u, = )
0 n-2
we have
8@() $0, gpo‘(u 0
nunInvﬁn:xoun TL‘)OO} fR Pa , 9
0 L [pa (w)tupa (W) 4
o2 JR wa(u)
and that this convergence is uniform with respect to xg.
' TLQ_%IIL{B”’IO nl—éz‘fféﬁn,xo
Since naw, P roq,, = , the proof of the above convergence reduces to
1*lInvﬁn7xO Iﬂﬁnwo
nooelig 22
prove the convergence of each entries of the matrix.
’ 2
_ - (L ’
Step 1: We prove that n? 2/0‘1'?1’5 To 17700, %8@1)(360,6)2[%3 [(siaEL‘il;) ] = ng (xg,0 fR 2 (“) du,
and this convergence is uniform with respect to xo.
First we remark that we have the representation,
/
P (w) o
= —E[Hp«(D[LT =1]. (3.27)
Pa(u)

AN,0,T
Ylﬁ o

Indeed, let us consider the situation where b(z,0) = 6 and z¢p = 0. In this case, we have

% + ZIL/?X and thus the density of ”Za (??’BJO — %) is equal to the density of L. We denote by ¢"

the density of L}. Using the integration by parts formula (3.14), we get for any smooth function f,

/ (") (w) f (w)du = ~E[f (L2 Hzp (1), (3.28)

On the other hand, we have

= —E[f'(L})] "= ~E[f'(L})] (3.29)

—/goa(u)f’(u)du = /gpfl(u)f(u)du (3.30)

where the convergence (3.29) is obtained by the fact that E[f'(L})] = E[f’(L‘f)lL?:L?]+E[f’(L’f)1L?¢L<1x]
and by Lemma 3.1, we have P(L} = L§) 2=
From (3.28), (3.30), the smoothness of f and Remark 3.3 ii) we get [ f(u)¢l (u)du = —E[f(LY)Hra(1)],

1.

and we deduce the representation (3.27).

13



Furthermore, from (3.18) in Theorem 3.1, we have

_ . 2
nQ—Q/QIIll,Bn,IO — n2—2/a]E |:E [H?Tlhﬁnazo (a@Y;L76n’x0)|Y;L7Bn7wO:| :|

n—oo 1 . . .
i —50b(xo, 0)°E [E [’HLa(l)|L(1"]2] , uniformly with respect to xg, from Lemma 3.4 7),
o

1 o [ PalLf)?
= —0gb(xp,0)°E [aa from (3.27).

R PR

[ o, a 2 / 2
Stap 2: W prove that T3 2% (g | (UGN = f It

and this convergence is uniform with respect to xg.

We remark that from the representation (3.27), we have the following representation,
Pa(u) + upp(u)
Pa(u)

Furthermore, combining (3.18) and Lemma 3.4 i), we have

= —uE [(Hza (1) |I§ = u] + 1 = ~E[(L§Hga(1) — 1)|L§ =], (3.31)

2
Igéﬁn,lo =E |:E [H??,Bn’rﬂ (aﬁﬁvﬂn’zoﬂﬁﬁmwo] :| )

n—oo ]-

—E |E[(LS¢Ha(1) —1)|L$)?*|, uniformly with respect to zq,
o2 1 1

(PalL$) + LE@h(L§))?

= —E
(Pa(Ltll)Z

o2

from (3.31).

Step 3: We prove that n'=1/ QIILQ’B w0 2% ) and that this convergence is uniform with respect to

Zg.
We first recall the expression for the Fisher information

3917;" ($07 Xf/nn) 80]76;” (x()? Xlﬁ/nn)

I{gﬂnwo —E

P (0, XT5) P (w0, X))

then from (3.18) in Theorem 3.1 and Lemma 3.5 we have
T VBB ey (BT T Mg (0,75 VTP
1
"= B [E[HLe ()|L]E[LS Mo (1) - 1L (3.32)

On the other hand, from (3.27) and (3.31) we get

(L8] (9all8) + MDY _ por o e m e (1 11 1pe
ol (el Ml g (gl B M) - DR (539)

Combining (3.32) with (3.33) gives
s o / N / 1 / 2
nl—l/al’&ﬁnwo - i Qoa(u) [90 (u) + wpa(u)] du = 1/ gO;(’UJ)dU + / u (Qoa(u)) du =0,
o? Jr o Jr  pal

2 u)
(3.34)

° JRr Pa (u)
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where we used the fact that ¢, is a symmetric function, and that the functions under the integral are
odd. This completes the proof of the part 7).

i1) Using (3.18) in Theorem 3.1 again and Jensen’s inequality, we get:

n? 20T = 2 2O (B (M (90777 )YTO)?| < 02 HOE [ (90Y )

76 Zo

But it is clear from Lemma 3.3, the fact that [9,Y "] < Q (recall Lemma 3.2 7)) and the boundedness

of ’Hgn(l) (recall remark 3.3) that for all p > 1, sup,, geq ., Eln' 1/0‘7-[—n Buag (DgY ] ” P < C.

i7i) From (3.18) in Theorem 3.1 and Jensen’s inequality, we get:
In,ﬁn,xo _ a Yn Byxo Y”:Bva 2 <E a ?n,ﬁ,xo 2
22 - (/H*n g0 ( Y )7l < /H?;Lﬁ»l’o (28 )7l -

From Lemma 3.3, for all p > 2, sup, e 4, E|”anﬁ NG ﬁ’x°)|17 <C.
iv) Using (3.18) in Theorem 3.1 again with Cauchy-Schwarz inequality and Jensen’s inequality we get

nl—1/a I?Qﬁﬂfo

= | VOB Mg (00F T ) T E s (0,777 TP

gnl—l/a[ (( mn,;xo(aQY”ﬁ’x”)lYl’ﬁ’”])Qﬂ1/2{ (( 070 (9 Ynﬁ’mo)‘yl’m])ﬂ

2)]1/2 [ QH”MO@ o) 2)}1/2.

This achieves the proof of Proposition 3.1. O

1/2

<pi-lVe|E [ (‘szo (977

4  Proof of the asymptotic expansion of the likelihood (Theorems
2.1 - 2.2)

The aim of this section is to prove the asymptotic expansion of the log-likelihood function, stated in
Theorem 2.1 as well as the convergence given in Theorem 2.2. The proof of Theorem 2.1 is based
essentially on the L2-regularity property of the transition density pf /n(az, y). From Jeganathan’s article

[13], the following four conditions A1-A4 are sufficient to get the expansion (2.1) of Theorem 2.1.

o1} B 5 9pp'] (z.y)
[E] itl 3 1/2
. 1 ( n > P (z.y)
We recall the notation &; ,(5) = ou and we denote xn(B,2,y) = | 7 5 (z2)
p% Xﬁ Xﬁ ap% Y
P i P (y)t/?

A1l. L?-regularity

2

1/2 12 4
ZE /{ f <X?1,y> -7 (Xé%y) —QhTunxn<ﬁ,X§1,y>} dy| “=>0.



A2

n—1

Jn(B) = up Z_: E [&.0(8)E5 (B)|Fi/n) un ~—> Z(B) (>0 a.e.), in probability.
=0

A3.

n—oo

Ve > 0, ZE [\un&n | 1{|un§”l( )|26}] — 0.

A4.

n
su E(|uné&in(B)&n(8) us|) < C, for a strictly positive constant C.
Py (BE, : y D
n .

The condition A1 is proved in Section 4.1 and A2 and A3 are proved in Section 4.2. The condition

A4 is immediate from Proposition 3.1 ii — iv) since

n,8,X n,3,X
T n2_ 21.11 z/n nl_ Il2 Z/n
NE(un&in(B)&in(B) up) = E X e
1—1 .0, 1/n ’ 1/n
n ol 1’22

Note that these conditions do not imply the stable convergence in law (2.5) since in our framework
the filtration (F:); does not satisfy the ”"nested condition” (see Theorem 3.2 in [10]). The proof of

the stable convergence in law will be given in Section 5.

