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LAMN PROPERTY FOR THE DRIFT AND VOLATILITY
PARAMETERS OF A SDE DRIVEN BY A STABLE LEVY PROCESS

Emmanuelle Clément * Arnaud Gloter | Huong Nguyen *

November, 06 2017

Abstract

This work focuses on the Local Asymptotic Mixed Normality (LAMN) property from high
frequency observations, of a continuous time process solution of a stochastic differential equation
driven by a truncated a-stable process with index a € (0,2). The process is observed on the fixed
time interval [0,1] and the parameters appear in both the drift coefficient and scale coefficient. This
extends the results of [5] where the index « € (1,2) and the parameter appears only in the drift
coefficient. We compute the asymptotic Fisher information and find that the rate in the LAMN
property depends on the behavior of the Lévy measure near zero. The proof relies on the small
time asymptotic behavior of the transition density of the process obtained in [6].

MSC2010: primary 60G51; 62F12; 60H07; secondary 60F05; 60G52; 60J75
Keywords. Lévy process, Stable process, Malliavin calculus for jump processes, LAMN property,
Parametric estimation.

1 Introduction

Modeling with pure jump Lévy processes plays an important role in many fields, especially in mathe-
matical finance (see for example [3], [16], [20]) and parametric inference for such processes is a currently
active subject.

In this paper, we are concerned with parametric estimation of a stochastic differential equation
driven by a pure jump Lévy process, from high-frequency observations on a fixed observation time.
More precisely we consider the statistical experiment (R"™, B, (Pﬁ) peocr?) corresponding to the ob-

servation of a Lévy driven stochastic equation at discrete times (X f )i<i<n, solution of

n

t
Xf:x(ﬁ-/ b(Xf,Q)ds—i—aLt, t €[0,1],
0
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where (Lit)ye[o,1) is a truncated a-stable process with exponent a € (0,2) and 8 = (0, o) € Rx (0,00)
is an unknown parameter to be estimated. We prove in this work that the Local Asymptotic Mixed
Normality property (LAMN) holds for the parameter 5. The LAMN property has been introduced
by Jeganathan [14] [15] to extend to the markovian case the LAN property introduced in the pioneer
works by Lecam and Héjek (see [21], [10]) in the i.i.d. case. This property permits in particular to
identify the optimal estimation rate for the parameters 6 and ¢ and the asymptotic Fisher information.

Parametric inference and LAN property for pure jump Lévy processes based on high frequency
observations have been investigated in several papers, see for example Ait-Sahalia and Jacod [1] [2],

Kawai and Masuda [17] [18], Masuda [22]. In particular, in [22], the LAN property is established and
estimators are proposed for the parameters (6,0, a) in the model X; = 6t + oLy, where (LY) is an
a-stable process. Ait-Sahalia and Jacod [1] [2] considered the model X; = oL§ + 0Y; where (Y;) is

a Lévy process, independent of (L§') and dominated by (L§). More recently, Ivanenko, Kulik and
Masuda [12] proved the LAN property for the parameter (6, c) in the model X; = 6t+oZ; + Uy, where
Z is a locally a-stable process and U is an independent and less active process. In all these works, the
increments (X: — Xi-1)1<i<p are independent and the transition density of the discrete time process
(Xi)i<i<n 18 almost enxplicit. Extensions to stochastic equations driven by pure jump Lévy processes
are not immediate and require a different approach since the transition density of the Markov chain
(X i)i<i<n is unknown. Moreover they involve a random asymptotic Fisher information and lead to
the LAMN property. Concerning the parametric estimation of a stochastic differential equation driven
by a pure jump Lévy process from high frequency observations on a fixed observation time, we can
mention the recent paper by Masuda [23] where some estimators of the parameters (6, 0) are proposed
for the general equation

t t
X, =z —|—/ b(Xs,0)ds —|—/ c(Xs—,0)dLs,
0 0

where L is a locally a-stable process, with « € [1,2). However in that case the asymptotic efficiency
of the estimators is not yet establish and to our knowledge, the only result in that direction is given in
Clément and Gloter [5], where the LAMN property is proved for the estimation of the drift parameter
0 for the process solution of (2.1) (Wlth o= 1), in the case a € (1,2). They show that the LAMN
o (uu)) du, where
©q is the density of the standard a-stable distribution with characteristic function u — e~ (@Ml
Based on the main ideas of [5] and using the results of [6], we extend in the present paper
these results to a € (0,2) and prove that the LAMN property holds for the parameters (6,0)

property is satisfied with rate r, = nz~w and information Ty = fo pb( X206 )2ds [ £

: ni w0 . . . In O 1
with rate r,, = . | and information matrix 7 = where 717 = =57y and
0 n2 0 I 7
= Jr (%(u;;%du. The proof is mainly based on the L?-regularity property of the transi-

tlon den31ty (see Jeganathan [14]) and on Malliavin calculus (see for example Gobet [8] for the use of
Malliavin calculus in the case of a diffusion process). The L?-regularity property is established here
by using the asymptotic behavior of the density of the process solution of (2.1) in small time as well
as its derivative with respect to the parameter, given in [6] and based on the Malliavin calculus for
jump processes developed by Bichteler, Gravereaux and Jacod [4]. It also requires a careful study of
the asymptotic behavior of the information matrix based on one observation of the process, this is the



subject of Section 3. This paper contains also an independent and interesting result stating a conti-
nuity property with respect to the conditioning variable in a conditional expectation (see Proposition
6.3).

This paper is organized as follows. The main results (asymptotic expansion of the log-likelihood
function and LAMN property) are stated in Section 2. Section 3 studies the asymptotic behavior of
the Fisher information matrix based on the observation of X f (as n goes to infinity). The proof of
the main results are given in Section 4 and Section 5. Finalylly, Section 6 contains some additional
technical proof required to establish the results of Section 3.

2 Main results

We consider the process (Xtﬁ )tefo,1] solution to
t
XP =z +/ b(XP,0)ds +oL; te]0,1], (2.1)
0

where (L¢);e(o,1] is @ pure jump Lévy process defined on some probability space (£2,.A,P) and we are
interested in the statistical properties of the process (Xf ), based on the discrete time observations
(X f/n)izo,_._n. We assume that the following assumptions are fulfilled.
H;: (a) The function b has bounded derivatives up to order five with respect to both variables.
(bi) The Lévy process (Lt )ye[o,1] is given by Ly = f(f f[_l’l} 2{p(ds,dz)—v(ds, dz)}—i—fg ‘/‘[_1’1]0 zf(ds, dz)
where 1 is a Poisson random measure, with compensator T(dt, dz) = dt x F(z)dz where F(z) is given
on R by F(z) = M%HI‘Z#OT(,Z), a € (0,2). We assume that 7 is a non negative smooth function equal
to 1 on [-1,1], vanishing on [—2,2]¢ such that 0 < 7 < 1.
(bis) We assume that Vp > 1, [ :/((;J)) )p T(u)du < 0o, [
These assumptions are sufficient to ensure that (2.1) has an unique solution belonging to L”,Vp > 1,
and that Xtﬁ admits a density, for ¢ > 0 (see [24]). Moreover, it is proved in [6] that this density is
differentiable with respect to .

7 (u) |P

7(w)

7(u)du < oo.

Remark 2.1. Our assumptions on the Lévy measure F' are quite restrictive and reduce the generality
of our results but simplify the proofs which nevertheless remain still technical. There are mainly two
important properties required on the Lévy measure in our approach. First, since our method is based
on Malliavin calculus, the LP—bounds for the tails of the Lévy process are crucial to ensure that our
process belongs to the Malliavin space. Secondly, the stable behavior of the Lévy measure around
zero is also required to make the rescaled process (nl/"‘Lt/n) close to the a-stable process (L$*). The
introduction of the truncation function T permits to address both issues and to avoid more technical
proofs. In particular it permits to ensure that the process (nl/ “Ly/n) has no jump of size larger than
2n/® and consequently makes easier the control of the asymptotic behavior of the Malliavin weights
(mainly studied in [6]). Moreover the exact stable behavior of the Lévy measure around zero (T =1)
gives the equality between the rescaled process (nl/aLt/n) and the a-stable process (L), and also the
equality of the corresponding Poisson measures, on a set A, whose complementary has small probability
(P(AS) < C/n, see Lemma 3.1 below). This property is repeatedly used in our proofs (see for example
the proof of Theorem 2.3) and is also essential to study the limit of the Malliavin weights in [6].



However, since the information matriz obtained in the LAMN property (established in Corollary
2.4) does not depend on the function T, this suggests that the same result probably holds for a more
general Lévy measure even with no integrability conditions on the large jumps and that the truncation
or integrability assumptions should only be introduced in the proof sections. To that end, a possible
extension of our paper (and also of [6]) could be to replace T by a more general function g such that
9(0) = 1 and satisfying (bi;), but up to now we do not know how to obtain the key results established
in [6] in this more general context.

Before stating our main results, we introduce some notations which are used throughout this paper.
For a vector h € R?, h1 denotes the transpose of h, and |h| denotes the euclidean norm. For a function
f defined on R x R? depending on both variables (z, 3), here 8 = (6,0)” € R x (0, 400), we denote
by f’ the derivative of f with respect to the variable z, by dyf the derivative of f with respect to the

Oy f
We denote by pf /n(x,y) the transition density of the homogeneous Markov chain (X 74.6/n)7;:07“_n, by
(Fi/n)i the o-field such that F;/, = U(XSB, s<i/n)=o0(Ls,s <i/n) and by P? the law of the vector
(X%, ..., X7) on R".

Our first result is an asymptotic expansion of the log-likelihood ratio.

0
parameter 0, by O, f the derivative of f with respect to the parameter o, and Vg f = ( 6f>.

1 1
-1
Theorem 2.1. We assume that Hy holds. Let r, = <n2 1), then for every h € R?
0 n-z
Pt s By _ T L L
log W(Xy s X)) =R Jn(B)2NR(B) — Qh In(B)h + op(1), (2.2)
with
n—1
Tn(B) =10 > E[&n(B)E (B Fisn) T,
=0

n—1
=0

aepi 5
(1)

p n

gz,n(ﬁ) =
2 (e,

P

We can precise the asymptotic behavior of J,,(5) and Ny (). Let ¢, be the density of L{, where
(L{) is a centered a-stable Lévy process whose Lévy measure is ‘Zﬁﬁh 2|20- We define the following
quantity which will be the random asymptotic information of the statistical model:

Z(B) = (I(l)l 122) (2.3)

4

B 3
3= @ ‘

o

]
1
n



where

1 1 / 2 1 o / 2
I = / pb(X7,60)2ds x / Palw) g, gy = L x/ (Palu) *upau)”;,
o Jo R ¥alu) o? R Pa(u)

Remark 2.2. i) From [2] and [12], we know that the parameter 0 of the process X! = 0t + Ly is

wa(U)
Po(u)

X7 = oLy is estimated with the usual rate n=*/? and Fisher information f

estimated with rate n>~= and Fisher information fR du and that the pammeter o of the process

2
‘)pt?so)a( W) .
i1) It is worth to notice that the information does not depend on the truncation function T, but depends

on « through the Fisher information of the translated «-stable process and multiplicative a-stable
process.

