
HAL Id: hal-01472671
https://hal.science/hal-01472671

Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic Leader Election in O(D + log n) Time with
Messages of Size O(1)

Arnaud Casteigts, Yves Métivier, John Michael Robson, Akka Zemmari

To cite this version:
Arnaud Casteigts, Yves Métivier, John Michael Robson, Akka Zemmari. Deterministic Leader Election
in O(D + log n) Time with Messages of Size O(1). 30th International Symposium on Distributed
Computing (DISC), Sep 2016, Paris, France. pp.16-28, �10.1007/978-3-662-53426-7_2�. �hal-01472671�

https://hal.science/hal-01472671
https://hal.archives-ouvertes.fr

Deterministic Leader Election in O(D + log n) Time with
Messages of Size O(1)?

A. Casteigts, Y. Métivier, J.M. Robson, and A. Zemmari

Université de Bordeaux - Bordeaux INP LaBRI, UMR CNRS 5800
351 cours de la Libération, 33405 Talence, France
{acasteig, metivier, robson, zemmari}@labri.fr

Abstract. This paper presents a distributed algorithm, called ST T ,
for electing deterministically a leader in an arbitrary network, assuming
processors have unique identifiers of size O(logn), where n is the number
of processors. It elects a leader in O(D + logn) rounds, where D is the
diameter of the network, with messages of size O(1). Thus it has a bit
round complexity of O(D+ log n). This substantially improves upon the
best known algorithm whose bit round complexity is O(D logn). In fact,
using the lower bound by Kutten et al. [13] and a result of Dinitz and
Solomon [8], we show that the bit round complexity of ST T is optimal
(up to a constant factor), which is a step forward in understanding the
interplay between time and message optimality for the election problem.
Our algorithm requires no knowledge on the graph such as n or D.

1 Introduction

The election problem in a network consists of distinguishing a unique
node, the leader, which can subsequently act as coordinator, initiator,
and more generally performs some special role in the network (see [22] p.
262). Once a leader is established, many problems become simpler. For
this reason, election algorithms are often considered as building blocks
for other distributed algorithms and election, together with consensus, is
probably the most studied task in distributed computing literature [7],
starting with the works of Le Lann [14] and Gallager [10] in the late 70’s.

A distributed algorithm solves the election problem if it always termi-
nates and in the final configuration exactly one process (or node) is in the
elected state and all others are in the non-elected state. It is also required
that once a process becomes elected or non-elected, it remains so for the
rest of the execution. The vast body of literature on election (see [2, 15,
19, 23] and references therein) actually covers a number of different top-
ics. They include the feasibility of deterministic election in anonymous
networks, starting with the seminal paper of Angluin [1] and the key role

? A full version of this paper can be found on arXiv (http://arxiv.org/abs/1605.01903)

of coverings; the complexity of deterministic election in networks with
identifiers; and the complexity of probabilistic election in anonymous (or
sometimes identified) networks.

The present work is in the second category. We assume that each
node has a unique identifier which is a positive integer of size O(log n),
and the nodes exchange messages with their neighbours in synchronous
rounds. The exact complexity of deterministic leader election in this set-
ting has proven elusive for decades and even some simple questions remain
open [13]. Assuming the size of messages is logarithmic (i.e. messages of
size O(log n)), we know since Peleg [16] that O(D) rounds are sufficient
to elect a leader in arbitrary networks. This was recently proven optimal
by Kutten et al. [13] using a very general Ω(D) lower bound (that ap-
plies even in the probabilistic setting). Independently, Fusco and Pelc [9]
showed that the time complexity of leader election is Ω(D + λ) where λ
is the smallest depth at which some node has a unique view, called the
level of symmetry of the network. (The view at depth t from a node is the
tree of all paths of length t originating at this node.) If nodes have unique
identifiers, then λ = 0, which implies the same Ω(D) bound as in [13].

