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LOGARITHMIC STABILITY OF PARABOLIC CAUCHY
PROBLEMS

MOURAD CHOULLI AND MASAHIRO YAMAMOTO

Abstract. The uniqueness of parabolic Cauchy problems is nowadays a clas-
sical problem and since Hadamard [8] these kind of problems are known to
be ill-posed and even severely ill-posed. Until now there are only few par-
tial results concerning the quantification of the stability for parabolic Cauchy
problems. We bring in the present work an answer to this issue for smooth
solutions under the minimal condition that the domain is Lipschitz.
Mathematics subject classification : 35R25, 35K99, 58J35
Key words : Parabolic Cauchy problems, logarithmic stability, Carleman
inequality, Hardy inequality.

1. Introduction

Throughout this article Ω is a bounded domain of Rn with Lipschitz boundary
Γ. Consider the parabolic operator

L = div(A∇ ·)− ∂t.

Here A = (aij) is a symmetric matrix whose coefficients belong to W 1,∞(Ω). As-
sume furthermore that there exists a constant 0 < κ ≤ 1 so that

(1.1) A(x)ξ · ξ ≥ κ|ξ|2, x ∈ Ω, ξ ∈ Rn,

and

(1.2) ‖aij‖W 1,∞(Ω) ≤ κ−1, 1 ≤ i, j ≤ n.

Let t0 < t1 so that t1 − t0 ≤ T0, for some given T0 > 0 and set Q = Ω× (t0, t1).
Recall the notation

H2,1(Q) = L2((t0, t1), H2(Ω)) ∩H1((t0, t1), L2(Ω)).

If Γ0 is a nonempty open subset of Γ then a classical result says that any u ∈
H2,1(Q) satisfying Lu = 0 in Q and u = ∇u = 0 on Γ0× (t0, t1) must be identically
equal to zero (see [2] and references therein). This result is known as the uniqueness
of the Cauchy problem for the equation Lu = 0. Quantifying this uniqueness result
consists in controlling a norm of a solution of Lu = 0 by a suitable function of the
norm of (u,∇u)|Γ0×(t0,t1) in some space.
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In the rest of this paper, 0 < α < 1 is fixed and, for simplicity’s sake, we use the
notations

X (Q) = C1+α,(1+α)/2(Q) ∩H1((t0, t1), H2(Ω)),
Y (Q) = {u ∈X (Q); ∂tu ∈X (Q)},
Z (Q) = Y (Q) ∩H3((t0, t1), H2(Ω)).

We endow X (Q), Y (Q) and Z (Q) with their natural norms
‖u‖X (Q) = ‖u‖C1+α,(1+α)/2(Q) + ‖u‖H1((t0,t1),H2(Ω))

‖u‖Y (Q) = ‖u‖X (Q) + ‖∂tu‖X (Q).

‖u‖Z (Q) = ‖u‖Y (Q) + ‖u‖H3((t0,t1),H2(Ω))

Let %∗ = e−e
e . Set then, for µ > 0 and %0 ≤ %∗,

Ψ%0,µ(%) =

 0 if % = 0,
(ln ln ln | ln %|)−µ if 0 < % ≤ %0,
% if % ≥ %0.

We are mainly concerned in the present work with the stability issue for the
Cauchy problem associated to the parabolic operator L. Precisely, we are going to
prove the following result.

Theorem 1.1. Let Γ0 be a nonempty open subset of Γ and s ∈ (0, 1/2). Then
there exist two constants C > 0 and 0 < %0 ≤ %∗, depending on Ω, κ, T0, α, s and
Γ0, so that, for any u ∈ Z (Q) satisfying Lu = 0 in Q, we have

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖Z (Q)Ψ%0,µ

(
C(u,Γ0)
‖u‖Z (Q)

)
,

with µ = min(α, s)/4 and
C(u,Γ0) = ‖u‖H3((t0,t1),L2(Γ0)) + ‖∇u‖H2((t0,t1),L2(Γ0)).

It is straightforward to check that C(u,Γ0) in the preceding theorem can be
substituted by

C(u,Γ0) = ‖u‖H3((t0,t1),L2(Γ0))∩H2((t0,t1),H1(Γ0)) + ‖∂nu‖H2((t0,t1),L2(Γ0)).

Here n is the unit exterior normal field on Γ and ∂nu = ∇u · n.
We observe that Theorem 1.1 remains valid if L is substituted by L plus an

operator of first order in space variable whose coefficients are bounded.
Since the proofs are quite complicated we limited ourselves to the case Lu = 0.

We believe that one can remove this condition by adding to C(u,Γ0) the norm of
Lu is a suitable space.

The second author [14, Theorem 5.1, page 24] proved a Hölder stability in a
proper subdomain of Q depending on the part of the lateral boundary where the
Cauchy data is given. In [13, Theorem 3.5.1, pages 45 and 46], Vessella establishes
a local Hölder stability corresponding to the continuation of Cauchy data to an
interior subdomain for solutions vanishing at the initial time. Recently, Bourgeois
[1, Main theorem, page 2] proved a result similar to the one in Theorem 1.1, with
a single logarithm function, in the case where L = ∆−∂t, Ω = D \O, D and O are
two domains of class C2, O b D, and Γ0 is either ∂D or ∂O. His result is based on
a global Carleman estimate in which the weight function is built from the distance
to the boundary of the space variable.
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We discuss in the present work the Cauchy problem in all of its generality, that
is without any restriction on the part of the boundary where the Cauchy data is
given.

The proof of the main result is inspired by that used in the elliptic case by the
first author in [3] (a substantial improvement of this result will appear in [4]). Note
however that there is a great difference between the elliptic case and the parabolic
case. The main difficulty in the parabolic case is due to the fact that the initial time
and the final time data are wanting. So the proofs are more technical. The idea to
overcome the fact that the initial time and the final time data are not known is to
use a Hardy inequality with respect to time variable. This explains partially why
we need to work with sufficiently smooth solutions. Another difference between the
parabolic case and the elliptic case relies on the fact that in the elliptic case the
main tool is a three-ball inequality with arbitrary radius. While in the parabolic
case the method is based on a three-cylinder inequality (see Theorem 2.1) in which
the radius depends on the distance to the boundary of the time variable. Roughly
speaking, the radius becomes smaller and smaller as the time variable approaches
the boundary. For this reason, contrary to the elliptic case where the stability is
only of single logarithmic type, the stability is of multiple logarithmic type.

The three-cylinder inequality appears to be the right tool for continuing a solu-
tion of a parabolic equation. For this reason, we are not convinced that Theorem
1.1 can be improved by using a global method.

Although we used classical tools to establish our main result, the result itself
is completely new and our proof is entirely self-contained. This is our modest
contribution to the stability issue for parabolic Cauchy problems.

The most part in our analysis is build on a Carleman inequality (Theorem 2.2
below). We observe that Carleman inequalities are very useful tool in control theory
and for establishing the unique continuation property for elliptic and parabolic
partial differential equations. There is wide literature on this subject. We just
quote here the few references [1, 5, 6, 10].

The rest of this article is organized as follows. Section 2 is devoted to a three-
cylinder interpolation inequality for the L2

t (H1
x)-norm. This inequality will be very

useful for continuing the data on an interior subdomain to the lateral boundary
data, and to continue the data from one subdomain to another subdomain. This
is what we show in Section 3 and, as byproduct, we prove a stability estimate
corresponding to the unique continuation from an interior data. The proof of
Theorem 1.1 is completed in Section 4 by beforehand establishing a result that
quantifies the stability from the Cauchy data to an interior subdomain.

2. Three-cylinder interpolation inequality

We prove in this section
Theorem 2.1. There exist C > 0 and 0 < ϑ < 1, only depending on κ, Ω and T0,
so that, for any 0 < ε < (t1 − t0)/2, u ∈ H1((t0, t1), H2(Ω)) satisfying Lu = 0 in
Q, y ∈ Ω and 0 < r < ry(ε) = min (dist(y,Γ)/3,

√
ε), we have

r3‖u‖L2((t0+ε,t1−ε),H1(B(y,2r)))(2.1)

≤ C‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖
1−ϑ
L2((t0,t1),H1(B(y,3r))).

The proof of Theorem 2.1 is based on a Carleman inequality for a family of
parabolic operators. To this end, let Z be an arbitrary set and consider the family
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of operators
Lz = div(Az∇ · )− ∂t, z ∈ Z,

where, for each z ∈ Z, Az = (aijz ) is a symmetric matrix with W 1,∞(Ω) entries and
there exists 0 < κ ≤ 1 so that
(2.2) Az(x)ξ · ξ ≥ κ|ξ|2, x ∈ Ω, ξ ∈ Rn and z ∈ Z,
and
(2.3) ‖aijz ‖W 1,∞(Ω) ≤ κ−1, 1 ≤ i, j ≤ n, z ∈ Z.

Pick ψ ∈ C2(Ω) without critical points in Ω and set Σ = Γ× (t0, t1). Let

g(t) = 1
(t− t0)(t1 − t)

and
ϕ(x, t) = g(t)

(
e4λ‖ψ‖∞ − eλ(2‖ψ‖∞+ψ(x))

)
,

χ(x, t) = g(t)eλ(2‖ψ‖∞+ψ(x)).

