
HAL Id: hal-01472615
https://hal.science/hal-01472615

Submitted on 21 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lessons Learned from a Prototype Implementation of
Montagovian Lexical Semantics

Bruno Mery

To cite this version:
Bruno Mery. Lessons Learned from a Prototype Implementation of Montagovian Lexical Semantics.
The Thirteenth International Workshop of Logic and Engineering of Natural Language Semantics
(LENLS 13), isAI/jsAI, Nov 2016, Kanagawa, Japan. pp.71-83. �hal-01472615�

https://hal.science/hal-01472615
https://hal.archives-ouvertes.fr

Lessons Learned from a Prototype Implementation
of Montagovian Lexical Semantics

Bruno Mery
bruno.mery@u-bordeaux.fr

LaBRI & Université de Bordeaux
Bordeaux, France.

Abstract. We present a general-purpose implementation of the process of lex-
ical semantics analysis theorised in the Montagovian Generative Lexicon ΛTYn
(hereafter MGL). The prototype software itself serves as a proof of concept of
the MGL theory. The implementation process, the data structures and algorithms,
also provide valuable results as to the expressive power required by MGL. While
the implementation of terms and types for the purpose of meaning assembly as-
sumed by MGL is in itself straightforward, some lexical phenomena imply ad-
ditional mechanisms in order to process the logical representation using implicit
knowledge. We therefore also present a minimal architecture for knowledge rep-
resentation, and how it can be applied to different phenomena.

Keywords: Lexical Semantics, Prototype Software, Montagovian Generative Lexicon,
Knowledge Representation for Natural Language Semantics.

1 Theories and Implementations of Lexical Semantics

Formal lexical semantics theories aim to integrate to the toolbox of compositional
analysis of natural language developed since Montague considerations of (logical) pol-
ysemy. Based on original studies such as [4,8], then on a theory thoroughly developed
in [22], there have been many formulations that build upon powerful type-theoretic
foundations, with a generative, dynamic account of the lexicon at their heart. Such re-
cent type-theoretic accounts of lexical meaning include Type Composition Logic (TCL)
presented in [1], Dynamic Type Semantics (DTS) presented in [3], Type Theory with
Records (TTR) presented in [7], Unified Type Theory (UTT) presented in [12], and the
Montagovian Generative Lexicon (MGL) presented in [24].

Several partial or complete implementations of those theories have been provided
for demonstration purposes, using logical or functional programming, or theorem
provers such as Coq ([6] is an example among many). Concerning MGL, however, one
of the stated goals was (paraphrasing slightly [24]) to provide an integrated treatment
from syntax to semantics extending existing analysers based on Montagovian seman-
tics such as [19] with mechanisms for lexical semantics that are easily implemented in a
typed functional programming language like Haskell. Our goal in this publication is to
present an actual prototype implementation (using functional and object programming
in Scala) of the lexical semantics of that framework.

We detail some of the necessary data structures and algorithms used, what we
learned from this implementation on the underlying logic properties of MGL, and
sketch an architecture for simple knowledge representation that is necessary for the
representation of certain lexical phenomena. The demonstrably functioning prototype
illustrates both the validity of type-theoretic formulations of lexical meaning, and the
deep interaction of lexical meaning with at least some sort of knowledge representation
already evoked in [5].

2 A MGL Prototype

2.1 The Montagovian Generative Lexicon

MGL makes use of ΛTYn (an adaptation of the many-sorted logic TYn proposed
in [21] in second-order λ -calculus, given in the syntax of System-F). The idea is to
perform an usual Montague analysis (performing syntax analysis via proof-search and
substituting semantic main λ -terms to syntactic categories). Lexical mechanisms are
then implemented in the meaning-assembly phase via a rich system of types based on
ontologically different sorts and optional λ -terms that model lexical adaptation. The
mechanisms, given in Fig. 1, can be summarised as follows:

– First, the input utterance is super-tagged and analysed using categorial-grammar
mechanisms, which is the only step of proof-search of the process, yielding a syn-
tactic term whose components are syntactic categories. The lexicon is then used
in standard Montagovian fashion to substitute λ -terms, yielding a main semantic
term, typed with many sorts and the type t for propositions.