4.1 Proof of the condition A1l (the L*- regularity condition).

Following [5], the crucial point of the proof is the asymptotic behavior of the transition density of Xtﬁ

established in [6] and recalled below.

Theorem 4.1. [Clément-Gloter-Nguyen [6]]
We assume that Hy holds. Let (s;" 9, *0) be the solution of the ordinary differential equation

1 t
0 = zo+ /0 b(ss "™, 0)ds € [0,1]. (4.1)

n—oo

Let (Bn)n>1 be a sequence such that 5, —— B then for all (zo,u) € R2,

n,0n,r0\ NM—>00

i) l/apl " (o, :;f‘/& +<7 ) —— palu),

.. B n,0n,x
ii) SUp,cRr SUDP, 1/ap1"(a:o, L e ) < oo,

where @q is the density of LY, a centered a-stable Lévy process.

Theorem 4.2. [Clément-Gloter-Nguyen [6]]

Under the assumptions of Theorem 4.1,

16



B (o, Bom 4 Pmm0) T2 Ggb(a, 0) X (),

po0n0y B9 pa (u) — ugly (u),

2
. UOTn

B
a1/ 0Pt (o, 7775 +¢

.. 0721 Bn On
”) SUPyeRr SUPy |2 3 3917; ($07 u1/a +§1 ) < 00,
no n
oy B uon | n0n,zo
SUPyer SUPy, nl/a aﬂp;n (:EOa nf'/a + S1 " ) < 00.
n
n,0,x"

Jj—1

Proof of A1. By the change of variable y = ;{% +¢, ™ proving Al is equivalent to show:

i;::l/RE :{fn( Y )—gn(X'?_l,u)}Ql du 2= 0, (4.2)

n

where

1/2 uo 1/2
fuliw,u) = /an!/21/2 pﬁﬁ“"h (2 7 + ") " = b (2 +<1) ]

nl/a
\fn1/21/2a

gula.u) = (unh) i (B, 7 + <1

Following the proof of Proposition 8 in [5], the next three properties are sufficient to prove (4.2).
1. There exists a function f such that,

Va,u,  folwu) S22 @),

(4.3)
In(@, 1) 22255 f(z,u).
2. We have for all z,
limsup/fn(:zj,u)Qdug/f(:v,u)Qdu
noR R (4.4)
limsup/gn(x,u)Qdug/f(x,u)2du.
n R R
3. We have
sup/fn:vu ) du < oo,
(4.5)

Sup/ gn (2, u)?du < 0.
R

z,n
We now need to check the validity of the conditions (4.3), (4.4) and (4.5).
We start with the proof of the condition (4.3).

1 1
n2 o 0
We recall that u,, = . and h = (h1, h2)T € R? then by a simple computation we have,
0 n-2
,0, 0
Vi W (et d™) ol (o )
gn(xju) = —n" " 2ah; n 72 + ~——n2a hy T /3"
2 ﬂ n,0,x / 2 B uo n,0,x /
p1 nl/a < P1i\% o 0e T



From Theorems 4.1 and 4.2, we see that

n—oo h /a U h o (U U /a U
gn(@w) = flz,u):= —2;396(56,9)8;5(15)1)/2 - 2;“0 (w)az;)lfz( )

B+unht (l‘, uo n,0,x

Let my = p 7+ ), t € [0,1], then we can rewrite f,(x,u) as

fol, u) = Vot 12 [/ — mgl?]

Using the mean value theorem, we get
B+unhs (:L', uo +§Il,0,z

VP 1/a
n n
173, for some s € (0,1).

P (ot )
From Theorems 4.1 and 4.2, we also get that f,(x,u) oo, f(z,u).

Folz,u) = @nuz—l/m% _ §n1/2—1/2a(unh)T

Now we prove the condition (4.4).

We have
%) B (:L’ uo +§n,9,x>2 ) B (:L’ uo +§n,9,x>2
) Uh% 2-3/a 0P1 Ty 1 1/a 1 O'h% 1/a oP1 \ Ty 1 i/a 1
gn(z,u)*du = - " ﬁ" 7 du + 2" ﬁ" ; du
ag n,v,r ag n,v,r
R R p%(w,,ﬁﬁ+€1 ) R P%(%,ﬁﬁ+ﬁ )
0 0
ohihsy 4 2/a/ oo <$’ wifs e x) Oap} (x’ nize 1 x> d
+ —n" o n u.
2 R B (. uo , n0a\Y? 8 (  w  nox\?
P1l\% o ie ta Pil\® o 1e ta
(4.6)
From Proposition 3.1, we get
/gn(m,u)Qdu e / f(z,u)du, V. . (4.7)
R R
Using
B+unhs uo n,0,x
1 \% (:C, — + )
Folmu) = \/Enl/Z—l/Zoz/ (unh)T AP 1 oija T61 e
2 0 B+unhs uo n,0,x 1/2
Py T, Te TS
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We write:

B+unh . n,0,z
2 , on'~lell rl Vgp ' (x’am T ) 2

fn($7u) du = an(.%', )HQ = A u”h) h 0, 1/2 ds

R 0 p€+un S(.%‘ 1/a + iz a:)
2
onl-1/a VﬁpﬁJr nh (35 07 +§?0$>
T

S—0 (unh) ds

1/2
p6+unhs (.7] o 1/a _|_§in,9;t)

n

n

1 +n 2 hg
B+unhs n,0,x 1/2 S+unhs n,0,x 1/2
P1 P

xa—l/a+§1 .’EUl/a+§1

n n

n,0,x 2

" / o W (g ) 0 (s )
e n2 @ n

2
onl-1/a Dy et (a: e+ ) Dy pyTount ( s 7w cfex)
= I / h% ﬁ’; - r du+/n1h2 ﬂi - .
SUn n T SUn n,0,x
2N ( ) R P1 (m l/a +< )
1/2 2
) 80pfi’+sunh (.CU l/a _,_g{z@:c) aap[i—ksunh( 1/a + ILGz)
+/na2h1h2 ” w— n ; du ds
SUn n,0,x
R pl ($ nl/o‘ + 1 )
nl-1/a 1 L 2891)’3)““" (z,v)? - 2aap€+su”h (z,v)?
= n " ah o dv+/na h i dv
4 /0 /R ! p’?ﬂunh(azjv R 2 pi+5u”h(:c,v)
1/2 2
Opp" " (2, 0) 0y (a1, 0) e
+ / 2h1hg—= dv ds by the change of variable +< = v,
R p’i“un (z,v) / E
2
1/2
1 1
— Z / nz—%h%ﬁiﬁ-i-sunh,l‘ + h%z';léﬁ"rsunh@ + nl—l/a2h1h21-;l2,,8+$unh,aj ds
0
4.8)
1 h2 / 2 hih / / (
S Py - Ay EACIEN ORI A
R Palu) 20° Jr Pal(u )
1 h3 [ (palu)+ upl,(u 2(
+§Z (pa( /f xT, u

Where, in the last line, we have used Proposition 3.1 for the convergences of I" ptsunhe ISQ’B Hounh,

Ilnéﬁ +s“”h’x, respectively and the application of the dominated convergence theorem. From (4.7) and

(4.8) we get (4.4). (4.5) is deduced directly from Proposition 3.1. O

19
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4.2 Proof of the conditions A2 and A3 (Theorem 2.2)

From the Markov property and (3.1) we have:

B B
n167X,L'/,,L In76’Xi/n
11 12

=B [5n(B)in(B) |Gim] = | hsxs  nax

InﬁX

From Proposition 3.1 we know that the quantities

2 ’ 2
Opb(X A 0
sup  |nun TN, — | [ ob( z/n)} S gty [pa (1) +ucgl, ()2
1<n— 1 o (u)tup,, (u
0<i<n—1 0 5 R E %(f) du

converge to zero as n — oo. Then the convergence A2 is a consequence of the convergence of a

Riemann sum.