Theorem 2.2. (Carleman inequality) There exist three positive constants C, λ0
and τ0, only depending only on ψ, Ω, κ and T0, so that

C

∫
Q

(
λ4τ3χ3u2 + λ2τχ|∇u|2

)
e−2τϕdxdt(2.4)

≤
∫
Q

(Lzu)2e−2τϕdxdt

+
∫

Σ

(
λ3τ3χ3u2 + λτχ|∇u|2 + (λτχ)−1(∂tu)2)

)
e−2τϕdσdt,

for all u ∈ H1((t0, t1), H2(Ω)), z ∈ Z, λ ≥ λ0 and τ ≥ τ0.

Proof. Since the dependance of the constants will be uniform with respect to z ∈ Z,
we drop for simplicity the subscript z in Lz and its coefficients. On the other
hand, as C∞(Q) is dense in H1((t0, t1), H2(Ω)), it is enough to prove (2.4) when
u ∈ C∞(Q).

Let Φ = eτϕ, u ∈ C∞(Q) and set w = Φ−1u that we extend by continuity at t = 0
and t = T by setting w(·, 0) = w(·, T ) = 0. Then straightforward computations
give

Pw = [Φ−1LΦ]w = P1w + P2w + cw,

where
P1w = aw + div (A∇w)− τ∂tϕw,
P2w = B · ∇w + bw − ∂tw,

with
a = a(x, t, λ, τ) = λ2τ2χ2|∇ψ|2A,
B = B(x, t, λ, τ) = −2λτχA∇ψ,
b = b(x, t, λ, τ) = −2λ2τχ|∇ψ|2A,
c = c(x, t, λ, τ) = −λτχdiv (A∇ψ) + λ2τχ|∇ψ|2A.

Here
|∇ψ|A =

√
A∇ψ · ∇ψ =

∣∣∣A1/2∇u
∣∣∣ .
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We obtain by making integrations by parts∫
Q

aw(B · ∇w)dxdt = 1
2

∫
Q

a(B · ∇w2)dxdt(2.5)

= −1
2

∫
Q

div(aB)w2dxdt+ 1
2

∫
Σ
a(B · ν)w2dσdt

and ∫
Q

div (A∇w)B · ∇wdxdt(2.6)

= −
∫
Q

A∇w · ∇(B · ∇w)dxdt+
∫

Σ
(B · ∇w)(A∇w · ν)dσdt

= −
∫
Q

B′∇w ·A∇wdxdt

−
∫
Q

∇2wB ·A∇wdxdt+
∫

Σ
(B · ∇w)(A∇w · ν)dσdt.

Here B′ = (∂jBi) is the Jacobian matrix of B and ∇2w = (∂2
ijw) is the Hessian

matrix of w.
But∫
Q

Bj∂
2
ijwa

ik∂kwdxdt = −
∫
Q

Bja
ik∂2

jkw∂iwdxdt

−
∫
Q

∂j
[
Bja

ik
]
∂kw∂iwdxdt+

∫
Σ
Bjνja

ik∂kw∂iwdσdt.

Therefore ∫
Q

∇2wB ·A∇wdxdt = −1
2

∫
Q

([
div(B)A+ Ã

]
∇w
)
· ∇wdxdt(2.7)

+ 1
2

∫
Σ
|∇w|2A(B · ν)dσdt,

where Ã = (ãij) with ãij = B · ∇aij .
It follows from (2.6) and (2.7)∫

Q

div (A∇w)B · ∇wdxdt = 1
2

∫
Q

(
−2AB′ + div(B)A+ Ã

)
∇w · ∇wdxdt(2.8)

+
∫

Σ
(B · ∇w) (A∇w · ν) dσdt− 1

2

∫
Σ
|∇w|2A(B · ν)dσdt.

A new integration by parts yields∫
Q

div (A∇w)bwdxdt = −
∫
Q

b|∇w|2Adxdt−
∫
Q

w∇b ·A∇wdxdt

+
∫

Σ
bwA∇w · νdσdt.

This and

−
∫
Q

w∇b ·A∇wdxdt ≥ −
∫
Q

(λ2χ)−1|∇b|2Aw2dxdt−
∫
Q

λ2χ|∇w|2Adxdt
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(where we used the inequality |AX · Y | ≤ |X|2A + |Y |2A, for all X,Y ∈ Rn) imply∫
Q

div (A∇w)bwdxdt ≥ −
∫
Q

(b+ λ2χ)|∇w|2Adxdt(2.9)

−
∫
Q

(λ2χ)−1|∇b|2Aw2dxdt+
∫

Γ
bw(A∇w · ν)dσdt.

One more time, integrations by parts entail

(2.10)
∫
Q

aw∂twdxdt = 1
2

∫
Q

a∂tw
2dxdt = −1

2

∫
Q

∂taw
2dxdt,

(2.11)
∫
Q

∂tϕw∂twdxdt = 1
2

∫
Q

∂tϕ∂tw
2dxdt = −1

2

∫
Q

∂2
t ϕw

2dxdt,

∫
Q

∂tϕwB · ∇wdxdt = 1
2

∫
Q

∂tϕB · ∇w2dxdt(2.12)

= −1
2

∫
Q

div(∂tϕB)w2dxdt+ 1
2

∫
Σ
∂tϕ(B · ν)w2dσdt.

Also,

(2.13)
∫
Q

div(A∇w)∂twdxdt = −
∫
Q

A∇w · ∇∂twdxdt+
∫

Σ
(A∇w · ν)∂twdσdt.

But an integration by parts with respect to t gives∫
Q

A∇w · ∇∂twdxdt = −
∫
Q

A∇∂tw · ∇wdxdt = −
∫
Q

∇∂tw ·A∇wdxdt,

where we used w(·, 0) = w(·, T ) = 0.
Whence ∫

Q

A∇w · ∇∂twdxdt = 0.

This identity in (2.13) entails

(2.14)
∫
Q

div(A∇w)∂tw =
∫

Σ
(A∇w · ν)∂twdσdt.

Now a combination of (2.5), (2.8) to (2.12) and (2.14) gives∫
Q

P1wP2wdxdt−
∫
Q

c2w2dxdt(2.15)

≥
∫
Q

fw2dxdt+
∫
Q

F∇w · ∇wdxdt+
∫

Σ
g(w)dσdt,

where

f = −1
2div(aB) + ab− (λ2χ)−1|∇b|2A − c2 + 1

2∂ta−
τ

2∂
2
t ϕ+ τ

2div(∂tϕB)− τb∂tϕ,

F = −AB′ + 1
2

(
div(B)A+ Ã

)
− (b+ λ2χ)A,

g(w) = 1
2aw

2(B · ν)− 1
2 |∇w|

2
A(B · ν) + (B · ∇w)(A∇w · ν)

+ bw(A∇w · ν)− τ

2∂tϕ(B · ν)w2 − (A∇w · ν)∂tw.
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We obtain, by using the elementary inequality (α − β)2 ≥ α2/2 − β2, α > 0,
β > 0,

‖Pw‖22 ≥ (‖P1w + P2w‖2 − ‖cw‖2)2

≥ 1
2‖P1w + P2w‖22 − ‖cw‖22

≥
∫

Ω
P1wP2wdx−

∫
Ω
c2w2dx.

Whence (2.15) implies

(2.16) ‖Pw‖22 ≥
∫
Q

fw2dxdt+
∫
Q

F∇w · ∇wdxdt+
∫

Σ
g(w)dσdt.

In light of the following inequalities, where C is a constant depending only on
T0 and ψ,

|∂tϕ| ≤ Cχ2,

|∂2
t ϕ|, |∇∂tϕ| ≤ Cχ3

|(A∇w · ν)∂tw| ≤ λτχ|A∇w · ν|2 + (λτχ)−1(∂tw)2,

straightforward computations show that there exist four positive constants C0, C1,
λ0 and τ0, only depending only on ψ, Ω, T0 and κ, such that, for all λ ≥ λ0 and
τ ≥ τ0, so that

f ≥ C0λ
4τ3χ3,

F ξ · ξ ≥ C0λ
2τχ|ξ|2, for any ξ ∈ Rn,

|g(w)| ≤ C1
(
λ3τ3χ3w2 + λτχ|∇w|2 + (λτχ)−1(∂tw)2) .

Hence

C

∫
Q

(λ4τ3χ3w2 + λ2τχ|∇w|2)dxdt ≤
∫
Q

(Pw)2dxdt(2.17)

+
∫

Σ
(λ3τ3χ3w2 + λτχ|∇w|2 + (λτχ)−1(∂tw)2)dσdt.

As ∇w = Φ−1 (∇u+ λτχu∇ψ), we obtain
|∇w|2 = Φ−2 (|∇u|2 + λ2τ2χ2|∇ψ|2u2 + 2λτχu∇u · ∇ψ

)
.

Therefore we find, by using an elementary inequality,

|∇w|2 ≥ Φ−2
(
|∇u|2 + λ2τ2|∇ψ|2u2 − 4λ2τ2u2|∇ψ|2 − 1

2 |∇u|
2
)

and then

|∇w|2 ≥ Φ−2
(

1
2 |∇u|

2 − 3λ2τ2χ2u2‖∇ψ‖2∞
)
.

Consequently, modifying λ0 if needed, we get
(2.18) λ2τχ|∇w|2 + λ4τ3χ3w2 ≥ CΦ−2 (λ2τχ|∇u|2 + λ4τ3χ3τ2u2) .
On the other hand, it is not hard to establish the inequality
(2.19) (∂tw)2 ≤ Φ−2 ((∂tu)2 + Cτ2χ2u2) .
The expected inequality follows then by combining (2.17), (2.18) and (2.19). �
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From the preceding proof it is obvious that Theorem 2.2 holds whenever Lz is
replaced by L. That is we have

Theorem 2.3. (Carleman inequality) There exist three positive constants C, λ0
and τ0, only depending only on ψ, Ω, κ and T0, so that

C

∫
Q

(
λ4τ3χ3u2 + λ2τχ|∇u|2

)
e−2τϕdxdt(2.20)

≤
∫
Q

(Lu)2e−2τϕdxdt

+
∫

Σ

(
λ3τ3χ3u2 + λτχ|∇u|2 + (λτχ)−1(∂tu)2)

)
e−2τϕdσdt,

for all u ∈ H1((t0, t1), H2(Ω)), λ ≥ λ0 and τ ≥ τ0.