Theorem 2.2. With the notations and assumptions of Theorem 2.1, the following convergences hold:

Jn(8) === I(B) in probability, (2.4)
Ve > 0, ZE |:|Tn£zn )2 e, n(5)|>e}] 70, (2.5)

Theorem 2.3. We have the convergence in law

T(B)2 Nu(B) = rnzam B) = N'(0,Z(8)) (2.6)

where the limit variable is conditionally Gaussian and the convergence is stable with respect to the
o-field o(Lg,s < 1).

The stable convergence in law (2.6) and the convergence in probability (2.4) yield the convergence
in law of the couple (J,(8), Nn(5)):

(Jn(B), Nu(B)) = (Z(B), N),

where N is a standard Gaussian variable independent of Z(/3). As a consequence of the asymptotic
expansion given in Theorem 2.1 and the preceding limit theorems, we deduce the LAMN property.

1_
n2

1
a0
Corollary 2.4. The family (Pg) satisfies the LAMN property with rate r,, = ( 1), and
0 2
information Z(3) given by (2.3).

The rate of estimation of the drift parameter depends on « : when « tends to 2, the rate is
extremely low, however, when « goes to zero, it becomes high, especially for a < 1 where it is faster
—1/2_ On the other hand, the rate of estimation of the volatility parameter o is
and does not depend on a.

Before proceeding to the proof of these results, we discuss some extensions of our model that are
not addressed in this paper.

than the usual one n
n—1/2



e The Malliavin calculus used in this paper allows to consider the more general process

t t
X} =z +/ (X2, 0)ds + / (X2, 0)dLs,
0 0

and based on the results given in [4] the Malliavin operators have explicit expressions. But the
difficulty relies on the control of the Malliavin weights. Although explicit, these weights contain
a lot of cumbersome terms especially the iterated weights involving the derivatives of the process
with respect to the parameters 6 and 0. These iterated weights (and their asymptotic behavior)
are crucial to obtain the asymptotic behavior of the derivative of the transition density in small
time (see [6]). The restriction to a constant coefficient ¢, assumed in this paper, permits to
handle all these terms successfully. The theoretically possible extension to a general coefficient
is still open.

e Unlike the papers [1], [2] and [12], our model does not contain an additional noise. Based on the
structure of an additive model, the key point in these papers is that the density of the observed
process can be written explicitly as a convolution between the Lévy process and the additional
noise. Since we are dealing with a stochastic equation, this approach does not work anymore in
our case and the introduction of an additional noise complicates significantly our model study.

e In contrast to the diffusion or jump-diffusion case, the interesting particularity of a pure jump
process is that we can estimate the drift coefficient observing the process on a fixed time period
[0,7]. It is important to stress that the estimation of @ is impossible without letting 7' go to
infinity if (L;) has a Brownian component. This is why we focus in this paper on the estimation
of (6,0) from high frequency observations on the time interval [0,1]. The long time estimation
problem (nh, — oo, where n is the number of observations and h,, the step between two
consecutive observations) is also an interesting problem, but substantially different, that can
certainly be treated with our methodology under ergodicity assumptions.

The remainder of the paper is devoted to the proofs of the main theorems above. The first step
of our approach consists in studying the asymptotic Fisher information matrix by using Malliavin
calculus techniques.

3 The asymptotic Fisher information matrix in small time

3.1 The asymptotic properties of the Fisher information matrix

Our main concern in this section is to study the asymptotic properties of the Fisher information carried
by the observation of the random variable X In We recall the definition of the Fisher information

matrix: 5 5
12,20 n,0,Z0
T80 (Iﬁ T3 ) (3.1)
Igﬂyﬂfo Igéﬁﬂﬂo
where
2
5 ', (20, Xlﬁ/n) 5 e’ (20, Xl’B/n) 991 (0, Xlﬂ/n)
Iﬁ " =K gn B , I?Q’ 0 =E gn B 5n 3 )
pl(xo,Xl/n) p;(d’UOle/n) pl($o,X1/n)



2
80’1)51 (Io,Xf )
1 /n
and 132”3 T — | ("

pﬁl (IO’Xf/n)
n

The following proposition gives the asymptotic behavior of the Fisher information based on the ob-

servation of the random variable Xf n 8 tends to zero.

n—oo

Theorem 3.1. Let (8,) be a sequence such that B, —— [, @ C R x (0,00) a compact set and

1 1
n2 « 0
Tn = then
0 n-

a(w)?
n—00 86’6 an f]R fo du 0

/u2

NI

i) nrpIPnvor,

and this convergence is uniform with respect to xg.

i) Vp>1, Sup, e, E

As a consequence of ii) with p = 2, we deduce immediately sup, geq s, n2-2/ O‘Iﬁ’ﬂ "< oo,

SUDy, Be0 o L29 1070 56 and from Cauchy-Schwarz inequality SUD,, Be0.z0 nlfl/aﬁéﬁm < 00.

Remark 3.1. From Theorem 3.1, we see that the Fisher information contained in one observation is

of magnitude n~'r % and the Fisher information based on n observations is of magnitude r,, 2. This

is consistent with the fact that 7, is the rate in the LAMN property stated in Corollary 2.4.

The rest of this section is devoted to the proof of Theorem 3.1.

3.2 Proof of Theorem 3.1

The proof of Theorem 3.1 relies on a representation of the score function using Malliavin calculus
initiated by Gobet (see [8] and [9]) and adapted to our context in [6].
This representation is established after a rescaling that we describe in the next subsection.

3.2.1 Rescaling and representation of the score function using Malliavin calculus

We consider p€(dt,dz,du) a Poisson measure on [0,00) x R x [0,1] with compensating measure
ve(dt,dz, du) = dtl|; |20 |Zﬁ%du and for n > 1, we define the Poisson random measure ,u(") by

VA C [0,00) X R, ,u / // tZl{u<T(
[0,00) [0,1]

We note that the compensator of (n) dt,dz) is o) dt,dz) =dt x T 1, —dz_.— qt x F,(2)dz
K |10 T2+

and the compensated Poisson random measure (™ (dt, dz) = u(™ (dt,dz) — v™ (dt, dz).
We define the process (L) by:

¢ t
Ly _/ / 2™ (ds, dz) +/ / 2™ (ds, dz). (3:2)
0 J[—nl/anl/a] 0 J[-nl/anl/a]®

7

)y (dt, dz, du).

z
nl/a



We observe that the process (L;/,) (recall Hi(b;)) equals in law (nll/a L}) since the associated Poisson

measures have the same compensator. Moreover, when n grows, we can show that the process (L}')
converges almost surely to an a-stable process defined by

t ¢
Ly :/ / zfi(ds, dz) +/ / zu(ds, dz), (3.3)
0 J-1,1) 0o J-1,10°

where p is the Poisson random measure defined by,

VA C[0,00) xR, pu(A) :/ // 1a(t, 2)pf(dt, dz, du).
[0,00) JR J[0,1]

The compensator of p(dt,dz) is v(dt,dz) = dt x 1\z|;ﬁ0|zﬁ% and we note the compensated Poisson
random measure fi(dt,dz) = u(dt,dz) — v(dt, dz).

It is important to note that L™ and the a-stable process L® are defined on the same probability space
(this property is crucial in our method to study the convergence of the Fisher information I"’67“”0).
The connection between L™ and L® is given more clearly by the following lemma.

Lemma 3.1. [lemma 3.1 in [6]] On the event A, = {u({(t,2)[0 <t < 1,]z| > n'/*}) =0}, we have
M(n) = W, L:L = L?,
and P (A,) =1+ O(1/n).

Furthermore, let (fn)nen and f be measurable functions from Q x [0,1] xR to R such that there exists
C with P(C) =1 and Yw € C, ¥s € [0,1],¥|z] > 1 fa(w,s,2) = f(w, s, z). Then

1 1
/ / Fulwy 5, 2)™ (ds, dz) "2 / / F(w, 5, 2)ulds, d2).
0 Jz[>1 a.s. 0 Jz|>1

n—o0

Moreover, we have sup;cjo 1y |Ly — L{'| 0.
We now consider the process (??ﬁ ") solution to the equation
_ 1/t
Y g = / Y™ 0)ds + — L7 te0,1), (3.4)
n Jo nl/a
From the construction of L™, (Xg)te[o,l] equals in law (??’B’mo)te[&”. Let ¢™#70 be the density of
7?’5 "™ then the connection between the densities of X i and ?711’6@0 is given by
P (@0, 2) = 0 (). (3.5)

We remark also that (??ﬁ "), admits derivatives with respect to the parameters 6 and o, denoted
by ((‘%Yf )¢ and (&TYtﬁ )i, respectively. With these notations, we have the following representation.



Proposition 3.1. [Theorem 6.2 in [6]]

Let ¢"P be the density of ?711,6,:100 then we have the representation of the logarithmic derivative of
the density as a conditional expectation:

A  yqnho St ()|
L qm nB:%0 on.b, 8,
7 (@0 u) = = () = |l E(Hgnswo (Va1 )Y =u)  (3.6)
pl q qn,,B,acO (U)
with

an ,B8,xq (86Yn ﬁu"EO)

—n,B,T0
H*nﬁx V Y = —n.B.x
o B ) H—nazo(a Y, B, 0)

7/87 aﬁy

The Malliavin weight ’an e (VYT

and o and on Malliavin operators Its explicit expression will be given in Section 6 (see (6.11)) after
some recalling on Malliavin calculus.

°) depends on the derivatives of Y with respect to

3.2.2 Intermediate lemmas

In this section, we study the convergence of the Malliavin weight appearing in the representation of
the score function. The limit of this Malliavin weight brings out an other weight denoted by Hpa(1)
(given explicitly in (6.16)) that permits to represent ¢/, /¢,, where @, is the density of L{, as an
expectation. This representation is not immediate since L{ does not belong to the domaln of our
Malliavin operators (see Section 6).

Lemma 3.2. We have the representation

Pal) _ pr e —
() — B (ILT =u]. (3.7)

The connection between the weights an,ﬁ,zo (Vg??’ﬁ’xo) and Hp« (1) is established in the next lem-
mas. The first lemma shows the convergence of the normalized iterated Malliavin weight /}'lfn 8,20 (V@Y” o )
Lemma 3.3. Let (8,)n>1 be a sequence such that By, 270 B. Then, the following convergence holds
uniformly with respect to xg

1 1/017'{*71&11 (89 ﬁn?wo) la blxo. NHira(l
/Tanan aco(vﬁynﬁnyxo) — 0 n—o00 <O’ 0 ( 0 ) L ( ))

%Yn,ﬁn,zo(agyl’ﬁ"*‘“’) 21" \ L (Lo pa (1) — 1)
1
(3.8)
where LY is defined by (3.3). Moreover, for any compact subset Q@ C R x (0, 00),

p
< Q.

Vp > 1, sup E|[n'/? Tann 820 (VY7 P 0
nnBGQ7x0

The next two lemmas are related to a continuity property with respect to the conditioning variable,
in a conditional expectation.



n—0o0

Lemma 3.4. Let (8,)n>1 be a sequence such that B, —— 3. Then, the following convergence holds
uniformly with respect to xg.

i) 1° 2 EEHpn .m0 (971 P20y 70012 1200, 115020, 0)]2 B [E[Hpe (1) L$]2]
i1) E[E[Hpn om0 (9,Y7 ) VT2 2225 LB [B[L§HLa (1) — LT

n—oo

Lemma 3.5. Let (8,)n>1 be a sequence such that B, —— B. Then, the following convergence holds
uniformly with respect to xg,

nl—l/aE[E [H?n B0 (804774 51@710) ’477/ ﬁnny] [H?nﬂn,wo (aaﬁyﬂn»IO)‘??fyﬁnymO]]
n—00 1 « « «
;> E[E[H e (1)|LTE[LTHLe (1) — 1LT]]. (3.9)

The proofs of the above lemmas are very technical. They are postponed to Section 6. Admitting
these intermediate results, we can proceed to the proof of Theorem 3.1.

