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ABSTRACT

Tubular structure segmentation is an important task, with many ap-
plications in medical image analysis such as vessel segmentation
both in 2D and 3D. However, this task is challenging due to the spa-
tial sparsity of these objects, implying a high sensitivity to noise.

An important cue in this context is the local orientation of the
tubular structures. Using this information, it is possible to regularize
the structures without destroying its integrity. In this article, we take
advantage of recent advances in orientation estimation to propose a
directional regularization prior for tubular structures, suitable for use
in a variational framework. We illustrate on both synthetic and 2D
real data.

Index Terms— Total variation, weighted total variation, Chan-
Vese model, segmentation.

1. INTRODUCTION

Thin structures in nD images are characterized by a significantly
smaller size in at least one of their n dimensions. 1D thin struc-
tures correspond to line-like or tube-like objects respectively in 2D
or 3D images. In the following, we always refer to tubular structures
independently of the image dimension. Extraction of tubular struc-
tures (vessels, neurones, fibres, . . .) is a mandatory but challenging
task for many biomedical applications. In this context, angiographic
imaging – i.e., the imaging of vessels – received a particular atten-
tion [1]; the reader is also referred to [2] for a more general survey
on tubular structure analysis.

Tubular structures are among the hardest to handle in image pro-
cessing. The difficulties derive from their spatial sparsity, their small
size (often only a few pixels thick) and their complex geometric
properties (thin, long, curvilinear, . . .). Indeed, all these properties
imply that such structures are naturally fragile and their detection is
often disturbed by noise and other artifacts.

In this work, we propose to combine a variational approach,
that has been proved successful in image restoration problems, with
novel priors specific to tubular structures. Mathematically speaking,
image restoration is an ill-posed inverse problem; to be able to solve
it, we must impose some regularity on the solution. Tikhonov [3]
proposed a quadratic regularization term; however, this generates
strong blurring effects. In 1992, Rudin, Osher and Fatemi (ROF)
replaced this quadratic regularization with an `1 norm of the gra-
dient, called total variation, which better preserves edges [4]. By
constraining the output image to take a limited set of values, this
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restoration framework can be used for segmentation. In particu-
lar, the Chan-Vese model [5] divides the image into two regions of
piecewise-constant intensities. If these two piecewise constant val-
ues are known, it results in a convex problem that can be solved
exactly [6].

Amongst all the tubular structure filters in the literature, Frangi
vesselness [7] is currently considered as the gold standard. From
this second derivative-based filter, we can extract two features: (i) a
vesselness feature which gives, for each image pixel, the probabil-
ity to belong to a tubular structure, and (ii) a direction feature that
gives, for each image pixel, the direction (as a vector) of the associ-
ated tubular structure. Recently, we introduced the RORPO operator
[8, 9] which is a robust alternative to the Frangi filter, which also
provides both vesselness and direction features.

In the context of tubular structures, extensions of the Chan-Vese
model have been proposed by adding tubular priors, e.g., superel-
lipsoids [10], B-splines framelet [11], adaptive dictionaries [12] and
elastical regularization [13]. In [14], we also proposed a variational
approach for tubular structure restoration. Indeed, by considering
the Frangi vesselness feature, we designed an adaptive regulariza-
tion parameter to avoid the intensity loss in tubular structures, which
is a characteristic of classical variational restoration frameworks.

In this article, we propose a new regularization term for varia-
tional segmentation. This term embeds both vesselness and direction
information. The main advantage of this new regularization term is
that, by regularizing along the tubular structure axis, we do not only
avoid the intensity loss in tubular structures, but we also induce re-
connections while preserving the required isotropic regularization in
the background.

2. SEGMENTATION MODEL

2.1. General problem and notations

Let X = RN×N be the Euclidean vector space and f be the 2D
original image in X of size N ×N . We consider the general mini-
mization problem:

min
u∈X

F (u, f) + λG(u) (1)

where F the data fidelity term and G the regularization term. λ ∈ R
is a weighting parameter.

A common regularization term G in such variational segmenta-
tion problem is the total variation (TV) which is defined by:

TV(u) = ‖∇u‖2,1 =
∑

0≤i,j<N

√
((∇u)xi,j)

2 + ((∇u)yi,j)
2

where∇u =
(
(∇u)x, (∇u)y

)
is the 2D gradient.



TV Weighted TV Directional TV

(a) (b)

Fig. 1: (a) Regularization principle in the case of the classical TV
(left), the weighted-TV [14] (middle) and our directional TV (right).
The brighter the color, the higher the regularization. Non-tubular
structures are not affected by the directional regularization. (b) The
regular gradient ∇ of the TV (left) and the directional gradient ∇D
(right) of our directional TV.