Proof of Theorem 2.1. Let u ∈ H1((t0, t1), H2(Ω)) satisfying Lu = 0 and set
Q(µ) = B(0, µ)× (−1, 1), µ > 0.

Fix (y, s) ∈ Ω× (t0, t1) and
0 < r < r(y,s) = min

(
dist(y,Γ)/3,

√
s− t0,

√
t1 − s

)
≤ r0 = r0(diam(Ω), T0).

Let
w(x, t) = u(rx+ y, r2t+ s), (x, t) ∈ Q(3),

Then
Lrw = div(Ar∇w)− ∂tw = 0 in Q(3),

where Ar(x) = (aij(rx+ y)).
Clearly, the family (Ar) satisfies (2.2) and (2.3) uniformly with respect to r ∈

(0, r(y,s)).
Let χ ∈ C∞0 (U) satisfying 0 ≤ χ ≤ 1 and χ = 1 in K, with

U = {x ∈ Rn; 1/2 < |x| < 3} and K = {x ∈ Rn; 1 ≤ |x| ≤ 5/2} .
Theorem 2.2 applied to χw when Ω is substituted by U and g(t) = 1/(1− t2) gives,
for λ ≥ λ0 and τ ≥ τ0,

C

∫
Q(2)\Q(1)

(
λ4τ3ϕ3w2 + λ2τϕ|∇w|2

)
e−2τϕdxdt(2.21)

≤
∫
Q(3)

(Lr(χw))2e−2τϕdxdt,

the constant C only depends on κ.
But

supp(Lr(χw)) ⊂ [{1/2 ≤ |x| ≤ 1} ∪ {5/2 ≤ |x| ≤ 3}]× (−1, 1)
and

(Lr(χw))2 ≤ Λ(w2 + |∇w|2),
where Λ = Λ(r0) is independent on r. Therefore, fixing λ and changing τ0 if
necessary, (2.21) implies, for τ ≥ τ0,

C

∫
Q(2)

(
w2 + |∇w|2

)
e−2τϕdxdt ≤

∫
Q(1)

(
w2 + |∇w|2

)
e−2τϕdxdt(2.22)

+
∫
Q(3)\Q(5/2)

(
w2 + |∇w|2

)
e−2τϕdxdt.
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Let 0 < ρ < 1 to be specified later and choose ψ(x) = −|x|2 in (2.22) (which is
without critical points in U). In that case

ϕ(x, t) = g(t)
(
e36λ − eλ(18−|x|2)

)
.

We have

ϕ(x, t) ≤ g(−1 + ρ)
(
e36λ − e14λ) ≤ 1

ρ

(
e36λ − e14λ) = α

ρ
,

(x, t) ∈ B(2)× (−1 + ρ, 1− ρ),
ϕ(x, t) ≥ g(0)

(
e36λ − e18λ) =

(
e36λ − e18λ) = β, (x, t) ∈ Q(1),

ϕ(x, t) ≥ g(0)
(
e36λ − e 47

4 λ
)

=
(
e36λ − e 47

4 λ
)

= γ, (x, t) ∈ Q(3) \Q (5/2) .

As β
α < 1 < γ

α , we can fix θ ∈ (0, 1) so that
1
ρ

:= θ
β

α
+ (1− θ)γ

α
> 1.

Set a = 2(1 − θ)(γ − β) and b = 2θ(γ − β) and Q̃(2) = B(0, 2) × (−1 + ρ, 1 − ρ).
Then (2.22) yields

C

∫
Q̃(2)

(
w2 + |∇w|2

)
dxdt

≤ eaτ
∫
Q(1)

(
w2 + |∇w|2

)
dxdt+ e−bτ

∫
Q(3)

(
w2 + |∇w|2

)
dxdt.

Similarly to the elliptic case [3, Theorem 2.17 and its proof, pages 19 to 21] (see
also the proof of Proposition 4.1), we obtain from this inequality the following one

C‖w‖L2((−1+ρ,1−ρ),H1(B(2))) ≤ ‖w‖ϑL2((−1,1),H1(B(1)))‖w‖
1−ϑ
L2((−1,1),H1(B(3))),

with ϑ = a
a+b .

We get by making a change of variable, where τ = 1− ρ,
r‖u‖L2((s−τr2,s+τr2),H1(B(y,2r)))(2.23)

≤ C‖u‖ϑL2((s−r2,s+r2),H1(B(y,r)))‖u‖
1−ϑ
L2((s−r2,s+r2),H1(B(y,3r))).

Here and until the end of this proof, the generic constant C only depends on Ω, κ
and T0.

Fix 0 < ε < (t1 − t0)/2. Let s0 = t0 + ε and sk = sk−1 + 2τr2, k ≥ 1, in such a
way that

(sk−1, sk) = ((sk−1 + τr2)− τr2, (sk−1 + τr2) + τr2).
We consider q the smallest integer so that (t1− ε)− sq−1 ≤ 2τr2 or equivalently

(t1 − ε)− sq−2 > 2τr2. Whence

(2.24) q <
t1 − t0 − 2ε

2τr2 + 3 < δ

2τr2 + 3diam(Ω)2

r2 =
(
T0

2τ + 3diam(Ω)2
)

1
r2 .

Let r < ry(ε) = min (dist(y,Γ)/3,
√
ε). It follows from (2.23) that

r‖u‖L2((sk−1,sk),H1(B(y,2r)))

≤ C‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖
1−ϑ
L2((t0,t1),H1(B(y,3r))),

with sq = t1 − ε.
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Thus

r

q∑
k=1
‖u‖L2((sk−1,sk),H1(B(y,2r)))

≤ Cq‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖
1−ϑ
L2((t0,t1),H1(B(y,3r))).

In consequence

r‖u‖L2((t0+ε,t1−ε),H1(B(y,2r)))(2.25)

≤ Cq‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖
1−ϑ
L2((t0,t1),H1(B(y,3r))).

Estimate (2.24) in (2.25) yields

Cr3‖u‖L2((t0+ε,t1−ε),H1(B(y,2r)))

≤ ‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖
1−ϑ
L2((t0,t1),H1(B(y,3r))), r < ry(ε).

The proof is then complete. �

3. Quantifying the uniqueness of continuation from an interior data

We start with a Hardy inequality for vector valued functions.

Lemma 3.1. Let X be a Banach space with norm ‖ · ‖ and s ∈ (0, 1/2). There
exists a constant c > 0 so that, for any u ∈ Hs((t0, t1), X), we have∥∥∥ u

δs

∥∥∥
L2((t0,t1),X)

≤ c‖u‖Hs((t0,t1),X).

Here δ = δ(t) = min{|t− t0|, |t− t1|}.

Proof. Let u ∈ Hs((t0, t1), X). From the usual Hardy’s inequality in dimension one
(see for instance [7]) we have

(3.1)
∫ t1

t0

‖u(t)‖2

δ2s(t) dt ≤ c‖‖u(·)‖‖2Hs((t0,t1)).

But

‖‖u(·)‖‖2Hs((t0,t1)) = ‖u‖2L2((t0,t1),X) +
∫ t1

t0

∫ t1

t0

|‖u(τ)‖ − ‖u(t)‖|2

|τ − t|1+2s dtdτ

≤ ‖u‖2L2((t0,t1),X) +
∫ t1

t0

∫ t1

t0

‖u(τ)− u(t)‖2

|τ − t|1+2s dtdτ = ‖u‖2Hs((t0,t1),X).

Whence the result follows. �

In the rest of this paper we shall often apply Hardy’s inequality in Lemma 3.1 to
functions from Hk((t0, t1), H), where k ≥ 1 is an integer and H is a Hilbert space.
This is made possible by [11, Remark 9.5, page 46] saying that Hs((t0, t1), H),
0 < s < 1, can be seen as an interpolated space between L2((t0, t1), H) and
H1((t0, t1), H). Precisely, we have

Hs((t0, t1), H) = [L2((t0, t1), H), H1((t0, t1), H)]1−s, 0 < s < 1.

We readily obtain from Lemma 3.1 the following corollary.
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Corollary 3.1. Let H be a Hilbert space and s ∈ (0, 1/2). There exists a constant
c > 0 so that, for any u ∈ H1((t0, t1), H), we have∥∥∥ u

δs

∥∥∥
L2((t0,t1),H)

≤ c‖u‖H1((t0,t1),H),

where δ is as in Lemma 3.1.

Next, we prove

Proposition 3.1. Let s ∈ (0, 1/2). There exist ω b Ω, only depending on Ω, and
three constants c > 0, C > 0 and σ0 > 0, only depending on Ω, κ, T0, s and α, so
that, for any u ∈X (Q) satisfying Lu = 0 in Q and 0 < σ < σ0, we have

‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ))(3.2)

≤ C
(
σmin(α,s)/2‖u‖X (Q) + ee

c/
√
σ

‖u‖L2((t0,t1),H1(ω))

)
.

