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The uniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard [8] these kind of problems are known to be ill-posed and even severely ill-posed. Until now there are only few partial results concerning the quantification of the stability for parabolic Cauchy problems. We bring in the present work an answer to this issue for smooth solutions under the minimal condition that the domain is Lipschitz.

Introduction

Throughout this article Ω is a bounded domain of R n with Lipschitz boundary Γ. Consider the parabolic operator

L = div(A∇ •) -∂ t .
Here A = (a ij ) is a symmetric matrix whose coefficients belong to W 1,∞ (Ω). Assume furthermore that there exists a constant 0 < κ ≤ 1 so that (1.1)

A(x)ξ • ξ ≥ κ|ξ| 2 , x ∈ Ω, ξ ∈ R n ,

and

(1.2)

a ij W 1,∞ (Ω) ≤ κ -1 , 1 ≤ i, j ≤ n.
Let t 0 < t 1 so that t 1 -t 0 ≤ T 0 , for some given T 0 > 0 and set Q = Ω × (t 0 , t 1 ).

Recall the notation

H 2,1 (Q) = L 2 ((t 0 , t 1 ), H 2 (Ω)) ∩ H 1 ((t 0 , t 1 ), L 2 (Ω)).
If Γ 0 is a nonempty open subset of Γ then a classical result says that any u ∈ H 2,1 (Q) satisfying Lu = 0 in Q and u = ∇u = 0 on Γ 0 × (t 0 , t 1 ) must be identically equal to zero (see [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF] and references therein). This result is known as the uniqueness of the Cauchy problem for the equation Lu = 0. Quantifying this uniqueness result consists in controlling a norm of a solution of Lu = 0 by a suitable function of the norm of (u, ∇u) |Γ0×(t0,t1) in some space.

In the rest of this paper, 0 < α < 1 is fixed and, for simplicity's sake, we use the notations

X (Q) = C 1+α,(1+α)/2 (Q) ∩ H 1 ((t 0 , t 1 ), H 2 (Ω)), Y (Q) = {u ∈ X (Q); ∂ t u ∈ X (Q)}, Z (Q) = Y (Q) ∩ H 3 ((t 0 , t 1 ), H 2 (Ω)).
We endow X (Q), Y (Q) and Z (Q) with their natural norms

u X (Q) = u C 1+α,(1+α)/2 (Q) + u H 1 ((t0,t1),H 2 (Ω)) u Y (Q) = u X (Q) + ∂ t u X (Q) . u Z (Q) = u Y (Q) + u H 3 ((t0,t1),H 2 (Ω))
Let * = e -e e . Set then, for µ > 0 and 0 ≤ * ,

Ψ 0,µ ( ) =    0 if = 0, (ln ln ln | ln |) -µ if 0 < ≤ 0 , if ≥ 0 .
We are mainly concerned in the present work with the stability issue for the Cauchy problem associated to the parabolic operator L. Precisely, we are going to prove the following result.

Theorem 1.1. Let Γ 0 be a nonempty open subset of Γ and s ∈ (0, 1/2). Then there exist two constants C > 0 and 0 < 0 ≤ * , depending on Ω, κ, T 0 , α, s and Γ 0 , so that, for any u ∈ Z (Q) satisfying Lu = 0 in Q, we have

C u L 2 ((t0,t1),H 1 (Ω)) ≤ u Z (Q) Ψ 0,µ C(u, Γ 0 ) u Z (Q) ,
with µ = min(α, s)/4 and C(u, Γ 0 ) = u H 3 ((t0,t1),L 2 (Γ0)) + ∇u H 2 ((t0,t1),L 2 (Γ0)) .

It is straightforward to check that C(u, Γ 0 ) in the preceding theorem can be substituted by C(u, Γ 0 ) = u H 3 ((t0,t1),L 2 (Γ0))∩H 2 ((t0,t1),H 1 (Γ0)) + ∂ n u H 2 ((t0,t1),L 2 (Γ0)) .

Here n is the unit exterior normal field on Γ and ∂ n u = ∇u • n.

We observe that Theorem 1.1 remains valid if L is substituted by L plus an operator of first order in space variable whose coefficients are bounded.

Since the proofs are quite complicated we limited ourselves to the case Lu = 0. We believe that one can remove this condition by adding to C(u, Γ 0 ) the norm of Lu is a suitable space.

The second author [14, Theorem 5.1, page 24] proved a Hölder stability in a proper subdomain of Q depending on the part of the lateral boundary where the Cauchy data is given. In [13, Theorem 3.5.1, pages 45 and 46], Vessella establishes a local Hölder stability corresponding to the continuation of Cauchy data to an interior subdomain for solutions vanishing at the initial time. Recently, Bourgeois [1, Main theorem, page 2] proved a result similar to the one in Theorem 1.1, with a single logarithm function, in the case where L = ∆ -∂ t , Ω = D \ O, D and O are two domains of class C 2 , O D, and Γ 0 is either ∂D or ∂O. His result is based on a global Carleman estimate in which the weight function is built from the distance to the boundary of the space variable.

We discuss in the present work the Cauchy problem in all of its generality, that is without any restriction on the part of the boundary where the Cauchy data is given.

The proof of the main result is inspired by that used in the elliptic case by the first author in [START_REF] Choulli | Applications of elliptic Carleman inequalities to Cauchy and inverse problems[END_REF] (a substantial improvement of this result will appear in [START_REF] Choulli | An introduction to the analysis of elliptic partial differential equations[END_REF]). Note however that there is a great difference between the elliptic case and the parabolic case. The main difficulty in the parabolic case is due to the fact that the initial time and the final time data are wanting. So the proofs are more technical. The idea to overcome the fact that the initial time and the final time data are not known is to use a Hardy inequality with respect to time variable. This explains partially why we need to work with sufficiently smooth solutions. Another difference between the parabolic case and the elliptic case relies on the fact that in the elliptic case the main tool is a three-ball inequality with arbitrary radius. While in the parabolic case the method is based on a three-cylinder inequality (see Theorem 2.1) in which the radius depends on the distance to the boundary of the time variable. Roughly speaking, the radius becomes smaller and smaller as the time variable approaches the boundary. For this reason, contrary to the elliptic case where the stability is only of single logarithmic type, the stability is of multiple logarithmic type.

The three-cylinder inequality appears to be the right tool for continuing a solution of a parabolic equation. For this reason, we are not convinced that Theorem 1.1 can be improved by using a global method.

Although we used classical tools to establish our main result, the result itself is completely new and our proof is entirely self-contained. This is our modest contribution to the stability issue for parabolic Cauchy problems.

The most part in our analysis is build on a Carleman inequality (Theorem 2.2 below). We observe that Carleman inequalities are very useful tool in control theory and for establishing the unique continuation property for elliptic and parabolic partial differential equations. There is wide literature on this subject. We just quote here the few references [START_REF] Bourgeois | Quantification of the unique continuation property for the heat equation[END_REF][START_REF] Fernàndez-Cara | Global Carleman inequalities for parabolic systems and applications to controllability[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Lebeau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF].

The rest of this article is organized as follows. Section 2 is devoted to a threecylinder interpolation inequality for the L 2 t (H 1 x )-norm. This inequality will be very useful for continuing the data on an interior subdomain to the lateral boundary data, and to continue the data from one subdomain to another subdomain. This is what we show in Section 3 and, as byproduct, we prove a stability estimate corresponding to the unique continuation from an interior data. The proof of Theorem 1.1 is completed in Section 4 by beforehand establishing a result that quantifies the stability from the Cauchy data to an interior subdomain.

Three-cylinder interpolation inequality

We prove in this section Theorem 2.1. There exist C > 0 and 0 < ϑ < 1, only depending on κ, Ω and T 0 , so that, for any 0 < < (t

1 -t 0 )/2, u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 in Q, y ∈ Ω and 0 < r < r y ( ) = min (dist(y, Γ)/3, √ ), we have r 3 u L 2 ((t0+ ,t1-),H 1 (B(y,2r))) (2.1) ≤ C u ϑ L 2 ((t0,t1),H 1 (B(y,r))) u 1-ϑ L 2 ((t0,t1),H 1 (B(y,3r))
) . The proof of Theorem 2.1 is based on a Carleman inequality for a family of parabolic operators. To this end, let Z be an arbitrary set and consider the family of operators

L z = div(A z ∇ • ) -∂ t , z ∈ Z, where, for each z ∈ Z, A z = (a ij z
) is a symmetric matrix with W 1,∞ (Ω) entries and there exists 0 < κ ≤ 1 so that (2.2)

A z (x)ξ • ξ ≥ κ|ξ| 2 , x ∈ Ω, ξ ∈ R n and z ∈ Z,

and

(2.3)

a ij z W 1,∞ (Ω) ≤ κ -1 , 1 ≤ i, j ≤ n, z ∈ Z. Pick ψ ∈ C 2 (Ω) without critical points in Ω and set Σ = Γ × (t 0 , t 1 ). Let g(t) = 1 (t -t 0 )(t 1 -t) and ϕ(x, t) = g(t) e 4λ ψ ∞ -e λ(2 ψ ∞+ψ(x)) , χ(x, t) = g(t)e λ(2 ψ ∞+ψ(x)) .

