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LOGARITHMIC STABILITY OF PARABOLIC CAUCHY PROBLEMS

MOURAD CHOULLI AND MASAHIRO YAMAMOTO†

Abstract. The uniqueness of parabolic Cauchy problems is nowadays a classical problem and since Hadamard
[6] these kind of problems are known to be ill-posed and even severely ill-posed. Until now there are only few
partial results concerning the quantification of the stability for parabolic Cauchy problems. In the present
article, we bring the complete answer to this issue, provided that the space domain has finite diameter with
respect to the geodesic distance and assuming that solutions are sufficiently smooth.
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1. Introduction

Throughout this article, Ω is a bounded domain of Rn with Lipschitz boundary Γ. We denote the geodesic
distance on Ω associated to the round metric by dg. That is

dg(x, y) = inf

{∫ 1

0

∣∣∣ψ̇(t)
∣∣∣ dt; ψ : [0, 1] → Ω is a piecewise C1 path joining x to y

}
.

We denote by dg the diameter of Ω with respect to the distance dg:

dg = sup{dg(x, y); x, y ∈ Ω}.
We consider the parabolic operator

L = div(A∇ ·)− ∂t.

Here A = (aij) is a symmetric matrix whose coefficients belong to W 1,∞(Ω) and satisfy: there exist κ > 0
and K > 0 so that

(1.1) A(x)ξ · ξ ≥ κ|ξ|2, x ∈ Ω, ξ ∈ R
n,

and

(1.2) ‖aij‖W 1,∞(Ω) ≤ K, 1 ≤ i, j ≤ n.

We recall that Ω has the uniform exterior sphere property if there exists ρ > 0 so that, to any x̃ ∈ Γ
corresponds x0 = x0(x̃) ∈ R

n \ Ω for which

B(x0, ρ) ∩ Ω = ∅ and B(x0, ρ) ∩Ω = {x̃}.

†The second author is partially supported by Grant-in-Aid for Scientific Research (S) 15H05740 of Japan Society for the
Promotion of Science.
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Let t0 < t1, Q = Ω× (t0, t1) and fix 0 < α < 1. For sake of simplicity, we use in the sequel the following
notation:

X j = C1+α, 1+α
2 (Q) ∩Hj((t0, t1), H

2(Ω)), j = 1, 2.

We endow X j with its natural norm

‖u‖X j = ‖u‖
C1+α,

1+α
2 (Q)

+ ‖u‖Hj((t0,t1),H2(Ω)).

From now on we assume that t1 − t0 ≤ T0, for some fixed T0 > 0.

We are mainly concerned in the present work with the stability issue for the Cauchy problem associated
to the parabolic operator L. Precisely we are going to prove

Theorem 1.1. Assume that Ω possesses the uniform exterior sphere property and dg < ∞. Let Γ0 be a
nonempty open subset of Γ. Then there exist two constant C > 0 and γ > 0 depending on Ω, κ, K, T0, α
and Γ0, so that, for any u ∈ X 2 satisfying Lu = 0 in Q, we have

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖X 2

[
ln

( ‖u‖X 2

C(u,Γ0)

)]−γ
+ C(u,Γ0),

where

C(u,Γ0) = ‖u‖H2((t0,t1),L2(Γ0)) + ‖∇u‖H1((t0,t1),L2(Γ0)).

The stability estimate in Theorem 1.1 is of logarithmic type. Similarly to the elliptic case one can not
reasonably expect Lipschitz or Hölder stability.

We observe that Theorem 1.1 remains valid if L is substituted by L plus an operator of first order in space
variable whose coefficients are bounded.

The second author [10, Theorem 5.1, page 24] proved a Hölder stability in a proper subdomain of Q
depending on the part of the lateral boundary where the Cauchy data is given. In [9, Theorem 3.5.1, pages
45 and 46], Vessella establishes a local Hölder stability corresponding to the continuation of Cauchy data
to an interior subdomain for solutions vanishing at the initial time. Recently, Bourgeois [1, Main theorem,
page 2] proved a result similar to the one in Theorem 1.1 in the case where L = ∆− ∂t, Ω = D \O, D and
O are two domains of class C2, O ⋐ D, and Γ0 = ∂D or Γ0 = ∂O. His result is based on a global Carleman
estimate in which the weight function is built from the distance to the boundary of the space variable.