– Second, as a many-sorted logic is used, some type mismatches might (and should)
occur, allowing mechanisms of lexical semantics to disambiguate between terms.
The lexicon provides optional λ -terms that are used as lexical transformations.
These optional terms are inserted depending on their typing and yield a λ -term
with no type mismatches.

– Finally, β -reduction yields a normal, η-long λ -term of type t (the type of propo-
sitions), i. e. a logical formula that can be used in any usual semantics, such as
model-theoretic or game-theoretic semantics.

As the first step is already well-studied and implemented, the object of concern is the
second step: given a term reflecting the syntactic structure of an utterance, to construct
a semantic λ -term in a many-sorted logic, making use of available transformations, and
yielding a suitable formula. This is the object of our prototype implementation.

2.2 Modelling Types and Terms

The data structures and algorithms responsible for implementing the terms and types
of ΛTYn are the core mechanisms of the software. They are given as two Scala sealed
abstract classes, TermW and TypeW, with a flat hierarchy of case classes implement-
ing the various possible terms and types; this simple categorisation allows us to easily
construct and detect patterns of objects.

Fig. 1. MGL Process Summary

Terms and types are constructed as binary trees (abstractions and applications of
more than one argument to a given term/type can be easily curryied).

For terms, leaves are AtomicTerms (constants), TermVarIds (variables) with an
identifier and type, or specific Transformations and Slots, while inner nodes
are TermBindings (λ -abstracted terms), or TermApplications of a predicate
and argument. For types, leaves are constant Sorts, pre-defined objects such as
PropositionType for t, or second-order variable identifiers TypeVarIds, while
nodes are TypeFunctions between two types A and B modelling A → B, or
TypeApplications modelling A {B}.

A simplified UML class diagram presents this straightforward architecture in Fig. 2.

Fig. 2. Class diagram of the core package for terms and types.

Several algorithms are provided in order to work with types and terms; they are
mostly simple recursive tree-walking algorithms, making the most of memoisation
when possible (e. g., lists of available ressources are incrementally built as terms and
types are constructed in order to minimise computations). Algorithms include the type-
checking of applications, comparison between types, automated α-conversion of vari-
ables in order to prevent issues of scope, replacement of term and type variables, β -
reduction, and the automated specialisation of types for polymorphic terms (i. e., a
predicate with a type containing one or several type variables will be specialised to the
correct types if applied to an argument with a compatible but specified type).

Most are linear in complexity (with exceptions in the adaptative mechanisms be-
low); all algorithms are at most polynomial in time.

2.3 Explicit Adaptation

The core of MGL is to provide transformations as optional terms, on top of the
main λ -term associated to each lexeme. A canonical example is the book is heavy and
interesting. Supposing three basic sorts:

– R for readable materials,
– ϕ for physical objects,
– I for informational contents;

the book can be modelled as the bookR, heavy as heavyϕ→t, interesting as
interestingI→t. The example utterance is a case of co-predication, as two pred-
icates are simultaneously asserted on two different facets (with different, in-
compatible sorts) of a same object, and MGL will resolve this by having
the lexicon provide two optional terms associated with book in order to ac-
cess these two facets: f R→ϕ

phys and f R→I
in f o . A polymorphic conjunction &Π =

ΛαΛβλPα→tλQβ→tΛξ λxξ λ f ξ→α λgξ→β .(andt→t→t (P (f x))(Q (g x))) is needed
for the co-predication. This yields, after suitable substitutions, application, and reduc-
tion, the term (and (heavy(fphys book)) (interesting (fin f o book))), which is normal and
of type t.