Proof. Since Ω is Lipschitz, it has the uniform interior cone property (see for in-
stance [9]). That is there exist R > 0 and θ ∈

]
0, π2

[
so that, for any x̃ ∈ Γ, we may

find ξ = ξ(x̃) ∈ Sn−1 for which
C(x̃) = {x ∈ Rn; |x− x̃| < R, (x− x̃) · ξ > |x− x̃| cos θ} ⊂ Ω.

Fix x̃ ∈ Γ and let ξ = ξ(x̃) be as in the definition above.
Let 0 < ε ≤ ε0 < min

(
((3R/(2 sin θ))2, (t1 − t0)/4

)
, set y0 = y0(x̃) = x̃+ (R/2)ξ

and ρ =
√
ε sin θ/3. Let N = [R/(2ρ)], the integer part of R/(2ρ), if R/(2ρ) 6∈ N

and N = R/(2ρ)− 1 if R/(2ρ) ∈ N. Define then
x0 = x̃+ (R/2−Nρ)ξ.

Furthermore, consider the sequence
yj = x̃+ (R/2− jρ)ξ, 0 ≤ j ≤ N.

By construction, B(yj , 3ρ) ⊂ C(x̃), 0 ≤ j ≤ N and, as |yj+1 − yj | = ρ, we have
B(yj+1, ρ) ⊂ B(yj , 2ρ), 0 ≤ j ≤ N − 1.

Let u ∈X (Q). We use in the sequel the temporary notation
M = M(u) = ‖u‖X (Q).

Set Ij = (tj0, t
j
1), where tji = ti + (−1)ijε, with i = 0, 1 and 0 ≤ j ≤ N . Note

that
Nε ≤ (R/(2ρ))ε = (3R/(2 sin θ))

√
ε.

Then IN 6= ∅ if (3R/ sin θ)
√
ε < t1 − t0. This condition always holds provided that

we substitute ε0 by min(ε0, (t1 − t0)2 sin2 θ/(9R2)).
In the rest of this proof C is a generic constant only depending on Ω, κ, α, s

and T0.
Using that Ij+1 = (tj0 + ε, tj1 − ε) and noting that ρ <

√
ε, we get from (2.1)

ρ3‖u‖L2(Ij+1,H1(B(yj ,ρ)))

≤ CM1−ϑ‖u‖ϑL2(Ij ,H1(B(xj ,ρ))), 0 ≤ j ≤ N − 1.

the constant ϑ, only depending on Ω, κ and T0, satisfies 0 < ϑ < 1.
Whence
‖u‖L2(IN ,H1(B(yN ,ρ))) ≤ (Cρ−3)(1−β)/(1−ϑ)M1−β‖u‖βL2(I0,H1(B(y0,ρ))),
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with β = ϑN+1.
In this inequality, modifying C if necessary, we may assume that Cρ−3 ≥ 1.

Thus
‖u‖L2(IN ,H1(B(yN ,ρ))) ≤ Cρ

−3/(1−ϑ)M1−β‖u‖βL2(I0,H1(B(y0,ρ))),

Let J = IN . Since B(y0, ρ) ⊂ B(y0, R sin θ/6) ⊂ C(x̃) and yN = x0, the last
inequality entails

(3.3) ‖u‖L2(J,H1(B(x0,ρ))) ≤ Cρ
−3/(1−ϑ)M1−β‖u‖βL2(I0,H1(B(y0,R sin θ/6))).

Define
ω =

⋃
ỹ∈Γ

B(y0(ỹ), R sin θ/6).

It is worth mentioning that ω only depends on Ω.
We get from (3.27)

(3.4) ‖u‖L2(J,H1(B(x0,ρ))) ≤ Cρ
−3/(1−ϑ)M1−β‖u‖βL2(I0,H1(ω))).

Now, since u is Hölder continuous, we have

|u(x̃, t)| ≤ [u]α|x̃− x|α + |u(x, t)|, x ∈ B(x0, ρ), t ∈ J.

Here and henceforth

[w]α = sup
(x1,t1),(x2,t2)∈Q

(x1,t1)6=(x2,t2)

|w(x1, t1)− w(x2, t2)|
|x1 − x2|α + |t1 − t2|α/2

, w ∈ Cα,α/2(Q).

Whence

|Sn−1|ρn
∫
J

|u(x̃, t)|2dt ≤ 2n[u]2α
∫
B(x0,ρ)×J

|x̃− x|2αdxdt(3.5)

+ 2n
∫
B(x0,ρ)×J

|u(x, t)|2dxdt,

Similarly, where 1 ≤ i ≤ n,

|Sn−1|ρn
∫
J

|∂iu(x̃, t)|2dt ≤ 2n[∂iu]2α
∫
B(x0,ρ)×J

|x̃− x|2αdxdt(3.6)

+ 2n
∫
B(x0,ρ)×J

|∂iu(x, t)|2dxdt.

We have

(3.7) |x̃− x| ≤ |x̃− x0|+ |x0 − x| ≤ ρ+ (R/2−Nρ) ≤ 2ρ.

Therefore, we have as a consequence of a combination of (3.5), (3.6) and (3.7)∫
J

|u(x̃, t)|2dt+
∫
J

|∇u(x̃, t)|2dt ≤ C
(
M2ρ2α + ρ−n‖u‖L2(J,H1(B(x0,ρ)))

)
which, in light of (3.28), yields∫

J

|u(x̃, t)|2dt+
∫
J

|∇u(x̃, t)|2dt ≤

C
(
M2ρ2α + ρ−n−6/(1−ϑ)M2(1−β)‖u‖2βL2(I0,H1(ω))

)
.
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Integrating over Γ both sides of this inequality with respect to x̃, we find

‖u‖L2(Γ×J) + ‖∇u‖L2(Γ×J) ≤(3.8)

C
(
Mρα + ρ

−n/2−3/(1−ϑ)
0 M1−β‖u‖βL2(I0,H1(ω))

)
.

Bearing in mind that J = (t0 +Nε, t1 +Nε), we get by applying Corollary 3.1,
for some fixed s ∈ (0, 1/2),

‖u‖L2((t0,t0+Nε),L2(Γ)), ‖u‖L2((t1−Nε,t1),L2(Γ)) ≤
c(Nε)s‖u‖H1((t0,t1),L2(Γ)),

‖∇u‖L2((t0,t0+Nε),L2(Γ)), ‖∇u‖L2((t1−Nε,t1),L2(Γ)) ≤
c(Nε)s‖∇u‖H1((t0,t1),L2(Γ)).

Therefore, as the trace operator

u ∈ H1((t0, t1), H2(Ω))→ (u,∇u)|Σ ∈ H1((t0, t1), L2(Γ))n+1,

is bounded, we obtain

‖u‖L2((t0,t0+Nε),L2(Γ)), ‖u‖L2((t1−Nε,t1),L2(Γ)) ≤
c(Nε)s‖u‖H1((t0,t1),H2(Ω)),

‖∇u‖L2((t0,t0+Nε),L2(Γ)), ‖∇u‖L2((t1−Nε,t1),L2(Γ)) ≤
c(Nε)s‖u‖H1((t0,t1),H2(Ω)).

These inequalities together with (3.8) give

C
(
‖u‖L2(Σ) + ‖∇u‖L2(Σ)

)
≤ (ρα + (Nε)s)M

+ ρ−n/2−3/(1−ϑ)M1−β‖u‖βL2(I0,H1(ω)).

We obtain by applying Young’s inequality to the last term

C
(
‖u‖L2(Σ) + ‖∇u‖L2(Σ)

)
≤ (ρα + (Nε)s + εα/2)M(3.9)

+ ρ−(n/2+3/(1−ϑ))/βε−(1−β)α/(2β)‖u‖L2(I0,H1(ω)).

Next, we have

(3.10) ρα + (Nε)s + εα/2 ≤ Cεmin(α,s)/2

and, as β = θN+1, we have β = O(e−c/
√
ε), from which we deduce in a straightfor-

ward manner that

(3.11) ρ−(n/2+3/(1−ϑ))/βε−(1−β)α/(2β) ≤ Cee
c
√
ε

.

We end up by observing that (3.10) and (3.11) in (3.9) give the expected inequality.
�

The a priori estimate in the following lemma is well adapted to our purpose. It
does not involve neither the initial time data nor the final time data.

Lemma 3.2. There exists a constant C > 0, only depending on Ω, κ and T0, so
that, for any u ∈ H1((t0, t1), H2(Ω)) satisfying Lu = 0 in Q, we have

(3.12) C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖H1((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).
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Proof. In this proof C is a generic constant that can only depend on Ω, κ and T0.
Let u ∈ H1((t0, t1), H2(Ω)) satisfying Lu = 0 in Q and set v = e−tu. Then v

solves the following equation

(3.13) div(A∇v)− v − ∂tv = 0 in Q.

Let 0 < ε < (t1 − t0)/2 and choose χ ∈ C∞0 ((t0, t1)) satisfying 0 ≤ χ ≤ 1, χ = 1 in
(t0 + ε, t1 − ε) and, for some universal constant c, |χ′| ≤ c/ε.

We multiply (3.13) by χv and integrate over Q. We then get by making an
integration by parts

−
∫
Q

χA∇v · ∇vdxdt−
∫
Q

χv2dxdt+
∫

Σ
χvA∇v · νdσdt+ 1

2

∫
Q

v2χ′dxdt = 0,

from which we deduce in a straightforward manner∫
Q

χA∇u · ∇udxdt+
∫
Q

χu2dxdt ≤(3.14)

e2(t1−t0)
(
C

∫
Σ

(u2 + |∇u|2)dσdx+ 1
2

∫
Q

u2|χ′|dxdt
)
.