Regarding message complexity, Gallager [10] presents the first election
algorithm for general graphs with O(m+n log n) messages, where m is the
number of edges, and a running time of O(n log n). Santoro [18] proves a
matching Ω(m+n log n) lower bound for the number of messages. A few
years later, Awerbuch [3] presents an algorithm whose message complexity
is again O(m+ n log n), but time complexity is taken down to O(n).

A number of questions remain open for election. Peleg asks in [16]
whether an algorithm could be both optimal in time and in number of
messages. The answer depends on the setting, but remains essentially
open [13]. In the conclusion of their paper, Fusco and Pelc [9] also observe
that it would be interesting to investigate other complexity measures for
the leader election problem, such as bit complexity. This measure can be
viewed as a natural extension of communication complexity (introduced
by Yao [24]) to the analysis of tasks in a distributed setting.

Following [11], the bit round complexity of an algorithm A is the to-
tal number of bit rounds it takes for A to terminate, where a bit round
is a round with single bit messages. This measure has become popular
recently, as it captures into a single quantity aspects that relate both to
time and to the amount of information exchanged. In this framework,
the time-optimal algorithm of Peleg [16] results in a bit round complex-
ity of O(D log n) (i.e. O(D) rounds with O(log n) message size), and the

2

message-optimal algorithm of [3] results in a O(n log n) bit round com-
plexity (i.e. O(n) time with O(log n) message size).

In this paper, we present a bit round complexity optimal leader elec-
tion algorithm for arbitrary synchronous networks. Our algorithm re-
quires O(D+log n) bit rounds, and we show this is optimal by combining
a lower bound from [13] and a recent communication complexity result by
Dinitz and Solomon [8]. This work is thus a step forward in understand-
ing election, and a partial answer to whether optimality can be achived
both in time and in the amount of information exchanged. (As opposed to
measuring time on the one hand, and the number of messages of a given
size on the other hand.) In this respect, our result illustrates the benefits
of studying optimality under the unified lenses of bit complexity.

1.1 Contributions

We present an election algorithm ST T , having time complexity of O(D+
log n) with messages of size O(1), where D is the diameter of the network.
Algorithm ST T solves the explicit (i.e. strong) variant of the problem
defined in [13], namely, the identifier of the elected node is eventually
known to all the nodes. It also fulfills requirements from [8], such as
ensuring that every non-leader node knows which local link is in direction
of the leader, and these nodes learn the maximal id network-wide (MaxF),
as a by-product of electing this specific node in the explicit variant.

The architecture of our algorithm follows the same principle as many
election algorithms, such as those of Gallager [10] or Peleg [16]. It relies
on a competition of spanning tree constructions that works by extinction
of those trees originating at nodes with lower identifiers (see Algorithm 4
in [2] and discussion therein). Eventually, a single spanning tree survives,
whose root is the node with highest identifier. This node becomes elected
when it detects termination (recursively from the leaves up the root).
Difficulty arises from designing such algorithms with the extra constraint
that only constant size messages must be used. Of course, one might
simulate O(log n)-size messages in the obvious way paying O(log n) bit
rounds for each message. But then, the bit round complexity would remain
O(D log n). Our algorithm takes it down to O(D + log n).

For ease of exposition, we split the ST T algorithm into three compo-
nents described below, whose execution is joint in a specific way.

1. A spreading algorithm S which pipelines the maximal identifier bit-
wise to each node, in a mix of battles (comparisons), conquests (progress
of locally higher prefixes), and correction waves of bounded amplitude;

3

2. A spanning tree algorithm that executes in parallel of S and whose
union with S is denoted ST . It consists in updating the tree relations
based on what neighbour brought the highest prefix so far;

3. A termination detection algorithm that executes in parallel of ST and
whose union with ST is denoted ST T . This component enables the
node with highest identifier (and only this one) to detect termination
of the spanning tree construction rooted whose root it is.

An extra component can be added to broadcast a (constant size) ter-
mination signal from the root down the tree, once election is complete.
This component is trivial and therefore not described here.