In our implementation, there are several important differences with the theory out-
lined above. As we distinguish between type constants and variables, there is no need
to explicitly abstract types. This is because the only second-order operation ever used
in ΛTYn is specialisation (i. e., the replacement – or instantiation – of type vari-
ables). Moreover, second-order (type) variables are all introduced by λ -bound first-
order (term) variables.

We also distinguish between term variables that are necessary for the definition of
an abstracted term (such as P, Q and x, the two predicates and the argument of the
conjonction above) and adaptation slots, the places where optional λ -terms (such as
f and g above) can be inserted. This is because the optional terms can be provided
by various different mechanisms, and might not be provided at all if the term is well-
formed (there is no lexical adaptation taking place in utterances such as heavy and
black rock; in that case, MGL provides an useful, if slightly redundant, id optional
polymorphic term that can be inserted in order to get the identity on any type).

We provide optional terms as Transforms, which are distinguished from other
terms. Each term has a list of available transformations, constructed recursively from
the leaves (the transformations available to atomic terms should be given in the lexi-
con). We also distinguish Slots for explicit adaptations; the list of slots is maintained
during the construction of the terms. Our polymorphic and conjunction then becomes:

lambda p^(B->t).lambda q^(G->t).lambda x^A.((And^{(t->(t->t))}

(p^(B->t) (f^{(A->B)} x^A))) (q^(G->t) (g^{(A->G)} x^A)))

During the attempted resolution of the application of the conjunction to terms for
heavy and interesting, the polymorphic and is specialised to sorts representing ϕ and
I, and cannot be reduced further with the application of the argument book. A further
algorithm is provided in order to model the choice of transformations, trying to match
all available transformations to the adaptation slots. As all permutations are considered,
this is potentially the most costly computation taking place. The result is a list of pos-
sible interpretations (given as term applications with slots filled by transformations):
there might be zero, one, or finitely many. A further check on the list of terms obtained
will filter those, if any, with a suitable typing, that will form the desired result(s). In the
tests conduced with the input of the example, four interpretations where produced, with
only the correct one of a resolvable type (t):

((And^{(t->(t->t))} (heavy^{(P->t)} (morph_R->Phy^{(R->P)}

book^{R})))

(interesting^{(I->t)} (morph_R->I^{(R->I)} book^{R})))

2.4 Implicit Adaptation

Polymorphic operators such as and, with explicit adaptation slots, are needed for
co-predications. However, most lexical adaptations can take place implicitly, simply
by reacting to a type mismatch such as (pA→B aC) and applying any suitable trans-
formation to resolve the type mismatch. In order to do this automatically, there are
two possibilities to resolve such type mismatches: by adapting the predicate, yielding
((f (A→B)→(C→B)) p) a), or the argument, resulting in (p (f C→A a)). There is also a third
situation to consider, that of a partial application (λxA.τ aC), in which the argument can
be adapted as above, but the typing of the predicate might be as not be determined at
the moment of the adaptation.

A procedure analyses such applications with type mismatches and no ex-
plicit adaptation slots, and inserts suitable, automatically generated adaptation slots,
then proceeds as with explicit adaptations. For example, a simple term applica-
tion such as (P^{(e->t)} a^{A}), with a transformation f_{A->e} available to
the atomic term a yields the straightforward (and only felicitous) interpretation
(lambda x^A.(P^{(e->t)} (f_{A->e}^{(A->e)} x^A)) a^{A}), that reduces
to (P^{(e->t)} (f_{A->e}^{(A->e)} a^{A}).

Implicit adaptations are necessarily reduced to those simple cases. Trying to account
automatically for co-predications would imply to try any possible permutation of types
and transformations at all nodes of a term, which would be exponential in complexity;
thus, the need for explicit operators such as the polymorphic and.

2.5 Lexicalisation

In addition to the core mechanisms, a tecto package provides support for a tec-
togrammatical/syntactic structure in the form of an unannotated binary tree of lexemes
; this serves as a factory for the input of already analysed text, and as a more streamlined
form of output for adapted terms.