The present work constitute an extension of the earlier result by Bourgeois [1], but for more regular
solutions and some class of domains. The proof of the main result is inspired by that used in the elliptic case
by the first author in [2]. Note however that there is a great difference between the elliptic and parabolic
cases. The main difficulty in the parabolic case is that the initial time and the final time data are missing.
So the proofs are more technical. The idea to overcome the fact that the initial time and the final time data
are not known is to use a Hardy inequality with respect to time variable. This is explain why we need to
work with sufficiently smooth solutions. The assumption that the domain must have finite diameter with
respect to the geodesic distance is essential in our proof. We do not know whether this geometric assumption
is necessary.

Althrought we used classical tools to establish our main result, the result itself is completely know. This
is our modest contribution to stability issue for parabolic Cauchy problems.

A key tool in our analysis is a Carleman inequality (Theorem 2.2 below). We observe that Carleman
inequalities are very useful tool in control theory or for establishing a unique continuation property for
elliptic and parabolic partial differential equations. There is wide literature on the subject. We just quote
here the few reference [1, 3, 4, 8].

The rest of this article is organized as follows. Section 2 is devoted to a three-cylinder interpolation
inequality for the H1

x-L
2
t -norm. This inequality will be very useful for continuing the data on an interior

subdomain to the lateral boundary data, and to continue the data from one subdomain to another subdomain.
This is what we show in Section 3 and, as byproduct, we prove a logarithmic stability estimate corresponding
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to the unique continuation from an interior data. The proof of Theorem 1.1 is completed in Section 4 by
beforehand establishing a result which quantifies the stability from Cauchy data to an interior subdomain.

2. Three-cylinder interpolation inequality

We prove in this section

Theorem 2.1. There exist C > 0 and 0 < ϑ < 1 depending on κ, K, Ω and T0, so that, for any 0 < ǫ <
t1−t0

2 , u ∈ H1((t0, t1), H
2(Ω)) satisfying Lu = 0 in Q, y ∈ Ω and 0 < r < ry(ǫ) = min

(
1
3dist(y,Γ),

√
ǫ
)
, we

have

(2.1) r3‖u‖L2((t0+ǫ,t1−ǫ),H1(B(y,2r))) ≤ C‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖1−ϑL2((t0,t1),H1(B(y,3r))).

The proof of Theorem (2.1) is based on a Carleman inequality for a family of parabolic operators. To this
end, let I be an arbitrary set and consider the family of operators

Ls = div(As∇ · )− ∂t, s ∈ I,
where, for each s ∈ I, As = (aijs ) is a symmetric matrix with W 1,∞(Ω) entries so that the following
assumptions hold: there exist κ > 0 and K > 0 so that

(2.2) As(x)ξ · ξ ≥ κ|ξ|2, x ∈ Ω, ξ ∈ R
n and s ∈ I,

and

(2.3) ‖aijs ‖W 1,∞(Ω) ≤ K, 1 ≤ i, j ≤ n, s ∈ I.

Pick ψ ∈ C2(Ω) without critical points in Ω and set Σ = Γ× (t0, t1). Let

g(t) =
1

(t− t0)(t1 − t)

and

ϕ(x, t) = g(t)
(
e4λ‖ψ‖∞ − eλ(2‖ψ‖∞+ψ(x))

)
, χ(x, t) = g(t)eλ(2‖ψ‖∞+ψ(x)).

Theorem 2.2. (Carleman inequality) There exist three positive constants C, λ0 and τ0 depending only on
ψ, Ω, κ, K and T0, so that

C

∫

Q

(
λ4τ3χ3u2 + λ2τχ|∇u|2

)
e−2τϕdxdt

≤
∫

Q

(Lsu)
2e−2τϕdxdt+

∫

Σ

(
λ3τ3χ3u2 + λτχ|∇u|2 + (λτχ)−1|∂tu|2)

)
e−2τϕdσdt,(2.4)

for all u ∈ H1((t0, t1), H
2(Ω)), s ∈ I, λ ≥ λ0 and τ ≥ τ0.

Proof. Since the dependance of the constants will be uniform with respect to s ∈ I, we drop for simplicity
the subscript s in Ls and its coefficients. On the other hand since C∞(Q) is dense in H1((t0, t1), H

2(Ω)) it
is enough to prove (2.4) when u ∈ C∞(Q).

Let Φ = eτϕ and u ∈ C∞(Q), and set w = Φ−1u extended by continuity at t = 0 and t = T by setting
w(·, 0) = w(·, T ) = 0. Then straightforward computations give

Pw = [Φ−1LΦ]w = P1w + P2w + cw,

where

P1w = aw + div (A∇w) − τ∂tϕw,

P2w = B · ∇w + bw − ∂tw,
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with

a = a(x, t, λ, τ) = λ2τ2χ2|∇ψ|2A,
B = B(x, t, λ, τ) = −2λτχA∇ψ,
b = b(x, t, λ, τ) = −2λ2τχ|∇ψ|2A,
c = c(x, t, λ, τ) = −λτχdiv (A∇ψ) + λ2τχ|∇ψ|2A.