To prove A3, from the Markov property, we get: E [\unfm( )FIX l/n } =K

] salfneroror]

where we used the Jensen inequality in the last step. On the other hand, from the proof of the parts
i) - i) of Proposition 3.1 the random variables n!~1/*H_ b (0} o *) and an 8,2 (0g Yl’ﬁ “) are

for any £ > 1. It then follows from Theorem 3.1 that,

—n,B,x\ x5N,B,x
E [lunéin(8)1X7), = 2] :E[unE [Hga (VY1) 777

bounded in L*-norm independently of n and z. From this, we deduce

k
nlfl/a 0
sup K &in(B)| | <C(k), Vk=>1,
0<i<n—1 0 1

where C'(k) is some finite constant. It can be classically checked that the previous control, for instance

with k& = 4, is sufficient to imply the Lindeberg’s condition A3.

5 Proof of Theorem 2.3 (Stable central limit theorem)

The aim in this section is to prove the stable convergence in law stated in Theorem 2.3. We first recall

the following result established in [6] where ??,B,xo is defined by (3.3) and is equal in law to X f .

n

Lemma 5.1. [Clément-Gloter-Nguyen [6]] Let (s n@xo) be the solution of the ordinary differential

equation (4.1), then
nl/a(?"llyﬁvxo

— o) 2 oL, (5.1)

and this convergence is uniform with respect to xg.
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1 1
n2 o 0
Proof of Theorem 2.3. Since u,, = L] we have
0 n-2
11 00
n—1 n—1| N2 « pﬁl” (Xg»XﬁH)
Un Z €i,n (/3) = 8013%
i=0 =0 | p—3—x [ xB xB )
pl %7 z;&;
Theorem 2.3 is an immediate consequence of Lemmas 5.2-5.3-5.4 below. O
Lemma 5.2. We consider
aepfi / (nl/a(L ~ L, ))
1 Pa il a
Wi =nl"VO (Xﬁ X{il) + —9b(X7 6) n___n
b g n Pa <n1/a(Li+1 —Li)>

_ _ n—00
then we have n~1/2 Z?:Ol Din — 0.

Proof. Using Lemma 9 in [7], it is sufficient to show that:

n—1
w2y Elwial Fignll 72 0, (5.2)
=0
n—1
— —
nt Y B Figall 72 0, (5.3)
1=0

We start by the proof of (5.2). Since a score function has an expectation equal to zero, and

Liyw — L is independent of F;/,, we deduce that

n n

eo (n*(Len — L))
Pa <nl/“(Li 1 - L&))

1

Since (Lt); has stationary increments, the law of n'/®(Lin — Li) is the same as the law of L7.

Moreover, we know from Lemma 3.1, that P(L} # L{) = O(1/n), thus

1 LO‘

where we used the fact that % is bounded (see e.g. Theorem 7.3.2 in [18]). Using E [%} =

Jg @ (u)du = 0, we deduce [E[w; ,|G;/n]| < Cn~" for some constant C and (5.2) follows.
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We now prove (5.3). We have

2 2-2/ar X3
E[w; | Fijn] = 0"~ °Ty, T+

g n Do nl/o‘(L@ Li) ( )
" " 5.4
- 80]3’81(X§,X1+1) 1 s (,0/04 (nl/a(Liﬂ —Li))
+ 2R | n! M —9h(X ], 0) n n L\ Fi
Pi(X5,X0,) © " P (nl/a(LiJrl —Li)) "

With a method analogous to the proof of (5.2), we can show that

2
d (i -1)) Loy
o n) | =R [%(LQ)Z] + o(1). From Proposition 3.1, it appears that the first two

Pa (nl/a(Lﬂ*Ll))
terms in the right-hand side of (5.4) are asymptotically closed to the same quantities, and that (5.3)

is proved as soon as we show that the following control holds, uniformly with respect to i,

E |n -1/ *80 (X?,H) ‘]:1
g(vaX?+1 n Va (nl/‘)‘(Lwl Ll)) " (5.5)
1 2 g0/ (La)2
_ 1 XB E a\™1 1
= [agb( 1,9)} [%(LW] +o(1)

1-1/a Bpq™ P70 (V]770) 4 o (LT)
/ WEGHZ)( 0)

Using the notations of Section 3.2.1, we define d™?% = E [

so that the left-hand side of (5.5) reduces, from the Markov property, (3.4) and the fact that Y’

equals in law Xi, to d" 9 Xl/n On the other hand, we can rewrite d"™ 020 ag
’ 1/a( "510 gnezo)
Opa™ B0 ?"’Bvxo 1 Pa p
dn,e,l‘o e nl_l/a 09 inlﬁm )7896(1.0,9) an -
qn7ﬁuzO(Y17 ’ O) g (pa (nl/a( 0-0 5t s, O))
5.6
: 2 ("l/a(m’%*? >> .
I 1,0,Z
LR |t te PO 1 [ GalE) T o
g (V107 0 R CACO R ("l/ﬂy’;"*%&m))
ag

Using the Cauchy-Schwarz inequality for the second term in the right-hand side of (5.6), we get

l/a(Ynﬂwo nﬂa:o)
AVa )187$O
_ 89(]“”8’3:0 (Yn ) 1 n
E | |nl—Ve r w}ﬁ,xo ;6@1)(:60,9) 711 YT T
g (Y, ) r) < )>
[ 1/2 ni/a(FTBw0 _nbwoy 27 1/2
a qnﬁ,ito (?nrﬁva) 1 2 / , (Ln) Spla _ 1
S E nlfl/a 0 7711/350 789[)(!@070) E Pa il _ nﬁz _
qn7ﬁ7$0(Y17 ) 0) o Pa (Ll) o (nl/‘l( 0_m0. 0))

(5.7)
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Furthermore, Ve > 0 we have

2
—n,B,x n,0,x
o <n1/a(ylﬂ 0_t 0))
/ n «
Pa (Ll) i

E _
Pa (L?) o <n1/a(YY'B’z0 _qt,@,z()))

g

SO/ <n1/a(Y;L,B,:c0_gln,0,w0)>
/ n [}
= E (1006 (Ll) i 1 , \
Pa (er) nl/a(y B,z n,@,wo) nl/o‘(Yl’ 1007§17 s 0)_L? <6}
@ g
1 8,T n,0,x 2
’ <nl/a(Y17 s O_glv 5 0)>
/ n Pa
+ E Po (Ll) o g 1 , )
N0, n,0,z 1/a By _ _n.0,20
Pa (L?) N <nl/a(Y1 Przo Sq o 0)> { nt /Yy . Sq )_L,ll >5}
g

nl/ag?aﬁ@o,g?ﬂvzo)

< 0162 + 2058 1{
Ly

S

_L?

o

i nl/a (?71%5@0 _ g{L,@,xo)

= 0162 + 2C5P
g

n—00
> ] o o

where we used the fact that Z—:; is bounded with a bounded derivative (see e.g. Theorem 7.3.2 in [18])

and Lemma 5.1. From Proposition 3.1 i7), and the estimates above we deduce that (5.7) converges to

zero as n — oo. Then,

15} 58,70 80/ (nl/a(y?ﬂ’xo —g?’e’w0)>

Opg™:P:To (Y 1 l U

dn,g,-’EO — E nl—l/a eq ifﬂ}ﬁylﬂ(} ) ;aeb(l‘(b 9) 1/a —n,0,zq n,0,xq + 0(1)’ (58)
grie (Y Pa <” 0L )>

where the o(1) term is uniform with respect to xg. Now, using Theorem 3.1, we get

, nl/a(??vﬁ’zofgf«g*z())
()Oa o

SVALIER 10,
n/a (V0 6070
Pa >

+o(1).

o, 1
dn,@,xo - nlfl/a%??ﬂ’zo (aeyl B 0);89[)(.7:0, 6)

From Lemma 3.3, we also have

0.