Theorem 2.2. (Carleman inequality)

There exist three positive constants C, λ 0 and τ 0 , only depending only on ψ, Ω, κ and T 0 , so that

C Q λ 4 τ 3 χ 3 u 2 + λ 2 τ χ|∇u| 2 e -2τ ϕ dxdt (2.4) ≤ Q (L z u) 2 e -2τ ϕ dxdt + Σ λ 3 τ 3 χ 3 u 2 + λτ χ|∇u| 2 + (λτ χ) -1 (∂ t u) 2 ) e -2τ ϕ dσdt,
for all u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)), z ∈ Z, λ ≥ λ 0 and τ ≥ τ 0 .

Proof. Since the dependance of the constants will be uniform with respect to z ∈ Z, we drop for simplicity the subscript z in L z and its coefficients. On the other hand, as

C ∞ (Q) is dense in H 1 ((t 0 , t 1 ), H 2 (Ω)), it is enough to prove (2.4) when u ∈ C ∞ (Q).
Let Φ = e τ ϕ , u ∈ C ∞ (Q) and set w = Φ -1 u that we extend by continuity at t = 0 and t = T by setting w(•, 0) = w(•, T ) = 0. Then straightforward computations give P w = [Φ -1 LΦ]w = P 1 w + P 2 w + cw, where

P 1 w = aw + div (A∇w) -τ ∂ t ϕw, P 2 w = B • ∇w + bw -∂ t w, with a = a(x, t, λ, τ ) = λ 2 τ 2 χ 2 |∇ψ| 2 A , B = B(x, t, λ, τ ) = -2λτ χA∇ψ, b = b(x, t, λ, τ ) = -2λ 2 τ χ|∇ψ| 2 A , c = c(x, t, λ, τ ) = -λτ χdiv (A∇ψ) + λ 2 τ χ|∇ψ| 2 A . Here |∇ψ| A = A∇ψ • ∇ψ = A 1/2 ∇u .
We obtain by making integrations by parts

Q aw(B • ∇w)dxdt = 1 2 Q a(B • ∇w 2 )dxdt (2.5) = - 1 2 Q div(aB)w 2 dxdt + 1 2 Σ a(B • ν)w 2 dσdt and Q div (A∇w)B • ∇wdxdt (2.6) = - Q A∇w • ∇(B • ∇w)dxdt + Σ (B • ∇w)(A∇w • ν)dσdt = - Q B ∇w • A∇wdxdt - Q ∇ 2 wB • A∇wdxdt + Σ (B • ∇w)(A∇w • ν)dσdt.
Here B = (∂ j B i ) is the Jacobian matrix of B and

∇ 2 w = (∂ 2 ij w) is the Hessian matrix of w. But Q B j ∂ 2 ij wa ik ∂ k wdxdt = - Q B j a ik ∂ 2 jk w∂ i wdxdt - Q ∂ j B j a ik ∂ k w∂ i wdxdt + Σ B j ν j a ik ∂ k w∂ i wdσdt. Therefore Q ∇ 2 wB • A∇wdxdt = - 1 2 Q div(B)A + à ∇w • ∇wdxdt (2.7) + 1 2 Σ |∇w| 2 A (B • ν)dσdt, where à = (ã ij ) with ãij = B • ∇a ij .
It follows from (2.6) and (2.7)

Q div (A∇w)B • ∇wdxdt = 1 2 Q -2AB + div(B)A + Ã ∇w • ∇wdxdt (2.8) + Σ (B • ∇w) (A∇w • ν) dσdt - 1 2 Σ |∇w| 2 A (B • ν)dσdt.
A new integration by parts yields

Q div (A∇w)bwdxdt = - Q b|∇w| 2 A dxdt - Q w∇b • A∇wdxdt + Σ bwA∇w • νdσdt.
This and

- Q w∇b • A∇wdxdt ≥ - Q (λ 2 χ) -1 |∇b| 2 A w 2 dxdt - Q λ 2 χ|∇w| 2 A dxdt
(where we used the inequality

|AX • Y | ≤ |X| 2 A + |Y | 2 A , for all X, Y ∈ R n ) imply Q div (A∇w)bwdxdt ≥ - Q (b + λ 2 χ)|∇w| 2 A dxdt (2.9) - Q (λ 2 χ) -1 |∇b| 2 A w 2 dxdt + Γ bw(A∇w • ν)dσdt.
One more time, integrations by parts entail (2.10)

Q aw∂ t wdxdt = 1 2 Q a∂ t w 2 dxdt = - 1 2 Q ∂ t aw 2 dxdt, (2.11) Q ∂ t ϕw∂ t wdxdt = 1 2 Q ∂ t ϕ∂ t w 2 dxdt = - 1 2 Q ∂ 2 t ϕw 2 dxdt, Q ∂ t ϕwB • ∇wdxdt = 1 2 Q ∂ t ϕB • ∇w 2 dxdt (2.12) = - 1 2 Q div(∂ t ϕB)w 2 dxdt + 1 2 Σ ∂ t ϕ(B • ν)w 2 dσdt. Also, (2.13) 
Q div(A∇w)∂ t wdxdt = - Q A∇w • ∇∂ t wdxdt + Σ (A∇w • ν)∂ t wdσdt.
But an integration by parts with respect to t gives

Q A∇w • ∇∂ t wdxdt = - Q A∇∂ t w • ∇wdxdt = - Q ∇∂ t w • A∇wdxdt,
where we used w(•, 0) = w(•, T ) = 0. Whence

Q A∇w • ∇∂ t wdxdt = 0.
This identity in (2.13) entails

(2.14) Q div(A∇w)∂ t w = Σ (A∇w • ν)∂ t wdσdt.
Now a combination of (2.5), (2.8) to (2.12) and (2.14) gives

Q P 1 wP 2 wdxdt - Q c 2 w 2 dxdt (2.15) ≥ Q f w 2 dxdt + Q F ∇w • ∇wdxdt + Σ g(w)dσdt, where f = - 1 2 div(aB) + ab -(λ 2 χ) -1 |∇b| 2 A -c 2 + 1 2 ∂ t a - τ 2 ∂ 2 t ϕ + τ 2 div(∂ t ϕB) -τ b∂ t ϕ, F = -AB + 1 2 div(B)A + Ã -(b + λ 2 χ)A, g(w) = 1 2 aw 2 (B • ν) - 1 2 |∇w| 2 A (B • ν) + (B • ∇w)(A∇w • ν) + bw(A∇w • ν) - τ 2 ∂ t ϕ(B • ν)w 2 -(A∇w • ν)∂ t w.
We obtain, by using the elementary inequality (α -β

) 2 ≥ α 2 /2 -β 2 , α > 0, β > 0, P w 2 2 ≥ ( P 1 w + P 2 w 2 -cw 2 ) 2 ≥ 1 2 P 1 w + P 2 w 2 2 -cw 2 2 ≥ Ω P 1 wP 2 wdx - Ω c 2 w 2 dx. Whence (2.15) implies (2.16) P w 2 2 ≥ Q f w 2 dxdt + Q F ∇w • ∇wdxdt + Σ g(w)dσdt.
In light of the following inequalities, where C is a constant depending only on T 0 and ψ,

|∂ t ϕ| ≤ Cχ 2 , |∂ 2 t ϕ|, |∇∂ t ϕ| ≤ Cχ 3 |(A∇w • ν)∂ t w| ≤ λτ χ|A∇w • ν| 2 + (λτ χ) -1 (∂ t w) 2 ,
straightforward computations show that there exist four positive constants C 0 , C 1 , λ 0 and τ 0 , only depending only on ψ, Ω, T 0 and κ, such that, for all λ ≥ λ 0 and τ ≥ τ 0 , so that

f ≥ C 0 λ 4 τ 3 χ 3 , F ξ • ξ ≥ C 0 λ 2 τ χ|ξ| 2 , for any ξ ∈ R n , |g(w)| ≤ C 1 λ 3 τ 3 χ 3 w 2 + λτ χ|∇w| 2 + (λτ χ) -1 (∂ t w) 2 . Hence C Q (λ 4 τ 3 χ 3 w 2 + λ 2 τ χ|∇w| 2 )dxdt ≤ Q (P w) 2 dxdt (2.17) + Σ (λ 3 τ 3 χ 3 w 2 + λτ χ|∇w| 2 + (λτ χ) -1 (∂ t w) 2 )dσdt.
As ∇w = Φ -1 (∇u + λτ χu∇ψ), we obtain

|∇w| 2 = Φ -2 |∇u| 2 + λ 2 τ 2 χ 2 |∇ψ| 2 u 2 + 2λτ χu∇u • ∇ψ .
Therefore we find, by using an elementary inequality,

|∇w| 2 ≥ Φ -2 |∇u| 2 + λ 2 τ 2 |∇ψ| 2 u 2 -4λ 2 τ 2 u 2 |∇ψ| 2 - 1 2 |∇u| 2
and then

|∇w| 2 ≥ Φ -2 1 2 |∇u| 2 -3λ 2 τ 2 χ 2 u 2 ∇ψ 2 ∞ .
Consequently, modifying λ 0 if needed, we get

(2.18) λ 2 τ χ|∇w| 2 + λ 4 τ 3 χ 3 w 2 ≥ CΦ -2 λ 2 τ χ|∇u| 2 + λ 4 τ 3 χ 3 τ 2 u 2 .
On the other hand, it is not hard to establish the inequality

(2.19) (∂ t w) 2 ≤ Φ -2 (∂ t u) 2 + Cτ 2 χ 2 u 2 .
The expected inequality follows then by combining (2.17), (2.18) and (2.19).