3.2.3 Proof of Theorem 3.1

1 1
Proof. i) We need to prove that for (8,) a sequence such that 3, 27 Band 1y, = (n )
0

n_%
we have
1
i gribnoy, noo, (520000, 0 Jy < £ du 0
0 02 fR [pa uzotwa(U)] du

and that this convergence is uniform with respect to xg.
2—2 n,Bn,x0  1—L1 70,8010
A n eIy

1 1, Bn,T0 —
Slnce nrnI Tn = nl*él‘”vﬁ’ﬂyIO Inﬁn,iﬂo
12 22

), the proof of the above convergence reduces to

prove the convergence of each entries of the matrix.
Convergence of 712_2/0‘1?1”8"’%. From (3.6) in Proposition 3.1, we have
2—2/041'77«,571,330 2—2/a nﬁnﬂ»‘o < "Bn,T0 2

1
nzoo, —50b(z0, 0)’E [E [”HLDC(I)\L?]Q} , uniformly with respect to xg, from Lemma 3.4 i),
o

1 L 2

= —50sb(ao, 0)°E [?EL%H from (3.7) in Lemma 3.2.

Convergence of ISQ”B o,
following representation

Pa(u) + upy (u)
Palu)

We remark that from the representation (3.7), we can deduce the

— —uE [(Hze (1) |I§ = u] + 1 = ~E[(L§HLa(1) — 1)]L§ = ). (3.10)

10



Furthermore, combining (3.6) and Lemma 3.4 ii), we have

2
I;éﬁnyx() =E |:E [H?’l’hﬁnyzo (80?71176717750)’?71%/371@0} :| ,

nooo, g
0-2

o(L9) + Loyl (L9))?
ng[W ) + LE gy (LD))

[E [(LYHpa(1) — 1) ]L‘f‘ﬂ ,  uniformly with respect to xg,

ol L9)? ] from (3.10).

Convergence of n'~1/ O‘I?g’ﬁ m*0 We first recall the expression for the Fisher information

0w (w0, X77) 0" (w0, X{7,)

Bn(J:OaX/B;L ) pl (:UO)Xlﬁ/nn)

nﬁmJTO _

)

then from (3.6) in Proposition 3.1 and Lemma 3.5 we have
IO = VORI g (5T )T R M0 (0,72 T 0]
n—oo 1 o a a
"= B [E[HLe ()IL]E[LS e (1) - 1|L)). - (3.11)
On the other hand, from (3.7) and (3.10) we get

(;Dix(L(II) @a(L%) Ll@a(L?) _ « « o «
eolll) (eoll)E MAID)) _ppp ()igl B M) - DR (1)

Combining (3.11) with (3.12) gives

/ / / 2
nl—l/al—gﬁmwo n—oo 12/ (Pa(u> [(Pa(u) +u<po¢(u)]du — % / (p:)[(u)du_‘_ 1/ u((tpa(u)) du = 0,
0% JRr Pa(u) 0" JRr R
(3.13)

where we used the fact that ¢, is a symmetric function, and that the functions under the integral are
odd. This completes the proof of part 7).
i7) Using (3.6) in Proposition 3.1 again and Jensen’s inequality, we get:

Vﬁpl(l‘o,X’B)
E |n/® T"W : E‘nl/QT”H?"ﬂwo(VBYfﬁ P,
D1\ Zo,

and the result follows from Lemma 3.3.
This achieves the proof of Theorem 3.1. O

4  Proof of the asymptotic expansion of the likelihood (Theorems
2.1 - 2.2)

The aim of this section is to prove the asymptotic expansion of the log-likelihood function, stated in
Theorem 2.1 as well as the convergence given in Theorem 2.2. The proof of Theorem 2.1 is based
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essentially on the L2-regularity property of the transition density pf In (x,y). From Jeganathan’s article
[14], the following four conditions A1-A4 are sufficient to get the expansion (2.2) of Theorem 2.1.

o1} 8 vp 9op'} (z,y)
Bn XLWX@ B - 1/2
. Py n n pl(z,y)
We recall the notation & ,(5) = a ;5 and we denote x,(83,z,y) = a"pﬁ (z.9)
L (B B e

Al. L?-regularity

B+r h( B 12 B B 2 T s 2 R
Z]E / ' (X] 1Y ) — D1 <XJ17y> _§h Tan(ﬁ,Xg,y) dy 0.

n

A2.
n—1
Tn(B) =10 Y E[&n(B)E (B Fin] rn > I(B) (>0 ae.), in probability.
=0
A3.
Ve > 0, ZE [‘Tngln | 1{|Tn51n( )|26}} TH—OO> 0.
Ad.

sup ZE(’rn@,n(ﬁ)fim(ﬁ)iprn’) < C, for a strictly positive constant C'.

The condition A1 is proved in Section 4.1 and A2 and A3 are proved in Section 4.2. The condition
A4 is immediate from Theorem 3.1 i) since

In B8, Z/n In B, X 1/n
nE(Tné.z,n(ﬂ)gz,n(/B)TTn) =E 215 n ﬁ12
1_7:[ ’ 7,/n I ? z/n
n 22

Note that these conditions do not imply the stable convergence in law (2.6) since in our framework
the filtration (F:); does not satisfy the "nested condition” (see Theorem 3.2 in [11]). The proof of

the stable converngence in law will be given in Section 5.
4.1 Proof of the condition A1l (the L?- regularity condition).

Following [5], the crucial point of the proof is the asymptotic behavior of the transition density of Xf
established in [6] and recalled below.

Theorem 4.1. [Theorem 2.1 in [6]]
We assume that Hy holds. Let (g, n@mo) be the solution to the ordinary differential equation

1 t
G0 =+ /0 b0, 6)ds ¢ € [0,1]. (4.1)

n—oo

Let (Bn)n>1 be a sequence such that B, —— B then for all (zg,u) € R?,

12



‘ O,
Z) nl/apl (1‘0’ ':‘f}’r& +§n nZ‘O) n—>—00> wa(u)’

’ Bn n 1,0,
”) SUPyeRr SUPy, 1/ap1 (1"07 #f‘/a +¢ 0) < 00,

where @, is the density of LY, a centered a-stable Lévy process.
Theorem 4.2. [Theorem 2.2 in [6]]
Under the assumptions of Theorem 4.1,

2
y n
i) Sz

o2 U n—00

n On,
5 0,p7" (w0, L2 + HI0) B2 o (w) — ugly (u),

n—o0

T (wo, 22 + ™) T2 —0gb(0, 6) x @l (u),

17 UEL Bn n n en,fEO
i) SUPyer SUPy, |—25 09" (T, A + 6 0)| < oo,
no n
0721 8 Bn UCT n,0n,20
SupueR Sup?’b nl/a Upl (x()) nl/a + g ) < 00.
n,@,X?_l

Proof of A1. By the change of variable y = 97 + ¢ " proving A1l is equivalent to show:

Z/ [{ X laU)—gn(Xf_l,u)}?]d no ), (4.2)

n

where

uo 1/2 uo 1/2
ol = a2 [ (g, S0 o) T (B o).

ﬁn1/2—1/2a
2

uo n,0,x
gn(w,u) = (rah)" X (B, 7+

Following the proof of Proposition 8 in [5], the next three properties are sufficient to prove (4.2).

1. There exists a function f such that,

Vo, fale,u) S f (@),

gn(x,u) 2225 f(x,u).
2. We have for all z,
limsup/fn(:r:,u)Qdug/f(x,u)2du
noUR R (4.4)
limsup/gn(:c,u)2du§/f(x,u)2du.
n R R
3. We have
sup/fn:r u2du<oo
(4.5)

sup/ gn(z,u)?du < co.
R

,n

13



We now need to check the validity of the conditions (4.3), (4.4) and (4.5).
We start with the proof of the condition (4.3).

1 1
nz " a
We recall that r, = < , | and h = (hy, h2)T € R? then by a simple computation we have,
0 n-2
797 707
g 1_i aepﬁl (1‘" an;ra + g? x) \/E 1 ao’pﬁl (ZE, an{/ja + g? I)
gn(@,u) = Tgmn e = RNV RN o1/
v (=, vl S x) i (:E, e TS x)

From Theorems 4.1 and 4.2, we see that

+rpht n,0,x
Let my = ]oﬁl (;v, ey zlie oS
n

), t € [0,1], then we can rewrite f,(x,u) as

o1 = v e ]

Using the mean value theorem, we get for some s(x,u) € (0,1)

n,0,x
/ v p n l,, ’U,G'a _|_ g sy
fn(z,u) = ﬁnl/%l/%‘ims(m’“) = £n1/2_1/2a(rnh)T s ( ! : )

1/2°
2 Mes(x,u) 2 pin (.’E, nT/Ta + g{lﬂ,m)

where 3, = B+ rps(z, u)h.

From Theorems 4.1 and 4.2, we also get that f,(z,u) — f(z,u).
Now we prove the condition (4.4).
We have

du

2 2
0, 0,
/ (x,u)*d ohi 23/a/ ur) (m’ wie 1 z) du + oh3 1/a/ g (a:, e z)
R 4 B pf (az Y +<{“9’”‘") 4 R opf (ﬂs i +<?’9’”‘”)

n

Oops (1:, 4%+ g{‘ﬂ,x) dep <m, o+ g{%@,x)

0
+ ah1h2n1_2/a/ du.
2 R (n uo o nba\Y2 8 (e e\
P17 i T 61 Pi 7T ia t
(4.6)
From Theorem 3.1, we get
/gn(x,u)gduM/f(x,u)zdu, V. . (4.7)
R R

Using

v pﬁ"ﬂ"n}w T uo _i_gnﬁ,z
VI a1y [1 r PPl Tt/ oL
fn($7u) - n 0 (Tnh ﬁ_i_r hs wor 0. 1/2 S?
pl n (x7 +§17 ’ )