A lexicon package enables the storage of lexical entries that associate lexemes (as
strings) to terms, complete with typing, transformations and ambiguities. Lexica can
be merged, in order to have combine the treatment of different phenomena, treated as
standalone modules, for complex sentences. Lexica also provide automated translations
from a syntactic structure (a tecto term) to a semantic one (a TermW term, initially not
adapted, reduced or even type-checked). Semantic terms can be presented either by a
straightforward translation to syntactic terms, or printed to a string in the usual fully-
parenthesed prefix notation with apparent typing (as in the examples of this article).

2.6 Phenomena Coverage

Many lexical phenomena discussed in [22,13] can be modelled using the simple
mechanisms of ΛTYn in their prototypal implementation given above; some others re-
quire additional mechanisms.

Lexical adaptations, including alternations, meaning transfers, grinding, qualia-
exploitation and “Dot-type”-exploitation are all supported by the adaptation mech-
anisms, as given previously. Simple predications only require to have suitable
transformations available, and to use the implicit adaptation mechanisms ; co-
predications require explicit adaptation using polymorphic operators. Theoretical
grounds have been laid in [2,24].

Constraints of application are required in order to perform co-predications correctly.
As explained in [17], the simultaneous reference to different facets of a same entity
can be infelicitous in some circumstances, such as the use of destructive transforma-
tions (grinding, packing) or metaphorical use of some words. Thus, the following
co-predications are infelicitous to some degree : *The salmon was lighting-fast and
delicious, ? Birmingham won the championship and was split in the Brexit vote. In
order to block such co-predications, we have proposed to place constraints on trans-
formations in order to block their usage depending on the other transformations that
have been used on the same term. The first version of this system given in, e. g.,
[2], distinguishes between flexible (allowing all other facets) and rigid (blocking all
other facets) transformations. The latest version, given in [14], proposes a Λ(TYn,
a system with terms of the linear intuitionistic logic as types, that (among other
things) allow any arbitrary type-driven predicate to act as a constraint on the use of
transformations.
In this prototype implementation, all transformations come with a member function
that can be defined as a constraint, and a compatibility check of all transformations
can be performed using every constraint, the default constraint being the boolean
constant true (that simply models flexible transformations). As the constraint can
effectively be any function, the precision is the same as in [14].

Ontological inclusion, called type accommodation in [22] and modelling the lexical
relation of hyponymy, can be supported by tweaking the system of sorts. The theo-
retical and empirical basis for doing so are discussed in [18], in which we argue that
coercive sub-typing is an accurate and helpful mechanism for resolving ontological
inclusion, but no other lexical phenomena.

In order to support sub-typing, each sort can be defined with an optional parent
sort. A careful review of the typing comparison mechanism will then be enough,
together with a rewriting of the equality method for sorts, in order to support sub-
typing. This is not implemented yet, but does not require (much) additional pro-
cessing power.

Performative lexical adaptations, such as quantification, Hilbert operators for deter-
miners, and the alternate readings of plurals and mass nouns, are supported as far
as the meaning assembly phase is concerned. However, in order to be useful, this
category of lexical phenomena (as well as hypostasis and several others) require
additional mechanisms in order to incorporate the knowledge gathered from the
analysis of the sentence into the logical representation. The basic architecture is
supported, but mechanisms of resolution remain preliminary and will be discussed
next, especially in Section 3.3.

3 Layers of Lexica and Knowledge Representation

3.1 The Additional Layers

Theories of semantics deriving from [22] generally encompass some degree of com-
mon sense world knowledge: it is considered known that a committee (and other such
group nouns) is made of several people and is a felicitous argument of predicates re-
quiring a plural argument, and that engines are part of cars and thus that predicates
such as powerful or fuel-guzzling can apply to cars via their constitutive quale. It has
been argued (e. g. in [9]) that such complex knowledge does not belong in a seman-
tic lexicon; we will paraphrase Im and Lee from [10], defining semantics to be the
meaning conveyed by an utterance to a competent speaker of the language in itself, ex-
cluding, for instance, the specific situation in which the utterance is made, but including
any previous discourse. Thus, the full contents of a given fairy tales should be able to
be described within semantics, while a political essay will probably require additional
knowledge about the position of the author and the specifics of the period of writing.