On the other hand, as supp(χ′) ⊂ (t0, t1) \ (t0 + ε, t1 − ε), we have

J 2
ε =

∫
Q

u2|χ′|dxdt ≤ c

ε

∫ t0−ε

t0

∫
Ω
u2dxdt+ c

ε

∫ t1

t1−ε

∫
Ω
u2dxdt.

Therefore

(3.15) lim sup
ε→0

J 2
ε ≤

∫
Ω
u2(x, t0)dx+

∫
Ω
u2(x, t1)dx.

We rewrite (3.14) in the form

(3.16) C‖u‖L2((t0+ε,t1−ε),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)) + Jε.

We apply Hardy’s inequality in Corollary 3.1. We obtain

‖u‖L2((t0,t0+ε),H1(Ω)), ‖u‖L2((t1−ε,t1),H1(Ω)) ≤ Cεs‖u‖H1((t0,t1),H1(Ω)).

This and (3.16) produce

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ))

+ εs‖u‖H1((t0,t1),H1(Ω)) + Jε.

Making ε→ 0, we get by using (3.15)

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ))

+ ‖u(·, t0)‖L2(Ω) + ‖u(·, t1)‖L2(Ω).

We complete the proof by using the following inequality

C
(
‖u(·, t0)‖L2(Ω) + ‖u(·, t1)‖L2(Ω)

)
≤ ‖u‖H1((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

To prove this inequality we proceed similarly to the proof of observability inequali-
ties for parabolic equation. First, if s0 = (3t0 + t1)/4 and s1 = (t0 + 3t1)/4, we get
as a straightforward consequence of the Carleman inequality in Theorem 2.3,

(3.17) C‖u‖L2((s0,s1)×Ω) ≤ ‖u‖H1((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).
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Next pick ψ ∈ C∞([t0, t1]) so that 0 ≤ ψ ≤ 1, ψ = 0 in [t0, s0] and ψ = 1 in [s1, t1].
Then v = ψu is the solution of the IBVP −div(A∇v) + ∂tv = ψ′u in Q,

v = u on Σ,
v(·, t0) = 0.

Hence ∫
Q

A∇v · ∇vdxdt+
∫

Σ
v(A∇v · ν) + 1

2

∫
Q

∂tv
2dxdt =

∫
Q

ψ′uvdxdt.

But ∫
Q

∂tv
2dxdt =

∫
Ω
v2(x, t1)dx.

That is we have∫
Q

A∇v · ∇vdxdt+
∫

Σ
vA∇v · ν + 1

2

∫
Ω
v2(x, t1)dx =

∫
Q

ψ′uvdxdt.

We deduce from this identity

C
(
‖v(·, t1)‖2L2(Ω) + ‖∇v‖2L2(Q)

)
(3.18)

≤ ‖u‖2L2((t0,t1),L2(Γ)) + ‖∇u‖2L2((t0,t1),L2(Γ)) + ‖ψ′u‖L2(Q)‖v‖L2(Q).

Noting that

w →
(∫

Ω
|∇w|2dx+

∫
Γ
w2(x)dσ(x)

) 1
2

defines an equivalent norm on H1(Ω), we get

‖v‖2L2(Q) ≤ cΩ
(
‖∇v‖2L2(Q) + ‖u‖2L2((t0,t1),L2(Γ))

)
.

We obtain then from Young’s inequality

‖ψ′u‖L2(Q)‖v‖L2(Q) ≤
1
2ε‖ψ

′u‖2L2(Q) + cΩε

2 ‖∇v‖
2
L2(Q) + cΩε

2 ‖u‖
2
L2((t0,t1),L2(Γ)).

This inequality in (3.18), with ε sufficiently small, yields

C‖u(·, t1)‖L2(Ω) = C‖v(·, t1)‖L2(Ω)(3.19)
≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)) + ‖ψ′u‖L2(Q).

Bearing in mind that supp(ψ′) ⊂ [s0, s1], we deduce from (3.17)

‖ψ′u‖L2(Q) ≤ C‖u‖L2(Ω×(s0,s1))

≤ ‖u‖H1((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

This in (3.19) yields

C‖u(·, t1)‖L2(Ω) ≤ ‖u‖H1((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

As the Carleman estimate in Theorem 2.3 still holds for the backward parabolic
equation div(A∇u) + ∂tu = 0, we have similarly

C‖u(·, t0)‖L2(Ω) ≤ ‖u‖H1((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

The proof is then complete. �
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If u ∈ Y (Q) satisfies Lu = 0 in Q then ∂tu ∈ X (Q) and L∂tu = 0 in Q.
Proposition 3.1 applied to both u and ∂tu together with Lemma 3.2 produce the
following result.

Corollary 3.2. Let s ∈ (0, 1/2). There exist ω b Ω, only depending on Ω, and
three constants c > 0, C > 0 and σ0 > 0, only depending on Ω, κ, T0, s and α, so
that, for any u ∈ Y (Q) satisfying Lu = 0 in Q and 0 < σ < σ0, we have

(3.20) ‖u‖L2((t0,t1),H1(Ω)) ≤ C
(
σmin(α,s)/2‖u‖Y (Q) + ee

c/
√
σ

‖u‖H1((t0,t1),H1(ω))

)
.

We now quantify the uniqueness of continuation from an interior subdomain to
an another interior subdomain. Prior to that, we define the geometric distance dDg
on a bounded domain D of Rn by

dDg (x, y) = inf {`(ψ); ψ : [0, 1]→ D Lipschitz path joining x to y} ,
where

`(ψ) =
∫ 1

0

∣∣ψ̇(t)
∣∣ dt

is the length of ψ.
Observe that, according to Rademacher’s theorem, any Lipschitz continuous

function ψ : [0, 1] → D is almost everywhere differentiable with
∣∣ψ̇(t)

∣∣ ≤ k a.e.
t ∈ [0, 1], where k is the Lipschitz constant of ψ. In particular, `(ψ) is well defined.

The following lemma will be used to prove the next proposition. We provide its
proof in Appendix A.

Lemma 3.3. Let D be a bounded Lipschitz domain of Rn. Then dDg ∈ L∞(D×D).

Proposition 3.2. Let ω b Ω, ω̃ b Ω and s ∈ (0, 1/2). There exist three constants
γ > 0, C > 0 and ε0 > 0, only depending on Ω, κ, T0, s, ω and ω̃, so that, for any
u ∈ H2((t0, t1), H1(Ω)) satisfying Lu = 0 in Q and 0 < ε < ε0, we have

(3.21) C‖u‖H1((t0,t1),H1(ω̃)) ≤ εs‖u‖H2((t0,t1),H1(Ω)) + eγ/ε‖u‖H1((t0,t1),H1(ω)).

Proof. Pick Ω0 a Lipschitz domain so that Ω0 b Ω, ω b Ω0 and ω̃ b Ω0. Set
then d0 = dist(Ω0,Γ). Fix 0 < ε < ε0 := min

(
d2

0/9, 1
)
and let 0 < δ <

√
ε. Let

x0 ∈ ω, x ∈ ω̃ and let ψ : [0, 1] → Ω0 be a Lipschitz path joining x0 to x so that
`(ψ) ≤ dΩ0

g (x0, x) + 1. For simplicity’s sake, we use in this proof the notation

d = ‖dΩ0
g ‖L∞(Ω0×Ω0).

Let τ0 = 0 and τk+1 = inf{τ ∈ [τk, 1]; ψ(τ) 6∈ B(ψ(τk), δ)}, k ≥ 0. We claim
that there exists an integer N ≥ 1 so that ψ(1) ∈ B (ψ(τN ), δ/2). If not, we would
have ψ(1) 6∈ B (ψ(τk), δ/2), for any k ≥ 0. As the sequence (τk) is non decreasing
and bounded from above by 1, it converges to τ̂ ≤ 1. In particular, there exists an
integer k0 ≥ 1 so that ψ(tk) ∈ B (ψ(τ̂), δ/2), k ≥ k0. But this contradicts the fact
that |ψ(τk+1)− ψ(τk)| = δ, for any k ≥ 0.

Let us check that N ≤ N0, where N0 depends only on d and δ. Pick 1 ≤ j ≤ n
so that

max
1≤i≤n

|ψi(τk+1)− ψi(τk)| = |ψj(τk+1)− ψj(τk)| .

Then

δ ≤ n |ψj(τk+1)− ψj(τk)| = n

∣∣∣∣∫ τk+1

τk

ψ̇j(t)dt
∣∣∣∣ ≤ n∫ τk+1

τk

∣∣ψ̇(t)
∣∣ dt.
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In consequence, where τN+1 = 1,

(N + 1)δ ≤ n
N∑
k=0

∫ τk+1

τk

∣∣ψ̇(τ)
∣∣ dτ = n`(ψ) ≤ n(d + 1).

Therefore
N ≤ N0 =

[
n(d + 1)

δ

]
.

Here [n(d + 1)/δ] is the integer part of n(d + 1)/δ.
Let xk = ψ(tk), 0 ≤ k ≤ N . If |z − xk+1| < δ then

|z − xk| ≤ |z − xk+1|+ |xk+1 − xk| < 2δ.
In other words, B(xk+1, δ) ⊂ B(xk, 2δ).

Remark that we have also B(xk, 3δ) ⊂ Ω, for each k.
Define

Ik = (t0 + kε, t1 − kε) k ≥ 0.
If tk0 = t0 + kε and tk1 = t1 − kε then Ik = (tk0 , tk1) and Ik+1 = (tk0 + ε, tk1 − ε).