From the preceding proof it is obvious that Theorem 2.2 holds whenever L z is replaced by L. That is we have Theorem 2.3. (Carleman inequality) There exist three positive constants C, λ 0 and τ 0 , only depending only on ψ, Ω, κ and T 0 , so that

C Q λ 4 τ 3 χ 3 u 2 + λ 2 τ χ|∇u| 2 e -2τ ϕ dxdt (2.20) ≤ Q (Lu) 2 e -2τ ϕ dxdt + Σ λ 3 τ 3 χ 3 u 2 + λτ χ|∇u| 2 + (λτ χ) -1 (∂ t u) 2 ) e -2τ ϕ dσdt, for all u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)), λ ≥ λ 0 and τ ≥ τ 0 . Proof of Theorem 2.1. Let u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 and set Q(µ) = B(0, µ) × (-1, 1), µ > 0. Fix (y, s) ∈ Ω × (t 0 , t 1 ) and 0 < r < r (y,s) = min dist(y, Γ)/3, √ s -t 0 , √ t 1 -s ≤ r 0 = r 0 (diam(Ω), T 0 ). Let w(x, t) = u(rx + y, r 2 t + s), (x, t) ∈ Q(3), Then L r w = div(A r ∇w) -∂ t w = 0 in Q(3), where A r (x) = (a ij (rx + y)).
Clearly, the family (A r ) satisfies (2.2) and (2.3) uniformly with respect to r ∈ (0, r (y,s) ).

Let

χ ∈ C ∞ 0 (U ) satisfying 0 ≤ χ ≤ 1 and χ = 1 in K, with U = {x ∈ R n ; 1/2 < |x| < 3} and K = {x ∈ R n ; 1 ≤ |x| ≤ 5/2} . Theorem 2.2 applied to χw when Ω is substituted by U and g(t) = 1/(1 -t 2 ) gives, for λ ≥ λ 0 and τ ≥ τ 0 , C Q(2)\Q(1) λ 4 τ 3 ϕ 3 w 2 + λ 2 τ ϕ|∇w| 2 e -2τ ϕ dxdt (2.21) ≤ Q(3) (L r (χw)) 2 e -2τ ϕ dxdt, the constant C only depends on κ. But supp(L r (χw)) ⊂ [{1/2 ≤ |x| ≤ 1} ∪ {5/2 ≤ |x| ≤ 3}] × (-1, 1) and (L r (χw)) 2 ≤ Λ(w 2 + |∇w| 2 )
, where Λ = Λ(r 0 ) is independent on r. Therefore, fixing λ and changing τ 0 if necessary, (2.21) implies, for τ ≥ τ 0 ,

C Q(2) w 2 + |∇w| 2 e -2τ ϕ dxdt ≤ Q(1)
w 2 + |∇w| 2 e -2τ ϕ dxdt (2.22) + Q(3)\Q(5/2) w 2 + |∇w| 2 e -2τ ϕ dxdt.
Let 0 < ρ < 1 to be specified later and choose ψ(x) = -|x| 2 in (2.22) (which is without critical points in U ). In that case ϕ(x, t) = g(t) e 36λ -e λ(18-|x| 2 ) .

We have

ϕ(x, t) ≤ g(-1 + ρ) e 36λ -e 14λ ≤ 1 ρ e 36λ -e 14λ = α ρ , (x, t) ∈ B(2) × (-1 + ρ, 1 -ρ), ϕ(x, t) ≥ g(0) e 36λ -e 18λ = e 36λ -e 18λ = β, (x, t) ∈ Q(1), ϕ(x, t) ≥ g(0) e 36λ -e 47 4 λ = e 36λ -e 47 4 λ = γ, (x, t) ∈ Q(3) \ Q (5/2) . As β α < 1 < γ α , we can fix θ ∈ (0, 1) so that 1 ρ := θ β α + (1 -θ) γ α > 1. Set a = 2(1 -θ)(γ -β) and b = 2θ(γ -β) and Q(2) = B(0, 2) × (-1 + ρ, 1 -ρ). Then (2.22) yields C Q(2)
w 2 + |∇w| 2 dxdt ≤ e aτ Q(1)
w 2 + |∇w| 2 dxdt + e -bτ Q(3) w 2 + |∇w| 2 dxdt.
Similarly to the elliptic case [3, Theorem 2.17 and its proof, pages 19 to 21] (see also the proof of Proposition 4.1), we obtain from this inequality the following one

C w L 2 ((-1+ρ,1-ρ),H 1 (B(2))) ≤ w ϑ L 2 ((-1,1),H 1 (B(1))) w 1-ϑ L 2 ((-1,1),H 1 (B(3)))
, with ϑ = a a+b . We get by making a change of variable, where τ = 1 -ρ,

r u L 2 ((s-τ r 2 ,s+τ r 2 ),H 1 (B(y,2r))) (2.23) ≤ C u ϑ L 2 ((s-r 2 ,s+r 2 ),H 1 (B(y,r))) u 1-ϑ L 2 ((s-r 2 ,s+r 2 ),H 1 (B(y,3r))) .
Here and until the end of this proof, the generic constant C only depends on Ω, κ and

T 0 . Fix 0 < < (t 1 -t 0 )/2. Let s 0 = t 0 + and s k = s k-1 + 2τ r 2 , k ≥ 1, in such a way that (s k-1 , s k ) = ((s k-1 + τ r 2 ) -τ r 2 , (s k-1 + τ r 2 ) + τ r 2 ).
We consider q the smallest integer so that (t 1 -

) -s q-1 ≤ 2τ r 2 or equivalently (t 1 -) -s q-2 > 2τ r 2 . Whence (2.24) q < t 1 -t 0 -2 2τ r 2 + 3 < δ 2τ r 2 + 3diam(Ω) 2 r 2 = T 0 2τ + 3diam(Ω) 2 1 r 2 . Let r < r y ( ) = min (dist(y, Γ)/3, √ ). It follows from (2.23) that r u L 2 ((s k-1 ,s k ),H 1 (B(y,2r))) ≤ C u ϑ L 2 ((t0,t1),H 1 (B(y,r))) u 1-ϑ L 2 ((t0,t1),H 1 (B(y,3r))) , with s q = t 1 -. Thus r q k=1 u L 2 ((s k-1 ,s k ),H 1 (B(y,2r))) ≤ Cq u ϑ L 2 ((t0,t1),H 1 (B(y,r))) u 1-ϑ L 2 ((t0,t1),H 1 (B(y,3r))) . In consequence r u L 2 ((t0+ ,t1-),H 1 (B(y,2r))) (2.25) ≤ Cq u ϑ L 2 ((t0,t1),H 1 (B(y,r))) u 1-ϑ L 2 ((t0,t1),H 1 (B(y,3r))) . Estimate (2.24) in (2.25) yields Cr 3 u L 2 ((t0+ ,t1-),H 1 (B(y,2r))) ≤ u ϑ L 2 ((t0,t1),H 1 (B(y,r))) u 1-ϑ L 2 ((t0,t1
),H 1 (B(y,3r))) , r < r y ( ). The proof is then complete.

Quantifying the uniqueness of continuation from an interior data

We start with a Hardy inequality for vector valued functions. Lemma 3.1. Let X be a Banach space with norm • and s ∈ (0, 1/2). There exists a constant c > 0 so that, for any u ∈ H s ((t 0 , t 1 ), X), we have

u δ s L 2 ((t0,t1),X)
≤ c u H s ((t0,t1),X) .

Here

δ = δ(t) = min{|t -t 0 |, |t -t 1 |}.
Proof. Let u ∈ H s ((t 0 , t 1 ), X). From the usual Hardy's inequality in dimension one (see for instance [START_REF] Grisvard | Elliptic Problems in Nonsmooth Domains[END_REF]) we have

(3.1) t1 t0 u(t) 2 δ 2s (t) dt ≤ c u(•) 2 H s ((t0,t1)) . But u(•) 2 H s ((t0,t1)) = u 2 L 2 ((t0,t1),X) + t1 t0 t1 t0 | u(τ ) -u(t) | 2 |τ -t| 1+2s dtdτ ≤ u 2 L 2 ((t0,t1),X) + t1 t0 t1 t0 u(τ ) -u(t) 2 |τ -t| 1+2s dtdτ = u 2 H s ((t0,t1),X) .
Whence the result follows.