From our point of view, designing a complete tool for type-theoretic lexical se-
mantics imply the careful definition of various lexica that can convey the necessary,
elementary world-knowledge for each word. A lexicon for general use will associate to
all relevant lexemes their semantics (in the form of main and optional λ -terms) as can
be given in a dictionary of a language. However, there are two common cases in which
the general lexicon is not sufficient.

First are the specific lexica: vocabularies relevant only to a community (professional
jargons, local dialects, and other linguistic constructs specific to small groups of peo-
ple), and/or to a specific literary universe (fairy tales, space opera, mythology, politic
speeches, etc.). Such lexica are activated on an as-needed basis, switched often, and are
more specific than the general-use lexicon.

Lexical semantics also requires a lexicon used for the current enunciation. A com-
petent speaker of any language is able to use generative mechanisms in order to intro-
duce new lexical concepts, either by hypostasis (the use of a new word, the meaning of
which can be inferred from context and morphology), or by creative use (giving a new,
contextually evident meaning to an existing word).

In our view, the lexicon of the enunciation starts empty and can be augmented when
the analysis of the discourse encounters words that are not present in the current active
lexica. We think that such mechanisms can enable the learning of lexical semantic data.
In addition to these lexical layers of meaning, we tend to implement different lexical
phenomena using different lexica for simplicity’s sake, and create a merged lexicon
from every relevant one when processing text.

3.2 Individuals, Facts and Contexts

To summarise our argument in Section 3.1 above, in addition to mostly static lexical
data, some sort of knowledge representation is needed to process even simple lexical
phenomena such as collective and distributive readings for plurals. Namely, we need to
keep track of the individuals mentioned in a given discourse, and of the facts asserted of
those individuals. To be complete, we would also need to keep track of agents, in order
to model dialogues or multiple points of view in which certain agents assert certain
facts. Our implementation prototype currently supports individuals, as atomic terms of
type A (for named entities: human agents, towns. . .) or A→ t (for common nouns, that
can be resolved to a specific individual of type A by the means of an Hilbert-based
determiner) for any sort A. We also account for facts, as predicates (TermBindings
or atomic terms) of type α → t for any arbitrarily complex type α , that are used in a
term application, and apply to an individual. In the analysis of a term, individuals and
types are extracted and added to the context of enunciation. The hierarchy of lexical
layers given above can be implemented as a hierarchy of contexts, some containing
initial individuals and facts relevant to each lexicon; in a such complete system, the
context of the real world would, to resolve the paradox mentioned in [25], include the
fact that there is no King of France (and therefore that The king of France is bald, while
grammatical, is not felicitous because there are no qualifying referents for the entities
described, and thus cannot be assigned a truth value). Such contexts are specific objects
(aggregating individuals, facts and a related lexicon) in our implementation.

3.3 The Parsing-Knowledge Loop

We use a specific lexicon to list some common semantic terms for quantifiers, count-
ing terms, logical and Hilbert operators (detailed in e. g. [23], more recently in [16]).
Other lexica can make use of these terms in order to construct, for instance, Link-based
semantics for plurals (originally given in [11]), using lexical transformations as sug-
gested by [20] and detailed in [15]. Some functions associated to the logical lexicon
then resolve the operators, given a term and a context. This updated process of analysis
is given in Fig. 3.