, nl/a(y?yﬁvzo_g’l’he@())
1 Soa o N
n—oo
sup dnﬂ’xo - jaﬁb(x(]a 0)2E HLO‘ (1) —n,B,x 2,0,
. o nl/a(y il 0_§7: ’ O)
0 1 1
Pa o

From Lemma 5.1 we can deduce that

n—o0 1 =
Jr0wo M0, — [89b(xo,0)]2E {Hm(l)w
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uniformly with respect to xg. Then, the relation (3.27) enables to rewrite this convergence as,
2
o (L)
Pao (L?)Z
This result implies (5.5) and hence (5.3). O

n—0oo 1
dn,@,xo ; —ﬁ [aeb(an 6)]2 E

] , uniformly with respect to zg.

Lemma 5.3. We consider

&;pi (Xﬁ %8 " 1 Pa (nl/a(L% — L%-)) +n1/a(Li:1 — L%)% (nl/a(L% —L%))
Oin = - PRRLEAS] -
p’i n n o Pa (nl/a(Li+1 - Li))

— — —
then we have n~1/2 Z?:ol Nim % 0.

Proof. We proceed as in the proof of Lemma 5.2 and check that

n—1

-1/2 ) : n—00

n ;|E[gz,nfz/n]yT>o, (5.9)
n—1

-1 2 : n—o00

n ;E[gi,n|ﬂ/n]|—>P 0. (5.10)

We start by the proof of (5.9). Since a score function has an expectation equal to zero, and

Ly — L is independent of F;/,, we deduce that

n

Ca <n1/a(L% iy )) + 0/ (Lass — L) (nl/a(L% L ))

n

oo (0 (g — 1)

n

i3
n

1
E[Qz,n|]_;/n] = ;E

Since (Lt); has stationary increments, the law of n'/®(Liy — Li) is the same as the law of L7.

Moreover, we know from Lemma 3.1, that P(L} # L{) = O(1/n), thus

Pa(u) + ugy (u)

1o [PalLf) + Lip: (L‘f‘)] ’ ‘ -1
Eloi n|F; _E { @ + O(n ),
where we used the fact that 7“55(%) is bounded (see e.g. Theorem 7.3.2 in [18]).

Using E {%ffg)] = Jpupl(w)du = =1, we deduce [E[g; | F;/,]| < Cn~t for some constant C' and
(5.9) follows.
We now prove (5.10). We have

: > ;
7 Pa (nl/a(LH.l — Ll))
0007 (X7, X00) | ¢ (nl/a(Lm - LL)) F (L — Li)gl, (nl/a(LiH - Li)>
“I'QE ﬂn Bn B n —_ n n n n n ’fz
pl(XiaX@) g Pa (nl/a(Lz+1 —Li)> n
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With a method analogous to the proof of (5.9), we can show that

E e ) e G ) | E [[soa(m)wlsoa(w)ﬂ +o(1)
@a(nl/a(L%—L%—)>2 - pa(l])? :

Proceeding as in the proof of (5.4), then (5.9) is proved as soon as we show that the following control

holds uniformly with respect to 4,

—n,B,x
We define d}""™ = E |:8U?;Z}ﬁ,zo;))¢17@a(L SZ+(LLl C;Q(L )] , so that the left-hand side of (5.12) reduces,
qlY @

n,a,Xﬁn
from the Markov property, to d;

Proceeding as in the proof of (5.8), noting that L'O"(( )) is bounded with a bounded derivative (see e.g.
Theorem 7.3.2 in [18]), then we also get that

b gy IR0 ( /e (700 <f“°>)
n,0,T0 __ 8O"](le7 ) l 8UQ(Y1, ) l i “ i
d; =E 7(?”5@0) S +E 7 —) o o +o0(1)
1 1

’I’ll/a( n 8,0 §”79710)
Pa -

where the o(1) term is uniform with respect to xg. Now, using Theorem 3.1, we get

H—n”{—}’mo (80.?7;7/871'0)

d?#’@o = Yy
(o
1/ ?n,ﬁ,zo_ n,0,zq nl/oy N ﬁ () n,0,xq
B0y M (Y3 1 ) 04 1 )
H?n,,ﬁ,xo (ao—Yl 0) o 8004 o
+ E ! n B,z n,0,x + 0(1)
ag nl/a( 0 §11 ’ 0)
Pa -

From Lemma 5.1 and the convergence result (3.25) we can deduce that

n,o,xg N—00 1 _ Pa (L )+L1(pa (L?)
B 2% (e () - 1) PR ]

uniformly with respect to xg. Then, the relation (3.31) enables to rewrite this convergence as,

- 1
d?ﬂ»mo n OO) _72E

(¢a (LS >+—L1¢Q<L?»2],
o (L9)?

g

This result implies (5.12) and hence (5.10). O
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Lemma 5.4. We have the convergence in law,

no1/2ynl n Logb(X? . 6)
%y(nl/“(L@—Li)) 7 n
nooom = N(0,Z(8))  (5.13)
g (g ) e gk (1))
-n Zz’:O o

Ya (nl/o‘(L@—Li))
where the convergence is stable with respect to the o-field o(Lg,s < 1) .

Proof. We define the following processes:
[nt]

Zf:Z(Lﬂ—Li),

1=0

1 1=0 o a0
;L’ 1/2 ¢a|nt/*(Liy1—Li) "
Iﬂtl — — / n n ,
F?’Q nt] Po n!/(Liyy—L i) J+n'/*(Lit1 —L i )el (nl/a(Lﬂ*Li))
ZnOJ n n n n n n 1
- Pa (nl/a (Lt *Li)) 7
n n
’ 1/ . N
sl (/e ty)
=0
= =n~Y roon
I‘;”’Q ] 2 (nl/“(L@ L )) +n!/*(Liy1 =L i )@, (nl/a(Li-H _LL'))
n n n n

Por (nl/"(Lm—L

i
n n

)

We will apply Lemma 2.8 in [12] to prove (5.13). Indeed, we will show that there exists a Gaussian

[%(L?)T 0
Le)?
rondom vector 3 with var(y) = | X7 e [ dependent of Ly such
e
altg
that one has the convergence in law

Then, by application of Lemma 2.8 in [12], there exists a bi-dimensional Brownian motion (I'});

independent of (L;); such that one has the convergence in law (Z",I'"",I'"") = (L,T",T") where I'; =

. [ Logb(XF.0) 0
Jo . i

Let us focus on the derivation of the convergence (5.14). For (u,v,w) € R3, we set

dr', and var(T}) = var(y).

o P Ly) o (paVOLL) 40ty (L))

Anlt, v, w) =B ' + "/ 4wl
o) = B feop WP gl Ly) il Pa(nt/oLy) e
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Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression

about the characteristic function of (I'}*, Z7)
logE [exp(z’ul“'ln’1 + il 4 z‘wZ?)] = nlog X, (u, v, w). (5.15)

Let us study the asymptotic behavior of X, (u,v,w). Using the expansion of the exponential function

near zero and that % and xf;"((;‘;) are bounded we get

) g (paeoLy) +nteLig (L))
INETE Paln/7Ly)

X (u,v,w) =E {e"U’L%] iu Paln

L1 (phnt/oL)) ’

D) v (ealnt Ly 0oLy teLy)
2 \ nl/2 o (nl/eLy)

T nl/2 Qa(nl/oL )

+O(n_3/2)

i, i gpa(nl/o‘L;) il iv (wa(nl/al);) —Fnl/aL;gO;(nl/o‘L;)) iwl
:E[e n] nl/QE gpa(nl/aLl)e ’ +n1/2E Ya(nt/Ly) "
@ [ (@ LN 1w [eaoLs) (a(n¥/oLy) + 0V Lyigh(n/L1)) ]
o 7]E n e i v n n n n e =
2n pa(nt/*L1) n pa(n'/*Ly) Pa(nt/*L1)
v2 Pa(n/2Ly) +n /oLyl (n/oL 1) iwl ~3/2
_ 7E n n n e ﬁ + O(n )
2n ‘pa(nl/aLl)
. . 2
— xM) M p@ LA ¥IC) _ W y@ _ YU )
=X, (u,v,w) + 7 X5 (u, v, w) + pYE X (u, v, w) 5y, (u,v,w) - X5 (uy v, w)
2
- ;)—nX7(L6)(u,U,w) +0(n~%?). (5.16)
First, we have
XD (u,0,w) = e’/ =1 4 p(w)/n+ O(n~?) (5.17)

where ¥ (w) is the Lévy Khintchine exponent of L.