Let u ∈ H2((t0, t1), H1(Ω) satisfying Lu = 0 in Q. In this proof we use the
following temporary notation

M = ‖u‖H1((t0,t1),H1(Ω)).

Taking into account that δ <
√
ε, we have from the three-cylinder inequality

(2.1)
‖u‖L2(Ik+1,H1(B(xk+1,δ))) ≤ C0δ

−3M1−ϑ‖u‖ϑL2(Ik,H1(B(xk,δ))),

the constants C0 and ϑ, 0 < ϑ < 1, only depend on Ω, κ and T0.
Set Λk = ‖u‖L2(Ik,H1(B(xk,δ))), 0 ≤ k ≤ N , and ΛN+1 = ‖u‖L2(IN+1,H1(B(x,δ/2))).

We can then rewrite this inequality in the form
(3.22) Λk+1 ≤ C0δ

−3M1−ϑΛϑk .
Let β = ϑN+1. We get in a straightforward manner from (3.22)

ΛN+1 ≤ (C0δ
−3)

1−ϑN+2
1−ϑ M1−βΛβ0 .

Substituting if necessary C0 by max(C0, 1), we may assume that C0 ≥ 1. Then the
last inequality gives

ΛN+1 ≤ Cδ
−3

1−ϑM1−βΛβ0 .
From here and until the end of the proof, C is a generic constant, depending only
on Ω, κ, ω, ω̃, s and T0.

Young’s inequality then leads, for σ > 0,

ΛN+1 ≤ Cδ
−3

1−ϑ ((1− β)σ
β

1−βM + βσ−1Λ0)

≤ Cδ
−3

1−ϑ (σ
β

1−βM + σ−1Λ0).

If δ is sufficiently small B(x0, δ) ⊂ ω. On the other hand, ω̃ can be recovered by
O(δ−n) balls of radius δ

2 . Whence, bearing in mind that
IN+1 ⊃ J = (t0 + (N0 + 1)ε, t1 − (N0 + 1)ε),

we have

(3.23) ‖u‖L2(J,H1(ω̃)) ≤ δ−
3

1−ϑ−n
(
σ

β
1−βM + σ−1‖u‖L2((t0,t1),H1(ω))

)
.
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Then we take σ in (3.23) in order to satisfy

δ−
3

1−ϑ−nσ
β

1−β = δ.

In that case
σ−1 ≤ δ−

m
β ,

with m = (4− ϑ)/(1− ϑ) + n.
But

β = ϑN+1 = e−(N+1)| lnϑ| ≥ ϑe−N0| lnϑ| ≥ ϑe−
n| lnϑ|(d+1)

δ .

Hence
δ−

3
1−ϑ−nσ−1 ≤ eγ/δ.

This inequality in (3.23) yields

(3.24) C‖u‖L2(J,H1(ω̃)) ≤ δM + eγ/δ‖u‖L2((t0,t1),H1(ω)).

Let ℵ = 2n(d+1)+√ε0. Substituting ε0 by min(ε0, (t1− t0)/(3ℵ)), we may assume
that J0 = (t0−ℵε, t1 +ℵε) 6= ∅. Taking δ =

√
ε/2, we get in straightforward manner

that J ⊃ J0. Hence (3.24) yields

(3.25) C‖u‖L2(J0,H1(ω̃)) ≤
√
εM + e2γ/

√
ε‖u‖L2((t0,t1),H1(ω)).

We get by applying again Hardy’s inequality in Lemma 3.1, for some fixed s ∈
(0, 1/2),

(3.26) ‖u‖L2((t0,t0+ℵε),H1(ω̃)), ‖u‖L2((t1−ℵε,t1),H1(ω̃)) ≤ cℵsεsM.

Then (3.25) and (3.26) entail

C‖u‖L2((t0,t1),H1(ω̃)) ≤ εs/2M + e2γ/
√
ε‖u‖L2((t0,t1),H1(ω)).

Substituting ε by ε2 and 2γ by γ, we obtain

(3.27) C‖u‖L2((t0,t1),H1(ω̃)) ≤ εs‖u‖H1((t0,t1),H1(Ω)) + eγ/ε‖u‖L2((t0,t1),H1(ω)).

As ∂tu ∈ H1((t0, t1), H1(Ω) satisfies L∂tu = 0 in Q, (3.27) is applicable with u
substituted by ∂tu. That is we have

(3.28) C‖∂tu‖L2((t0,t1),H1(ω̃)) ≤ εs‖∂tu‖H1((t0,t1),H1(Ω))+eγ/ε‖∂tu‖L2((t0,t1),H1(ω)).

Putting together (3.27) and (3.28) to obtain the expected inequality. �

We are now ready to prove the result quantifying the uniqueness of continuation
from an interior data. Prior to do that, we need to introduce a definition. Set
%∗ = e−e and, for µ > 0 and %0 ≤ %∗,

Φ%0,µ(%) =

 0 if % = 0,
(ln ln | ln %|)−µ if 0 < % ≤ %0,
% if % ≥ %0.

Theorem 3.1. Let ω b Ω and s ∈ (0, 1/2). There exist two constants C > 0 and
0 < %0 ≤ %∗, only depending on Ω, κ, ω, α, s and T0, so that, for any u ∈ Y (Q)
satisfying Lu = 0 in Q, we have

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖Y (Q)Φ%0,µ

(
I(u, ω)
‖u‖Y (Q)

)
.

Here µ = min(s, α)/4 and I(u, ω) = ‖u‖H1((t0,t1),H1(ω)).
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Proof. From Corollary 3.2, there exist ω̃ b Ω and three constants c > 0, C > 0 and
σ0 > 0 so that, for any u ∈ Y (Q) satisfying Lu = 0 in Q and 0 < σ < σ0, we have

C‖u‖L2((t0,t1),H1(Ω)) ≤ σµ‖u‖Y (Q) + ee
c/
√
σ

‖u‖H1((t0,t1),H1(ω̃)).

Here µ = min(s, α)/2.
But according to Proposition 3.2, there exist three constants γ > 0, C > 0 and

ε0 > 0 so that, for any u ∈X 1(Q) satisfying Lu = 0 in Q and 0 < ε < ε0, we have

C‖u‖H1((t0,t1),H1(ω̃)) ≤ εs‖u‖Y (Q) + eγ/ε‖u‖H1((t0,t1),H1(ω)).

The last two inequalities yield

C‖u‖L2((t0,t1),H1(Ω)) ≤ (σµ + εsee
c/
√
σ

)‖u‖Y (Q)(3.29)

+ eγ/εee
c/
√
σ

‖u‖H1((0,T ),H1(ω)),

for any u ∈ Y (Q) satisfying Lu = 0 in Q, 0 < σ < σ0 and 0 < ε < ε0.
We assume, by reducing σ0 if needed, that σµ0 e−e

c/
√
σ0
< εs0. We get, by taking

ε so that εs = σµe−e
c/
√
σ ,

(3.30) C‖u‖L2((t0,t1),H1(Ω)) ≤ σµ‖u‖Y (Q) + ee
ec/
√
σ

‖u‖H1((t0,t1),H1(ω)),

for any u ∈ Y (Q) satisfying Lu = 0 in Q, and 0 < σ < σ0.
Fix u ∈ Y (Q), non identically equal to zero, satisfying Lu = 0 in Q. Let

M =
‖u‖L2((t0,t1),H1(Ω))

‖u‖Y (Q)
and N =

‖u‖H1((t0,t1),H1(ω))

‖u‖Y (Q)
.

Then (3.30) can be rewritten as

(3.31) CM ≤ σµ + ee
ec/
√
σ

N, 0 < σ < σ0.

Define the function ` by `(σ) = σµe−e
ec/
√
σ

. If N < min(`(σ0), %∗) = %0 then there
exists σ so that `(σ) = N . Changing c if necessary, we have

1
N
≤ ee

ec/
√
σ

.

Or equivalently
σ ≤ [ln ln | lnN |]−1/2

It follows readily by taking σ = σ in (3.31) that

(3.32) CM ≤ [ln ln | lnN |]−µ/2.

If N ≥ %0 then obviously we have

(3.33) M ≤ 1 ≤ N

%0
.

The expected inequality follows then from (3.32) and (3.33). �
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4. Stability of parabolic Cauchy problems

An additional step is necessary to prove our stability estimate for the Cauchy
problem. It consists in quantifying the uniqueness of continuation from the Cauchy
data to an interior subdomain.

Proposition 4.1. Let ν ∈ (0, 1/2). There exist ω b Ω, only depending on Ω and
Γ0, and two constants C > 0 and c > 0, only depending on Ω, κ, Γ0, ν and T0, so
that, for any u ∈ H2((t0, t1), H2(Ω)) satisfying Lu = 0 in Q and 0 < ε < (t1−t0)/2,
we have

C‖u‖H1((t0,t1),L2(ω)) ≤ εν‖u‖H2((t0,t1),H1(Ω))(4.1)

+ ec/ε
2 (
‖u‖H2((t0,t1),L2(Γ0)) + ‖∇u‖H1((t0,t1),L2(Γ0))

)
.

Proof. Pick 0 < ε < (t1 − t0)/2, 0 < η < ε and let s ∈ [t0 + ε, t1 − ε]. Let x̃ ∈ Γ0
be arbitrarily fixed and let R > 0 so that B(x̃, R)∩Γ ⊂ Γ0. Take x0 in the interior
of Rn \ Ω sufficiently close to x̃ is such a way that ρ = dist(x0,K) < R, where
K = B(x̃, R) ∩ Γ0 (think to the fact that Ω is on one side of its boundary). Fix
then r > 0 in order to satisfy B(x0, ρ+ r) ∩ Γ ⊂ Γ0 and B(x0, ρ+ θr) ∩ Ω 6= ∅, for
some 0 < θ < 1.