In the rest of this paper we shall often apply Hardy's inequality in Lemma 3.1 to functions from H k ((t 0 , t 1 ), H), where k ≥ 1 is an integer and H is a Hilbert space. This is made possible by [11, Remark 9.5, page 46] saying that H s ((t 0 , t 1 ), H), 0 < s < 1, can be seen as an interpolated space between L 2 ((t 0 , t 1 ), H) and H 1 ((t 0 , t 1 ), H). Precisely, we have

H s ((t 0 , t 1 ), H) = [L 2 ((t 0 , t 1 ), H), H 1 ((t 0 , t 1 ), H)] 1-s , 0 < s < 1.
We readily obtain from Lemma 3.1 the following corollary. Corollary 3.1. Let H be a Hilbert space and s ∈ (0, 1/2). There exists a constant c > 0 so that, for any u ∈ H 1 ((t 0 , t 1 ), H), we have

u δ s L 2 ((t0,t1),H) ≤ c u H 1 ((t0,t1),H) ,
where δ is as in Lemma 3.1.

Next, we prove Proposition 3.1. Let s ∈ (0, 1/2). There exist ω Ω, only depending on Ω, and three constants c > 0, C > 0 and σ 0 > 0, only depending on Ω, κ, T 0 , s and α, so that, for any u ∈ X (Q) satisfying Lu = 0 in Q and 0 < σ < σ 0 , we have

u L 2 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) (3.2) ≤ C σ min(α,s)/2 u X (Q) + e e c/ √ σ u L 2 ((t0,t1),H 1 (ω)) .
Proof. Since Ω is Lipschitz, it has the uniform interior cone property (see for instance [START_REF] Henrot | Variation et optimisation de formes[END_REF]). That is there exist R > 0 and θ ∈ 0, π 2 so that, for any x ∈ Γ, we may find ξ = ξ(x) ∈ S n-1 for which

C(x) = {x ∈ R n ; |x -x| < R, (x -x) • ξ > |x -x| cos θ} ⊂ Ω. Fix x ∈ Γ and let ξ = ξ(x) be as in the definition above. Let 0 < ≤ 0 < min ((3R/(2 sin θ)) 2 , (t 1 -t 0 )/4 , set y 0 = y 0 (x) = x + (R/2)ξ and ρ = √ sin θ/3. Let N = [R/(2ρ)], the integer part of R/(2ρ), if R/(2ρ) ∈ N and N = R/(2ρ) -1 if R/(2ρ) ∈ N. Define then x 0 = x + (R/2 -N ρ)ξ.
Furthermore, consider the sequence

y j = x + (R/2 -jρ)ξ, 0 ≤ j ≤ N.
By construction, B(y j , 3ρ) ⊂ C(x), 0 ≤ j ≤ N and, as |y j+1 -y j | = ρ, we have

B(y j+1 , ρ) ⊂ B(y j , 2ρ), 0 ≤ j ≤ N -1.
Let u ∈ X (Q). We use in the sequel the temporary notation

M = M (u) = u X (Q) .
Set I j = (t j 0 , t j 1 ), where t j i = t i + (-1) i j , with i = 0, 1 and 0

≤ j ≤ N . Note that N ≤ (R/(2ρ)) = (3R/(2 sin θ)) √ . Then I N = ∅ if (3R/ sin θ) √ < t 1 -t 0 .
This condition always holds provided that we substitute 0 by min( 0 , (t 1 -t 0 ) 2 sin 2 θ/(9R 2 )).

In the rest of this proof C is a generic constant only depending on Ω, κ, α, s and T 0 .

Using that I j+1 = (t j 0 + , t j 1 -) and noting that ρ < √ , we get from (2.1)

ρ 3 u L 2 (Ij+1,H 1 (B(yj ,ρ))) ≤ CM 1-ϑ u ϑ L 2 (Ij ,H 1 (B(xj ,ρ))) , 0 ≤ j ≤ N -1.
the constant ϑ, only depending on Ω, κ and T 0 , satisfies 0 < ϑ < 1.

Whence

u L 2 (I N ,H 1 (B(y N ,ρ))) ≤ (Cρ -3 ) (1-β)/(1-ϑ) M 1-β u β L 2 (I0,H 1 (B(y0,ρ))) , with β = ϑ N +1 .
In this inequality, modifying C if necessary, we may assume that Cρ

-3 ≥ 1. Thus u L 2 (I N ,H 1 (B(y N ,ρ))) ≤ Cρ -3/(1-ϑ) M 1-β u β L 2 (I0,H 1 (B(y0,ρ))
) , Let J = I N . Since B(y 0 , ρ) ⊂ B(y 0 , R sin θ/6) ⊂ C(x) and y N = x 0 , the last inequality entails

(3.3) u L 2 (J,H 1 (B(x0,ρ))) ≤ Cρ -3/(1-ϑ) M 1-β u β L 2 (I0,H 1 (B(y0,R sin θ/6))) . Define ω = ỹ∈Γ B(y 0 (ỹ), R sin θ/6).
It is worth mentioning that ω only depends on Ω. We get from (3.27)

(3.4) u L 2 (J,H 1 (B(x0,ρ))) ≤ Cρ -3/(1-ϑ) M 1-β u β L 2 (I0,H 1 (ω))) . Now, since u is Hölder continuous, we have |u(x, t)| ≤ [u] α |x -x| α + |u(x, t)|, x ∈ B(x 0 , ρ), t ∈ J.
Here and henceforth

[w] α = sup (x1,t1),(x2,t2)∈Q (x 1 ,t 1 ) =(x 2 ,t 2 ) |w(x 1 , t 1 ) -w(x 2 , t 2 )| |x 1 -x 2 | α + |t 1 -t 2 | α/2 , w ∈ C α,α/2 (Q). Whence |S n-1 |ρ n J |u(x, t)| 2 dt ≤ 2n[u] 2 α B(x0,ρ)×J |x -x| 2α dxdt (3.5) + 2n B(x0,ρ)×J |u(x, t)| 2 dxdt, Similarly, where 1 ≤ i ≤ n, |S n-1 |ρ n J |∂ i u(x, t)| 2 dt ≤ 2n[∂ i u] 2 α B(x0,ρ)×J |x -x| 2α dxdt (3.6) + 2n B(x0,ρ)×J |∂ i u(x, t)| 2 dxdt.
We have

(3.7) |x -x| ≤ |x -x 0 | + |x 0 -x| ≤ ρ + (R/2 -N ρ) ≤ 2ρ.
Therefore, we have as a consequence of a combination of (3.5), (3.6) and (3.7)

J |u(x, t)| 2 dt + J |∇u(x, t)| 2 dt ≤ C M 2 ρ 2α + ρ -n u L 2 (J,H 1 (B(x0,ρ)))
which, in light of (3.28), yields

J |u(x, t)| 2 dt + J |∇u(x, t)| 2 dt ≤ C M 2 ρ 2α + ρ -n-6/(1-ϑ) M 2(1-β) u 2β L 2 (I0,H 1 (ω)) .
Integrating over Γ both sides of this inequality with respect to x, we find

u L 2 (Γ×J) + ∇u L 2 (Γ×J) ≤ (3.8) C M ρ α + ρ -n/2-3/(1-ϑ) 0 M 1-β u β L 2 (I0,H 1 (ω)) .
Bearing in mind that J = (t 0 + N , t 1 + N ), we get by applying Corollary 3.1, for some fixed s ∈ (0, 1/2),

u L 2 ((t0,t0+N ),L 2 (Γ)) , u L 2 ((t1-N ,t1),L 2 (Γ)) ≤ c(N ) s u H 1 ((t0,t1),L 2 (Γ)) , ∇u L 2 ((t0,t0+N ),L 2 (Γ)) , ∇u L 2 ((t1-N ,t1),L 2 (Γ)) ≤ c(N ) s ∇u H 1 ((t0,t1),L 2 (Γ)) .
Therefore, as the trace operator

u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)) → (u, ∇u) |Σ ∈ H 1 ((t 0 , t 1 ), L 2 (Γ)) n+1 , is bounded, we obtain u L 2 ((t0,t0+N ),L 2 (Γ)) , u L 2 ((t1-N ,t1),L 2 (Γ)) ≤ c(N ) s u H 1 ((t0,t1),H 2 (Ω)) , ∇u L 2 ((t0,t0+N ),L 2 (Γ)) , ∇u L 2 ((t1-N ,t1),L 2 (Γ)) ≤ c(N ) s u H 1 ((t0,t1),H 2 (Ω)) .
These inequalities together with (3.8) give

C u L 2 (Σ) + ∇u L 2 (Σ) ≤ (ρ α + (N ) s )M + ρ -n/2-3/(1-ϑ) M 1-β u β L 2 (I0,H 1 (ω))
. We obtain by applying Young's inequality to the last term

C u L 2 (Σ) + ∇u L 2 (Σ) ≤ (ρ α + (N ) s + α/2 )M (3.9) + ρ -(n/2+3/(1-ϑ))/β -(1-β)α/(2β) u L 2 (I0,H 1 (ω)) .
Next, we have (3.10)

ρ α + (N ) s + α/2 ≤ C min(α,s)/2
and, as β = θ N +1 , we have β = O(e -c/ √

), from which we deduce in a straightforward manner that

(3.11) ρ -(n/2+3/(1-ϑ))/β -(1-β)α/(2β) ≤ Ce e c √ .
We end up by observing that (3.10) and (3.11) in (3.9) give the expected inequality.