To explain what the analysis of plural readings in MGL entail, consider the follow-
ing example from [15] : Jimi and Dusty met is analysed as |λye.(y = j)∨ (y = d)| >
1∧meet(λye.(y = j)∨ (y = d)). One elementary issue is that the predicate met applies
to group individuals (such as a committee) and constructions made of more than one
individuals (such as Jimi and Dusty) but not to singular individuals (such as a student).
Thus, the lexical entry for the predicate is λPe→t .|P|> 1∧meet(P) – a logical conjunc-
tion with a cardinality operator.

Fig. 3. Parsing-Knowledge Representation Feedback

Those two simple elements can be defined in System-F (the calculus in which ΛTYn,
the logic of MGL, is implemented). The issue is that, in order for our system to infer
correctly that Jimi and Dusty are two different individuals, and thus that the above term
resolves to meet(λye.(y = j)∨(y = d)), we must use processing power beyond the sim-
ple construction and reduction of terms: a minimal system of knowledge representation
and logical inference. Within our architecture encompassing individuals and facts, and
with a functional lexicon for logical connectives (including the logical and operator of
that example), as well as quantification and counting (including the cardinality opera-
tor), this example can be treated.

However, this requires a given term to be parsed at least twice: the first time, the
syntactic structure is converted into a semantic term and lexical transformations are ap-
plied, the second, facts that emerge from the transformations are added to the lexicon,
and the logical lexicon can be used in order to process the operators that have been in-
troduced. Our prototype implementation does not incorporate such feedback yet, as the
first step can result in several different interpretations; this remains a work in progress.
As a result, straightforward composition for plurals are tentatively supported (such as
in the previous example), but ambiguous covering readings for plurals are not yet avail-
able.

3.4 Hypostasis and Quantificational Puzzles

An enunciation-context lexicon that is filled with individuals and facts inferred from
the primary semantic analysis can serve, in a limited way, to account for hypostasis.
Words absent from the lexicon, but syntactically placed in the position occupied by
individuals, will be added as primary entities to the lexicon, and their precise typing
inferred from the predicates they are applied to. An elementary mechanism should be
enough to have a correct representation from Lewis Carroll’s Jabberwocky. Of course,
most competent human speakers also use morphosyntactic inference to attach at least
some degree of connotative meaning to the words being proposed (e. g., Star Wars’s
plasteel can be inferred as a fictive material somehow combining the characteristics of
plastics and steel by any English speaker).

This is completely beyond the power of our early software. Rather, we can have
the process of meaning assembly outline which lexemes are not in the lexicon, and use
human input for correcting the precise types and terms associated.

The process of counting, quantifying and selecting entities using Hilbert operators
can also shed some light on the quantificational puzzles mentioned in [1] and several
other related works. The issue with having universal quantification used together with
co-predication on multi-faceted entities can be seen in examples such as There are five
copies of War and Peace and a copy of an anthology of Tolstoı̈’s complete works on
the shelf (what is the answer to questions such as How many books. . . ?, and what
exactly is the type of book in such questions ?), or I read, then burnt, every book in
the attic (the entities being predicated form two different sets). In order to resolve such
quantificational puzzles satisfactorily, the methods for counting and quantifying must
be adapted to each predicate, and only apply to individuals of the appropriate type.
For our purpose, this implies a close monitoring of the entities introduced by lexical
transformations and their context of appearance. This is also a work in progress.

4 Results

4.1 A Fragment of Second-Order

We have proven that MGL can actually be computationally implemented. This was
not really in doubt, but the way that the combination of types and terms are imple-
mented illustrates that the time and space complexity of most of the process is limited:
the algorithms used are mostly linear tree walks, with a few quadratic worst-case op-
erations. The most complex step is the choice of optional terms for adaptation slots, of
complexity |t|× |s|×n at worst (the product of the number of optional terms available,
adaptation slots, and length of the term); the hypothesis behind MGL is that the number
of available optional terms at any point remains manageable. Thus, the step not actually
implemented in this prototype (but for which many implementations exist), syntactic
analysis, is the costliest of the process detailed in Fig. 1 and the complete process of
parsing is polynomial in time.