Here

|∇ψ|A =
√
A∇ψ · ∇ψ =

∣∣∣A 1
2∇u

∣∣∣ .
We obtain by making integrations by parts

∫

Q

awB · ∇wdxdt = 1

2

∫

Q

aB · ∇w2dxdt(2.5)

= −1

2

∫

Q

div(aB)w2dxdt+
1

2

∫

Σ

aB · νw2dσdt

and ∫

Q

div (A∇w)B · ∇wdxdt = −
∫

Q

A∇w · ∇(B · ∇w)dxdt +
∫

Σ

B · ∇wA∇w · νdσdt(2.6)

= −
∫

Q

B′∇w ·A∇wdxdt

−
∫

Q

∇2wB · A∇wdxdt +
∫

Σ

(B · ∇w)(A∇w · ν)dσdt.

Here B′ = (∂iBj) is the Jacobian matrix of B and ∇2w = (∂2ijw) is the Hessian matrix of w.

But ∫

Q

Bi∂
2
ijwa

ik∂kwdxdt = −
∫

Q

Bia
ik∂2ikw∂jwdxdt

−
∫

Q

∂i
[
Bia

ik
]
∂kw∂jwdxdt +

∫

Σ

Biνia
jk∂kw∂jwdσdt.

Therefore ∫

Q

∇2wB ·A∇wdxdt = −1

2

∫

Q

([
div(B)A+ Ã

]
∇w

)
· ∇wdxdt(2.7)

+
1

2

∫

Σ

|∇w|2AB · νdσdt,

with Ã = (ãij), ãij = B · ∇aij .
It follows from (2.6) and (2.7)

∫

Q

div (A∇w)B · ∇wdxdt = 1

2

∫

Q

(
−2AB′ + div(B)A+ Ã

)
∇w · ∇wdxdt(2.8)

+

∫

Σ

(B · ∇w) (A∇w · ν) dσdt− 1

2

∫

Σ

|∇w|2AB · νdσdt.

A new integration by parts yields
∫

Q

div (A∇w)bwdxdt = −
∫

Q

b|∇w|2Adxdt−
∫

Q

w∇b · A∇wdxdt +
∫

Σ

bwA∇w · νdσdt.

This and the following inequality

−
∫

Q

w∇b · A∇wdxdt ≥ −
∫

Q

(λ2χ)−1|∇b|2Aw2dxdt −
∫

Q

λ2χ|∇w|2Adxdt
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imply
∫

Q

div (A∇w)bwdxdt ≥ −
∫

Q

(b + λ2χ)|∇w|2Adxdt−
∫

Q

(λ2χ)−1|∇b|2Aw2dxdt(2.9)

+

∫

Γ

bwA∇w · νdσdt.

One more time, integrations by parts entail

(2.10)

∫

Q

aw∂twdxdt =
1

2

∫

Q

a∂tw
2dxdt = −1

2

∫

Q

∂taw
2dxdt,

(2.11)

∫

Q

∂tϕw∂twdxdt =
1

2

∫

Q

∂tϕ∂tw
2dxdt = −1

2

∫

Q

∂2t ϕw
2dxdt,

∫

Q

∂tϕwB · ∇wdxdt = 1

2

∫

Q

∂tϕB · ∇w2dxdt(2.12)

=
1

2

∫

Q

div(∂tϕB)w2dxdt+
1

2

∫

Σ

∂tϕB · νw2dσdt.

Also

(2.13)

∫

Q

div(A∇w)∂twdxdt = −
∫

Q

A∇w · ∇∂twdxdt +
∫

Σ

A∇w · ν∂twdσdt.

But ∫

Q

A∇w · ∇∂twdxdt = −
∫

Q

A∇∂tw · ∇wdxdt = −
∫

Q

∇∂tw · A∇wdxdt.

Whence ∫

Q

A∇w · ∇∂twdxdt = 0.

This identity in (2.13) gives

(2.14)

∫

Q

div(A∇w)∂tw =

∫

Σ

A∇w · ν∂twdσdt.