The a priori estimate in the following lemma is well adapted to our purpose. It does not involve neither the initial time data nor the final time data.

Lemma 3.2.

There exists a constant C > 0, only depending on Ω, κ and T 0 , so that, for any u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 in Q, we have

(3.12) C u L 2 ((t0,t1),H 1 (Ω)) ≤ u H 1 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) .
Proof. In this proof C is a generic constant that can only depend on Ω, κ and T 0 . Let u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 in Q and set v = e -t u. Then v solves the following equation

(3.13) div(A∇v) -v -∂ t v = 0 in Q.
Let 0 < < (t 1 -t 0 )/2 and choose χ ∈ C ∞ 0 ((t 0 , t 1 )) satisfying 0 ≤ χ ≤ 1, χ = 1 in (t 0 + , t 1 -) and, for some universal constant c, |χ | ≤ c/ .

We multiply (3.13) by χv and integrate over Q. We then get by making an integration by parts

- Q χA∇v • ∇vdxdt - Q χv 2 dxdt + Σ χvA∇v • νdσdt + 1 2 Q v 2 χ dxdt = 0,
from which we deduce in a straightforward manner

Q χA∇u • ∇udxdt + Q χu 2 dxdt ≤ (3.14) e 2(t1-t0) C Σ (u 2 + |∇u| 2 )dσdx + 1 2 Q u 2 |χ |dxdt .
On the other hand, as supp(χ ) ⊂ (t 0 , t 1 ) \ (t 0 + , t 1 -), we have

J 2 = Q u 2 |χ |dxdt ≤ c t0- t0 Ω u 2 dxdt + c t1 t1- Ω u 2 dxdt. Therefore (3.15) lim sup →0 J 2 ≤ Ω u 2 (x, t 0 )dx + Ω u 2 (x, t 1 )dx.
We rewrite (3.14) in the form

(3.16) C u L 2 ((t0+ ,t1-),H 1 (Ω)) ≤ u L 2 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) + J .
We apply Hardy's inequality in Corollary 3.1. We obtain

u L 2 ((t0,t0+ ),H 1 (Ω)) , u L 2 ((t1-,t1),H 1 (Ω)) ≤ C s u H 1 ((t0,t1),H 1 (Ω)) .
This and (3.16) produce

C u L 2 ((t0,t1),H 1 (Ω)) ≤ u L 2 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) + s u H 1 ((t0,t1),H 1 (Ω)) + J .
Making → 0, we get by using (3.15)

C u L 2 ((t0,t1),H 1 (Ω)) ≤ u L 2 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) + u(•, t 0 ) L 2 (Ω) + u(•, t 1 ) L 2 (Ω) .
We complete the proof by using the following inequality

C u(•, t 0 ) L 2 (Ω) + u(•, t 1 ) L 2 (Ω) ≤ u H 1 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) .
To prove this inequality we proceed similarly to the proof of observability inequalities for parabolic equation. First, if s 0 = (3t 0 + t 1 )/4 and s 1 = (t 0 + 3t 1 )/4, we get as a straightforward consequence of the Carleman inequality in Theorem 2.3,

(3.17) C u L 2 ((s0,s1)×Ω) ≤ u H 1 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) . Next pick ψ ∈ C ∞ ([t 0 , t 1 ]) so that 0 ≤ ψ ≤ 1, ψ = 0 in [t 0 , s 0 ] and ψ = 1 in [s 1 , t 1 ]. Then v = ψu is the solution of the IBVP    -div(A∇v) + ∂ t v = ψ u in Q, v = u on Σ, v(•, t 0 ) = 0. Hence Q A∇v • ∇vdxdt + Σ v(A∇v • ν) + 1 2 Q ∂ t v 2 dxdt = Q ψ uvdxdt. But Q ∂ t v 2 dxdt = Ω v 2 (x, t 1 )dx.
That is we have

Q A∇v • ∇vdxdt + Σ vA∇v • ν + 1 2 Ω v 2 (x, t 1 )dx = Q ψ uvdxdt.
We deduce from this identity

C v(•, t 1 ) 2 L 2 (Ω) + ∇v 2 L 2 (Q) (3.18) ≤ u 2 L 2 ((t0,t1),L 2 (Γ)) + ∇u 2 L 2 ((t0,t1),L 2 (Γ)) + ψ u L 2 (Q) v L 2 (Q) . Noting that w → Ω |∇w| 2 dx + Γ w 2 (x)dσ(x) 1 2
defines an equivalent norm on H 1 (Ω), we get

v 2 L 2 (Q) ≤ c Ω ∇v 2 L 2 (Q) + u 2 L 2 ((t0,t1),L 2 (Γ)) .
We obtain then from Young's inequality

ψ u L 2 (Q) v L 2 (Q) ≤ 1 2 ψ u 2 L 2 (Q) + c Ω 2 ∇v 2 L 2 (Q) + c Ω 2 u 2 L 2 ((t0,t1),L 2 (Γ)) .
This inequality in (3.18), with sufficiently small, yields

C u(•, t 1 ) L 2 (Ω) = C v(•, t 1 ) L 2 (Ω) (3.19) ≤ u L 2 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) + ψ u L 2 (Q) .
Bearing in mind that supp(ψ ) ⊂ [s 0 , s 1 ], we deduce from (3.17)

ψ u L 2 (Q) ≤ C u L 2 (Ω×(s0,s1)) ≤ u H 1 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) . This in (3.19) yields C u(•, t 1 ) L 2 (Ω) ≤ u H 1 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) .
As the Carleman estimate in Theorem 2.3 still holds for the backward parabolic equation div(A∇u) + ∂ t u = 0, we have similarly

C u(•, t 0 ) L 2 (Ω) ≤ u H 1 ((t0,t1),L 2 (Γ)) + ∇u L 2 ((t0,t1),L 2 (Γ)) .
The proof is then complete.

If u ∈ Y (Q) satisfies Lu = 0 in Q then ∂ t u ∈ X (Q) and L∂ t u = 0 in Q.
Proposition 3.1 applied to both u and ∂ t u together with Lemma 3.2 produce the following result. Corollary 3.2. Let s ∈ (0, 1/2). There exist ω Ω, only depending on Ω, and three constants c > 0, C > 0 and σ 0 > 0, only depending on Ω, κ, T 0 , s and α, so that, for any u ∈ Y (Q) satisfying Lu = 0 in Q and 0 < σ < σ 0 , we have

(3.20) u L 2 ((t0,t1),H 1 (Ω)) ≤ C σ min(α,s)/2 u Y (Q) + e e c/ √ σ u H 1 ((t0,t1),H 1 (ω)) .
We now quantify the uniqueness of continuation from an interior subdomain to an another interior subdomain. Prior to that, we define the geometric distance d D g on a bounded domain D of R n by

d D g (x, y) = inf { (ψ); ψ : [0, 1] → D Lipschitz path joining x to y} , where (ψ) = 1 0 ψ(t) dt is the length of ψ.
Observe that, according to Rademacher's theorem, any Lipschitz continuous function ψ :

[0, 1] → D is almost everywhere differentiable with ψ(t) ≤ k a.e. t ∈ [0, 1],
where k is the Lipschitz constant of ψ. In particular, (ψ) is well defined.