MGL accounts such as [24] point out that the whole expressive power of second-
order λ -calculus is not used, and that all could be implemented using first-order terms
if all possible adaptations were listed at each step (which is syntactically much longer
to write). Indeed, our implementation only supports the single second-order operation
of type specialisation (by distinguishing type variables from other types and using pat-
tern matching to recognise and rewrite types), which is required for having polymor-
phic terms. There are no features of ΛTYn that require additional power: sub-typing
can be implemented by an optional parent field in Sorts, arbitrary complex on co-
predications are supported by including a check on transformations that can be any
arbitrary function, quantification, counting and Hilbert operators can be included. . .

4.2 Minimal Processing Architecture

Our prototype implementation includes the skeleton of an architecture that repre-
sents the individuals, facts and agents appearing during the semantic analysis.

This goes beyond the straightforward process of producing a logical representation
for an utterance, as some of the terms of that logical representation might be analysed
differently depending on the context; we argue that that process is still part of a se-
mantic analysis. The individuals, facts and agents are stored in objects called contexts,
organised in a hierarchy that includes the most specific context (modelling the analysis
of the current discourse), universe-specific contexts (describing whether the discourse is
part of a fictional, historical or activity-specific setting), dialect- and language-specific
contexts, each associated to an appropriate lexicon. A complete analysis would mini-
mally involve the construction of the logical representation of an utterance, the update
of the enunciation context with individuals and facts introduced by that utterance, and a
re-interpretation of the logical representation in the active contexts. This minimal pro-
cessing architecture can be completed with no difficulties; our implementation includes
relevant data structures and algorithms, but requires significant work on examples of
performative lexica in order to be thoroughly tested.

4.3 Perspectives

This prototype implementation has already served its primary purpose: to illustrate
that MGL can be computationally implemented, and that the examples usually given
with the theory actually work. As it is, however, this implementation is more of a proof
of concept than useful software.

To be actively used by the community, more work would be required to give it an
helpful interface, both for the user and for existing analysers; we also would like to con-
vert from and to representations of the other most active type-theoretic accounts of lex-
ical semantics. The knowledge-representation architecture remains a work in progress,
and requires solid efforts in order to correspond to our ambitions. However, what MGL
really requires in order to be useful is a large-cover library of types and terms; our
hope is that this prototype will help to build software that can learn those features from
corpora.

References

1. Nicholas Asher. Lexical Meaning in Context: A Web of Words. Cambridge University Press,
March 2011.

2. Christian Bassac, Bruno Mery, and Christian Retoré. Towards a Type-Theoretical Account
of Lexical Semantics. Journal of Language, Logic, and Information, 19(2), 2010.

3. Daisuke Bekki. Dependent Type Semantics: An Introduction. In Zoé Christoff, Paolo
Galeazzi, Nina Gierasimczuk, Alexandru Marcoci, and Sonja Smet, editors, Logic and Inter-
active RAtionality (LIRa) Yearbook 2012, volume I, pages 277–300. University of Amster-
dam, 2014.

4. M. Bierwisch. Wördliche Bedeutung - eine pragmatische Gretchenfrag. In G. Grewendorf,
editor, Sprechakttheorie und Semantik, pages 119–148. Surkamp, Frankfurt, 1979.

5. Peter Bosch. The bermuda triangle: Natural language semantics between linguistics, knowl-
edge representation, and knowledge processing. In Text Understanding in LILOG, Integrat-
ing Computational Linguistics and Artificial Intelligence, Final Report on the IBM Germany
LILOG-Project, pages 243–258, London, UK, UK, 1991. Springer-Verlag.

6. Stergios Chatzikyriakidis and Zhaohui Luo. Natural language inference in coq. J. of Logic,
Lang. and Inf., 23(4):441–480, December 2014.

7. Robin Cooper. Copredication, dynamic generalized quantification and lexical innovation by
coercion. In Fourth International Workshop on Generative Approaches to the Lexicon, 2007.