Let φ ∈ C∞0 (B(x̃, ρ + r)) satisfying φ = 1 on B(x̃, ρ + (θ + 1)r/2). Set, where
0 < δ < 1 is a constant to be specified in the sequel,

Q0 = [B(x0, ρ+ r) ∩ Ω]× (s− η, s+ η),
Q1 = [B(x0, ρ+ θr) ∩ Ω]× (s− δη, s+ δη),
Q2 = {[B(x0, ρ+ r) \B(x0, ρ+ (θ + 1)r/2)] ∩ Ω} × (s− η, s+ η),
Σ0 = [B(x0, ρ+ r) ∩ Γ]× (s− η, s+ η).

We apply Theorem 2.3, with Q substituted by Q0, ψ = (ρ + r)2 − |x − x0|2,
g(t) = 1/[(t− s+ η)(s+ η − t)] and λ fixed, to φu so that u ∈ H1((t0, t1), H2(Ω))
satisfies Lu = 0 in Q in order to obtain

C

∫
Q1

u2e−2τϕdxdt ≤
∫
Q0

(L(φu))2e−2τϕdxdt(4.2)

+
∫

Σ0

(u2 + |∇u|2 + (∂tu)2)e−2τϕdxdt.

Here and henceforth, C is a generic constant that can only depend on Ω, κ, ν, Γ0
and T0.

But

L(φu) = Lφu+ 2A∇φ · ∇u.

Whence supp(L(φu)) ∩Q0 ⊂ Q2 together with (4.2) yield

C

∫
Q1

u2e−2τϕdxdt ≤
∫
Q2

(u2 + |∇u|2)e−2τϕdxdt(4.3)

+
∫

Σ0

(u2 + |∇u|2 + (∂tu)2)e−2τϕdxdt.
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Let
α = η−2

[
e4λ(ρ+r)2

− eλ(2(ρ+r)2−(ρ+θr)2)
]

:= η−2α̃,

β = η−2
[
e4λ(ρ+r)2

− e2λ(ρ+r)2
]

:= η−2β̃,

γ = η−2
[
e4λ(ρ+r)2

− eλ(2(ρ+r)2−(ρ+(θ+1)r/2)2)
]

:= η−2γ̃.

Then it is straightforward to check that

ϕ(x, t) ≤ α

1− δ in Q1,

ϕ(x, t) ≥ β in Σ0,

ϕ(x, t) ≥ γ in Q2.

Noting that
β

α
= β̃

α̃
< 1 < γ

α
= γ̃

α̃
,

we can choose 0 < κ < 1 so that
1

1− δ := κ
β̃

α̃
+ (1− κ) γ̃

α̃
> 1.

With this choice of δ, (4.3) yields

C

∫
Q1

u2dxdt ≤ e−4bη−2τ

∫
Q2

(u2 + |∇u|2)dxdt(4.4)

+ e4aη−2τ

∫
Σ0

(u2 + |∇u|2 + (∂tu)2)dxdt.

Here a = (1− κ)(γ̃ − β̃)/2 and b = κ(γ̃ − β̃)/2.
Let η = ε/2, s0 = t0 + ε− δε/2, s1 = s0 + δε/2 . . . sk = s0 +kδε/2. Let K = K(ε)

so that
K⋃
k=0

(sk − δε/2, sk + δε/2) ⊃ [t0 + ε, t1 − ε].

If Qkj (resp. Σk0) denotes Qj (resp. Σ0), j = 1, 2, when s is substituted by sk, then
it follows from (4.4)

C

K∑
k=0

∫
Qk1

u2dxdt ≤ eaε
−2τ

K∑
k=0

∫
Qk2

(u2 + |∇u|2)dxdt

+ e−bε
−2τ

K∑
k=0

∫
Σk0

(u2 + |∇u|2 + (∂tu)2)dxdt.

Note that the intervals
(
sk − ε

2 , sk + ε
2
)
overlap, but their union can cover at most

two times a subdomain of (t0, t1). Whence

(4.5) CI ≤ eaε
−2τN + e−bε

−2τM, τ ≥ τ0,
where we used the temporary notations

I = ‖u‖L2([B(x0,ρ+θr)∩Ω)]×(t0+ε,t1−ε)),

M = ‖u‖L2((t0,t1),H1(Ω)),

N = ‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0)).
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In (4.5), we get by substituting τ by ε2τ
(4.6) CI ≤ eaτM + e−bτN, τ ≥ τ0/ε2.
Set

τ1 = ln(N/M)
a+ b

.

If τ1 ≥ τ0/ε2 then τ = τ1 in (4.6) yields
(4.7) CI ≤MϑN1−ϑ,

with ϑ = b
a+b .

When τ1 < τ0/ε
2, we have

M < e(a+b)/ε2τ0N.

This inequality entails

(4.8) I ≤M = MϑM1−ϑ ≤Mϑe(1−ϑ)(a+b)τ0/ε
2
N1−ϑ.

So, in any case, one of estimates (4.7) and (4.8) holds. In other words, we proved

e−c/ε
2
‖u‖L2([B(x0,ρ+θr)∩Ω)]×(t0+ε,t1−ε))

≤ ‖u‖ϑL2((t0,t1),H1(Ω))
(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)1−ϑ
.

Fix ω b B(x0, ρ+ θr) ∩ Ω. Then the last inequality implies

e−c/ε
2
‖u‖L2(ω×(t0+ε,t1−ε))

≤ ‖u‖ϑL2((t0,t1),H1(Ω))
(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)1−ϑ
.

Hence
C‖u‖L2(ω×(t0+ε,t1−ε))(4.9)

≤ σγec/ε
2
M + σ−1ec/ε

2 (
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
,

for σ > 0, where γ = 1−ϑ
ϑ .

We get, once again from Hardy’s inequality in Lemma 3.1,
‖u‖L2(ω×(t0,t0+ε)), ‖u‖L2(ω×(t1−ε,t1)) ≤ CενM1(u),

where M1(u) = ‖u‖H1((t0,t1),H1(Ω)).
Combined with (4.9) this inequality yields

C‖u‖L2(ω×(t0,t1))

≤
(
σγec/ε

2
+ εν

)
M1 + σ−1ec/ε

2 (
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
.

In this inequality, we take σ so that σγ = ενe−c/ε
2 . Noting that σ−1 ≤ ε−ν/γ , we

find
C‖u‖L2(ω×(t0,t1)) ≤ ενM1(u)(4.10)

+ ec/ε
2 (
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
.

As we have seen in the preceding proof, inequality (4.10) still holds when u is
substituted by ∂tu. That is we have

C‖∂tu‖L2(ω×(t0,t1)) ≤ ενM1(∂tu)(4.11)

+ ec/ε
2 (
‖u‖H2((t0,t1),L2(Γ0)) + ‖∇u‖H1((t0,t1),L2(Γ0))

)
.
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We add side by side (4.10) and (4.11) in order to obtain the expected inequality. �

Remark 4.1. In the preceding proof we assumed that u ∈ H2((t0, t1), H2(Ω)).
But a quick inspection of the proof of this proposition shows that if fact the result
can be extended to functions from H2((t0, t1), H1(Ω)) ∩H1((t0, t1), H2(Ω)).

Proposition 4.1 gives only an estimate in H1((t0, t1), L2(ω)). But we can obtain
from it an estimate in H1((t0, t1), H1(ω)) by using the following Caccioppoli type
inequality for the parabolic equation Lu = 0.

Lemma 4.1. Let ω0 b ω1 b Ω. There exists a constant C > 0, only depending on
Ω, κ, T0, ω0 and ω1, so that, for any u ∈ H2((t0, t1), H2(Ω)) satisfying Lu = 0 in
Q, we have
(4.12) C‖u‖H1((t0,t1),H1(ω0)) ≤ ‖u‖H2((t0,t1),L2(ω1)).

Proof. Let u ∈ H2((t0, t1), H2(Ω)) satisfying Lu = 0 in Q. As we have done in the
preceding proofs, it is sufficient to prove

C‖u‖L2((t0,t1),H1(ω0)) ≤ ‖u‖H1((t0,t1),L2(ω1)),

because this inequality holds for both u and ∂tu.
By Green’s formula, for any v ∈ L2((t0, t1), H1

0 (Ω)), we have

(4.13)
∫ t1

t0

∫
Ω
A∇u · ∇vdxdt−

∫ t1

t0

∫
Ω
∂tuvdxdt = 0.

Let φ ∈ C∞0 (ω1) satisfying 0 ≤ φ ≤ 1 and φ = 1 in ω0.
Taking v = φ2u in (4.13) we get in straightforward manner∫ t1

t0

∫
ω1

φ2A∇u · ∇udxdt = −2
∫ t1

t0

∫
ω1

(φ∇u) · (uA∇φ)dxdt+
∫ t1

t0

∫
ω1

φ2∂tuudxdt.

But ∫ t1

t0

∫
ω1

φ2A∇u · ∇vdxdt ≥ κ
∫ t1

t0

∫
ω1

φ2|∇u|2dxdt.

Therefore

κ

∫ t1

t0

∫
ω1

φ2|∇u|2dxdt ≤ −2
∫ t1

t0

∫
ω1

(φ∇u) · (uA∇φ)dxdt(4.14)

+
∫ t1

t0

∫
ω1

φ2∂tuudxdt.