The following lemma will be used to prove the next proposition. We provide its proof in Appendix A. Let ω Ω, ω Ω and s ∈ (0, 1/2). There exist three constants γ > 0, C > 0 and 0 > 0, only depending on Ω, κ, T 0 , s, ω and ω, so that, for any u ∈ H 2 ((t 0 , t 1 ), H 1 (Ω)) satisfying Lu = 0 in Q and 0 < < 0 , we have

(3.21) C u H 1 ((t0,t1),H 1 (ω)) ≤ s u H 2 ((t0,t1),H 1 (Ω)) + e γ/ u H 1 ((t0,t1),H 1 (ω)) .
Proof. Pick Ω 0 a Lipschitz domain so that Ω 0 Ω, ω Ω 0 and ω Ω 0 . Set then d 0 = dist(Ω 0 , Γ). Fix 0 < < 0 := min d 2 0 /9, 1 and let 0 < δ < √ . Let x 0 ∈ ω, x ∈ ω and let ψ : [0, 1] → Ω 0 be a Lipschitz path joining x 0 to x so that (ψ) ≤ d Ω0 g (x 0 , x) + 1. For simplicity's sake, we use in this proof the notation

d = d Ω0 g L ∞ (Ω0×Ω0) . Let τ 0 = 0 and τ k+1 = inf{τ ∈ [τ k , 1]; ψ(τ ) ∈ B(ψ(τ k ), δ)}, k ≥ 0.
We claim that there exists an integer N ≥ 1 so that ψ(1) ∈ B (ψ(τ N ), δ/2). If not, we would have ψ(1) ∈ B (ψ(τ k ), δ/2), for any k ≥ 0. As the sequence (τ k ) is non decreasing and bounded from above by 1, it converges to τ ≤ 1. In particular, there exists an integer k 0 ≥ 1 so that ψ(t k ) ∈ B (ψ(τ ), δ/2), k ≥ k 0 . But this contradicts the fact that |ψ(τ k+1 ) -ψ(τ k )| = δ, for any k ≥ 0.

Let us check that N ≤ N 0 , where N 0 depends only on d and δ. Pick 1 ≤ j ≤ n so that max

1≤i≤n |ψ i (τ k+1 ) -ψ i (τ k )| = |ψ j (τ k+1 ) -ψ j (τ k )| . Then δ ≤ n |ψ j (τ k+1 ) -ψ j (τ k )| = n τ k+1 τ k ψj (t)dt ≤ n τ k+1 τ k ψ(t) dt.
In consequence, where τ N +1 = 1,

(N + 1)δ ≤ n N k=0 τ k+1 τ k ψ(τ ) dτ = n (ψ) ≤ n(d + 1).
Therefore

N ≤ N 0 = n(d + 1) δ .
Here

[n(d + 1)/δ] is the integer part of n(d + 1)/δ. Let x k = ψ(t k ), 0 ≤ k ≤ N . If |z -x k+1 | < δ then |z -x k | ≤ |z -x k+1 | + |x k+1 -x k | < 2δ.
In other words, B(x k+1 , δ) ⊂ B(x k , 2δ).

Remark that we have also

B(x k , 3δ) ⊂ Ω, for each k. Define I k = (t 0 + k , t 1 -k ) k ≥ 0. If t k 0 = t 0 + k and t k 1 = t 1 -k then I k = (t k 0 , t k 1 ) and I k+1 = (t k 0 + , t k 1 -). Let u ∈ H 2 ((t 0 , t 1 ), H 1 (Ω) satisfying Lu = 0 in Q.
In this proof we use the following temporary notation

M = u H 1 ((t0,t1),H 1 (Ω)) .
Taking into account that δ < √ , we have from the three-cylinder inequality (2.1)

u L 2 (I k+1 ,H 1 (B(x k+1 ,δ))) ≤ C 0 δ -3 M 1-ϑ u ϑ L 2 (I k ,H 1 (B(x k ,δ)))
, the constants C 0 and ϑ, 0 < ϑ < 1, only depend on Ω, κ and T 0 .

Set

Λ k = u L 2 (I k ,H 1 (B(x k ,δ))) , 0 ≤ k ≤ N , and Λ N +1 = u L 2 (I N +1 ,H 1 (B(x,δ/2)))
. We can then rewrite this inequality in the form

(3.22) Λ k+1 ≤ C 0 δ -3 M 1-ϑ Λ ϑ k . Let β = ϑ N +1 . We get in a straightforward manner from (3.22) Λ N +1 ≤ (C 0 δ -3 ) 1-ϑ N +2 1-ϑ M 1-β Λ β 0 .
Substituting if necessary C 0 by max(C 0 , 1), we may assume that C 0 ≥ 1. Then the last inequality gives

Λ N +1 ≤ Cδ -3 1-ϑ M 1-β Λ β 0 .
From here and until the end of the proof, C is a generic constant, depending only on Ω, κ, ω, ω, s and T 0 .

Young's inequality then leads, for σ > 0,

Λ N +1 ≤ Cδ -3 1-ϑ ((1 -β)σ β 1-β M + βσ -1 Λ 0 ) ≤ Cδ -3 1-ϑ (σ β 1-β M + σ -1 Λ 0 ).
If δ is sufficiently small B(x 0 , δ) ⊂ ω. On the other hand, ω can be recovered by O(δ -n ) balls of radius δ 2 . Whence, bearing in mind that

I N +1 ⊃ J = (t 0 + (N 0 + 1) , t 1 -(N 0 + 1) ), we have (3.23) u L 2 (J,H 1 (ω)) ≤ δ -3 1-ϑ -n σ β 1-β M + σ -1 u L 2 ((t0,t1),H 1 (ω)) .
Then we take σ in (3.23) in order to satisfy

δ -3 1-ϑ -n σ β 1-β = δ.
In that case

σ -1 ≤ δ -m β , with m = (4 -ϑ)/(1 -ϑ) + n. But β = ϑ N +1 = e -(N +1)| ln ϑ| ≥ ϑe -N0| ln ϑ| ≥ ϑe -n| ln ϑ|(d+1) δ . Hence δ -3 1-ϑ -n σ -1 ≤ e γ/δ . This inequality in (3.23) yields (3.24) C u L 2 (J,H 1 (ω)) ≤ δM + e γ/δ u L 2 ((t0,t1),H 1 (ω)) .
Let ℵ = 2n(d + 1) + √ 0 . Substituting 0 by min( 0 , (t 1 -t 0 )/(3ℵ)), we may assume that J 0 = (t 0 -ℵ , t 1 +ℵ ) = ∅. Taking δ = √ /2, we get in straightforward manner that J ⊃ J 0 . Hence (3.24) yields

(3.25) C u L 2 (J0,H 1 (ω)) ≤ √ M + e 2γ/ √ u L 2 ((t0,t1),H 1 (ω)) .
We get by applying again Hardy's inequality in Lemma 3.1, for some fixed s ∈ (

) u L 2 ((t0,t0+ℵ ),H 1 (ω)) , u L 2 ((t1-ℵ ,t1),H 1 (ω)) ≤ cℵ s s M. 0, 1/2), (3.26 
Then (3.25) and (3.26) entail

C u L 2 ((t0,t1),H 1 (ω)) ≤ s/2 M + e 2γ/ √ u L 2 ((t0,t1),H 1 (ω)) .
Substituting by 2 and 2γ by γ, we obtain

(3.27) C u L 2 ((t0,t1),H 1 (ω)) ≤ s u H 1 ((t0,t1),H 1 (Ω)) + e γ/ u L 2 ((t0,t1),H 1 (ω)) . As ∂ t u ∈ H 1 ((t 0 , t 1 ), H 1 (Ω) satisfies L∂ t u = 0 in Q, (3.27) is applicable with u substituted by ∂ t u. That is we have (3.28) C ∂ t u L 2 ((t0,t1),H 1 (ω)) ≤ s ∂ t u H 1 ((t0,t1),H 1 (Ω)) +e γ/ ∂ t u L 2 ((t0,t1),H 1 (ω)) .
Putting together (3.27) and (3.28) to obtain the expected inequality.

We are now ready to prove the result quantifying the uniqueness of continuation from an interior data. Prior to do that, we need to introduce a definition. Set * = e -e and, for µ > 0 and 0 ≤ * ,

Φ 0 ,µ ( ) =    0 if = 0, (ln ln | ln |) -µ if 0 < ≤ 0 , if ≥ 0 . Theorem 3.1.
Let ω Ω and s ∈ (0, 1/2). There exist two constants C > 0 and 0 < 0 ≤ * , only depending on Ω, κ, ω, α, s and T 0 , so that, for any u ∈ Y (Q) satisfying Lu = 0 in Q, we have

C u L 2 ((t0,t1),H 1 (Ω)) ≤ u Y (Q) Φ 0,µ I(u, ω) u Y (Q) .
Here µ = min(s, α)/4 and I(u, ω) = u H 1 ((t0,t1),H 1 (ω)) .

Proof. From Corollary 3.2, there exist ω Ω and three constants c > 0, C > 0 and σ 0 > 0 so that, for any u ∈ Y (Q) satisfying Lu = 0 in Q and 0 < σ < σ 0 , we have

C u L 2 ((t0,t1),H 1 (Ω)) ≤ σ µ u Y (Q) + e e c/ √ σ u H 1 ((t0,t1),H 1 (ω)) .
Here µ = min(s, α)/2. But according to Proposition 3.2, there exist three constants γ > 0, C > 0 and 0 > 0 so that, for any u ∈ X 1 (Q) satisfying Lu = 0 in Q and 0 < < 0 , we have

C u H 1 ((t0,t1),H 1 (ω)) ≤ s u Y (Q) + e γ/ u H 1 ((t0,t1),H 1 (ω)) .
The last two inequalities yield

C u L 2 ((t0,t1),H 1 (Ω)) ≤ (σ µ + s e e c/ √ σ ) u Y (Q) (3.29) + e γ/ e e c/ √ σ u H 1 ((0,T ),H 1 (ω)) ,
for any u ∈ Y (Q) satisfying Lu = 0 in Q, 0 < σ < σ 0 and 0 < < 0 .