2
nl/o

n

14



we write:

ont-l/a|| 1 Vﬁpﬁw ) (”C"ﬁ o ’WC) ?
[ futeswdu =1t = || [ s
R 0 p,i+rnhs (ac 0 _‘_g?GI) 2
2
onl—1/a 1 VBPBMW (m O +<?M)
S T / (Tnh)T 1/2 ds
0 p/frrnhs (x 0 —i—gfex) 2
onl—1l/a /1 - 80p6+rnhs (:U 0 ija +§Il0x> 1 af’p61+ ruhs (x 0 i/« +§?09§> J
— _ nz " ahy +n72 hy o
4 1/2 1/2
0 pﬁl—i-rnhs (.f o + g{z@m) pﬁl—i-rnhs (.f o7 + §?9$> 2
- 2 2
n 797 n 9
- 4 / /n ahl BJrsrnh n,0,x du + / " h2 518Tnh n,0,x
0 R D1 ( 1/04 +¢ ) R p. (x, nl/a +4 )
) 2
B+srph n,0,x B+srnh n,0,z 1/2
Opp'y L, 1/(1 +< Oopy nl/a !
+/n a2hiho n o n ) du ds
srnh n,0,x
R pl ($7 nl/a +¢< 1 )
1-1/c /1 / 11 h2 89p€+srnh (J:’ U)zd / 1 1h2 8Jp,f31’+srnh (JJ, U)Qd
= n - a n v+ | na o v
4 0 R 1 p€+srnh (x, v) - p/i’+s1"nh (x7 U)
2
) pﬁJrsrn (337 1)) 8Jp7i,,3+srnh (.T, U) 1/2 o
+ / 2h1hyg—=2 n dv ds by the change of variable +< =0
B+srph / S1 5
R P (z,v)
X 1/2 2
1 22 97n,B+sruh, 2.7, B+snh, -1 B+srah,
=3 /0 n2=a RIT T | g2 pteTat y p1=t/agy, pogrPterniny ds
9 4.8)
s, L e [ o0 g, I [ ) )+l |
o2 4 ’ R Palu) 202 Jr Pa(u )
1 h2/( Pa(u) + upy (u 2(
+ 5 < /f z,u)
0?2 4 Jr Palu)

Where, in the last line, we have used Theorem 3.1 for the convergences of In’ﬁ tornhiz I"’ﬁ ternhe

b Btsrnh, " respectively and the application of the dominated convergence theorem. From (4.7) and

(4 8) we get (4.4). (4.5) is deduced directly from Theorem 3.1. O

15
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4.2 Proof of the conditions A2 and A3 (Theorem 2.2)
From the Markov property and (3.1) we have:

nB.X0,  _nB.X]

B0 z VAT
2" = B [6n(B)&n(8) 1Gim] = | 1y s 12, s
I ? ’ 74/774 I ’ ’ Z/n
12 22
From Theorem 3.1 we know that the quantities
1 8 g w?
nB8,X/ o2 [aHb(Xi/n)} Jr Sy du 0
sup nrpZ inrn, — . e () b, ()2
0<i<n—1 0 e f]R %du

converge to zero as n — oo. Then the convergence A2 is a consequence of the convergence of a
Riemann sum.

To prove A3, from the Markov property, we get: E [|rn§i’n (B)|k|X5n = x} =E

Vep (@,.X7) g
1/2 < 00, Vk > 1. This

for any k > 1. But from Theorem 3.1 7i) we have sup,, , E | |n"/*r,

Bn ﬁﬁ
Pi(x:Xl)
n n

control, for instance with k = 4, is sufficient to imply the Lindeberg’s condition A3.

5 Proof of Theorem 2.3 (Stable central limit theorem)

The aim of this section is to prove the stable convergence in law stated in Theorem 2.3. We first recall
the following result established in [6] where ?T’ﬁ’xo is defined by (3.4) and is equal in law to X f .

n

Lemma 5.1. [Lemma 4.1 in [6]] Let (gf’e’xo) be the solution to the ordinary differential equation
(4.1), then

YT i) 22 o1, (5.1)

and this convergence is uniform with respect to xg.

1 1
n2 « 0
Proof of Theorem 2.3. Since r, = ( 1) we have
0 n-z

967"}
L2 =2 <X5 X?H>

n—1 n— o % )
Tn Z gz,n(ﬂ) = P PE1
. . 179K 1
575 | ()
pl n n
Theorem 2.3 is an immediate consequence of Lemmas 5.2-5.3-5.4 below. ]
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Lemma 5.2. We consider

86p1 1 (p/ (nl/a(LiJrl — Li)>
i = 0t (X XD )+ ~apb(X T 0) - o
p1 g n Yo (nl/a(Lﬂ—Li)>
then we have n~1/2 0 Znn—>—oo>0

Proof. Using Lemma 9 in [7], it is sufficient to show that:

n—1

n Y2y [Elwial Fill S5 0, (5.2)
=0
n—1

- —

n Y B Fll 2 0, (53)
=0

We start by the proof of (5.2). Since a score function has an expectation equal to zero, and
Lityw — L is independent of F;/,, we deduce that

1
E[wi,n|Fi/n] = ;aeb(xf,e)ﬂa

Since (L;); has stationary increments, the law of nl/a(Li+1 — L) is the same as the law of L.
Moreover, we know from Lemma 3.1, that P(L} # L{) = O(1/n), thus

(8
Blmal 7yl = 5 onb(x2 0 | 2703 | 22|

where we used the fact that ﬁ is bounded (see e.g. Theorem 7.3.2 in [19]). Using E [%‘(L?)] =

wa(LT)
Jz @ (u)du = 0, we deduce ]IE[?,UZ nlGi/n]] < Cn~! for some constant C' and (5.2) follows.
We now prove (5.3). We have

2 2-2 n’B’XBi' 1 B
E[w; | Fijn] = 0™~ /azn "t o} [895(X

3

7@rEg%ON%LfLJ§

Pa (nl/“(Lﬂ —L.)
(pgé (nl/o‘(LH-l — Li))
pbl) XﬁaXz‘ﬁ+1) o n Pa (nl/a(Li+1 — L

(5.4)

3
~—
N——

With a method analogous to the proof of (5.2), we can show that
2
P

n

2
Pa (nl/“(LiH —L1)>
n n

E =E [Z"‘EL ; ] +0(1). From Theorem 3.1, it appears that the first two terms
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in the right-hand side of (5.4) are asymptotically close to the same quantities, and that (5.3) is proved
as soon as we show that the following control holds, uniformly with respect to ¢,

89p1(XB Xﬁ-l) 1 3 QO{I (nl/a(Li+1 —Li‘)>
E nl—l/a n B 3 n *89b(Xi,9) n n -7:1
PO X0 e (s~ £) 65

. [agb<X§,9>rE R

. . . 0, . 1-1 aqnﬁzo(y ) /(Ln)
Using the notations of Section 3.2.1, we define d™"%0 = E [ /QWJEM)(JCO, 0)% (L}l)

106,20

so that the left-hand side of (5.5) reduces, from the Markov property, (3.5) and the fact that Y’

n@X
1

equals in law X [f , to d™”%i/m. On the other hand, we can rewrite d™?%0 ag

n

, < 1/cx( "5”50 <”9z0)>
N 7/87 SD o
i1/ 89(1”’6’20(3/? m) 1 “

*8617(1'07 9) < 1/a( 7780 §"797r0)>
Pa o
(5.6)

dn79,1’0 — E = 6 _
qn,ﬂ,mo (Yl’ > 0) o
SR o nl/o (Y p2T0 0o
1-1/0 O0g™ P70 (V) 1 W (L7 T ;
n
n
1

14

ZBpb(xo, 0) | Po

qnﬂ@o(??’ﬁ’zo) o o ( 0 ) Pa (L ) <n1/0‘( ”510 Q?,O,z0)>
o _

Using the Cauchy-Schwarz inequality for the second term in the right-hand side of (5.6), we get

+E

/ l/a(Y"ﬂTO 77.970)
& || 1170 G0 P00 (V7)1 —Opb(x0,0) n(Ly) 7 i
n hb(o, - —
g (Y ﬁm) Pa (L) Pa (nl/a(y?ﬁ:0<f’9’zo)>
b - o1 1/2
_ P 97 1/2 , @gé( nl/a (70T _ om0, 0))
n,0,Z0 Y R 1 Ln [ea
< |E n1—1/a39q i 1 )769b(x0’9) E @o (L) _
qn,,B,a:o (Y;Lﬁyﬂco) g Pa (L?) <n1/a(y?ﬁ,z0_gib,6,xo)>
L P _

(5.7)
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Furthermore, Ve > 0 we have

— - 2
(o)
/ n « o
Pa (Ll )
n
1

E _
Pa (L ) gpa< l/a( 711[3960 g{z,e,xo))
ag
0 2
l/a(Ynﬁﬂfo n aco)
Ln
=k 71L Bz n 0,x 1 nl/a(ynﬂ,xo_gn,ﬂ,xo)
g (mw sy [y (LR
( l/a(Y”ﬁzo n,9,10)> 2
+ E 1 N, B, n,0,r
(”l/a(y - ?79@0)> {nl/a(Y1 D gy >6}

1/o¢<y" ,8,x0 g{L,G,Z())

—L?

o

< 0162 + 2C5E 1{ }
>€

_L?

nl/oc (?’;L“B7$O o gf,,@,l‘o)

g

= 0162 + 205P

*)
- ] o e

where we used the fact that £* is bounded with a bounded derivative (see e.g. Theorem 7.3.2 in [19])
and Lemma 5.1. From Theorem 3.1 i1), and the estimates above we deduce that (5.7) converges to

zero as n — 0o. Then,
, 1/0( n ,B8,x0 gn,G,CL‘O)
Svald ﬁ zo QOCM o

kl/aaeqn’ﬁ’xo(Yl’ )1
1/a ?n,g,zoi n,0,xq
o (n (70 ))

*agb o, 0
qanyxo (?711”8@0) o ( )
where the o(1) term is uniform with respect to xy. Now, using Proposition 3.1, we get

1/(1 —n ,B z( n,0,xq
Pl < B )>
+o(1).

/o (FE5w0_ .m0
o >

]- @ g n—oo
sup [d™0%0 — — 9gb(x0,0)°E | Hpa(1) ~%% 0.

o 0-2 nl/o‘( nBzo cn,&,zo)
Pa -
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+o(1), (5.8)

0T = |n

dn,a,xo —E nlfl/a'an Ao (8@Y1 /8@0) 8€b(.f607 0)

From Lemma 3.3, we also have




From Lemma 5.1 we can deduce that

1 a (L)
noae nooo. 1 2 o Pa L)
d RIS o2 [8912(?30,9)] [ |:HL (1)@04 (L(ll):| ’

uniformly with respect to xg. Then, the relation (3.7) enables to rewrite this convergence as,

2
ol (LY)
a2

1
qrdro M0 — [Dpb(x0, 9)]2E
o2 Pa (Ll

] , uniformly with respect to xg.

This result implies (5.5) and hence (5.3). O
Lemma 5.3. We consider

aapi 3 3 1 Pa <n1/a(Lﬂ —L )) —i—nl/"‘(Lﬂ — Li)gogé (nl/a(Li — Li)>
Oin = 5“(X”Xﬂ)+— n )) = =

— — —
then we have n~1/? ?:01 Oin % 0.

Proof. We proceed as in the proof of Lemma 5.2 and check that
n—1
— —
n 1/2 Z ‘E[Qz,n’f;/n]’ % 0, (59)
=0
n—1
— n—oo
n 1§%|E[@%,n|ﬂ/n}| 0. (5.10)
1=
We start by the proof of (5.9). Since a score function has an expectation equal to zero, and
Lityw — L is independent of F;/,, we deduce that

1 Yo (nl/a(L@ *Li)) +n1/a(Li+1 —L
Eloin| Fim] = —E - - -
o Do <n1/a(Li+1 — Li)>

n

3|

Since (Lt); has stationary increments, the law of n'/*(Lix — Li) is the same as the law of LY.
Moreover, we know from Lemma 3.1, that P(L} # L{) = O(1/n), thus

LD EAUD) ||t aeit
90a<L?) Pa(u)

O(n™1),

1
E[Qz,n’}—z/n] = ;E |:

where we used the fact that uf;“(%) is bounded (see e.g. Theorem 7.3.2 in [19]).