Now a combination of (2.5), (2.8), (2.9)-(2.12) and (2.14) gives

(2.15)

∫

Q

P1wP2wdxdt −
∫

Q

c2w2dxdt ≥
∫

Q

fw2dxdt+

∫

Q

F∇w · ∇wdxdt +
∫

Σ

g(w)dσdt,

where

f = −1

2
div(aB) + ab− (λ2χ)−1|∇b|2A − c2 +

1

2
∂ta−

1

2
∂2t ϕ− 1

2
div(∂tϕB),

F = −AB′ +
1

2

(
div(B)A+ Ã

)
− (b+ λ2χ)A,

g(w) =
1

2
aw2B · ν − 1

2
|∇w|2AB · ν +B · ∇wA∇w · ν + bwA∇w · ν − 1

2
∂tϕB · νw2 −A∇w · ν∂tw.

We use the inequality (α− β)2 ≥ α2/2− β2, α > 0, β > 0, in order to derive

‖Pw‖22 ≥ (‖P1w + P2w‖2 − ‖cw‖2)2

≥ 1

2
‖P1w + P2w‖22 − ‖cw‖22

≥
∫

Ω

P1wP2wdx −
∫

Ω

c2w2dx.
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Whence (2.15) implies

(2.16) ‖Pw‖22 ≥
∫

Q

fw2dxdt +

∫

Q

F∇w · ∇wdxdt +
∫

Σ

g(w)dσdt.

In light of the following inequalities, where c is a constant depending only on T0 and ψ,

|∂tϕ| ≤ cχ2, |∂2t ϕ|, |∇∂tϕ| ≤ cχ3

|A∇w · ν∂tw| ≤ λτχ|A∇w · ν|2 + (λτχ)−1|∂tw|2,
straightforward computations show that there exist four positive constants C0, C1, λ0 and τ0, that can
depend only on ψ, Ω, T0, κ and K, such that for all λ ≥ λ0 and τ ≥ τ0,

f ≥ C0λ
4τ3χ3,

F ξ · ξ ≥ C0λ
2τχ|ξ|2, for any ξ ∈ R

n,

|g(w)| ≤ C1

(
λ3τ3χ3w2 + λτχ|∇w|2 + (λτχ)−1|∂tw|2

)
.

Hence

C

∫

Q

(λ4τ3χ3w2 + λ2τχ|∇w|2)dxdt ≤
∫

Q

(Pw)2dxdt(2.17)

+

∫

Σ

(λ3τ3χ3w2 + λτχ|∇w|2 + (λτχ)−1|∂tw|2)dσdt.

As ∇w = Φ−1 (∇u+ λτu∇ψ),
|∇w|2 = Φ−2

(
|∇u|2 + λ2τ2|∇ψ|2 + 2λτu∇u · ∇ψ

)
.

Therefore, using an elementary inequality, we find

|∇w|2 ≥ Φ−2

(
|∇u|2 + λ2τ2|∇ψ|2u2 − 4λ2τ2u2|∇ψ|2 − 1

2
|∇u|2

)

and then

(2.18) |∇w|2 ≥ Φ−2

(
1

2
|∇u|2 − 3λ2τ2u2‖∇ψ‖2∞

)
.

(2.18) implies in a straightforward manner that

‖∇ψ‖−2
∞ |∇w|2 ≥ Φ−2

(‖∇ψ‖−2
∞

12
|∇u|2 − 1

2
λ2τ2u2

)
.

Consequently

(2.19) ‖∇ψ‖−2
∞ λ2τ |∇w|2 + λ4τ3w2 ≥ Φ−2

(‖∇ψ‖−2
∞

12
|∇u|2 + 1

2
λ2τ2u2

)
.

On the other hand, it is not hard to establish the inequality

(2.20) |∂tw|2 ≤ Φ−2
(
|∂tu|2 + cτ2χ2u2

)
.

The expected inequality follows by combining (2.17), (2.19) and (2.20). �

Proof of Theorem 2.1. Let u ∈ H1((t0, t1), H
2(Ω)) satisfying Lu = 0, set

Q(µ) = B(0, µ)× (−1, 1), µ > 0.

Fix (y, s) ∈ Ω× (t0, t1) and

0 < r < r(y,s) = min

(
1

3
dist(y,Γ),

√
s− t0,

√
t1 − s

)
≤ r0 = r0(diam(Ω), T0).

Let
w(x, t) = u(rx+ y, r2t+ s), (x, t) ∈ Q(3),

Then Lrw = div(Ar∇w)− ∂tw = 0 in Q(3), where Ar(x) = (aij(rx + y)).
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Clearly, the family (Ar) satisfies (2.2) and (2.3), uniformly with respect to r ∈ (0, r(y,s)).

Let χ ∈ C∞
0 (U) satisfying 0 ≤ χ ≤ 1 and χ = 1 in K, with

U =

{
x ∈ R

n;
1

2
< |x| < 3

}
, K =

{
x ∈ R

n; 1 ≤ |x| ≤ 5

2

}
.