We assume, by reducing σ 0 if needed, that σ µ 0 e -e c/ √ σ 0 < s 0 . We get, by taking so that s = σ µ e -e c/ √ σ ,

(3.30) C u L 2 ((t0,t1),H 1 (Ω)) ≤ σ µ u Y (Q) + e e e c/ √ σ u H 1 ((t0,t1),H 1 (ω)) , for any u ∈ Y (Q) satisfying Lu = 0 in Q, and 0 < σ < σ 0 . Fix u ∈ Y (Q), non identically equal to zero, satisfying Lu = 0 in Q. Let M = u L 2 ((t0,t1),H 1 (Ω)) u Y (Q) and N = u H 1 ((t0,t1),H 1 (ω)) u Y (Q) .
Then (3.30) can be rewritten as If N ≥ 0 then obviously we have

(3.33) M ≤ 1 ≤ N 0 .
The expected inequality follows then from (3.32) and (3.33).

Stability of parabolic Cauchy problems

An additional step is necessary to prove our stability estimate for the Cauchy problem. It consists in quantifying the uniqueness of continuation from the Cauchy data to an interior subdomain. Proposition 4.1. Let ν ∈ (0, 1/2). There exist ω Ω, only depending on Ω and Γ 0 , and two constants C > 0 and c > 0, only depending on Ω, κ, Γ 0 , ν and T 0 , so that, for any u ∈ H 2 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 in Q and 0 < < (t 1 -t 0 )/2, we have

C u H 1 ((t0,t1),L 2 (ω)) ≤ ν u H 2 ((t0,t1),H 1 (Ω)) (4.1) + e c/ 2 u H 2 ((t0,t1),L 2 (Γ0)) + ∇u H 1 ((t0,t1),L 2 (Γ0)) .
Proof. Pick 0 < < (t 1 -t 0 )/2, 0 < η < and let s ∈ [t 0 + , t 1 -]. Let x ∈ Γ 0 be arbitrarily fixed and let R > 0 so that B(x, R) ∩ Γ ⊂ Γ 0 . Take x 0 in the interior of R n \ Ω sufficiently close to x is such a way that ρ = dist(x 0 , K) < R, where K = B(x, R) ∩ Γ 0 (think to the fact that Ω is on one side of its boundary). Fix then r > 0 in order to satisfy B(x 0 , ρ + r) ∩ Γ ⊂ Γ 0 and B(x 0 , ρ + θr) ∩ Ω = ∅, for some 0 < θ < 1.

Let φ ∈ C ∞ 0 (B(x, ρ + r)) satisfying φ = 1 on B(x, ρ + (θ + 1)r/2). Set, where 0 < δ < 1 is a constant to be specified in the sequel,

Q 0 = [B(x 0 , ρ + r) ∩ Ω] × (s -η, s + η), Q 1 = [B(x 0 , ρ + θr) ∩ Ω] × (s -δη, s + δη), Q 2 = {[B(x 0 , ρ + r) \ B(x 0 , ρ + (θ + 1)r/2)] ∩ Ω} × (s -η, s + η), Σ 0 = [B(x 0 , ρ + r) ∩ Γ] × (s -η, s + η).
We apply Theorem 2.3, with Q substituted by Q 0 , ψ = (ρ + r) 2 -|x -x 0 | 2 , g(t) = 1/[(t -s + η)(s + η -t)] and λ fixed, to φu so that u ∈ H 1 ((t 0 , t 1 ), H 2 (Ω)) satisfies Lu = 0 in Q in order to obtain

C Q1 u 2 e -2τ ϕ dxdt ≤ Q0 (L(φu)) 2 e -2τ ϕ dxdt (4.2) + Σ0 (u 2 + |∇u| 2 + (∂ t u) 2 )e -2τ ϕ dxdt.
Here and henceforth, C is a generic constant that can only depend on Ω, κ, ν, Γ 0 and T 0 .

But

L(φu) = Lφu + 2A∇φ • ∇u. Whence supp(L(φu)) ∩ Q 0 ⊂ Q 2 together with (4.2) yield C Q1 u 2 e -2τ ϕ dxdt ≤ Q2 (u 2 + |∇u| 2 )e -2τ ϕ dxdt (4.3) + Σ0 (u 2 + |∇u| 2 + (∂ t u) 2 )e -2τ ϕ dxdt. Let α = η -2 e 4λ(ρ+r) 2 -e λ(2(ρ+r) 2 -(ρ+θr) 2 ) := η -2 α, β = η -2 e 4λ(ρ+r) 2 -e 2λ(ρ+r) 2 := η -2 β, γ = η -2 e 4λ(ρ+r) 2 -e λ(2(ρ+r) 2 -(ρ+(θ+1)r/2) 2 ) := η -2 γ.
Then it is straightforward to check that

ϕ(x, t) ≤ α 1 -δ in Q 1 , ϕ(x, t) ≥ β in Σ 0 , ϕ(x, t) ≥ γ in Q 2 .
Noting that

β α = β α < 1 < γ α = γ α , we can choose 0 < κ < 1 so that 1 1 -δ := κ β α + (1 -κ) γ α > 1. With this choice of δ, (4.3) yields C Q1 u 2 dxdt ≤ e -4bη -2 τ Q2 (u 2 + |∇u| 2 )dxdt (4.4) + e 4aη -2 τ Σ0 (u 2 + |∇u| 2 + (∂ t u) 2 )dxdt. Here a = (1 -κ)(γ -β)/2 and b = κ(γ -β)/2. Let η = /2, s 0 = t 0 + -δ /2, s 1 = s 0 + δ /2 . . . s k = s 0 + kδ /2. Let K = K( ) so that K k=0 (s k -δ /2, s k + δ /2) ⊃ [t 0 + , t 1 -]. If Q k j (resp. Σ k 0 ) denotes Q j (resp. Σ 0 ), j = 1, 2 
, when s is substituted by s k , then it follows from (4.4)

C K k=0 Q k 1 u 2 dxdt ≤ e a -2 τ K k=0 Q k 2 (u 2 + |∇u| 2 )dxdt + e -b -2 τ K k=0 Σ k 0 (u 2 + |∇u| 2 + (∂ t u) 2 )dxdt.
Note that the intervals s k -2 , s k + 2 overlap, but their union can cover at most two times a subdomain of (t 0 , t 1 ). Whence CI ≤ e a -2 τ N + e -b -2 τ M, τ ≥ τ 0 , where we used the temporary notations

I = u L 2 ([B(x0,ρ+θr)∩Ω)]×(t0+ ,t1-)) , M = u L 2 ((t0,t1),H 1 (Ω)) , N = u H 1 ((t0,t1),L 2 (Γ0)) + ∇u L 2 ((t0,t1),L 2 (Γ0)) .
In (4.5), we get by substituting τ by 2 τ (4.6) CI ≤ e aτ M + e -bτ N, τ ≥ τ 0 / 2 .

Set

τ 1 = ln(N/M ) a + b . If τ 1 ≥ τ 0 / 2 then τ = τ 1 in (4.6) yields (4.7) CI ≤ M ϑ N 1-ϑ , with ϑ = b a+b . When τ 1 < τ 0 / 2 , we have M < e (a+b)/ 2 τ0 N.
This inequality entails (4.8)

I ≤ M = M ϑ M 1-ϑ ≤ M ϑ e (1-ϑ)(a+b)τ0/ 2 N 1-ϑ .
So, in any case, one of estimates (4.7) and (4.8) holds. In other words, we proved

e -c/ 2 u L 2 ([B(x0,ρ+θr)∩Ω)]×(t0+ ,t1-)) ≤ u ϑ L 2 ((t0,t1),H 1 (Ω)) u H 1 ((t0,t1),L 2 (Γ0)) + ∇u L 2 ((t0,t1),L 2 (Γ0)) 1-ϑ .
Fix ω B(x 0 , ρ + θr) ∩ Ω. Then the last inequality implies

e -c/ 2 u L 2 (ω×(t0+ ,t1-)) ≤ u ϑ L 2 ((t0,t1),H 1 (Ω)) u H 1 ((t0,t1),L 2 (Γ0)) + ∇u L 2 ((t0,t1),L 2 (Γ0)) 1-ϑ . Hence C u L 2 (ω×(t0+ ,t1-)) (4.9) ≤ σ γ e c/ 2 M + σ -1 e c/ 2 u H 1 ((t0,t1),L 2 (Γ0)) + ∇u L 2 ((t0,t1),L 2 (Γ0)) ,
for σ > 0, where γ = 1-ϑ ϑ . We get, once again from Hardy's inequality in Lemma 3.1,

u L 2 (ω×(t0,t0+ )) , u L 2 (ω×(t1-,t1)) ≤ C ν M 1 (u), where M 1 (u) = u H 1 ((t0,t1),H 1 (Ω)) .
Combined with (4.9) this inequality yields