An elementary convexity inequality yields

2
∣∣∣∣∫ t1

t0

∫
ω1

(φ∇u) · (uA∇φ)dxdt
∣∣∣∣(4.15)

≤ κ

2

∫ t1

t0

∫
ω1

φ2|∇u|2dxdt+ C

∫ t1

t0

∫
ω1

u2dxdt.

On the other hand, we have

(4.16)
∣∣∣∣∫ t1

t0

∫
ω1

φ2∂tuudxdt

∣∣∣∣ ≤ ∫ t1

t0

∫
Ω
φ2u2dxdt+

∫ t1

t0

∫
Ω
φ2(∂tu)2dxdt.

Combining (4.14), (4.15) and (4.16), we end up getting
C‖∇u‖L2((t0,t1),L2(ω0)) ≤ ‖u‖L2(ω1×(t0,t1)) + ‖∂tu‖L2(ω1×(t0,t1)).
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Or equivalently

C‖u‖L2((t0,t1),H1(ω0)) ≤ ‖u‖H1((t0,t1),L2(ω1))

as expected. �

An immediate consequence of Caccioppoli’s inequality (4.12) and Proposition
4.1 (applied both to u and ∂tu), we have

Corollary 4.1. Let ν ∈ (0, 1/2). There exist ω b Ω, only depending on Ω and Γ0,
and two constants C > 0 and c > 0, only depending on Ω, κ, T0, ν and Γ0, so that,
for any u ∈ H3((t0, t1), H2(Ω)) satisfying Lu = 0 and 0 < ε < (t1 − t0)/2, we have

C‖u‖H1((t0,t1),H1(ω)) ≤ εν‖u‖H3((t0,t1),H1(Ω))(4.17)

+ ec/ε
2 (
‖u‖H3((t0,t1),L2(Γ0)) + ‖∇u‖H2((t0,t1),L2(Γ0))

)
.

We are now in position to complete the proof of Theorem 1.1. We recall that

C(u,Γ0) = ‖u‖H3((t0,t1),L2(Γ0)) + ‖∇u‖H2((t0,t1),L2(Γ0)).

IfM = ‖u‖Z (Q) then, in light of inequality (3.30) in the end of the proof of Theorem
3.1 and inequality (4.17), we get, for 0 < ε < (t1 − t0)/2 and 0 < σ < σ0,

C‖u‖L2((t0,t1),H1(Ω)) ≤
(
σmin(ν,α)/2 + ee

ec/
√
σ

εν
)
M + ee

ec/
√
σ

ec/ε
2
C(u,Γ0),

the constants C > 0, c > 0 and σ0 > 0 only depend on Ω, κ, T0, ν and Γ0.
The rest of the proof in quite similar to that of Theorem 3.1.
As we have noted above, we have L∂jt u = 0 in Q as soon as Lu = 0 in Q, for

any integer j ≥ 0. This observation enables us to state the following variante of
Theorem 1.1, where Z j(Q) = Y (Q) ∩ H3+j((t0, t1), H2(Ω)) is endowed with its
natural norm

‖u‖Z j(Q) = ‖u‖Y (Q) + ‖u‖H3+j((t0,t1),H2(Ω))

Theorem 4.1. Let Γ0 be a nonempty open subset of Γ and s ∈ (0, 1/2). Then
there exist two constants C > 0 and 0 < %0 ≤ %∗, depending on Ω, κ, T0, α, s and
Γ0, so that, for any integer j ≥ 0 and u ∈ Z j(Q) satisfying Lu = 0 in Q, we have

C‖u‖Hj((t0,t1),H1(Ω)) ≤ (j + 1)‖u‖Z j(Q)Ψ%0,µ

(
C(u,Γ0)
‖u‖Z j(Q)

)
,

with µ = min(α, s)/4 and

C(u,Γ0) = ‖u‖Hj+3((t0,t1),L2(Γ0)) + ‖∇u‖Hj+2((t0,t1),L2(Γ0)).

Appendix A

We are grateful to Tom ter Elst [12] for having communicated to us the proofs of
Lemma 3.3 and Corollary A.1 bellow. We reproduce in this appendix these proofs.

Proof of Lemma 3.3. Let D be a Lipschitz domain of Rn and introduce the nota-
tions

Q = {x = (x′, xn) ∈ Rn; |x′| < 1, −1 < xn < 1},
Q− = {x ∈ E; xn < 0},
Q0 = {x ∈ E; xn = 0}.
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As D is Lipschitz, if x̃ ∈ Γ then there exist a neighborhood U of x̃ in Rn and a
bijective map φ : Q → U so that φ : Q → U and φ−1 : U → Q are Lipschitz
continuous, and

φ(Q−) = Ω ∩ U φ(Q0) = U ∩ Γ.
For x, y ∈ D ∩ U define

ψ(t) = φ(φ−1(x) + t[φ−1(y)− φ−1(x)]), t ∈ [0, 1].

Clearly, noting that Q− is convex, ψ is a Lipschitz path in D joining x to y. We
have in addition, where k+ and k− are the respective Lipschitz constants of ψ and
ψ−1,

|ψ(t)− ψ(s)| ≤ k+|t− s||φ−1(y)− φ−1(x)| ≤ k+k−|t− s||x− y|,
t, s ∈ [0, 1].

Therefore

(A.1)
∫ 1

0

∣∣ψ̇(t)
∣∣ dt ≤ k|x− y| ≤ kdiam(D).

Here k = k+k−.
A compactness argument shows that D can be recovered by finite number of

open subsets Uj with Uj is either a ball or an open subset of the form U . As D is a
domain then necessarily any Uj intersect at least U` for some ` 6= j. In consequence,
any arbitrary two points x, y ∈ D can be joined by a Lipschitz path consisting on
finite number (independent on x and y) of line segments and paths of the form ψ.
Whence, in light of (A.1), we may find a constant C > 0 depending only on D so
that dDg (x, y) ≤ C for any x, y ∈ D. �

It is worth mentioning the following consequence of Lemma 3.3.

Corollary A.1. Let D be a Lipschitz bounded domain of Rn. Then there exists a
constant κ > 0 so that

dDg (x, y) ≤ κ|x− y| for any x, y ∈ D.

Proof. We proceed by contradiction. Assume then that there is no κ > 0 so that
dDg (x, y) ≤ κ|x − y|, for any x, y ∈ D. In particular, for any positive integer i, we
may find two sequences (xi) and (yi) in D so that xi 6= yi and dDg (xi, yi) > i|xi−yi|,
for each i. Thus

(A.2) |xi − yi| ≤
1
i
‖dDg ‖L∞(D×D), for each i.

Subtracting if necessary a subsequence, we may assume that xi converges to some
x ∈ D. Using (A.2) we see that yi converges also to x. Fix j so that x ∈ Uj , where
Uj is as in the preceding proof. According to (A.1), we have

dDg (y, z) ≤ K|y − z|, for any y, z ∈ Uj ,

for some constant K > 0.
On the other hand, there exists a positive integer i0 so that xi, yi ∈ Uj , for i ≥ i0.

Hence, for any i ≥ max(i0,K), we get

i|xi − yi| ≥ K|xi − yi| ≥ dDg (xi, yi) > i|xi − yi|.

This leads to the expected contradiction. �



26 MOURAD CHOULLI AND MASAHIRO YAMAMOTO

References
[1] L. Bourgeois, Quantification of the unique continuation property for the heat equation,

Math. Control and Related fields, 7 (3) (2017), 347-367.
[2] M. Choulli, Une introduction aux problèmes inverses elliptiques et paraboliques, vol. 65,

SMAI-Springer Verlag, Berlin, 2009.
[3] M. Choulli, Applications of elliptic Carleman inequalities to Cauchy and inverse problems,

BCAM Springer Briefs in Mathematics, Springer, Berlin, 2016.
[4] M. Choulli, An introduction to the analysis of elliptic partial differential equations, book,

to appear.
[5] E. Fernàndez-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems

and applications to controllability, SIAM J. Control Optim. 45 (4) (2006), 1399-1446.
[6] A. V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes

Series, Seoul National Univ., 1996.
[7] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, MA, 1985.
[8] J. Hadamard, Lectures in Cauchy’s problem in linear partial differential equations, Yale

University Press, New Haven, 1923.
[9] A. Henrot and M. Pierre, Variation et optimisation de formes, vol. 48, SMAI-Springer

Verlag, Berlin, 2005.
[10] G. Lebeau and J. Le Rousseau, On Carleman estimates for elliptic and parabolic operators.

Applications to unique continuation and control of parabolic equations, ESAIM Control
Optim. Calc. Var. 18 (3) (2012), 712-747.

[11] J.-L. Lions and E. Magenes, Non-homogenous boundary value problems, Vol. I, Springer-
Verlag, Berlin, 1972.

[12] T. ter Elst, private communication.
[13] S. Vessella, Quantitative estimates of unique continuation for parabolic equations, determi-

nation of unknown time-varying boundaries and optimal stability estimates, Inverse Prob-
lems 24 (2008) 023001 (81 pp).

[14] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Prob-
lems, 25 (2009) 123013 (75 pp).

IECL, UMR CNRS 7502, Université de Lorraine, Boulevard des Aiguillettes BP 70239
54506 Vandoeuvre Les Nancy cedex- Ile du Saulcy - 57 045 Metz Cedex 01 France

E-mail address: mourad.choulli@univ-lorraine.fr

Department of Mathematical Sciences, The University of Tokyo 3-8-1, Komaba, Me-
guro, Tokyo 153, Japan

E-mail address: myama@ms.u-tokyo.ac.jp