Theorem 2.2 applied to χw, when Ω is substituted by U , gives, for λ ≥ λ0 and τ ≥ τ0,

C

∫

Q(2)\Q(1)

(
λ4τ3ϕ3w2 + λ2τϕ|∇w|2

)
e−2τϕdxdt(2.21)

≤
∫

Q(3)

(Lr(χw))
2e−2τϕdxdt.

But

supp(Lr(χw)) ⊂
[{

1

2
≤ |x| ≤ 1

}
∪
{
5

2
≤ |x| ≤ 3

}]
× (−1, 1)

and

(Lr(χw))
2 ≤ Λ(w2 + |∇w|2),

where Λ = Λ(r0) is independent on r. Therefore, fixing λ and changing τ0 if necessary, (2.21) implies, for
τ ≥ τ0,

C

∫

Q(2)

(
w2 + |∇w|2

)
e−2τϕdxdt ≤

∫

Q(1)

(
w2 + |∇w|2

)
e−2τϕdxdt(2.22)

+

∫

Q(3)\Q(5/2)

(
w2 + |∇w|2

)
e−2τϕdxdt.

Let s′ ∈ (−1, 0) and choose ψ(x) = −|x|2 in (2.22) (without critical points in U). In that case

ϕ(x, t) = g(t)
(
e36λ − eλ(18−|x|2)

)
.

We have, where s′ = −1 + ̺ for some 0 < ̺ < 1,

ϕ(x, t) ≤ g(s′)
(
e36λ − e14λ

)
≤ 1

̺

(
e36λ − e14λ

)
=
α

̺
, (x, t) ∈ B(2)× (s′,−s′),

ϕ(x, t) ≥ g(tm)
(
e36λ − e18λ

)
=

(
e36λ − e18λ

)
= β, (x, t) ∈ Q(1)

ϕ(x, t) ≥ g(tm)
(
e36λ − e

47
4 λ

)
=

(
e36λ − e

47
4 λ

)
= γ, (x, t) ∈ Q(3) \Q

(
5

2

)
.

As β
α < 1 < γ

α , we can fix θ ∈ (0, 1) so that

1

̺
= θ

β

α
+ (1− θ)

γ

α
> 1.

Set a = 2(1− θ)(γ − β) and b = 2θ(γ − β) and Q̃(2) = B(0, 2)× (−1 + ǫ, 1− ǫ). Then (2.22) yields

C

∫

Q̃(2)

(
w2 + |∇w|2

)
dxdt ≤ eaτ

∫

Q(1)

(
w2 + |∇w|2

)
dxdt+ e−bτ

∫

Q(3)

(
w2 + |∇w|2

)
dxdt.

As in the elliptic case (see [2, Theorem 2.17 and its proof, pages 19 to 21]), we derive from this inequality
the following one

C‖w‖L2((−1+̺,1−̺),H1(B(2))) ≤ ‖w‖ϑL2((−1,1),H1(B(1)))‖w‖1−ϑL2((−1,1),H1(B(3))),

with ϑ = a
a+b .

Making a change of variable we get, with τ = 1− ̺,

(2.23) r‖u‖L2((s−τr2,s+τr2),H1(B(y,2r))) ≤ C‖u‖ϑL2((s−r2,s+r2),H1(B(y,r)))‖u‖1−ϑL2((s−r2,s+r2),H1(B(y,3r))).
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We fix 0 < ǫ < t1−t0
2 and let s0 = t0 + ǫ and sk = sk−1 +2τr2. We consider q the smallest integer so that

(t1 − ǫ)− sq−1 ≤ 2τr2 or equivalently (t1 − ǫ)− sq−2 > 2τr2. Whence

(2.24) q <
t1 − t0 − 2ǫ

2τr2
+ 3 <

δ

2τr2
+

3diam(Ω)2

r2
=

(
T0
2τ

+ 3diam(Ω)2
)

1

r2
.

In light of (2.23) we get, for r < ry(ǫ) = min
(
1
3dist(y,Γ),

√
ǫ
)
,

(2.25) r‖u‖L2((t0+ǫ,t1−ǫ),H1(B(y,2r))) ≤ Cq‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖1−ϑL2((t0,t1),H1(B(y,3r))).

Estimate (2.24) in (2.25) yields

(2.26) Cr3‖u‖L2((t0+ǫ,t1−ǫ),H1(B(y,2r))) ≤ ‖u‖ϑL2((t0,t1),H1(B(y,r)))‖u‖1−ϑL2((t0,t1),H1(B(y,3r))), r < ry(ǫ).