Using E [%} = Jgugl(w)du = =1, we deduce [E[g; | F;/n]] < Cn~! for some constant C' and
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(5.9) follows.
We now prove (5.10). We have

nﬁ, H 1 [g@a (nl/a(Lin1 - L%
[Qz n|]:z/n} = " + EE

S~—
N—
S~
—~
h
+
-
|
h
SN—
S
o o~
/N
S
—
~
Q
—~~
h
+
-
|
h
3e
SN—
N—
| I
[\

Bapg(Xf,Xf;) 1% ( l/a(L7,+1 — Li’)) +n1/a(Li+1 — Li)apfx ( 1/04( it1 —Li)>
P (X5, X)) @ Da (nl/a(Li+l —Li)) "

With a method analogous to the proof of (5.9), we can show that

Pa nl/"‘(Li 1—L1) +7’Ll/a(Lz l_Li)SDI nl/a(L 1 L ) ’ & & 2

[ ( = ﬁ) = “( )} [pa (L) + Lo (L7)]

E 5 =K Lpa(LO‘)Q + O(].)
@a(nl/a(Li+l_L%’)

Proceeding as in the proof of (5.4), then (5.9) is proved as soon as we show that the following control
holds uniformly with respect to ¢,

—n, B,z
We define d""™ = E |:8U?;Yn}6,zo;));(pa([/ 2+(LLI S(;a(L )] , so that the left-hand side of (5.12) reduces,
8

, ’Xz/n

from the Markov property, to d;

Proceeding as in the proof of (5.8), noting that %(( )) is bounded with a bounded derivative (see e.g.
Theorem 7.3.2 in [19]), then we also get that

l/a( n,BzO §ILOIO)S0/ ( 1/a( nﬁzo gn,9,10)>
«

o o

—n,3, ’9’
/o (V770 o)
Pao -

where the o(1) term is uniform with respect to xg. Now, using Proposition 3.1, we get

o 1
g

+o(1)

Orq(V7"™) 1] o | )
a(Y77") o a(¥77")

%fnﬁzo(a *”510)

d?707$0 — E
o
1/a( n 8,0 gn,&,mo) nl/a(?"ﬁvﬂfo_ n,G,xO)
ﬂ T 1 / 1 S1
Hypnseo (06 oy 5 Por -

+E + o(1).

o nl/a(y?ﬁ’mo_qﬂ’-m) ( )
Pa -
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From Lemma 5.1 and the convergence result (3.8) we can deduce that

n,o,xg N—>00 1 « Pa (La) + Ll Qpa (L?)
L o |

uniformly with respect to xg. Then, the relation (3.10) enables to rewrite this convergence as,

o w1 [(%(L >+L1wa<L?>>2]'

—E
a Pa (LE)?
This result implies (5.12) and hence (5.10). O

Lemma 5.4. We have the convergence in law,

I pt/a(r, L;
e () Lagb(X? ,6)

=0 wa(nl/o‘( inl_L%’))E o
w( Vo(Lig~ Ly ))-l—nl/“(L-_;l—L%)so'a(nl/a(L%—L%)) =NOIE) - (13)

—1/2 n—11
—n~ > im0 7
SDa(nl/o‘(LiH—L ))

Z
n

where the convergence is stable with respect to the o-field o(Lgs, s < 1) .
Proof. We define the following processes:
[nt]

Zsz(L@ —Li),
i=0 "

n

‘Péy (nl/a (Lit1—L; ))
pPp L L0b(X 7. 6)
n_ (T ~1/2 want/*(Lip1=Li) "
Ft - Fn2 - /o 1/ ’ 1/ ’
; gy P (1 i =L))o L~ (i L) |
i=0 o

=0
wa(nl/“(LiH—Li‘))
))+n1/“(Lz+1 —Li)e '( Ve (Ligs —L

n_
Por (nl/"( it1 _LL))

)

3k

We will apply Lemma 2.8 in [13] to prove (5.13). Indeed, we will show that there exists a Gaussian
2
(L3) 0
i L?)Q independent of Ly such
d t th = , independent o suc
random vector vy with var(y) LPO(LQ)+L1§0(21(L?))2:| ) 1
v (LT)

that one has the convergence in law
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Then, by application of Lemma 2.8 in [13], there exists a bi-dimensional Brownian motion (I'});

independent of (L;); such that one has the convergence in law (Z", I, I"") = (L,T",T") where I'; =
1 B

fot (U&)b(g(s 0) (1)) dl', and var(T)) = var(7y).

g
Let us focus on the derivation of the convergence (5.14). For (u,v,w) € R3, we set

U 90:1('”1/0‘[/%) v (‘Poz(nl/aL%) +n1/aL%g0f1(n1/aLl)>

Xn(u,v,w) =E |exp Zn1/2 (oL ) +Zn1/2 (oL 1) —i—zwL%

Using the i.i.d. structure of the increments of the Lévy process L, we easily get the following expression
about the characteristic function of (I'}", Z7")

log E |exp(iul[™ + ivT["* + in{‘)} = nlog X, (u, v, w). (5.15)
Let us study the asymptotic behavior of X, (u,v,w). Using the expansion of the exponential function
near zero and that z—z and % are bounded we get

e Pa(noLy) gy (pa(nVoLy) + 0V Ligl(n/Ly))

Xy (u,v,w) = E {e g A2 po(nt/aLy) T e ©a(nl/aLy)
2
+1 I (Spfx(nl/a[/%)) n X (@a(nl/al’%) +n1/aL%SO/"‘(nl/aL%)) +O(n_3/2)
2 \ nl72 g (nl/eLy) nl/2 a(nt/aLy)

i [ (paln¥/oLy) +n¥/oLygl(nV/oLy))

E [ ile:| i 90;(”1/QL%) wly | E iwL
=Ele e @ e 7
nl/2" | ga(nt/oLy) nl/2 Ya(nt/oLy)
@ [ (en@ LN 1wl [eh@YoLy) (paVoLy) 4+ 0oLy (L)) L, ]
2an |\ ga(n/oLy)) © n | pa(nl/oLy) Pa(ni/oLy)
; _
. pa(n'/OLy) + 0t L1 L)\ o, O(n=3/2
- — Ta e n|+0(n°7)
2n ©Ya(n L%)
U 1V u? UV
- XT(Ll (’LL, v, w) =+ 1/2 Xn2) (u77}7w) + 1/2 X7(13 ('LL,”U,'U}) - %‘X;(l )(u,v,w) - ;Xr(LS) (’LL,’U, UJ)
- ;Lnx,gﬁ) (w,v,w) + O(n~3/2). (5.16)
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First, we have
XD (u, 0, w) = e/ =1 4 h(w)/n+ O(n"?) (5.17)
where ¥ (w) is the Lévy Khintchine exponent of L.

We now focus on the term X,(LQ) (u,v,w). Using the results of Lemma 3.1, and the fact that nl/O‘Ll/n
has the same law as L, we get

90/ i wLT
X 0v0) = B[ 22w | + o)
(0%
= ! (8)e'ni/a ds + O(n~!
[ s () s)
= —nzl% /]R<pa(s)«s’in?1ﬂ/s‘1 ds+O(n™') using integration by parts formula
= O(max(n~Y* n71Y).
For the term X,(Lg) (u,v,w), using Lemma 3.1 again, it is easy to see that
. La L L .wLa
Xr(Ld)(u,%w):E[(Spa( )+ i@a( 1)) 1/a:| —|—O< )
#alLT) (5.19)
N / ‘Pa(s)eian/sa ds + / sw;(s)einzlu/sa ds +0(n™h).
R R
Using integration by parts formula, we have
iwLS iws nl/@ , iws
E(e =)= / Yal(s)ent/ads = —— /goa(s)enl/“ds.
R weJr
Then, we deduce that
, iwz _ Zw 1wLCi _ ZU} iwa L
/Rgoa(s)enl/ ds = _WE(B w) = —nl/aE(enl/ b). (5.20)
Since L§ is a symmetric a-stable process then we have for some constant C(a) > 0
E( 111704[/&) _ C(Ol)‘ 1/a‘ . (521)
Combining (5.20) with (5.21), we have
/ﬂw;(s)eﬁ% ds = — ij’a 0|l (5.22)

Now, since [ |s¢l,(s)|ds < oo and w +— we_c(a)‘m‘ admits a derivative on R, we obtain by taking
the derivative with respect to w of the both sides of (5.22)

/ 380;(8)6731)/2 ds = —e_c(a)‘ﬁ‘ + aC(a)e_C(a)’nﬁa
R (5.23)

= _/ @a(s)eﬁds + aC’(a)e_C(o‘))nl/a
R
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From (5.19) and (5.23) we can deduce that
X0 (u,v,w) = O(n™Y). (5.24)

For the term A,V (u,v,w), using Lemma 3.1 again, we have

Pa

= | 2o gy
Pa

/ L wL$
2 (u,v,w) = E [%@%fe‘*/l“] +0(n™")
(5.25)

For the term A, (u, v, w) we have

X7§5) (u,v,w) -k [ (L ) (Spa(L?) + L?S%@?))giﬁfg] + O(n—l)

o(L$) va(LT)
n—o0 E |:QD:3¢(L?) ( Oé(L ) + Ll (Poz(L(ll))
pa(L§) pa(LT)

a
1
a
1

(5.26)

] =0 from (3.13).

For the term XT(L6) (u,v,w), we see that

X0 (u,v,w) =E

o « 2 wL¢
<gpa(L )+L1‘Pa(Ll)> enlﬁé +O(n_1)

Spa(L?)

(]

(5.27)

n—oo E

Collecting the convergence of (X < )(u v,w))1<i<6, we deduce the convergence

(g

2 / 02
log E |exp(iul["" + i + in{L)} 2700% (v) — %E [%(L?)Q] EE
(0%

and thus the convergence in law of this lemma. O

6 Proofs of Lemmas 3.2 - 3.5

The proof of these lemmas is very technical and requires many intermediate results. We first recall the
Malliavin calculus for jump processes used in [6] and some properties of the Malliavin weights. Next
we will establish a regularity property of a conditional expectation with respect to the conditioning
variable. Then we will proceed to the proof of the lemmas.

6.1 Malliavin calculus and preliminary lemmas

We recall the Malliavin calculus on the Poisson space associated to the measure u(™ (defined in
Section 3.2.1) and the basic properties of the Malliavin operators (see Bichteler, Gravereaux, Jacod
[4], Chapter IV, Section 8-9-10). For a test function f : [0,1] x E + R ( f is measurable, C?
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with respect to the second variable, with bounded derivative, and f € N,>1LP(v)) we set u(™(f) =
fol [ f(t, z)p™(dt,dz). We introduce an auxiliary function p" as

2t if |z <1
() = C(2) it 1<z <2 (6.1)
27(55m) if |z >2

where 7 is defined in the assumption Hj(b;), and ¢ is a non negative function belonging to C* such

that the function p" belongs to C*°. Note that ¢ is defined such that p™(z) admits a derivative and

" (™), pn% belong to Np>1LP(F,(z)dz). From the conditions on 7, we can easily deduce that

) 22 if 2 < |z < 2nl/
)0 i |z > ant/e,

Moreover, we can see that p"(z) ~—= p(z) where

2’27'(

2 if |zl <1
p(z) = ¢() it 1<]s] <2 (6.2)
22 if |z > 2.