2.2. Directional regularization principle

In terms of tubular structure segmentation, the TV regularization (i.e.
minimizing the norm of the gradient) is not well adapted since it pe-
nalizes contours. Thin tube-like structures are essentially composed
of edges and so, are highly penalized. The TV regularization tends
to remove them.

To cope with this problem, Miraucourt et al. [14] proposed a
weighted TV scheme that includes the Frangi vesselness as a tubular
prior. They used the vesselness to know where a tubular structure
is likely to be. They proposed to regularize more strongly outside
the tubular structure than inside. This strategy generally effectively
prevents tubular structures from disappearing, however noise is not
dealt with inside these structures, leading to many disconnections,
and the smaller tubular structures are lost.

In this article, we propose a more suitable regularization term for
tubular structure segmentation, by considering both the vesselness
and direction features. Instead of regularizing less inside tubular
structures, we keep a strong regularization but solely along the local
tubular structures axis. In other words, we propose an intensity and
directional spatially variant regularization term (see Fig. 1a).

2.3. Directional total variation

We now define a directional gradient operator ∇D embedding the
vesselness and directional information.

Peyré et al. [15] proposed a gradient computed on a weighted
graph, generalized in [16]. Both the graph and its weights are com-
puted, based on the initial image at each step of the optimization
algorithm, resulting in an algorithm which may be time-consuming.
In the present article, we propose a directional TV in which both
graph and weights are computed from the direction and vesselness
feature only once, at the initial stage of the process. This results in
a regularization that is still adapted to tubular structures but more
efficient in terms of complexity.

To define this directional gradient, ∇D ∈ Xp, we first define
a span (v1, . . . , vp) of p unitary vectors. This span contains all the
discrete undirected orientations in a k×k neighborhood (see Fig. 2),
thus p = 2(n2 − n+ 1) with n = k−1

2
.

We can now define the directional gradient, in the direction of
vectors (vi)i∈J1,pK:

∇Du =
(
D1 ◦ (∇du)1, · · · , Dp ◦ (∇du)1

)
(2)

(∇Du)i,j = D1
i,j(∇du)1

i,jv1 + · · ·+Dp
i,j(∇du)pi,jvp (3)

(a) n = 1 (b) n = 2 (c) n = 3

Fig. 2: Example of spans for various n.

with Dq ∈ X, 1 ≤ q ≤ p a weight image such that:

Dq
i,j = dqi,jΦi,j + (1− Φi,j) (4)
p∑
q=1

Dq
i,j = 1 ∀(i, j) ∈ J0, NJ2 (5)

Φ ∈ X is a vesselness feature normalized to the interval [0, 1] and
the directions coefficients, (di)i∈J1,pK, are computed from the direc-
tion feature (see Sec. 3.1).

Intuitively, if Φi,j = 0, meaning the pixel (i, j) does not belong
to a tubular structure, then (∇Du)i,j =

(
(∇du1)i,j , . . . , (∇dup)i,j

)
is an isotropic gradient, resulting in an isotropic regularization. Con-
versely, if Φi,j = 1, meaning the pixel (i, j) does belong to a tubular
structure, then, (∇Du)i,j =

(
d1
i,j(∇du1)i,j , . . . , d

p
i,j(∇du

p)i,j
)

is
a directional gradient, resulting in a directional regularization along
the tubular structure axis.

Optimizing this new gradient is more satisfactory as only the
extremal contours of the tubular structure appear in the directional
gradient (see Fig.1.b). Consequently, optimizing our directional TV
no longer induces the loss of tubular structure edges, while still reg-
ularizing inside the tubular structure.

2.4. Model

We propose a segmentation model based on the directional total vari-
ation, TVd, defined as follows:

minimize
u∈[0,1]N×N

〈cf , u〉F + λ‖∇Du‖2,1 (6)

• ‖∇Du‖2,1 is the directional total variation defined with the
direction gradient of the previous section.

• 〈cf , u〉F is the Chan et al. data fidelity term [6] where
(cf )i,j = (c1 − fi,j)

2 − (c2 − fi,j)
2 and 〈u, v〉F =∑

i,j ui,jvi,j is the Frobenius product. The scalar c1 and
c2 are respectively the foreground and background constant
and f is the initial image.

3. IMPLEMENTATION

In this section, we provide the implementation details to compute
the directional total variation and obtain the segmentation results
of Sec. 4. In the following, we consider the case of a span V =
(v1, v2, v3, v4) (i.e. n = 1, see Fig. 2a).