The proof is then complete.
�

3. Quantifying the uniqueness of continuation from an interior data

In the rest of this text, we will often use the following Hardy’s inequality for vector valued function.

Lemma 3.1. Let X be a Banach space and s ∈
(
0, 12

)
. There exists a constant c > 0 so that for any

u ∈ Hs((t0, t1), X), we have ∥∥∥ u
δs

∥∥∥
L2((t0,t1),X)

≤ c‖u‖Hs((t0,t1),X).

Here δ = δ(t) = min{|t− t0|, |t− t1|}.
Proof. For simplicity, we use the same symbol ‖ · ‖ for the norm of X and its dual space dual X∗. The
duality pairing between X and X∗ is denoted by 〈· , ·〉. Let u ∈ Hs((t0, t1), X) and pick x∗ ∈ X∗ with
‖x∗‖ = 1. From the usual Hardy’s inequality in one dimension (see for instance [5]), we have

(3.1)

∫ t1

t0

|〈x∗, u(t)〉|2
δ2s(t)

dt ≤ c‖〈x∗, u(·)〉‖2Hs((t0,t1))
.

But

‖〈x∗, u(·)〉‖2Hs((t0,t1))
= ‖〈x∗, u(·)〉‖2L2((t0,t1))

+

∫ t1

t0

∫ t1

t0

|〈x∗, u(τ)〉 − 〈x∗, u(t)〉|2
|τ − t|n+2s

dtdτ

≤ ‖u‖2L2((t0,t1),X) +

∫ t1

t0

∫ t1

t0

‖u(τ)− u(t)‖2
|τ − t|n+2s

dtdτ = ‖u‖2Hs((t0,t1),X).

Whence ∥∥∥ u
δs

∥∥∥
2

L2((t0,t1),X)
=

∫ t1

t0

sup‖x∗‖=1 |〈x∗, u(t)〉|2
δ2s(t)

dt ≤ c‖u‖2Hs((t0,t1),X).

�

Next, we prove

Proposition 3.1. There exist ω ⋐ Ω and four constants µ > 0, c > 0, C > 0 and 0 < σ0 < 1, that can
depend on Ω, κ, K, T0 and α, so that, for any u ∈ X 1 satisfying Lu = 0 in Q and 0 < σ < σ0, we have

(3.2) ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)n) ≤ C
(
σµ‖u‖X 1 + e

c
σ ‖u‖L2((t0,t1),H1(ω))

)
.

Proof. Since Ω is Lipschitz, it has the uniform interior cone property (see for instance [7]). That is there
exist R > 0 and θ ∈

]
0, π2

[
so that, to any x̃ ∈ Γ corresponds ξ = ξ(x̃) ∈ S

n−1 for which

C(x̃) = {x ∈ R
n; |x− x̃| < R, (x− x̃) · ξ > |x− x̃| cos θ} ⊂ Ω.

We fix x̃ ∈ Γ and let ξ = ξ(x̃) be as in the definition above. Let x0 = x0(x̃) = x̃ + R
2 ξ, d0 = |x0 − x̃| and

ρ0 = (d0/3) sin θ.
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Let 0 < ǫ < ǫ0, where ǫ0 <
t1−t0

4 is chosen in such a way that

(3.3) 0 < δ = δ(ǫ) =

√
ǫ

4ρ0
< 1, 0 < ǫ < ǫ0.

By induction on k, we construct a sequence of balls (B(xk, 3δρk)) as follows



xk+1 = xk − αkξ,
ρk+1 = µρk,
dk+1 = µdk,

where

dk = |xk − x̃|, ρk = cdk, αk = (1 − µ)dk,

with

c =
sin θ

3
, µ =

3− 2 sin θ

3− sin θ
.

This construction guaranties that, for each k, B(xk, 3δρk) ⊂ C(x̃) and
(3.4) B(xk+1, δρk+1) ⊂ B(xk, 2δρk).

Let u ∈ X 1. In the sequel

M =M(u) = ‖u‖X 1 .

From (2.1) we have

(3.5) (δρ0)
3‖u‖L2((t0+ǫ,t1−ǫ),H1(B(x0,2δρ0))) ≤ CM1−ϑ‖u‖L2((t0,t1),H1(B(x0,δρ0)))

ϑ.

Since B(x0, 2δρ0) ⊃ B(x1, δρ1), (3.5) implies

(3.6) (δρ0)
3‖u‖L2((t0+ǫ,t1−ǫ),H1(B(x1,δρ1))) ≤ CM1−ϑ‖u‖L2((t0,t1),H1(B(x0,δρ0)))

ϑ.