Lower Bound: Dinitz and Solomon [8] prove a lower bound (Theorem 1
below) on the leader election problem among two nodes.

Theorem 1 ([8]). Let M be an integer such that M ≥ 2. Let G be the
graph with two nodes linked by an edge each node has a unique identifier
taken from the set ZM = {0, · · · ,M}. The bit round complexity of the
Leader task and of the MaxF version is exactly 2dlog2((M + 2)/3.5)e.

This theorem implies that the time complexity of an election algorithm
with messages of size O(1) is Ω(log n), and thus the bit round complexity
of Algorithm ST T is Ω(log n).

On the other hand, the lower bound by Kutten et al. in [13], estab-
lishing that Ω(D) time is required with logarithmic size messages, obvi-
ously extends to constant size messages. Put together, these results imply
that the bit complexity of leader election with messages of size O(1) and
identifiers of size O(log n) is Ω(D + log n), which makes our algorithm
bit-optimal (up to a constant factor).

In fact, the lower bound holds for arbitrary sizes |id| of identifiers (nec-
essarily larger than log n, though, since they are unique). Likewise, the
complexity of our algorithm is expressed relative to identifiers of arbitrary
sizes (see Theorem 25). Hence, the bit round complexity of the election
problem is in fact Θ(D + |id|). Table 1.1 summarises these elements.

Outline: After general definitions in Section 2, we present the three
components of the algorithm: the spreading algorithm S (Sections 3),
its joint use with the spanning tree algorithm (ST , Section 4), and the
adjunction of termination detection (STT , Section 5). We conclude in
Section 6 with some remarks.

4

Time Number of messages Message size Bit round complexity

Awerbuch [3] O(n) Θ(m+ n logn) O(logn) O(n logn)

Peleg [16] Θ(D) O(Dm) O(logn) O(D logn)

This paper O(D + logn) O((D + logn)m) O(1) Θ(D + logn)

Table 1. Best known solutions in terms of time and number of messages, compared to
our algorithm.

2 Model and definitions

2.1 The Network

We consider a failure-free message passing model for distributed com-
puting. The communication model consists of a point-to-point commu-
nication network described by a connected graph G = (V,E) where the
nodes V represent network processes (or nodes) and the edges E rep-
resent bidirectional communication channels. Processes communicate by
message passing: a process sends a message to another by depositing the
message in the corresponding channel.

Let n be the size of V . We assume that each node u is identified by a
unique positive integer of O(log n) bits, called identifier and denoted Idu
(in fact, Idu denotes both the identifier and its binary representation).
We do not assume any global knowledge on the network, not even the
size or an upper bound on the size, neither do the nodes require position
or distance information. Every node is equipped with a port numbering
function (i.e. a bijection between the set of incident edges Iu and the
integers in [1, |Iu|]), which allows it to identify which channel a message
was received from, or must be sent to. Two nodes u and v are said to be
neighbours if they can communicate through a port.

Finally, we assume the system is fully synchronous, namely, all pro-
cesses start at the same time and time proceeds in synchronised rounds
composed of the following three steps:

1. Send messages to (some of) the neighbours,

2. Receive messages from (some of) the neighbours,

3. Perform local computation.

The time complexity of an algorithm is the number of such rounds needed
to complete the execution in the worst case.

5

2.2 Further definitions

The paper uses a number of definitions from graph theory and formal
language theory. Although most readers may be familiar with them, we
remind the most important ones. Next we define the bit round complexity.

Definitions on graphs: These definitions are selected from [17] (Chapter
8). A tree is a connected acyclic graph. A rooted tree is a tree with
one distinguished node, called the root, in which all edges are implicitly
directed away from the root. A spanning tree of a connected graph G =
(V,E) is a tree T = (V,E′) such that E′ ⊆ E. A forest is an acyclic
graph. A spanning forest of a graph G = (V,E) is a forest whose node set
is V and edge set is a subset of E. A rooted forest is a forest such that
each tree of the forest is rooted. A child of a node u in a rooted tree is
an immediate successor of u on a path from the root. A descendant of a
node u in a rooted tree is u itself or any node that is a successor of u on
a path from the root. The parent of a node u in a rooted tree is a node
that is the immediate predecessor of u on a path to u from the root.