We now focus on the term X,SQ)(u, v,w). Using the results of Lemma 3.1, and the fact that nl/aLl/n
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has the same law as LT, we get

X (u,v,0) = E [‘pa (LYe ZwlL/a] +0(n™")

«

= @&(s)eiﬁds +0(n™h
R

Tl / wals)e' n/ads 4+ O(n~!) using integration by parts formula
R

For the term, X,SS) (u,v,w), using Lemma 3.1 again, it is easy see that

X3 (u,v,w) = [(cpa(Lazo—al—é%;pa(L‘f)) 'wlL/}x] +0(n™)

:/wa(s)eian/sads—l—/scp;(s)einzlﬂ/sads—kO(n1).
R R

Using integration by parts formula, we have

Z’LULO{ iws nl/a ’ iws
B = [ patslertias = "2 [l (e,
R R

Then, we deduce that

jws T iwLDi 2w iw a

/ nl/o = —— n)—=— —— le
/Rgoa(s)e ds nl/aE(e ) nl/aE(e ).

Since L is a symmetric a-stable process then we have for some constant C'(«) > 0

iw_ra —C(a)’ w

‘ «@

E(ent/*™) =€ nl/o
Combining (5.20) with (5.21), we have
’ iw\; B Zw —C(Oé) wa «
/RS%(S)G"U ds = S ’"1/ ’

Taking the derivative with respect to w of the both sides of (5.22), we get

/ s (s)ertiads = — OOl 4 ao(a)eO@lHrEl W
R

- / a(s)entl ds + aC(a)e
R
From (5.19) and (5.23) we can deduce that

X (u,v,w) = O(n™1).
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For the term X,§4)(u, v,w), using Lemma 3.1 again, we have

4 (p/ 9 iwL(f 1
XY (u,0,0) =E f(L?) ent/o| +0(n"")
«

, (5.25)
2 | 2o gy

«
For the term X7(l5)(u, v, w) we have

L L L iwL§

X}f)(u,v,w):E |: ( (11) (9004( )+ i@a( 1))en1/g¢:| _i_O(nfl)
! (L% LY+ L LY ’
n—00, E [(Pa( i) ((Pa( ) + i@a( 1)):| =0 from (3'34)_
Pa(LT) Pa(LF)
For the term, XY(LG) (u,v,w) it is easy to see that
Xéﬁ)(um, w)=E (SD/Q(L?) Ll(pa(L%) wﬁé +0(n™)
SOOc(L?)
) (5.27)
nox, o <%(La) + LY %(L‘f)>

o(LY)

Collecting the convergence of (2(#) (u,v,w))1<i<6, we deduce the convergence
2 / 2 La L La
log E |exp(iul}" 't wF/"2 + in{‘)} %% (v )—U—IE [%(L?)Q] ’E (LPO‘( )+ (1;00‘( )>
2 Pa 2 ¢a(LY)

and thus the convergence in law of this lemma. O

6 Appendix 1: Proofs of Lemmas 3.3 - 3.5

In order to prove Lemmas 3.4 - 3.5, we will establish a continuity property with respect to the
conditioning variable in a conditional expectation. We first recall some technical results on Malliavin

weight given in [6].
6.1 Preliminary lemmas
We recall the Malliavin weight H—n,ﬁn,xo (Vg??”g"’xo) defined in Theorem 3.1. From (3.19), (3.20), we

can rewrite 7—[ ymAn o (Vﬁyn e xo) as,

l/aa Yn B0 47 (1)
nﬁnx n n 6"71"
HY"B” 20 (VY5 °) = ( 1/a8 ,Bn:co,H B() 1) +Rj (Vﬁyl ’) (6.1)
On Bn

n
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where ﬁg(l) is given by (3.21) and

N 7/8717 anen
77Bn,%0 aQY? " n n n Ulfl’ﬁ"
RE (VY )= B [RT5, (1) + Ry (1) +REs ()] = | not (6.2)
n,Bn,T0 Vl 1
8CT}/:[ U"xﬁn - E

1
With U{L,B (Yl /8$0 Ynﬁx()) V1n79 — F(?ZL7B?$07 89?7;7571“0) and ‘/;ln,a' — F(??vﬁ?““(), 80-??7ﬁ7x0) given
by

Uy n2/a / / 2™ (ds, dz), (6.3)

]. 1 n xZ -1,0,T n T
Ve = e [ e (o [ty (7 0) 41 (7 B°®8Y5”Dd& (o4
1
Yo ;(6?)2/0 ()2 (b”(?;"ﬁ’“ 0)0,Y U™ 5) ds+ -7 / / ut™(ds, dz)
(6.5)

and (€% )se[0,1) given by (3.22). Now we recall two technical lemmas given in [6] useful to study the

371Bn,Zo

convergence of the Malliavin weight %?n,ﬁn,zo (VﬁYl ) in the proof of Lemmas 3.4 - 3.5 later.
1

Lemma 6.1. [Clément-Gloter-Nguyen [6]]

For all p > 1, we have
i) ndpY " HE(L) S22 dgb(ao, 6)Hiw (1),

i) nV/9, VTR (1) BT Lt e (1),
where ﬁg(l) is given by (3.21) and Hra(1) is given by (3.24).

Lemma 6.2. [Clément-Gloter-Nguyen [6]]

The following estimates hold:

. \% C

2) Ulil,ﬁ = >

N A 1
i) g = 5+ R (1),

where C' is some deterministic constant and Rgﬁ(l) s a remainder term which converges to zero as
7

n — oo in LP,Vp > 2.
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6.2 Regularity of the conditional expectation

In this section, we prove a regularity property of the conditional expectation with respect to the

conditioning variable.

Proposition 6.1. Let H be a random variable such that E(H)? < co. We assume that there ex-

ists a sequence of random wvariables (H™)p>1 with E(H™)? < oo and such that H" TH—;% H and

L
sup,, |[T(H"™, H"™)||, < co. Then,
_ 2
E [E[my’f’ﬁ"’m] ] —E [E[HILE]] “25 0 (6.6)
and this convergence is uniform with respect to xg.

Remark 6.1. Note that if the random variable H depends on all the measure p then the Malliavin
calculus of Section 3.2.1 is not defined. So we need to introduce the sequence of random variables
(H™), for which the Malliavin calculus of Section 3.2.1 is defined, such that T'(H™, H™) is also well

defined . It is the case, for instance, if H" is a simple functional of u™.