Note that from the definition of p” and p, we can easily see that p"(z) = p(2) if |z| < 2nl/e.
With these notations, we define the Malliavin operator L, on a simple functional u(")( f), in the same
way as in [5] by the following equations :

FI
L) = 3 (G140 2L )

where f’ and f” are the derivatives with respect to the second variable. For ® = F(pu™ (f1), .., u™ (fx)),
with F of class C2, we set

28 = 30 2 (0l + 5 5 L () D 618
< o K 1)y k H i 9 2 18$z813j H 1)y b k) P Jilg)

These definitions permit to construct a linear operator L on a space D C My,>1LP whose basic properties
are the following.

i) L is self-adjoint: V®, ¥ € D, we have EO LY = ELOV.
ii) L®? > 29Ld.

iii) EL® = 0.

We associate to L, the symmetric bilinear operator I':

I'(®, V) = L(®V) — PLY — VL. (6.3)
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This operator satisfies the following properties (see [4, equation (8-3)])

[(F(®),T) = F/()[(D, D), (6.4)
F(F((I)l, @2), \I/) = 8¢1F((I>1, @2)1“((1)1, \If) + 8¢2F((I>1, (IJQ)F(Q)Q, \I’), (65)
IT(®, ¥)| < (P, ®)/20(w, ¥)1/2, (6.6)

Remark 6.1. The operators L and I depend on n through the functions p"™ and F, but to simplify
the notation we omit the dependence in n.

The operator L and the operator I" permit to establish the following integration by parts formula
(see [4, Propositions 8-10, p.103]).

Proposition 6.1. For ® and ¥ in D, and f bounded with bounded derivative up to order two, if
[(®, ®) is invertible and T~1(®, ®) € Ny>1 LP then we have

Ef'(®)¥ =Ef(2)Ho(T), (6.7)
with
He(¥) = —20D " 1(®, &)L — T'(®, T (P, D)) (6.8)
= 20T H(®,P)LD — WF@’ ) + Wr(@,r(@, D)) (6.9)
T UL T
“e(raw) o (e (010

With these notations, we can explicit the Malliavin weight ”an Bz (VﬁYl’B’ ) appearing in the
representation of the score function given in Proposition 3.1.

Proposition 6.2. [Theorem 3.1 and Theorem 6.2 in [6]]

7n7ﬁ710
?‘[—n,ﬂ,x V Y == b
Yy 0( S ) Hy;l,ﬁ,zo ((905/1767 0)
D N 0 1 NGB 1 )
— —=n,B,T -
8 Ynﬁ,xo Yl 0 F(Ylﬁzo Ynﬂiv()) F(Ylﬁxﬂ 8 Ylﬁwﬂ)
(6.11)
d
an Vel ,3 560 1.0, a?o LVl ,3 zo ﬂ,ﬁ,xo
7?,/3,:00 = —n.8,20 —=n ﬁ . 2 P(Y n,B,xo Y n,05, xo)
(F(Y1 Y1) 1 1 (6.12)
1 (6% n n n n
= ;nl/ HE(L) + RY 5(1) + RY 5(1) + R (1)
The main term 7/-[\%(1) is given by
1 n - n n n 1 n - n 1 a.n n

€l [fo Jr(em)=2pn(2)un(ds, dz)} ef fo f]R p(ds, dz)
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with

1 S —nBx
€y = exp <n/ b’(Yu’B’ O,Q)du) . (6.14)
0

The remainder terms satisfy for all compact set @ C R x (0,

Vp > 2, ]Esup‘RlB ]gc

¢ , (6.15)
BeQ n BeQ

where C is some deterministic constant.

Remark 6.2. i) It is proved in [6] (see (4.23) ) that 7—["( ) is bounded by a random variable inde-
pendent of n, 8 and xo and belonging to Np>1LF and that it converges in LP Np > 1, uniformly with
respect to zo (see (4.23) and (5.49) in [6]) to Hp(1) given by

fo Jr P(2)P (2)pu(ds, dz) fol Ja [P( 1+a p(2)] u(ds, dz)

Hie(1) =
' [fo pr p(ds dz)} fo fR p(ds, dz)

(6.16)

Moreover, Hro(1) and LYHra (1) belong to LP,Vp > 1.
it) In the case b=0 and 0 = 1, we have €; = 1 and the remainder terms Ry 5(1), R 5(1) are equal to

zero (see (4.7) and (4.8) in [6]). Moreover, we see that (6.12) can be rewritten as ﬁg(l)—kn}/a 1pl) =
Hin (1), then we can deduce that Hpr(1) LT:) Hra(1).
P>

Before studying the Malliavin weight H?n,mo (V@??’B’ro), we give some control on the processes
1

(893/;[3 )t and (8(,}@’3 )t, respectively solution to the equations

.58,%0 1t 158,20 .6,%0 I yBro
a@Yt’ ) — n/ bl(Y87 ) ’e)aeysa ) dS + n/ 89b(YS’ ’ ’e)ds’ (617)
0
_ 1 [t Ly
aUY:L,B,wo _ / b/(?l%ﬁﬂfo 0)8 Y” 5’10(1 + : (6.18)
nJo n /a

We have the following properties.
Lemma 6.1. [Lemma 5.1 in [6]] Let Q C R x (0,00) be a compact subset. We have

i) Supgeq |89Yn ﬁ’xoy < %,
i) y i ”Z—:‘B 0, ¥p>1.

We now proceed to the decomposition of the Malliavin weight H?n,,87L,xO(v57?7ﬁ "’xo) defined in
1

Proposition 6.2 into some main parts and some remainder parts. From (6.11), (6.12), we can rewrite
Bn,To

H n ,Bn T (Vﬂyl ) as,

e Lt/ o9y Y7 "3 (1)
,H*n,ﬁn,zo (vﬁYl P, O) == B
Y, (

n B, T0
iz +RY, (VY] 6.19
a( R0,V (1) 1) 3 ) (6.19)
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where ﬁg(l) is given by (6.13) and

L n,Bn
Rj (VYm0 = (a o BMO) [RT 5, (1) + Ry s (1) +RE s, (1)] — Vln,g% o (6.20)
U’ﬂxﬁn On

1

with U{Z”B _ (Ynﬁ,a:o ??Bwo) Vln,e _ (Yl,ﬂwo 9y ﬂﬁwo) and V7 = F(ﬂﬁwo 0,Y ﬂﬁ 0) given

by
U 1™ (ds, dz),
n2/oz

(6.21)
1
v = Ly /0 ()72 (U2 [@ab) (7277, 0) + 1" (V2 770,0)0,Y 7| ) ds, (6.22)
no 1 ! prBa .
v :n(g;y/( - (b”( o0 0)o, 7" OUnﬁ) ds + 2/a (e7) // 2p"(2) ™ (ds, dz)
0
(6.23)

and (€y)se[o,1] given by (6.14).
Now we recall two technical lemmas given in [6] useful to study the convergence of the Malliavin

weight %?n,ﬁn,zo (Vﬁﬁ’ﬁ"’xo) in the proof of Lemmas 3.4 - 3.5 later.
1

Lemma 6.2. [Lemma 5.4 in [6]]

Let (,,) be a sequence converging to 3. For all p > 1, the following convergences hold uniformly with
respect to xq

i) ndgY TR (1) 22 9gb(o, ) Hia (1),

i) !/, YT OH (1) T2 LiHue (),
where ﬁg(l) and Hre(1 ) are respectively given by (6.13) and (6.16).

Lemma 6.3. [Lemma 5.3 in [6]]
Let Q C R x (0,00) be a compact subset. The following estimates hold:

where C' is some deterministic constant and supgeq [Ry 5(1)| converges to zero as n — oo in LP,Vp >
1.
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6.2 Regularity of the conditional expectation

In this section, we prove a regularity property of the conditional expectation with respect to the
conditioning variable.

Proposition 6.3. Let H be a random variable such that E(H)? < co. We assume that there ex-
ists a sequence of random wvariables (H")p>1 with E(H™)? < oo and such that H" TH—QOO> H and
L

sup,, [|IT(H", H")||y < co. Then,
7180012 ai2] n—roo
E|EHYT7™) | —E [E[H\Ll] } noo, (6.24)

and this convergence is uniform with respect to xg.

Remark 6.3. Note that if the random variable H depends on all the measure p then the Malliavin
calculus of Section 3.2.1 is not defined. So we need to introduce the sequence of random variables (H"™),
for which the Malliavin calculus of Section 6.1 is defined, such that T'(H™, H™) is also well defined . It
is the case, for instance, if H" is a simple functional of pu(™.

Proof of Proposition 6.3 . First we reduce the situation to the case where the random variable in the
expectation is bounded. Let K > 1 and denote by x — X (z) a smooth truncation function with

Xg(x)=0 for |z| > K
Xg(z)=1 for |z| < K/2 (6.25)
0< Xg(x)<1 for K/2<|z|<K.

For all € > 0, we can choose K large enough such that ||H — HXk(H)||3 < € and then, one can see
that (6.24) is implied by the following convergence, VK > 2

n—oo

— 0.

sup [E [E[HXc(H)[ V77 [2] - B [B[HAK (H)|L5]?]

o

Now since E (H" — 7-[)2 2799 0, it is sufficient to prove that, VK > 2

sup %% 0. (6.26)

zo

E B[ Xk (W)Y | — E [E[ i (1) 5]

We now prove (6.26). First, we define an’K and ﬁHn’K as follows

TI’H”’K (??7511@0 _ g{t,@n,xo) — E [%RXK (Hn)|??»ﬁn,10 _ §?’9n7$0:| — E |:/7L£TLXK (Hn)|?'gl»,8n,10 ,

v GLG oL§ (6.27)
N o) = B M X (M)l | = B[R A (W)L
nl/a nl/a
With these notations, we can rewrite (6.26) as
T, <71,0n ,T n x 2 " LOZ 2 n—oo
sup |E [777{ K(Ylw8 g O ’) } —E [UH K(;/L) } == 0. (6.28)
o
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Using Lemma 6.5 in Section 6.4, we know that:

supE

Zo

n, K n n, —H K 5NBn, sOn,
Hn“ (T om0 — oy g (o qpfnmo)

:|n*>000

and since ]nHH’K\ and ]ﬁH"’K] are bounded by the constant K, we deduce

n—oo

sup E[nH"’K (??/gn,ﬂ?o o g?70n,x0)2] o E[ﬁHmK (?71%37“1“0 N §?79"’x0)2] n=eo ),

zo
Now, applying Lemma 6.4 in Section 6.4, with the choice H™ = 1 with the bounded function (ﬁH"’K)2
we get (6.28) and the proposition is proved. O

We can now prove Lemma 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.5.

6.3 Proofs of Lemma 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.5

Proof of Lemma 3.2. First we remark that although L{ does not belong to the domain of Malliavin
operators D we can establish a representation for ¢!, /¢,.