Definitions on languages: These definitions are selected from [17] (Chap-
ter 16). Let A be an alphabet, A∗ is the set of all words over A, the
empty word is denoted by ε. If x is a non empty word over the alphabet
A of length p then x can be written as the concatenation of p letters, i.e.,
x = x[1]x[2] · · ·x[p] with each x[i] in A. If a ∈ A and i is a positive integer
then ai is the concatenation i times of the letter a. Let x and y be two
words over alphabet A, x is said to be a prefix (resp. proper prefix) of y
if there exists a word (resp. non-empty word) z such that y = xz.

Bit round complexity: The bit complexity in general may be viewed as a
natural extension of communication complexity (introduced by Yao [24])
to the analysis of tasks in a distributed setting. An introduction to the
area can be found in Kushilevitz and Nisan [12]. In this paper, we follow
the definition from [11], that is, the bit round complexity of an algorithm
A is the total number of bit rounds it takes for A to terminate, where a
bit round is a synchronous round with single bit messages. This measure
captures into a single quantity aspects that relate both to time and to
the amount of information exchanged. Other definitions are considered
in the literature, in [4–7] the bit complexity is the total number of bits
sent until global termination. In [20], it is the maximum number of bits
sent through a same channel. In both variants, silences may convey much
information, which is why we consider the definition from [11] in terms
of round complexity as more comprehensive.

6

3 A spreading algorithm

This section presents a distributed spreading algorithm using only mes-
sages of size O(1) which allows each node to know the highest identifier
among the set of all identifiers with a time complexity of O(D + log n),
where D is the diameter of G.

3.1 Preamble

Given a node u and the binary representation Idu of its identifier. We
define α(Idu) as the word

α(Idu) = 1|Idu|0Idu.

For instance, if u has identifier 23, then Idu = 10111 and α(Idu) =
11111010111. This encoding has the nice property that it extends the nat-
ural order < of integers into a lexicographic order ≺ on their α-encoding.

Remark 2. Let u and v be two nodes with identifiers Idu and Idv. Then:

Idu < Idv ⇔ α(Idu) ≺ α(Idv).

As a result, the order between two identifiers Idu and Idv is the order in-
duced by the first letter which differs in α(Idu) and α(Idv). This property
is key to our algorithm, in which the spreading of identifiers progresses
bitwise and comparisons occur consistently.

3.2 The algorithm S

Variables: Each node can be active or follower, depending on whether
it is still a candidate for becoming the leader (i.e. no higher identifier was
detected so far). Each node u also has variables Yu, Zu and Zv

u (one for
each neighbour v of u) which are words over the alphabet {0, 1}. Yu is
a shorthand for α(Idu), it is set initially and never changes afterwards.
Zu is a prefix of Yw, for some node w (possibly u itself). It indicates
the highest prefix known so far by u. On each node, this variable will
eventually converge to the α-encoding of the highest identifier. Finally,
for each neighbour v of u, Zv

u is the lastest value of Zv known to u.

Initialisation: Initially every node u is active, all the Zu’s are set to
the empty word ε, and the Zv

u’s are accordingly set to the empty word
(wlog, we assume that a preliminary round made it possible for all nodes
to know what neighbours they have).

7

Main loop: In each round, the algorithm executes the following actions.

1. update Zu,
2. send to all neighbours a signal indicating how Zu was updated,
3. receive such signals from neighbours,
4. update all the Zv

u accordingly.