3.1. Embedding the tubular structure priors

We have seen that the directional TV requires two tubular structure
priors: a vesselness feature Φ and a direction feature. Several filters



Fig. 3: Decomposition of the direction vector at pixel (i, j), δi,j , on
each vector of the span.

can provide these features, for instance some wavelet-based filters,
the Frangi filter and the RORPO filter. In [9], we demonstrated that,
thanks to a non-local path-based approach, the RORPO vesselness
is a more robust tubular structures detector than Frangi’s. We have
also shown that the RORPO direction feature is more precise than
Frangi’s when applied to a grey scale image (in particular, before a
segmentation step). Due to these properties, we focus on the RORPO
vesselness and direction features.

In our approach, the vesselness feature Φ is kept unchanged
whereas the directions coefficients dq (q ∈ J1, pK) must be com-
puted from the direction feature as follows:

Let ∆ ∈ X × X be the normalized direction feature. ∆i,j =
(∆x

i,j ,∆
y
i,j) is the vector that gives the local direction of the tubular

structure at pixel (i, j). The (dq)i,j are the decomposition coeffi-
cients of ∆i,j on the span V . We note that if all the dq have the same
value, ∇D is similar to a regular isotropic gradient ∇. In order to
obtain a real directional gradient, we impose that the decomposition
results in null coefficients except for those of the two span vectors
bracketing q ∈ J1, pK (see Fig. 3). More formally, let vm and vn be
the two bracketing span vectors of ∆i,j ; then:

∆i,j =

p∑
q=1

dqi,jvq = dmi,jvm + dni,jvn (7)

From Eq. (7), we derive the linear system:

dmi,jvm.vm + dni,jvn.vm = ∆i,j .vm

dmi,jvm.vn + dni,jvn.vn = ∆i,j .vn

As we consider the span V = (v1, v2, v3, v4), vm.vn =
√

2
2

because
the angle between adjacent couple vm and vn is π

4
. Then we simply

deduce:

dmi,j = 2∆i,j .vm −
√

2∆i,j .vn

dni,j = 2∆i,j .vn −
√

2∆i,j .vm

3.2. Algorithm

In [6], the Chan-Vese segmentation problem, with classical TV, was
proved to be equivalent to the following convex constrained prob-
lem:

minimize
u∈[0,1]N×N

〈cf , u〉F + λ‖∇u‖2,1 (8)

Let us recall the proximity operator (see [17] for a tutorial on
proximity operators) of a function ϕ:

proxϕ x = arg min
y∈X

ϕ(y) +
1

2
‖x− y‖22,2 (9)

It can be shown from [18], that the problem (8) admits a solution
given by the proximal point splitting algorithm:

un+1 = proxγh(un − γcf ) (10)
where h = λ‖∇u‖2,1 + ι[0,1]N×N (u) with γ a step-size parameter
and ι[0,1]N×N the indicator function defined as follows:

ι[0,1]N×N (u) =

{
0 if u ∈ [0, 1]N×N

+∞ otherwise

In [19], Beck et al. considered a dual approach to find the prox-
imity operator of γh. This results in a projected gradient-based al-
gorithm.

We simply adapt this approach to our directional TVd(u). We
only show the inner loop of the algorithm:

uk+1 = PC(TVd(uk)− λdiv(ξk))

ξk+1 = PB`2 (ξk + τ∇Duk+1)

wherePB`2 is the projection on the `2 unit balls, PC is the projection
onto the convex set C (C = [0, 1] to satisfy the constraint u ∈
[0, 1]N×N ) and∇D = D∇d where∇d is defined as follows:

(∇du)1
i,j = ui−1,j−1 − ui,j if i, j > 0

(∇du)2
i,j = ui−1,j − ui,j if i > 0

(∇du)3
i,j = ui−1,j+1 − ui,j if i > 0 , j < N − 1

(∇du)4
i,j = ui,j+1 − ui,j if j < N − 1

(∇du)ni,j = 0 ∀n ∈ J1, 4K otherwise

div is the divergence given by the adjoint relation 〈−div p, u〉X =
〈p,∇u〉Y , ∀p ∈ Y = X4, p = (p1, p2, p3, p4), ∀u ∈ X . If we
assume that p1

N−1,N−1 = p2
N−1,j = p3

N−1,0 = p4
i,0 = 0 ∀i, j ∈

J0, NJ, then div is given by:

(div p)i,j = p1
i,j − p1

i+1,j+1 + p2
i,j − p2

i+1,j

+p3
i,j − p3

i+1,j−1 + p4
i,j − p4

i,j−1

4. EXPERIMENTS AND RESULTS

In this section, we present segmentation results on both synthetic and
real data. In order to demonstrate the usefulness of our regulariza-
tion term for tubular structure segmentation, we compare our results
with two models: the classical Chan Eq. (8), and the weighted TV
Eq. (11) segmentation models.

minimize
u∈X

〈cf , u〉F+
∑

0≤i,j<N

Λ
√

((∇u)xi,j)
2 + ((∇u)yi,j)

2 (11)

where Λ = 1
λα+(α−1)Φi,j

is the adaptive regularization parameter
with λ ∈ R the classical regularization parameter and α ∈ [0, 1].