Indeed, since L} belongs to the Malliavin space D, the integration by parts formula (6.7) gives for
any test function f ( f is bounded, compactly supported and f’ is bounded),

E[f'(LY)] = E[f(LT)Hrp (1)]. (6.29)
Now from Lemma 3.1, we have P(L? = L%) 2=>% 1 and from Remark 6.2 i) we have H rr(1) LTpl>
p>

Hra(1). Letting n go to infinity in (6.29), we deduce
E[f'(L9)] = E[f (L) Hre(1)]. (6.30)

Observing that [ ¢pq(u)f'(vw)du = — [ ¢l (u)f(w)du, we get [ f(uw)ph(u)du = —E[f(LY)Hr(1)] and
we deduce the representation (3.7).
U

Proof of Lemma 3.3. The proof of this lemma is based on the results in [6] recalled in Section

6. From (6.20), Lemma 6.1, Lemma 6.3 and (6.15), we easily deduce that supge( RB(Vng ﬁ"’xo)
converges to zero in LP Vp > 1 (uniformly with respect to xg).

Yy . 1/2 m.8,x04 |P
From Lemma 6.2 i—ii) and (6.19) we can deduce (3.8). The uniform control of E |n"/“rp, Hen,s.00 (VY17 7)
1

is immediate.
O

Proof of Lemma 3.4. From Jensen’s inequality, we have

E

1B 1B, 1 ﬂm T
‘ ('~ l/aH—anzo(aGY 7 0)|Y16 0]_E[;89b($07 0)Hre (1Y ﬁ ’]

2]
‘ﬂ »Bn,To

<E

:E[

N,0n,T 1
E | [0 g (9077 s ")~ —pb(wo, O)Hra (1)

7

b 1
nl_l/a'H?n,Bn,zO(ang’B oy gagb(:po,ﬁ)’HLa(l)
1
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From Lemma 3.3, the last term converges to zero uniformly with respect to xg. In turn, it gives the
uniform convergence

sup n2—2/aE[ (g omeo (067 77 ”CO)\y’fﬁ"mP] - %%b(mo,H)QE [E[Hm(1)y??ﬁ"“°]2} n=o9, ),
By the same method as above, we also get the uniform convergence
sup [ [ElP g0 0 V3 V7] = 5B [BI(E 2 (1) = 1) 77 7P]| 220
Hence, this lemma will be proved as soon as we show that
sup & [ B2 (DT} T | - 8 [Bp00 ()28 | 2250, (631
sup [ B2 (1) = 1) [ | B [l ) - 01237 2% 0. o3
o
To prove (6.31), we apply Proposition 6.3 with the choice H = Hp«(1) and
Hn — fo Jer"(z (2)p"(ds, dz) fol Je [(™)'( Hapn( )] " (ds, dz) — " (6.33)

[fo fR "(ds dz)] fo fRP "(ds,dz)

From Remark 6.2 i) we get that H" = Hep(1) - L RY g, moreover E(Hza(1))? < oo and H® =25

nl/a 1.2

Hra(1). The computation of I'(H", H") is omitted but reduces to the computation of the I'-bracket
between simple functionals. After some calculus (similar to those in the proof of Theorem 2.1 in [6])
we get that F(’}:[" 7:[”) is bounded by a random variable independent of n and belonging to N,>1L".
Turning to 6.32, we proceed similarly with the choices H = L{'H La( ) and ‘H" = L??—N[" Note that
using Lemma 6.2 77) with b(z,6) = 0 and ¢ = 1 we deduce that L}H"™ 222 n;oo L{H (1) moreover we

can prove that sup,, ||[D(LYH™, LYH™)||2 < oo. O
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Proof of Lemma 3.5. 1t is easy to see that

o o € | € R o (TR 1 b )

1 >N,0n,T 1 X Pn,T
_E [U (Lo (1) — 1) [V 0] E La@b(xo,emmu)mﬁ 0] ‘

S E 1 l/aE[%—an zo(aeﬂﬁn@ON*nﬁn:xO]

N 8n,T0 N (7100, & L¢Hra(1) -1 "N,0n,T
<E[HY;74»B71,IO (80—Y1 B 0)‘Y1 0] o E |:( 1 L ( ) )’Y]_ B 0

g

+ E E |:(L1 HLa(l) B 1) ‘?’Tyﬁnﬂfo]

g

—n x n x 5 a(l —nN,Bn,T
( 1— I/QE[anﬁn xo(agy ﬁn: 0)|Y17ﬁn: 0] —E |:89b(170 ?HL ( )|Y17B s 0:| ) . (634)

Then using Cauchy-Schwarz inequality

E | | n' OBy snn (067 1) VT x

—n,Bn,T 1,Bn,T LY a(l) = 1) —ng, .o
< E[Hgn e (977 ) ¥ 0]_E[( 1Hi(1) = 1) gnfo, 0] ) '

g

) ICNLE
< [E <<n1_1/aE[Hy;“‘*wo(3eY1 vy O]) ﬂ -

2+ 1/2

g

—N,Bn,T N, Bn,T o o(l) = 1) —ng, .o
X |E | EHgninn (Y] ooy g7, o]_E[(LﬂiL (1) )‘Yl,ﬁn, 0:|
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< [E (n2_2/°‘E U”Hn e (BpY )

1/2
)]

1/2
<|E(E ”HY s (0,7 000y - TP ‘ 7 5]
g
2 2/ 0:8n,%o 2 12 n 180,20 (L?HLD‘(l) — 1) 2 v
— E ‘Hf’n Bn,xq (8@Y ) E Yn»ﬁn»l“o (aa-Yl ) —
1 o
(6.35)

Furthermore, from (3.8) we easily deduce that (6.35) converges to zero uniformly with respect to xg.
Similarly, we also get that

E I: E [(L?HL;(I)l) ‘YT,ﬁn@O] (nlil/aE[vab,ﬁn,zo (89Y]_ Bnny)’Ylaﬁnny] ) |:89b(20,93HLa (1) ’Y;%Bnaxo})‘ :|

tends to zero uniformly with respect to xyp. And then, we can conclude that (6.34) converges to zero
uniformly with respect to zg. In turn, it gives the uniform convergence

R L N i D S | A 0 s Sl |

o
1 @ N, Bn,T0 1 —n,Bn,T0o n—00
—E|E ; (Ll %La( ) - ].) |Y ;agb(ﬂfo,a)HLa( )|Y — 0. (636)
On the other hand, we can rewrite
1 —N,Bn,T 1 —N,Bn,T
B[ (@iwn () - DIV £ | Lo, o) ()77 |
1 1 1 P 2
= ZIE [E (a (L¥Hpa(1) — 1) + Eagb(xo,H)HLa(l)]Yf " 0)]
1 1 5 2
— |:E <O‘ (L?/HLa(l) — 1) - ;agb(SUQ, 9)7‘[[/0¢(1)|le7 " O>:| . (637)
Then, the lemma will be proved as soon as we show that

1 1 —N,Pn,T 2
E F<U@ﬁuqn—w+g%wmmﬂmﬂwa ﬁ}

- {E (i (LYHLa(1) —1) — %aebcco,e)%m(l) (?’Tﬁﬁ (6.38)
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is uniformly convergent with respect to xg to

1
o

E [E( (L1 (1)~ 1)+ ~0pb(ao, 6)Hye (1) W)F

g

_ [E <1 (LOHpa(1) — 1) — %aeb(xo,emmu) ‘Lgﬂ "1 (639)

We end the proof by using Proposition 6.3 with H = LYHpa (1) &= 9pb(z0, 0)H e (1) and H" = LYH" +
Opb(xg, 0)H™ where H"™ given by (6.33). O
6.4 Lemmas 6.4 and 6.5

The aim of this section is to show that the functions nH"’K and ﬁHn'K defined by (6.27) are close in
some sense. The idea is mainly based on [5, Proposition 9, p.2348], however we need a more technical
study since a € (0, 2) and the function b is not assumed to be bounded. Our first result is the following.

Lemma 6.4. Under the assumptions of Proposition 6.3, for all bounded function h, VK > 2, there
exists a constant Cg > 0 such that

B[R X ()R — G000)] — B Xy (H")h(

oLY Ck
< —
T < = hllus

and the above estimate is uniform with respect to xg € R and B € Q, for any compact set QQ C
R x (0, 00).

Proof. Since H" Xk (H") is bounded and P(L} # L{) < % (see Lemma 3.1) it is sufficient to show
that

TN < =K bl (6.40)

TP, T n,0,x n n Ly C
e (T = 0] — Bl e Tl | <

We now prove (6.40).
Let us denote H™5 = H" X (H") and H any primitive function of h. Using the integration by parts
formula (6.7), we have

n
oLj
nl/a

oL}
nl/a

E [h( )’H”’K} =F [H( (H"»K)] (6.41)

where ’H( orn (H™K) is given by (6.10), namely here

nl/a

K oL} nK n,K oLT
("Ll - T oL} oL} nl/a T oLy oL} r oLy oL} :
nl/e (nl/a7n1/o¢) (nl/a7nl/a) (nl/a7n1/o¢)

On the other hand, we have for ¢ € [0, 1]

?nvﬁvxo _ gn,@,zo N O-L?
t t nl/o‘

1 (1 —npe
0

n
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I / B0 n,0.x I / B0 n,0.x n
< Py = e < [l e — Ttpas / o L2]ds

Applying the Gronwall’s inequality, for C' a positive constant, independent of n and K,

106,20 n,0,x O-L? C !
Y, =g — s < sy A |oL?|ds. (6.42)
Using that the function H is globally Lipschitz with a Lipschitz constant ||A||, we deduce from (6.41)
that

oL}
nl/a

‘ [H”Kh( )}—JEPJOfﬂmO—C?aMYHAﬂn(H"Kﬂl

(Zh)

n

(6.43)

n n,K
< |2 it | [ 1 g ).

> s

Now we compute ]E[H(?;L’ﬁ’mo S #, xo)?—[( 228
nl/a
the operator L, (6.3) and (6.10), to obtain an integration by part formula in a reverse direction:

(H™K)] using successively the self-adjoint property of

BT = R oy (M)
nl/c

K K9
_r H(?nﬁ’mo B n,@,xo) I K oL? _ L(nl/a YH™ . H™ nl/a
= 1 ‘1 oLT oL? 1/a oL? oL} oL? oL}
I( n r ) I( <)

nl/a? pl/a nl/a’,nl/a

)
(LT = 0 20 — HEPP — e

L( Jllﬁ; ) L(H(Yn 8,70 o g{z,@,xo)) o )}Hn K

- nl/a n
LY LY
_ NEZa
[ oL} 71,850 n,0,z0 oL} n,8,20 n,0,zo
_E nKF(nl/aaH(Y — ¢S )) _E HnKh( nﬂ,a:o —(IL’G’xo)P(nl/L’Yln )

Putting together (6.43) and (6.44) we deduce,

n, O'Ln n, n,0,T n,0,x
B ()] - BT )
oC 1
R oo n (HWE L7|d
< e [, o ) [ 221 |

oLl wn,B,xo n,0,xq
P(nl/onyl ! ) 1
oLl oL? B
F(nl/}x ’ nl/})z )