The main action is the update of Zu (step 1). It depends on the values
of Zv

u for all neighbours v and Zu itself at the end of the previous round.
This update is done according to a number of rules. For instance, as long
as u remains active and Zu is a proper prefix of Yu, the update consists in
appending the next bit of Yu to Zu. Most updates are more complex and
detailed further below. The three other actions (step 2, 3, and 4 above)
only serve the purpose of informing the neighbours as to how Zu was
updated, so that all Zv

u are correctly updated. In fact, Zu can only be
updated in seven possible ways, each causing the sending of a particular
signal among {append0, append1, delete1, delete2, delete3, change, null},
with following meaning:

– append0 or append1: Zu was updated by appending a single 0 or a
single 1;

– delete1, delete2, or delete3: Zu was updated by deleting one, two or
three letters from the end;

– change: Zu was updated by changing the last letter from 0 to 1;
– null: Zu was not modified.

Each node updates its variables Zv
u based on these signals (step 4).

Remark 3. By the end of each round, it holds that Zv
u = Zv for any

neighbour v of u. Thus from now on, Zv
u is simply written Zv.

We now describe the way Zu is updated by each node u. One property
that the update guarantees is that by the end of each round, if u and v
are two neighbours, then Zu and Zv must have a common prefix followed,
in each case, by at most six letters. This fact is later used for analysis.

Update of Zu in each round: Let us denote the state of some variable
X at the end of round t by Xt. For instance, we write Z0

u = ε, where
round 0 corresponds to initialisation. The computation of Zu at round t
results from u being active or follower, and the values of Zt−1

u and Zt−1
v

for all neighbours v of u. It is done according to the following rules given
in order of priority, i.e., R1.1 has a higher priority than R1.2, having itself
a higher priority than R2, etc. Whenever a rule is applied, the subsequent
rules are ignored.

8

-R1 (delete). The relationship between Zt−1
u and Zt−1

v for any neighbour
v of u may mean that a delete operation is possible. If any delete
is possible, one will be carried out; if more than one is possible, the
greatest will be carried out.

-R1.1 If some Zt−1
v is a proper prefix of Zt−1

u and v’s last action was a
delete, delete min{|Zt−1

u |− |Zt−1
v |, 3} letters from the end of Zt−1

u ;
-R1.2 If Zt−1

u = z0x with x 6= ε and some Zt−1
v = z1y, delete |x| letters

from the end of Zt−1
u ;

-R2 (change). if Zt−1
u = z0 and some Zt−1

v = z1y then change Zt−1
u to z1

and change u’s state to follower if it is active;
-R3 (append). if for some v, Zt−1

v = Zt−1
u 1x, then Zt

u is obtained by ap-
pending 1 to Zt−1

u ;
-R4 (append). if for some v, Zt−1

v = Zt−1
u 0x, then Zt

u is obtained by ap-
pending 0 to Zt−1

u ;
-R5 (append). if u’s state is active and t < |Yu|,append Yu[t] to Zt−1

u ;

If none of these actions apply, then Zu remains unchanged and a null
signal is sent. Otherwise, a signal corresponding to the resulting action is
sent. We now prove some properties on Algorithm S.

Lemma 4. Whenever a node u carries out a delete operation at round t,
u’s operation at round t+ 1 must be another delete operation or a change
operation.

Proof. The proof proceeds by induction on t (details in the long version).

Lemma 4 induces immediately:

Corollary 5. A sequence of delete operations on a node u ends with a
change operation on u.

Remark 6. If a node u applies R1.1, R1.2, R2, R3, or R4 then there exists
a node v such that Yu ≺ Yv.

Remark 7. Let u be a node. If there exists a neighbour v of u and a round
t such that |Zt

u| < |Zt
v| then u becomes follower.

Lemma 8. Let u and v be two neighbours. Let t be a round number.
The words Zt

u and Zt
v will always take one of the following forms (up to

renaming of u and v) where p and w are words and a is 1 or 0:

1. Zt
u = p and Zt

v = p,
2. Zt

u = p and Zt
v = pw with 1 ≤ |w| ≤ 2,

3. Zt
u = p0 and Zt

v = p1a,

9

4. Zt
u = p1 and Zt

v = p0w and |w| ≤ 3,
5. Zt

u = p and Zt
v = pw and 3 ≤ |w| ≤ 6 and u has performed a delete.