Proof of Proposition 6.1 . First we reduce the situation to the case where the random variable in the

expectation is bounded. Let K > 1 and denote by = — Xk () a smooth truncation function with

Xg(x) =0 for |z| > K
Xi(z) =1 for |z| < K/2 (6.7)
0<Xg(x)<1 for K/2<|z|<K.
For all € > 0, we can choose K large enough such that ||H — HXx(H)||3 < € and then, one can see
that (6.6) is implied by the following convergence, VK > 2

n—oo

— 0.

sup [E [E[%XK<H>|?’§’[3"’“P] — E [E[HXk (H)|L$]]

Zo

2 n—00

Now since E (H"™ — H)® —— 0, it is sufficient to prove that, VK > 2

n—oo

2% 0. (6.8)

sup [E [E[H" Xpe (H") |77 12| — B [E[" 2 (H")| L57]

Zo
We now prove (6.8). First, we define n™" and 77" as follows
T]?—L”’K (?Tﬁml‘o . g{b,en,l’o) ) [HHXK(Hn)‘??ﬁmIO . g{z,@n,xg} ) [HnXK(Hn)‘??yﬂn@O] 7

oL{
nl/a

(6.9)

7 (k) =B o) Tk | = Bl unzg).
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With these notations, we can rewrite (6.8) as

n—oo

2% 0. (6.10)

sup

n, " 2 wi oL 2
B |/ (] - iy B O
o n /o

Using Lemma 7.2 in Appendix 2, we know that:

suplE

Zo

HT/H"’K (?TvﬁmmO . g{l,@n,zo) _ ﬁH" K(Yn ,Bn,xo o §{l’9n7$0)

:|TL—)OOO

and since [n"""| and [7""| are bounded by the constant K, we deduce

n—oo

E[nHmK (?’Tvﬁmxo _ g?76n7$0)2] _ E[ﬁH”vK (??’Bn’xo . g?aenJJO)Z] 0.

sup
o

Now, applying Lemma 7.1 in Appendix 2, with the choice H™ = 1 with the bounded function (ﬁHn’K)2

we get (6.10) and the proposition is proved. O

We can now prove Lemma 3.3, Lemma 3.4 and Lemma 3.5.

6.3 Proofs of Lemma 3.3, Lemma 3.4 and Lemma 3.5

Proof of Lemma 3.3. The proof of this lemma is based on the results in [6] recalled at the beginning
of Section 3.2.1 and Section 6.1. From (6.2), Lemma 3.2, Lemma 6.2 and (3.23), we easily deduce that
RE (Vg Yy oo %) converges to zero in L”,Vp > 2.

From Lemma 6.1 7 —4i) and (6.1) we can deduce the result of this lemma. O

1

Proof of Lemma 3.4. From Jensen’s inequality, we have

n L ﬂ n L 1 -1, Pn &
E \E[nl—”a%nﬁm(aey YOO [Y ) — B 0pb(xo, 0 Hia (VY]]

g
|Y,'f» n,L0

ﬂl n L 1
<E [E n'~ ”a’anﬁn ro (09T 0)*;595(%,9)%La(1)

| |

From Lemma 3.3, the last term converges to zero uniformly with respect to xg. In turn, it gives the

—nN,Bn,T 1
M g (Y} Prowoy ~0pb(o, 6)H1a(1)

uniform convergence

—N,Bn,T 1, Bn,& 1 T n—00
sup n2*2/a1[«:[ (g omro (067 7 oy g On w012 } — —50ub(w0,0)’E [E[HLa( hass 0]} =% .
o
By the same method as above, we also get the uniform convergence
X0 Pn T X0 Pn,T ]' o x-1:Pn,T n—oo
sup [ [B[Fy o000 0,V ") V77 2] = S [B[(L§HL (1) = DT )] | =25 0.
o
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Hence, this lemma will be proved as soon as we show that

n—o0

sup & [ Bl (07T - [Elpz- (0I5 2225 0, (6.11)
sup [E [E[(L?Hm(l) ~1) \?’f’ﬁ"“ﬂ _E [E[(L%Hm(l) ~1) \L‘fﬂ LNy} (6.12)

To prove (6.11), we apply Proposition 6.1 with the choice H = Hre(1) and

H — fo Je P (2 (z)pu"(ds, dz) fol J [(P") ( 1JFQP"(Z)} " (ds,dz)

=H".  (6.13)
|:f0 pr ds dZ):| fo fR dS dz)

From Remark 3.3 i) we get that H" = Hep(1) — ﬁR’fﬂ, moreover E(Hpa(1))? < oo and H" n:—;%
Hro(1). The computation of I'(H"™,H"™) is omitted but reduces to the computation of the I'-bracket
between simple functionals. After some calculus (similar to those in the proof of Theorem 3.2 in [6])
we get that F("z':[”, ’;qn) is bounded by a random variable independent of n and belonging to N,>1L".
Turning to 6.12, we proceed similarly with the choices H = L§Hra (1) and H" = LYH". Note that

using Lemma 6.1 i7) with b(z,0) = 0 and o = 1 we deduce that L}H" H% L§H (1) moreover we
L

can prove that sup,, |[D(LYH™, LYH™)||2 < co. ]

Proof of Lemma 3.5. 1t is easy to see that

E | | 0! VOB My ma0 (0671 V T B R a0 (0,77 V]

1 A1, Pn ]- A1, Pn T
—-E L (L¥Hpa(1) —1) \Y1’6 0} E [Uagb(xo,H)HLa(l)]Yl g 0} ’

<E nl_l/aE[%??,,@n,zo (a@?’?ngn,x())‘??u@n@()]

(E[Hyn PR SR B [@17@1(1) - 1)‘77;,13”@0} ) ’

g

(o)

+E E |:(L1 %Lo‘(l) - 1) |Y;l75n1$0:|

e b(20, 0)Hpo (1) —np o
<n11/aE[Hyn,[3n,m0 (aeylnﬁny 0)‘Y176n7 0] o) |:89 (‘TO )%L ( )’Y1WB ) 0:| > ) (614)
1

(2
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Then using Cauchy-Schwarz inequality

E | | 0!V E iy e (3077 V T

i (Bl (@7 oo - [ D = o) )

o

< [E<( VOB e (077 TT 7)) ﬂ :

24 1/2
N8, n,Bn,T L¢Hia(l) — 1) —ng, .z
< | Bty @u77 0wy ) - | L= D]
2—2/04 ﬂvﬁn»xo 2 7n7ﬁn7$0 1/2
S E n E ‘%?iz,ﬂn,wo(agyl ) |Y1 X
1/2
" LOH (1) = 1) |* —n o
< |E| E ’Hyn,ﬂn,m(aﬁl’ﬁ"’ oy - EHL (1) = 1) | s, °]
! o
1/2

@0, |2 2 51, Bn,T LY¢Hra(1) —1 2
Hf" ,Bn T (89Y1 6”’ 0) >:| E ‘ ?n ,BnsT (a Y B’,“ 0) — ( 1 L ( ) )
1

g

—_ |:]E <n22/a

Furthermore, from (3.25) we easily deduce that (6.15) converges to zero uniformly with respect to xo.

(6.15)

Similarly, we also get that
LY Hro ,Bns — Bn,s »Bn, Opb(z0,0)H o Bn,
B | [ | RO 7 s | (0Bl (0T} )T} ] - B [enttsn o] ) |

tends to zero uniformly with respect to xg. And then, we can conclude that (6.14) converges to zero

uniformly with respect to z¢. In turn, it gives the uniform convergence

sup E|: 1— I/QE[H—n Brro (89Yn Bn7$0)|y711w5n7330] [H*n Brr0 (8 Yn ﬁn:x0)|yn anxO]:| —

zo

~E[E [ L e ) - 077 B [ Zoubten 0 0F7 ) || = 0. 610
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On the other hand, we can rewrite

1 —n,Bn, 1 N, Bn,T
E[E L (LOH e (1) — 1) 77 O}E[Uﬁeb(woﬁ)%m(l)’Y16 0”

1 1 1 —n,Bn,T 2
= E [IE (U (EfHLe (1) = 1) + =~ Ogb(o, O)Hie (V[V} 0)]

1
o

- [&( <L?%La<1>—1>—iaebm,emLa(l)w’fﬁ“’“)r ~ (617)

Then, the lemma will be proved as soon as we show that

1
o

E [E < (LM (1) — 1) + %agb(.xo’ 0)H e (1) ’Y?Bn%)] 2

B (5 e ) - 1 = Zounten. 0)1se 1) )?’f’ﬁ"’“)r (6.13)

o
is uniformly convergent with with respect to g to

E [E (1 (Lo pa(1) — 1) + éagb(mo,G)HLa(l) ‘L%)]z

o

1 1 2
- [IE (O_ (L§Hea (1) = 1) = ~Oab(wo, 0)Hro (1) ‘ Li"ﬂ . (6.19)
We end the proof by using Proposition 6.1 with % = L$H e (1) 4 dgb(xo, 0)Hra (1) and H™® = LYH" +

dgb(0, 0)H™ where H™ given by (6.13). O

7 Appendix 2

The aim of this section is to show that the functions an’K and ﬁ”n’K defined by (6.9) are close in some
sense. The idea is mainly based on [5, Proposition 9, p.2348], however we need a more technical study

since a € (0,2) and the function b is not assumed to be bounded. Our first result is the following.