+ E 7_[/1 Kh( n,B3,20 _ g{L,@,l’o)
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oC (aL vl /3 o gn,@,xo)
o 1
< e[ g () [ ]| e [ R e
- /a ( / ) F( 1/047 nl/a) 1
LY —n,B,x0 n,0,x0
C H o (01/1“ 1 -6 7)
< il [ || 7w | s 1l | =2
e o s, 0O R SR
I{"’S) I\grl
(6.45)
Hence the lemma will be proved if we show that sup,, sup,ep 1) I f”’s) < oo and sup,, nIQ(n) < 0.
Step 1: we show that sup,, supse(o 1 Ifn’s) < 00.
We can write from (6.9)
2o () —2L(ZELyH K HeK <aL7f (L aLTf)> D(ZHL, H )
oL )= L7 oL} 7 oL} ’ , - 7 oL}
(2 e A B2 0 A ez
o | DLy Ty, Lyp2 0T Ty L)
(6.46)
Now, let us recall that from (
/ / )(dt, dz) + / / )(dt, dz),
z|<1 |z\>1
then,
o
———H o (™)L} oL H”K / / )(dt,d 6.47
nl/a (nll}la)( )‘ S‘ / L |z‘<1 Z) ( )
o 1
| ——H, o (H™F) / / |2 ™ (dt, dz) (6.48)
nl/a (nl/o‘) 0 Jz|>1
First, we consider the expectation of the right-hand side term in (6.47), we have:
E oL H”K / / )(dt,d
[ nl/o‘ L |z\<1 2
. 27 1/2 07 1/2
< |E / / 2™ (dt, dz) E<f/a7-[ oL (H”K)> by Cauchy-Schwarz inequality,
0 Jz<1 n (/&)

1/2 1/2

[ e 1 1/2 o 2
= 2 dzdt E <H on (HE )
jﬁ L/Z|<1 ‘ |21+ ‘ ] [ nl/a’" (7 )( )

where M is a deterministic constant.
Furthermore, from (6.6) we have |T'(L},H™®)| < D(H™E, H™EK)

2
<M [IE (nf/H( )(H”K)> ]
(6.49)

1/2I‘(L’f,L’f)1/2 and from (6.46),
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convexity inequality, we get

2 n\yn,K n,K 2 n,K n,K
o nK —2L(LY)H™ H™ n n rn > L(H™S, H™™)
——H o (H™ <2 Ly, (LY, L + ———
{nl/a (! )} - ( vy oy, gt EEERED) T(L}, LY)
(6.50)
Then, we can deduce that
2
o
E(|—=H oup (™
(e )
2
( )an K an,K > |:1-\(/Hn,K7 an,K):|
<2E + (LY, (LY, LY H2E | ————7—
( D(Ly, Ly) - T(LY, LY)? (T 2 I(Ly, LY) (6.51)
I, g
Our aim is to prove that I7; and I7', are bounded independently of n.
For I}, we see from (6.8) and Remark 6.2,
U(Ly, D(LY, LY)) — 2L(LY) T 1
_ — (1) = H2(1 L 6.52
ropye  rag oy W= R (6:52)

From the crucial fact ||H™¥||oc < K and from (6.12), (6.15), Remark 6.2 we can deduce that I7, is
bounded by a random variable independent of n (but depending on K).
For I{,, from (6.1) and (6.21), we have

. F(HH’K, an,K) (an K an K) F(an,K7 /Hn,K)
Il2:]E<I‘(L”Ln)> :]E (n S]E 1 1 .
141 fo Jg P (2)pM)(dt, dz) Io f‘z|<1z wu(dt,dz)

Now since H™X is a smooth Malliavin functional, using the chain rule property (6.4) we have
D(H™ME H Y < 2 T(H, HY) (6.53)

where cg is any upper bound of the derivative of x — z Xk (z).
Then we deduce that
T(H™, H") )

fOl f|z‘<1 Z4M(dt? dZ)

—1
From the assumption on I'(H"™, H™) in Proposition 6.3 and since (fol f|2\<1 2Ap(dt, dz)) belongs to

Np>1LP (see [5, the proof of Theorem 4]), we can deduce that I’y is bounded independently of n.
Thus, we get that the expectation of the right-hand side term in (6.47) is finite.
Turning to the expectation of (6.48), we have:

Iy < c%(E <

o 1
E||—H oo (H™E / / M)(dt, d

nl/a’"( 1L1a)( ) 2|51 |z‘:u ( Z)
=E - —H . ”H”K / / |2 ™ (dt, dz) + / / |2 ™ (dt, dz)

/ (7 1<|2|<2 |2|>2
1
<E %H o (HF) / / o™ (dt, d2)| | +E | [-2-H uy (HF) / / 1216 (dt, d2)
nt/e () 0 Ji<lz|<2 nt/e (57 0 J)z[>2

] |
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By a similar estimation technique as for the bound of (6.47), we get that

o 1
swpE (| Tt oy (05 [ e d)| | < O < oc,
n n (17a) 0 Ji<)zl<2
We now show that
1
supE %’H oLy (’H”K)/ / 2™ (dt, dz)| | < Cx < +oc. (6.54)
n n (—178) 0 J|z>2
In fact, from (6.46) we have
o n,K ! (n)
E W”H orn (H™™) |2| '™ (dt, dz)
n (r7a) 0 J|z[>2
—2L(LY)H™E H™E ‘ (L7, H™F) ‘ / /
<E T(LY, (LY, LY 7 2| ™) (dt, dz
T e T | + [ oy )
—2L(LY)yH™E HK !
B || R e PR TR L) [ el )
U F(leLl) F(L17L1)2 ! r 0 J|z|>2
m,
) (6.55)
Ln Hn
+E ’ |z | '™ dt dz
L?an |z|>2 | )]

To prove (6.54), we just have to show that I’ and I, are bounded independently of n. For I3, we
recall here (6.52),
DLy, D(LY, L)) - 2L(LY) _ 4 1

— =HE1) + —RT 5(1).
R NN 1) B T
Then from the boundedness of H™¥, we get

~ 1 1 1
Iy < KE | | H(1) |2 (dt, dz) IRY 5(V)] 72 |2 (dt, dz)
0 J|z|>2 nt/ 0 J|z|>2

From the proof of Lemma 5.4 in [6], we can deduce that ‘ﬁg(l) fol f|z‘>2 | 2] 0™ (dt, dz)‘ is bounded by

a random variable independent of n and belonging to Ny,>;LP.
Using Cauchy-Schwarz inequality and (6.15), we get

n I n C
’Rl,,@(l)l nl/o‘/o /Z|>2 |z’N( )(dta dz)] < % E
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1/2

Yo i
/ / Zu™ (dt, d2) (6.56)
0 Jizj>2 nt/e




Now from u(™ (ds,dz) = (™ (ds,dz) + v™(ds, dz), by convexity inequality, we have

2
") (ds,dz) / / 2| ds dz
[/ /||>2 / /|>2 ni/at |z\>2 nl/a )
Els / / 1
———dzds ———dzds
/ /2<|z<2n1/a n?/e |Z|1+O‘ 2<|2|<2nl/« nl/o‘ |2[ 1t

1/a
< + where C' is a deterministic constant.
n2/ o n n

+2

nl/a (ds,dz) ] 2[E

< 2E

+2

(6.57)
From (6.56) and (6.57), we deduce that the left-hand side of (6.56) is bounded by €. Then we get
that sup,, IT's < +o0 .
For I7',, from the boundedness of H™E | (6.21), and the fact that

P(LY, M) < DK 1K) 20(Ly, 13)Y? we have:

/2
(HnK anK >1 / / )
I',<FE 2| ™ (dt, dz
. <‘ (LY, LY) | |>2’ | )
[ 1/2
(Hn,K anK
=F i 1/2/ / 2| ™ (dt, dz)
2 s, a0 S

1/2

n,K nK
<E G 1/2/ / |2 ™ (dt, dz)
‘fo f|2|>2 22" (ds, dz) |2[>2

Applying the Cauchy-Schwarz inequality, we have

/01 /|Z|>2 p'(dt,dz) x /01 /|z|>2 20 (ds, dz) > (/01 /Z|>2 |z|u"(dt,dz))2. (6.58)

n,K nK 1/2
E G 7 / / | 2| ™ (dt, dz)
’fo f|z‘>2 22p(™) (ds, dz |21>2

1/2
n,K qm,Ky[1/2 (n) P (659)
(DK 2| {/0 /|Z|>2u (dmd)} ]
) s
< {E [[T(H™5, 1K) 12{ [ )(d dz” .
< {E[r( / /| R

1/2
From {E [fol f|z‘>2 p™ (dt, dz)} } < C4 where Cj is a constant and the fact that T'(H™%, H™K) ad-
mits finite moment, independently of n (but depending of K). Then, (6.59) is bounded independently

We deduce

<E
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of n and I}, is proved. Hence (6.54) follows.
Step 2: We now prove sup,, nl3 < C* where C* is a positive constant.

We have
1—\( Y”BJEO o n,@,l‘g) 1 1—\( b(?nﬂJo 9) o b( n,0,xo 0
nl/a? S1 o 1/a7 s ) Ss ) ))d
(2L aL;L) - _; o (ZLL oIl s
nl/a? pl/a nl/a? pl/a
— Ln Ln 1 .
np(ZE, ) Jo | wira”
Using that
n 1/2 — 1/2
DL V) < T(e, 2 et v !
1 2
I\(?’Z‘vﬁ7$0’y:’;7ﬁvx0) i < MP(Yl ﬁ$0 Ylvﬁ 1‘0) /
Lr\1/2
Pt vy < (g, o)
for some constants M and M, we can easily deduce that
‘Hﬁgﬁ”“—#“% 4<“
L7 oL} T =
D pirk) "
for a positive constant C*. 0

Lemma 6.5. Under the assumptions of Proposition 6.3, for any compact set Q C Rx (0,00), VK > 2,
there exists a constant cx > 0 such that

< ?K (6.60)
1

sup
z0,0€Q

n,K B, _yn, K —=n,B,
Wy oy gt (e )

g

Proof. We estimate the L- norm appearing in (6.60) by duality. Let 5 : R — [~1, 1] be a measurable
function, we evaluate:

1

o [( 2K (Yl 76,20 §?’9’m) _ —H" K (?711 Brro g{zﬁ,m))ﬁ(ylﬁ o gnﬂ,moﬂ '

n,K —n,[3, 0, — ~n,B, 0, _an,K oLy — oL%
: ‘E ["H (V77 — By — o m)} —E [nﬂ (a8 1)
_ami oLY — oL¢ K B, 0,20\ 5 /055 0,
+ ‘E |:77H (nl/i)ﬂ(nl/tly ):| —-E |:77H (Yfil1 T §{L xo)ﬁ(y? T CIL xo)}
HE >n, 6,70 n,0,xo 108,70 n,0,xo K ULl —,oL§ Ck
< ‘E {77 (Y77 =) BY T — o )} —E[n (nl/a)mnl/a)} “" o —K

where we have used Lemma 6.4 with the choice H" = 1, K > 2 and the choice h = ﬁHmKB, recalling
that |[7%""||sc < K. From the definition of ﬁH"’K(ZlLa) and nH"’K(er’B’mO — M0 as conditional
expectations, we have:

HK 7n,6,%0 n,0,20\ 73 45,0 n,0,x — K O'L? 7 O-L?
B [ @ - ey - o] - e e SR |
ny n B0 n,0,x0 n n\ 2 L? CK
= B [ (BT = )| —E |1 e (B | < =
nl/a n
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where we used Lemma 6.4. This gives,

n, n —H™ B Vadales] YA Vakilg) C
sup B [ (VP = ) - (PO BT - )| ‘ < (1K)
[18]c0 <1
and we deduce the result of this lemma. OJ
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