Proof. The proof proceeds by examination of all possible cases (detailed
proof in the long version).

The application of rule R1.2 corresponds to item 4, thus:

Corollary 9. If R1.2 is applied then 0 < |x| ≤ 3 and y = ε.

Lemma 8 implies:

Theorem 10. Let G be a graph of size n and diameter D such that each
node u is endowed with a unique identifier Idu which is a non negative
integer. Let X be the highest identifier. After at most |α(X)|+6D rounds,
algorithm S terminates and for each node u, Zu = α(X).

Proof. The proof proceeds by induction on the distance of a node from
the highest node (detailed proof the long version).

4 A Spanning Tree Algorithm

This section explains how the computation of a spanning tree may be
associated to the spreading algorithm S by selecting for each node u the
edge through which Zu was modified.

Let u be a node, we add for each neighbour v, a variable statusvu
whose possible values are in {child, parent, other}: it indicates the status
of v for u; initially statusvu = other. The computation of the spanning
tree occurs concurently with the spreading algorithm S as follows. If R2,
R3, or R4 is applied at round t relative to neighbor v, then u choses v as
parent (if not already the case). Then, in addition to the signals of the
spreading algorithm (indicating how Zu was updated), u sends a signal
parent to v and a signal other to its previous parent (if different from v).

After receiving signals from neighbours, in addition to the computa-
tion of the new value of Zv for each neighbour v by Algorithm S, u updates
statusvu. Algorithm ST denotes the algorithm obtained with Rules of the
spreading algorithm S and actions described just above.

Remark 11. A node has no parent if and only if it is active.

Remark 12. A node has at most one parent.

The next definition introduces for each node u a word Tu that is used
to prove that the graph induced by all the parent relations has no cycle.

10

Definition 13. Let u be a node, let t be a round number of the spreading
algorithm S; T t

u is equal to:

– Zt
u if t = 0 or if Zt

u has been obtained from Zt−1
u thanks to R2 or R3

or R4 or R5;
– Zt′

u if Zt
u has been obtained from Zt−1

u thanks to R1.1 or R1.2 and t′ < t
is the last round where Zt′

u has not been obtained by a delete operation.

The following lemma is a direct consequence of the definition of T t
u, and

of R2, R3 and R4:

Lemma 14. Let t be a round number of the spreading algorithm S. If
v is parent of u then T t

u � T t
v; furthermore if v becomes parent of u at

round t then T t
u ≺ T t

v or T t
u = T t

v and T t−1
u ≺ T t−1

v .

Corollary 15. Let t be a round number. Let u1 be a node. Let (ui)1≤i≤p
be nodes of G such that, at round t, for 2 ≤ i ≤ p ui is parent of ui−1.
Then u1 6= up.

Proof. Let t be a round, and let u1 be a node. Let (ui)1≤i≤p be nodes
of G such that, at round t, for 2 ≤ i ≤ p ui is parent of ui−1. The
previous lemma implies that (T t

ui
)1≤i≤p is increasing. Considering a couple

(uj , uj+1) where R2, or R3, or R4 has been applied for the last time before
t, we obtain the result. ut

Corollary 16. Let t be a round number. Let u1 be a node. Then either
u1 is active or there exist (ui)1≤i≤p nodes of G such that: for 2 ≤ i ≤ p
ui is parent of ui−1 and up is active.

Definition 17. We denote by ST (G) the subgraph of G = (V,E) having
V as node set and there is an edge between the node u and the node v if u
is the parent of v or v is the parent of u when algorithm ST terminates.