Lemma 7.1. Under the assumptions of Proposition 6.1, for all bounded function h, VK > 2, there
exists a constant Cg > 0 such that

oL§ Ck
T < T e

B X (V] = 0] = BIH" X (H")h(

and the above estimate is uniform with respect to xg € R and B € Q, for any compact set QQ C

R x (0,00).
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Proof. Since H" X (H") is bounded and P(L? # L§) < € [see Lemma 3.1] it is sufficient to show that

oL}
i)

] [ e (MR — 0]~ BIH e (M T D)]| < Sl (7.1)

We now prove (7.1).
Let us denote H™X = H" X (H") and H any primitive function of h. Using the integration by parts

formula (3.14), we have

E {h("L/l YH™ K] ~E [H(

oL? K
H o " Hn 72

where H( oLy )(H“K) is given by (3.17), namely here
nl/c

On the other hand, we have

1 ! X-P,T n,0,x
_ / [b(yf’ °.0) — b(c™ 0,9)} ds
0

n

Y n,8,T0 _ gn,@,mo i UL?
1 1 nl/a

< 1 ! b/ ?’nvﬁu$0 nexo d < b/ Y”B$O ’I’Lexo d 1 ! L’fld
S 16 |oo | Y s |ds H [lool — o — 1/al presyel) A o L¢|ds

Applying the Gronwall’s inequality, for C' a positive constant, independent of n and K,

n
‘ﬂﬁzo - n0mo - ULl

C 1
el < e /O o L7|ds. (7.3)

Using that the function H is globally Lipschitz with a Lipschitz constant ||h||~, we deduce from (7.2)

that In
‘E {H"th(UI ! )] ~E [H(Yl VP 0oy (H"’K)] ‘
/a (Z)
o " (7.4)
o n n,
g‘ 141/ Ao H |Lg|dsH UL/”)(H K)H

Y?ﬁ’mo —phryH aLn (H™5)] using successively the self-adjoint property of

Now we compute E[H ( (o
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the operator L, (3.10) and (3.17), to obtain an I.B.P formula in a reverse direction:
E[H (Y77 — 00y

[ e [ LY
E|H Y”:ﬁ@o n,0,x0 Hn’K g EL ( l/a )Hn K H™ K:;/a
o 9N L S ey ) pije ety orp k- T(7LL oIt
L I( )y n I'( L) I(

nl/a? pl/a nl/a? nl/o nl/a? nl/a

g | ABHEET Gt S - BT - GO L) — L (VT - ) S e
- oLl oL}
i I(Cres pi7e)
i oL —7,8,20 0, 770,20 0,
—-F Hn’KF< (Yl _giﬂ CEO)) —F ’Hn’Kh(Ynﬂ’mO— n,@,xg) (nl/a7Y —§IL x())
= r(oLl oLt = 1 51 r(oLl oLt
L (nl/oﬂnl/a> (nl/a7m>
(7.5)
Putting together (7.4) and (7.5) we deduce,
oL} 5, 9
B[N K(TEL)] — BT — )]
oC n,K ! n
_(W)H HooHH(:lL/{;)(H ) ; |L¢ |ds 1
oLl n,B,x0 n,0,x0
B, 0, I( 76> Y1 -5 )
+HE [|H YT - ) ¢ -1
F(nl/a7 nl (x)
oC 1—\( oL} n 8,70 B gn,@@o)
1/a7 1
e T R TN
/e 1 (nl/Oz?nl/a) 1
LY on,B,z0 n,0,x
C Hl o (T Y - ")
< Sl [ || 7w N | s 1S bl |2 S
n o [t ) ll o (2, ZA) 1
" 13
(7.6)
Hence the proposition will be proved if we show that sup,, SUPse(o,1] Ifn’s) < o0 and sup,, nlén) < 0.
Step 1: we show that sup,, sup,cp Ifn’s) < 00.
We can write from (3.16)
L
Moo () = 2 i e (UL? (oL UL?)> | T(EE HmE)
747 - oL} oL} oL} oL 1/a’ 1/a’ 1 oL? oL?
(o) P mk) Tk k)2 A/t atferalie ] pnk S0 g
_ e [ 2Ly P P T ) D(LY,H™)
o | T(,Ly) Dy, Lyr TR (g L) ]

Now, let us recall that from (3.2)

// ™ (dt, dz) + // ") (dt, dz),
|<1 |z|>1
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then,

7y g (" By L] < —H oy (H™E) / / )(dt, dz) (7.8)
nt/e () |<1
| -TH L (1) / / (2™ (dt, d2) (7.9)
nt/e () 0 Jiz|>1
First, we consider the expectation of the right-hand side term in (7.8), we have:
IE| 7 H"K// dtdz)]
z|<1
2] 1/2 07 1/2
< / / ) (dt, dz) E (f?—l oLn (HVE )) by Cauchy-Schwarz inequality,
| ‘<1 n /a ( )
T ) 1/2 . 971/2 . 971/2
= 2 dzdt E(——H owr (H™F <MI|E(—+H, op (H™E
/0 /l;'glz |Z‘1+a & nl/a (nll}la)( ) - ’I’Ll/a (nlL/la)( )
] (7.10)

where M is a deterministic constant.

Furthermore, from (3.13) we have |T(L}, H™¥)| < 1“(3'-["’K,’H”’K)l/2

(L}, LY)Y? and from (7.7),

convexity inequality, we get

2 n\qn,K n,K 2 n, K n, K
o —2L(LY)H™ H™ L(H™",H™)
H oL H’n,K <9 1 T TL’F n,Ln SR sy
[nl/a b )] 8 K oLy ranoe 1”) RN
(7.11)
Then, we can deduce that
2
o
E(|—=H ey (HF
< nl/o (nlL/a)( ) >
2
—2L(L})YH™E HE D(H™M K H K
<2E nn — (L7, (LY, LY)) R2E | ——
< I'(LY, LY) D(Ly, L2 b (LY, LY) (7.12)
n, 175
Our aim is to prove that I{'; and I7', are bounded independently of n.
For I7',, we see from (3.15) and Remark 3.3,
DLy, T(LY, Ly)) — 2L(LY) 7 1
—_ = n 1 = n 1 n . 1
rop Lty W= R, (719

From the crucial fact [|H™¥ ||, < K and from (3.20), (3.23), Remark 3.3 we can deduce that I}, is
bounded by a random variable independent of n (but depending of K).
For I, from (3.8) and (6.3), we have

. ]_"(an,K’ /Hn,K) (an K an K) F(/Hn’K, an,K)
52=E<F@nUQ>ZE ™ =E| ’ :
14 fo Sz P (z)pM(dt, dz) In f‘z|<1 2Au(dt, dz)
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Now since H™X is a smooth Malliavin functional, using the chain rule property (3.11) we have
D(HWE, 1KY < & T(H™, H) (7.14)

where ¢k is any upper bound of the derivative of x — z Xk ().