4.1. Synthetic image segmentation

We first segmented a noisy synthetic image with our directional
model and the two above methods, with increasing regularization
parameter λ. Results are shown in Fig. 4.

With a small value of λ, the three models results are equivalent
as with a small regularization, the optimization process is dominated
by the data fidelity term which is the same in the three models.

Then, when λ increases, the line-like structures progressively
disappear in the classical Chan model. The lower regularization in-
side line-like structure let the weighted TV better preserved them.
Whereas our direction TV model with a higher and directional regu-
larization both preserved and reconnect line-like structures resulting
in the best segmentation.



(a) Initial image (b) λ = 0.1 (c) λ = 0.1 (d) λ = 0.1

(e) RORPO ves-
selness (Φ)

(f) λ = 0.6 (g) λ = 0.6 (h) λ = 0.6

(i) RORPO direc-
tions

(j) λ = 1 (k) λ = 1 (l) λ = 1

Fig. 4: Comparison of the classical Chan model (b, f, j) and the
weighted TV model (c, g, k) with our directional TV model (d, h,
l) for increasing regularization parameter λ. The direction feature
is represented only inside tubular structures, in degrees, with a col-
ormap from 0◦ (black) to 180◦ (white).

4.2. Segmentation of retinal images from the DRIVE database

In order to quantitatively analyse our directional TV results, we seg-
mented the 20 images of the testing set of the Drive database [20].
We optimized each parameters to have a fair study compared with
the state of the art, and computed the accuracy (Acc) from true pos-
itives/negatives (TP, TN), false positives/negatives (FP, FN) inside
the entire field of view (FOV). We subtracted the median filter re-
sult to the input, before each segmentation, in order to homogenize
the image background, since the Chan et al. data fidelity assumes
homogeneous background and foreground intensities.

The quantitative results are shown in Fig. 5. We added, for com-
parison, a few best state of the art results (see [23] for a recent sur-
vey). The accuracy of our method is close to state of the art methods,
even though we do not propose a dedicated segmentation model for
retinal images, but only a generic directional regularization term for
tubular structures. This regularization may be embedded in more
complex variational framework such as [24], instead of the classical
TV, to improve results. The accuracy and TP of our method are still
higher than that of the classical Chan et al. . This confirms that our

TP TN Acc
Chan 0.656 0.985 0.9421
Proposed segmentation 0.690 0.981 0.9434
Staal [20] - - 0.9442
Lupascu [21] (supervised method) 0.6728 98.74 0.9597
Al-Rawi [22] (matched filtering) - - 0.9535
Human observer - - 0.9470

Fig. 5: Quantitative segmentation results on the DRIVE database.

(a) Background corrected ini-
tial image

(b) Ground truth

1

2

3

(c) Chan model

1

2

3

(d) Proposed model

(e) box 1 (f) box 2 (g) box 3

Fig. 6: Comparison of the classical Chan et al. model (c) with our
directional TV model (d) on the first DRIVE image (a) and its ground
truth (b). (e–g) zoom on a few extremities of blood vessels of the
Chan model results (top) and our proposed model results (bottom).

directional TV effectively improves the tubular structure segmenta-
tion. Fig. 6 shows a visual comparison of the Chan segmentation
and ours on the first DRIVE image. A zoom on a few blood vessels
extremities show that we successfully reconnect most small vessels.
As these reconnections represent only a few pixels within the image,
the accuracy of both methods does not appear quantitatively different
even if the improvement is real and significant. Indeed a connected
network is a much desired feature in blood vessels segmentation.

5. CONCLUSION AND FUTURE WORK

In this article, we have proposed a new regularization term for vari-
ational problems suitable for tubular structures: the directional total
variation. We have shown on both synthetic and real data that this
directional TV enhances the segmentation results by regularizing in-
side tubular structures solely along their local axis. Thanks to robust
directional information, it tends to reconnect noisy tubular structures
segments and to better preserve their extremities. In addition to seg-
mentation, this directional regularization term should be useful in
other variational problems such as denoising, debluring, inpainting,
and others. Directional TV with larger spans are also interesting to
consider for noisier applications as these should improve the recon-
nections of tubular structures segments.
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