When Algorithm ST terminates there is exactly one active node: the
node with highest identifier. Now, from Remark 12 and Corollary 16:

Proposition 18. Let G be a connected graph such that each node has
a unique identifier. Let u be the node with the highest identifier. When
algorithm ST terminates, the graph ST (G) is a spanning tree of G.

5 Termination Detection of Algorithm ST

This section presents some actions which, added to algorithm ST , enable
the node with the highest identifier to detect termination of algorithm

11

ST ; furthermore, as it is the only one, when it detects the termination
it becomes elected. Our solution is a bitwise adaptation of the propaga-
tion process with feedback introduced in [21] and further formalised and
studied in Chapter 6 and 7 of [23].

Definition 19. Let v be a node. Let t be a round number of the spreading
algorithm. The variable Zt

v is said to be well-formed if there exists an
identifier Id such that Zt

v = α(Id).

Each node v is equipped with a boolean variable Termv which is
true iff v and all of its subtree have terminated. Whenever a rule of the
spreading algorithm is applied to node v, the variable Termv is set to
false, and a signal is sent to its neighbours to indicate that Termv =
false. Indeed, this variable can be updated several times for a same node
before stabilizing to true.

We describe an extra rule to be added to the ST algorithm in order
to allow the node with highest identifier to learn that it is so by detecting
termination of the spanning tree algorithm. This rule is considered after
those of algorithm ST in each round. Let us denote by Nv the set of
neighbours of v, and by Chv ⊆ Nv those which are v’s children. Also
recall that we omit the round number in the expression on variables when
it is non ambiguous.

The rule: Given a node v, if (v is follower) and (Termv = false) and (Zv

is well-formed) and (∀w ∈ Nv Zw = Zv) and (∀w ∈ Chv Termw = true)
then Termv := true. Furthermore v sends to his parent a signal indicating
that Termv = true.

We denote by ST T the algorithm obtained by putting together the
rules of Algorithm ST and this extra rule for termination detection.

Remark 20. Let v be a node, if Termv = true then Zv has the same value
it had when Termv became true the last time.

Remark 21. If Chv = ∅, i.e., v is a leaf, and Zv is well-formed and for
each neighbour w of v Zw = Zv then v sets Termv to true right away
(and v sends to his parent a signal indicating that Termv = true).

Remark 22. Let u be the node with highest identifier. Let v be a node.
If Zv = α(Idu) then Zv will never change.

Theorem 10 and Proposition 18 imply:

12

Proposition 23. Let G be a graph such that each node has a unique
(integer) identifier. Algorithm ST T terminates. Furthermore, if the node
u has the highest identifier then, after a run of algorithm ST T , for each
neighbour v of u Zv = α(Idu) and Termv = true and the node u receives
from each node v in Chu the signal indicating that Termv = true.

The next proposition established that only the node with highest iden-
tifier can receive a termination signal from all neighbors.

Proposition 24. Let G be a graph such that each node has a unique
identifier. Let v be a node which has not the highest identifier and such
that Zv = α(Idv) and for each neighbour w of v Zw = Zv. Then there
exists a neighbour v′ of v such that Termv′ = false.

Proof. The proof relies on transitive relations between Termv values
within the tree (detailed proof in the long version).

If the node u with highest identifier, becomes elected as soon as, for
each neighbour v of u, Zv = α(Idu) and Termv = true and it receives
from each child v the signal indicating that Termv = true we deduce:

Theorem 25. Let G be a graph such that each node has a unique iden-
tifier which is an integer. Let u be the node with the highest identifier.
There exists an election algorithm for G with messages of size O(1) which
terminates after at most |α(Idu)|+ 6D rounds.

6 Conclusion

Concerning deterministic election algorithms with identifiers, we may con-
sider three complexity measures: time complexity, message complexity,
and bit (round) complexity. Santoro [18] proved that Ω(|E| + n log n) is
a lower bound for the number of messages and Awerbuch [3] presented
an algorithm that matches this bound. Kutten et al. [13] shows that con-
cerning the time complexity Ω(D) is a lower bound and [16] implies that
O(D) is a tight upper bound. For bit (round) complexity, we deduced
from [13] and [8] that Ω(D+ log n) is a lower bound and we presented an
algorithm that matches this bound with a running time of O(D + log n)
bit rounds. Our algorithm requires no knowledge on the graph such as
the size or the diameter.