Set

I0 = (t0, t1), Ik = (t0 + ǫηk, t1 − ǫηk) with ηk =
k−1∑

j=0

1

2j
, k ≥ 1.

With these notations (3.6) takes the form

(3.7) (δρ0)
3‖u‖L2(I1,H1(B(x1,δρ1))) ≤ CM1−ϑ‖u‖ϑL2(I0,H1(B(x0,δρ0)))

.

By induction in k, we see that

(3.8) (δρk)
3‖u‖L2(Ik+1,H1(B(xk+1,δρk+1))) ≤ CM1−ϑ‖u‖ϑL2(Ik,H1(B(xk,δρk)))

.

Let Λk = ‖u‖L2(Ik,H1(B(xk,δρk))). Then (3.8) is rewritten as follows

(δρk)
3Λk+1 ≤ CM1−ϑΛϑk .

Again, by induction in k, we obtain

Λk ≤ C1+ϑ+...+ϑk−1

(δρk−1)3(δρk−2)3ϑ . . . (δρ0)3ϑ
(k−1)

M (1−ϑ)(1+ϑ+...+ϑk−1)Λϑ
k

0 .

From the following inequality, where we used 0 < µ < 1,

(δρk−1)
3(δρk−2)

3ϑ . . . (δρ0)
ϑ3(k−1)

= (µ3(k−1)(δρ0)
3)(µ3(k−2)(δρ0)

3)ϑ . . . (µ3ρ30)
ϑk−2

ρϑ
k−1

0

≥ (µ3(k−1)(δρ0)
3)1+ϑ+...ϑ

k−1

= (µ3(k−1)(δρ0)
3)

1−ϑk

1−ϑ ,

it follows

(3.9) Λk ≤
[(

C

µ3(k−1)(δρ0)3

) 1
1−ϑ

M

]1−ϑk

Λϑ
k

0 .

Applying Young’s inequality we obtain, for any ̺ > 0,
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Λk ≤ (1− ϑk)̺
1

1−ϑk

(
C

µ3(k−1)(δρ0)3

) 1
1−ϑ

M + ϑk̺−
1

ϑk Λ0

≤ ̺
1

1−ϑk

(
C

µ3(k−1)(δρ0)3

) 1
1−ϑ

M + ̺−
1

ϑk Λ0.(3.10)

Set Λ̃k = ‖u‖L2((t0+2ǫ,t1−2ǫ),H1(B(xk,δρk))). As Ik ⊃ J = (t0 − 2ǫ, t1 − 2ǫ) for any k ≥ 1, (3.10) implies

(3.11) Λ̃k ≤ ̺
1

1−ϑk

(
C

µ3(k−1)(δρ0)3

) 1
1−ϑ

M + ̺−
1

ϑk Λ0.

Changing C if necessary, we can always assume that Cρ−3
0 ≥ 1. In that case (3.11) gives

(3.12) Λ̃k ≤ Cδ−
3

1−ϑ

(
̺

1

1−ϑk µ
−3(k−1)

1−ϑ M + ̺−
1

ϑk Λ0

)
.

On the other hand, since u is Hölder continuous,

|u(x̃, t)| ≤ [u]α|x̃− x|α + |u(x, t)|, x ∈ B(xk, δρk), t ∈ J.

Here and henceforth,

[w]α = sup
(x1,t1),(x2,t2)∈Q

(x1,t1)6=(x2,t2)

|w(x1, t1)− w(x2, t2)|
|x1 − x2|α + |t1 − t2|α2

, w ∈ Cα,
α
2 (Q).

Whence

(3.13) |Sn−1|δnρnk
∫

J

|u(x̃, t)|2dt ≤ 2[u]2α

∫

B(xk,δρk)×J
|x̃− x|2αdxdt+ 2

∫

B(xk,δρk)×J
|u(x, t)|2dxdt,

Similarly, where 1 ≤ i ≤ n,

(3.14) |Sn−1|δnρnk
∫

J

|∂iu(x̃, t)|2dt ≤ 2[∂iu]
2
α

∫

B(xk,δρk)×J
|x̃− x|2αdxdt+ 2

∫

B(xk,δρk)×J
|∂iu(x, t)|2dxdt,

A simple computation shows that dk = µkd0 yielding

(3.15) |x̃− x| ≤ |x̃− xk|+ |xk − x| ≤ dk + δρk = (1 + c)dk = (1 + c)µkd0.

Therefore, as a consequence of a combination of (3.13), (3.14) and (3.15),

∫

J

|∂iu(x̃, t)|2dt+
∫

J

|∇u(x̃, t)|2dt ≤ Cδ−n
(
M2µ2αk + µ−nkΛ̃2

k

)
.