8. D. A. Cruse. Lexical Semantics. Cambridge, New York, 1986.
9. J. A. Fodor and E. Lepore. The emptiness of the lexicon : Reflections on James Pustejovsky’s

The Generative Lexicon. Liguistic Inquiry, 29(2), 1998.
10. Seohyun Im and Chunngmin Lee. A developed analysis of type coercion based on type the-

ory and conventionality. In Robin Cooper and Christian Retoré, editors, ESSLLI proceedings
of the TYTLES workshop on TYpe Theory and LExical Semantics, Barcelona, August 2015.

11. Godehard Link. The logical analysis of plurals and mass terms: A lattice-theoretic approach.
In P. Portner and B. H. Partee, editors, Formal Semantics - the Essential Readings, pages
127–147. Blackwell, 1983.

12. Zhaohui Luo. Contextual analysis of word meanings in type-theoretical semantics. In Pogo-
dalla and Prost, pages 159–174. 2011.

13. Bruno Mery. Modélisation de la Sémantique Lexicale dans le cadre de la Théorie des Types.
PhD thesis, Université de Bordeaux, July 2011.

14. Bruno Mery. Lexical Semantics with Linear Types. In NLCS ’15, the Third Workshop on
Natural Language and Computer Science, Kyoto, Japan, July 2015.

15. Bruno Mery, Richard Moot, and Christian Retoré. Computing the Semantics of Plurals
and Massive Entities using Many-Sorted Types. In Tsuyoshi Murata, Koji Mineshima, and
Daisuke Bekki, editors, New Frontiers in Artificial Intelligence JSAI-isAI 2014 Workshops,
LENLS, JURISIN, and GABA, Kanagawa, Japan, October 27-28, 2014, Revised Selected
Papers, volume 9067 of Lecture Notes in Artificial Intelligence, page 357. Springer-Verlag
Berlin Heidelberg, 2015.

16. Bruno Mery, Richard Moot, and Christian Retoré. Typed Hilbert Operators for the Lexical
Semantics of Singular and Plural Determiner Phrases. In Epsilon 2015 – Hilbert’s Epsilon
and Tau in Logic, Informatics and Linguistics, Montpellier, France, June 2015.

17. Bruno Mery and Christian Retoré. Recent advances in the logical representation of lexical
semantics. In NCLS – Workshop on Natural Language and Computer Science, LiCS 2013,
Tulane University, New Orleans, June 2013.

18. Bruno Mery and Christian Retoré. Are books events ? Ontological Inclusions as Coercive
Sub-Typing, Lexical Transfers as Entailment. In LENLS ’12, in jSAI 2015, Kanagawa, Japan,
November 2015.

19. Richard Moot. Wide-coverage French syntax and semantics using Grail. In Proceedings of
Traitement Automatique des Langues Naturelles (TALN), Montreal, 2010.

20. Richard Moot and Christian Retoré. Second order lambda calculus for meaning assembly:
on the logical syntax of plurals. In Coconat, Tilburg, Netherlands, 2011.

21. Reinhard Muskens. Meaning and Partiality. In Robin Cooper and Maarten de Rijke, editors,
Studies in Logic, Langage and Information. CSLI, 1996.

22. James Pustejovsky. The Generative Lexicon. MIT Press, 1995.
23. Christian Retoré. Sémantique des déterminants dans un cadre richement typé. CoRR,

abs/1302.1422, 2013.
24. Christian Retoré. The Montagovian Generative Lexicon Lambda Tyn: a Type Theoretical

Framework for Natural Language Semantics. In Ralph Matthes and Aleksy Schubert, editors,
19th International Conference on Types for Proofs and Programs (TYPES 2013), volume 26
of Leibniz International Proceedings in Informatics (LIPIcs), pages 202–229, Dagstuhl, Ger-
many, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

25. Bertrand Russell. On denoting. Mind, 14(56):479–493, 1905.