C u L 2 (ω×(t0,t1)) ≤ σ γ e c/ 2 + ν M 1 + σ -1 e c/ 2 u H 1 ((t0,t1),L 2 (Γ0)) + ∇u L 2 ((t0,t1),L 2 (Γ0)) .
In this inequality, we take σ so that σ γ = ν e -c/ 2 . Noting that σ -1 ≤ -ν/γ , we find

C u L 2 (ω×(t0,t1)) ≤ ν M 1 (u) (4.10) + e c/ 2 u H 1 ((t0,t1),L 2 (Γ0)) + ∇u L 2 ((t0,t1),L 2 (Γ0)) .
As we have seen in the preceding proof, inequality (4.10) still holds when u is substituted by ∂ t u. That is we have

C ∂ t u L 2 (ω×(t0,t1)) ≤ ν M 1 (∂ t u) (4.11) + e c/ 2 u H 2 ((t0,t1),L 2 (Γ0)) + ∇u H 1 ((t0,t1),L 2 (Γ0)) .
We add side by side (4.10) and (4.11) in order to obtain the expected inequality.

Remark 4.1. In the preceding proof we assumed that u ∈ H 2 ((t 0 , t 1 ), H 2 (Ω)). But a quick inspection of the proof of this proposition shows that if fact the result can be extended to functions from H 2 ((t 0 , t 1 ), H 1 (Ω)) ∩ H 1 ((t 0 , t 1 ), H 2 (Ω)).

Proposition 4.1 gives only an estimate in H 1 ((t 0 , t 1 ), L 2 (ω)). But we can obtain from it an estimate in H 1 ((t 0 , t 1 ), H 1 (ω)) by using the following Caccioppoli type inequality for the parabolic equation Lu = 0. Lemma 4.1. Let ω 0 ω 1 Ω. There exists a constant C > 0, only depending on Ω, κ, T 0 , ω 0 and ω 1 , so that, for any u ∈ H 2 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 in Q, we have (4.12)

C u H 1 ((t0,t1),H 1 (ω0)) ≤ u H 2 ((t0,t1),L 2 (ω1)) .

Proof. Let u ∈ H 2 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 in Q. As we have done in the preceding proofs, it is sufficient to prove C u L 2 ((t0,t1),H 1 (ω0)) ≤ u H 1 ((t0,t1),L 2 (ω1)) , because this inequality holds for both u and ∂ t u. By Green's formula, for any v ∈ L 2 ((t 0 , t 1 ), H 1 0 (Ω)), we have As D is Lipschitz, if x ∈ Γ then there exist a neighborhood U of x in R n and a bijective map φ : Q → U so that φ : Q → U and φ -1 : U → Q are Lipschitz continuous, and Here k = k + k -.

φ(Q -) = Ω ∩ U φ(Q 0 ) = U ∩ Γ.
A compactness argument shows that D can be recovered by finite number of open subsets U j with U j is either a ball or an open subset of the form U . As D is a domain then necessarily any U j intersect at least U for some = j. In consequence, any arbitrary two points x, y ∈ D can be joined by a Lipschitz path consisting on finite number (independent on x and y) of line segments and paths of the form ψ. Whence, in light of (A.1), we may find a constant C > 0 depending only on D so that d D g (x, y) ≤ C for any x, y ∈ D.

It is worth mentioning the following consequence of Lemma 3.3.

Corollary A.1. Let D be a Lipschitz bounded domain of R n . Then there exists a constant κ > 0 so that d D g (x, y) ≤ κ|x -y| for any x, y ∈ D. Proof. We proceed by contradiction. Assume then that there is no κ > 0 so that d D g (x, y) ≤ κ|x -y|, for any x, y ∈ D. In particular, for any positive integer i, we may find two sequences (x i ) and (y i ) in D so that x i = y i and d D g (x i , y i ) > i|x i -y i |, for each i. Thus (A.2)

|x i -y i | ≤ 1 i d D g L ∞ (D×D) , for each i.
Subtracting if necessary a subsequence, we may assume that x i converges to some x ∈ D. Using (A.2) we see that y i converges also to x. Fix j so that x ∈ U j , where U j is as in the preceding proof. According to (A.1), we have d D g (y, z) ≤ K|y -z|, for any y, z ∈ U j , for some constant K > 0.

On the other hand, there exists a positive integer i 0 so that x i , y i ∈ U j , for i ≥ i 0 . Hence, for any i ≥ max(i 0 , K), we get i|x i -y i | ≥ K|x i -y i | ≥ d D g (x i , y i ) > i|x i -y i |. This leads to the expected contradiction.
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 33 Let D be a bounded Lipschitz domain of R n . Then d D g ∈ L ∞ (D × D). Proposition 3.2.
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 3 31) CM ≤ σ µ + e e e c/ √ σ N, 0 < σ < σ 0 . Define the function by (σ) = σ µ e -e e c/ √ σ . If N < min( (σ 0 ), * ) = 0 then there exists σ so that (σ) = N . Changing c if necessary, we have 1 N ≤ e e e c/ √ σ . Or equivalently σ ≤ [ln ln | ln N |] -1/2 It follows readily by taking σ = σ in (3.31) that (3.32) CM ≤ [ln ln | ln N |] -µ/2 .

∂φ 2 (

 2 t uvdxdt = 0. Let φ ∈ C ∞ 0 (ω 1 ) satisfying 0 ≤ φ ≤ 1 and φ = 1 in ω 0 . Taking v = φ 2 u in (4.13) we get in straightforward manner ∂ t u) 2 dxdt.Combining (4.14), (4.15) and (4.16), we end up getting C ∇u L 2 ((t0,t1),L 2 (ω0)) ≤ u L 2 (ω1×(t0,t1)) + ∂ t u L 2 (ω1×(t0,t1)) .

For

  x, y ∈ D ∩ U defineψ(t) = φ(φ -1 (x) + t[φ -1 (y) -φ -1 (x)]), t ∈ [0, 1].Clearly, noting that Q -is convex, ψ is a Lipschitz path in D joining x to y. We have in addition, where k + and k -are the respective Lipschitz constants of ψ andψ -1 , |ψ(t) -ψ(s)| ≤ k + |t -s||φ -1 (y) -φ -1 (x)| ≤ k + k -|t -s||x -y|, t, s ∈ [0) dt ≤ k|x -y| ≤ kdiam(D).

MC is supported by the grant ANR-17-CE40-0029 of the French National Research Agency ANR (project MultiOnde). MY is partially supported by Grant-in-Aid for Scientific Research (S) 15H05740 of Japan Society for the Promotion of Science.

Or equivalently

C u L 2 ((t0,t1),H 1 (ω0)) ≤ u H 1 ((t0,t1),L 2 (ω1)) as expected.

An immediate consequence of Caccioppoli's inequality (4.12) and Proposition 4.1 (applied both to u and ∂ t u), we have Corollary 4.1. Let ν ∈ (0, 1/2). There exist ω Ω, only depending on Ω and Γ 0 , and two constants C > 0 and c > 0, only depending on Ω, κ, T 0 , ν and Γ 0 , so that, for any u ∈ H 3 ((t 0 , t 1 ), H 2 (Ω)) satisfying Lu = 0 and 0 < < (t 1 -t 0 )/2, we have

We are now in position to complete the proof of Theorem 1.1. We recall that

If M = u Z (Q) then, in light of inequality (3.30) in the end of the proof of Theorem 3.1 and inequality (4.17), we get, for 0 < < (t 1 -t 0 )/2 and 0 < σ < σ 0 ,

the constants C > 0, c > 0 and σ 0 > 0 only depend on Ω, κ, T 0 , ν and Γ 0 .

The rest of the proof in quite similar to that of Theorem 3.1.

As we have noted above, we have L∂ j t u = 0 in Q as soon as Lu = 0 in Q, for any integer j ≥ 0. This observation enables us to state the following variante of Theorem 1.1, where

Theorem 4.1. Let Γ 0 be a nonempty open subset of Γ and s ∈ (0, 1/2). Then there exist two constants C > 0 and 0 < 0 ≤ * , depending on Ω, κ, T 0 , α, s and Γ 0 , so that, for any integer j ≥ 0 and u ∈ Z j (Q) satisfying Lu = 0 in Q, we have

with µ = min(α, s)/4 and

Appendix A

We are grateful to Tom ter Elst [START_REF] Elst | [END_REF] for having communicated to us the proofs of Lemma 3.3 and Corollary A.1 bellow. We reproduce in this appendix these proofs.

Proof of Lemma 3.3. Let D be a Lipschitz domain of R n and introduce the notations