Then we deduce that

D(H", H") >'

I{L_QSC%(E<
fof <17 4p(dt, dz)

-1
From the assumption on I'(H"™, H") in Proposition 6.1 and since (fol f|z‘<1 2Ap(dt, dz)) belongs to
Np>1LP [see [5, the proof of Theorem 4], we can deduce that I7, is bounded independently of n. Thus,
we get that the expectation of the right-hand side term in (7.8) is finite.

Turning to the expectation of (7.9), we have:

1
E %H oo (H™F) / / 2| ™) (dt, dz)
i/ (Ce) 0 Ji>1
o 1 1
=E||=H oy (HVF) / / |2 ™ (dt, dz) + / / 2| ™ (dt, dz)
nt/o () 0 Ji<|z|<2 0 Jz[>2
<E +E

SHﬁnWK// 2™ (dt, d2)
n w1/ 1<]2|<2

By a similar estimation technique as for the bound of (7.8), we get that

1
supIE ‘7—[ oLT H"K)/ / 2™ (dt, dz)|| < Cx < +oc.
(1/s 0 J1<lz[<2
We now show that
sup e T W e (H™E) / / |2|p™ (dt, dz)|| < Cx < +o0. (7.15)
i/ e j2]>2

In fact, from (7.7) we have

o 1
——H n (HE / / ") (dt,d
a <nf/1,>( )0 Mﬂlz!u (dt,dz)

—2L(LY)H™K HK ‘ ‘ (Lp, 1) ’ / /
<E e+ — (L}, ['(LY, LY ) zu(” dt,dz
R ooy TR+ 7 2 )

E
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SaL(LpHK K 1
~E A+ rr LT D) [ el
‘ I(Ly, LY) DLy, Ly T e
Im.
) - (7.16)
Ln HTL
+E ' 1;1 o) ‘// 2| ™ (dt, dz)
(LY, LY) |2[>2

To prove (7.15), we just have to show that I’ and I, are bounded independently of n. For I3, we
recall here (7.13),

ULy, D(LY, Ly)) — 2L(LY) 1

_ — H 1)+ ——R™ .(1).
Py e gy o Wt R

Then from the boundedness of H™X, we get

n ! n n 1 ! n
] [ [ el R [T ><dt,dz>]
0 J|z|>2 n 0 J|z|>2

From the proof of Lemma 3.6 in [6], we can deduce that ‘ﬁg(l) fol f|2\>2 |2 ™ (dt, dz)‘ is bounded by

I'y < KE + KE

a random variable independent of n and belonging to My,>1 L.
Using Cauchy-Schwarz inequality and (3.23), we get

o\ 1/2
IRT 5(1) 1/a/ /|>2!z\u (dt dz)] < [/ /Z|>2 et dz)] (7.17)

Now from p™ (ds,dz) = ™ (ds,dz) + v™(ds, dz), by convexity inequality, we have

(n Z| ~(n
/ /||>2 Tk (ds dz] <2E / /||>2 Tk (ds,dz) / /|Z>2 nl/a )(ds dz)]

<2E// 1 // 12 dzd
zas zas
2<|z|<ant/a N2/ 21T 9<|z|<ant/a DM/ |Z’1+a

nt/e
< - < + ) where C is a deterministic constant.
n2/e \ n n

+2

+2

(7.18)
From (7.17) and (7.18), we deduce that the left-hand side of (7.17) is bounded by % Then we get
that sup,, I3 < 400 .
For I7,, from the boundedness of H™X (6.3), and the fact that
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1/2

L(LY, H™K) < T(HmE 18 D (LY, L7) Y2 we have:

/2
(anK anK >1 / / (n)
'y <FE |z| '™ (dt, dz
i (‘ I(Ly, LY) 2|2 | )
[ 1/2
(Hn,K HnK "
=F Ir 1/2/ / 2| ™) (dt, dz)
[ s an] "o S

1/2

n, K nK
<E G i 2/ / 2| ™) (dt, dz)
‘fo s2 7 ) (ds, dz / -2

Applying the Cauchy-Schwarz inequality, we have

//IZ>2 (d, d2) //IZ>2 (s, 2 </ /||>2|Zm (dt dz)>' (7.19)

1/2
/ / | 2| ™ (dt, dz)
‘fo ‘>2,z pu™ (ds, dz |21>2

1/2
<E \F(H”’Kﬂ”’K)}l/Q{ [ /. 2u(”)(dt,dz)} (720
z|>

[ ] dtdZ]}”.

1/2
From {E [fol f\Z|>2 p™ (dt, dz)} } < Oy where C} is a constant and the fact that T'(H™%, H™K) ad-

We deduce

n,K nK
NG

S {]E HF(HTL,K’H'IZK 1/2{

mits finite moment, independently of n (but depending of K'). Then, (7.20) is bounded independently
of n and I, is proved. Hence (7.15) follows.

Step 2: We now prove sup,, nl§ < C* where C* is a positive constant.

We have
F(le;la 7 Yn Bro g?,H,xO) B 1 1 F(ZII;Z” (?Zﬂ,ﬂﬁo’ 9) _ b(ggﬂ,aro’ 9))d
(L aL;L) T al, I(ZLL oI 5
nl/a?r pl/a nl/a?) pl/a
1 16| oo oL} —npB.ao
S o oIm oITy F(nl/a Yo ds.
I'(C7es 7e)
Using that
n 1/2_ 1/2
N2 V) < mt, 2 et vt
_ 1 1/2
F(Y 7/8:930’Y;L7ﬁ’10) / < MF(YTBIO lelvﬁy-TO) /

1 n 1/2
r( i yrban? oy p(et oLyt
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for some constants M and M, we can easily deduce that

oL? n,8,T0 n,0,x
F(nl/imyl - S 0) c*
(el oLt -1 = n’
(nl a) pl/a )
for a positive constant C*. 0

Lemma 7.2. Under the assumptions of Proposition 6.1, for any compact set Q C Rx (0,00), VK > 2,

there exists a constant cx > 0 such that

< K (7.21)

H K (?’If,ﬁyxo n,0, .1’0) _ ﬁHn’K (?’fvﬁvxo _ gn,971‘0) -
1

sup SH 1

z0,€Q

g
Proof. We estimate the L!- norm appearing in (7.21) by duality. Let 5 : R — [—1,1] be a measurable

function, we evaluate:

n,K =—=n,f3, _ K Py ) 3
B [l (70— ) — (75— B - o]

n,K 7”757x TLH.Z‘ ) nﬁx n,G,x _qn,K O-La — O'La
< B[ (7P = OB - )] — B 7 (DB
nt/ nl/
_ami , 0Ly — oL} _an,K —n,B,x n,0,z .8, n,0,x
B [P CERBETD)| - B [ 710 - oy - o)
HK [ =n,B,T0 - n@ Y ava e _ nbxoy| _ K ULl = Ck
< e [0 (7 BT - gt g e G hE D [+ ok

where we have used Lemma 7.1 with the choice H" = 1, K > 2 and the choice h = ﬁﬂn’KB, recalling

that |[7"" KHOO < K. From the definition of 77" K(nlL1 ) and nHH’K(Y?’B’IO — gf”’a’xo) as conditional

/o

expectations, we have:

n,K 7”767x n,v,x0\ 7’”’7673; n,v,r —HE ULa ) ULa
B [ 7 - rp e - o] - p [ ) |
n X n x n n\ o a C
= E [H" X (BT — ) —E[H X (H )ﬁ(nw] <==

where we used Lemma 7.1. This gives,

n, n, C
sup B | (0 i) gt (7 o BT ) ] (14 K)—=
[[8]loo<1
and we deduce the result of this lemma. O
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