References

1. D. Angluin. Local and global properties in networks of processors. In Proceedings
of the 12th Symposium on Theory of Computing, pages 82–93, 1980.

13

2. H. Attiya and J. Welch. Distributed computing: fundamentals, simulations, and
advanced topics. John Wiley & Sons, 2004.

3. B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems (detailed summary). In Proc. of
19th Symp. on Theory of Computing, 1987, New York, USA, pages 230–240, 1987.

4. A. Bar-Noy, J. Naor, and M. Naor. One-bit algorithms. Distributed Computing,
4:3–8, 1990.

5. H. L. Bodlaender, S. Moran, and M. K. Warmuth. The distributed bit complexity
of the ring: from the anonymous case to the non-anonymous case. Inf. and comput.,
114(2):34–50, 1994.

6. H. L. Bodlaender and G. Tel. Bit-optimal election in synchronous rings. Inf.
Process. Lett., 36(1):53–56, 1990.

7. Y. Dinitz, S. Moran, and S. Rajsbaum. Bit complexity of breaking and achieving
symmetry in chains and rings. Journal of the ACM, 55(1), 2008.

8. Y. Dinitz and N. Solomon. Two absolute bounds for distributed bit complexity.
Theor. Comput. Sci., 384(2-3):168–183, 2007.

9. E. G. Fusco and A. Pelc. Knowledge, level of symmetry, and time of leader election.
Distributed Computing, 28(4):221–232, 2015.

10. R. G. Gallager. Finding a leader in a network with o(e+n logn) messages. Technical
Report Internal Memo., M.I.T., Cambridge,MA, 1979.

11. K. Kothapalli, M. Onus, C. Scheideler, and C. Schindelhauer. Distributed col-
oring in O(

√
logn) bit rounds. In 20th Int. Parallel and Distributed Processing

Symposium (IPDPS), Rhodes Island, Greece. IEEE, 2006.
12. E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University

Press, 1999.
13. S. Kutten, G. Pandurangan, D. Peleg, P. Robinson, and A. Trehan. On the com-

plexity of universal leader election. J. ACM, 62(1):7:1–7:27, 2015.
14. G. LeLann. Distributed systems: Towards a formal approach. In B. Gilchrist,

editor, Information processing’77, pages 155–160. North-Holland, 1977.
15. N. A. Lynch. Distributed algorithms. Morgan Kaufman, 1996.
16. D. Peleg. Time-optimal leader election in general networks. J. Parallel Distrib.

Comput., 8(1):96–99, 1990.
17. K. H. Rosen, editor. Handbook of discrete and combinatorial mathematics. CRC

Press, 2000.
18. N. Santoro. On the message complexity of distributed problems. International

Journal of Parallel Programming, 13(3):131–147, 1984.
19. N. Santoro. Design and analysis of distributed algorithm. Wiley, 2007.
20. J. Schneider and R. Wattenhofer. Trading bit, message, and time complexity of

distributed algorithms. In Distributed Computing - 25th International Symposium,
DISC 2011, Rome, Italy, September 20-22, 2011. Proceedings, pages 51–65, 2011.

21. Adrian Segall. Distributed network protocols. IEEE Transactions on Information
Theory, 29(1):23–34, 1983.

22. A. Tanenbaum and M. van Steen. Distributed Systems - Principles and Paradigms.
Prentice Hall, 2002.

23. G. Tel. Introduction to distributed algorithms. Cambridge University Press, 2000.
24. A. C. Yao. Some complexity questions related to distributed computing. In Proc.

of 11th Symp. on Theory of computing (STOC), pages 209–213. ACM Press, 1979.

14