This and (3.12) imply, where κ = max
(
n, 3

1−ϑ

)
,

(3.16)

∫

J

|u(x̃, t)|2dt+
∫

J

|∇u(x̃, t)|2dt ≤ Cδ−κ

(
M2µ2αk + µ−nk

[
̺

2

1−ϑk µ
−6(k−1)

1−ϑ M2 + ̺−
2

ϑk Λ2
0

])
.

We choose ̺ > 0 so that

̺
2

1−ϑk µ
−6(k−1)

1−ϑ
−nk = µ2αk.

That is to say ̺ = µφ(k), with

φ(k) =
[(2α+ n)(1− ϑ)k + 6(k − 1)](1− ϑk)

2(1− ϑ)
.

Consequently, we have from (3.17)

(3.17)

∫

J

|u(x̃, t)|2dt+
∫

J

|∇u(x̃, t)|2dt ≤ Cδ−κ

(
M2µ2αk + µ−ψ(k)Λ2

0

)
,

where ψ(k) = nk + φ(k)/ϑk.
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Let t > 0 and k be the integer so that k ≤ t < k + 1. Using that

ψ(k) ≤
[
n+

(2α+ n) + 6

2(1− ϑ)

]
k

ϑk
≤

[
n+

(2α+ n) + 6

2(1− ϑ)

]
ek(1+| lnϑ|) ≤

[
n+

(2α+ n) + 6

2(1− ϑ)

]
et(1+| lnϑ|),

we find

(3.18)

∫

J

|u(x̃, t)|2dt+
∫

J

|∇u(x̃, t)|2dt ≤ Cδ−κ

(
M2µ2αt + µ−κectΛ2

0

)
,

where κ = n+ (2α+n)+6
2(1−ϑ) and c = 1 + | lnϑ|.

Thus, for 1
σ = ect (> 1),

(3.19)

∫

J

|u(x̃, t)|2dt+
∫

J

|∇u(x̃, t)|2dt ≤ Cδ−κ

(
M2σ2γ + e

ξ
σ Λ2

0

)
,

with γ = α| lnµ|
c and ξ = | lnµ|κ.

Let ω = ∪x̃∈ΓB(x0(x̃), ρ0)) (independent on u) and N = ‖u‖L2((0,T );H1(ω)). Then (3.19) entails

(3.20)

∫

J

|u(x̃, t)|2dt+
∫

J

|∇u(x̃, t)|2dt ≤ Cδ−κ

(
M2σ2γ + e

ξ
σN2

)
.

Integrating over Γ, we obtain in a straightforward manner

(3.21) ‖u‖L2(J,L2(Γ)) + ‖∇u‖L2(J,L2(Γ)n) ≤ Cδ−
κ

2

(
Mσγ + e

c
σN

)
.

In light of (3.3), this inequality yields

(3.22) ‖u‖L2(J,L2(Γ)) + ‖∇u‖L2(J,L2(Γ)n) ≤ Cǫ−
κ

2

(
Mσγ + e

c
σN

)
.

Applying Lemma 3.1 for some fixed s ∈
(
0, 12

)
, we obtain

‖u‖L2((t0,t0+2ǫ),L2(Γ)), ‖u‖L2((t1−2ǫ,t1),L2(Γ)) ≤ 21+scǫs‖u‖Hs((t0,t1),L2(Γ)),

‖∇u‖L2((t0,t0+2ǫ),L2(Γ)n), ‖∇u‖L2((t1−2ǫ,t1),L2(Γ)n) ≤ 21+scǫs‖∇u‖Hs((t0,t1),L2(Γ)n).

These estimates in (3.22) yields

C
(
‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)n)

)
≤ǫ−κ

2

(
Mσγ + e

c
σN

)

+ ǫs
(
‖u‖Hs((t0,t1),L2(Γ)) + ‖∇u‖Hs((t0,t1),L2(Γ)n)

)
.

We take ǫ = σ
γ
κ in order to get

C
(
‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)n)

)
≤Mσ

γ
2 + e

c
σN

+ σ
sγ
κ

(
‖u‖Hs((t0,t1),L2(Γ)) + ‖∇u‖Hs((t0,t1),L2(Γ)n)

)
,

provided that 0 < σ < σ0 = ǫ
κ

γ

0 (< 1). Letting µ = min
(
γ
2 ,

sγ
κ

)
, we get

C
(
‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)n)

)
≤ σµM + e

c
σN,

which is the expected inequality. �

The a priori estimate in the following lemma is well adapted to our purpose. It does not involve either
the initial time data, nor the final time data.

Lemma 3.2. There exists a constant C > 0, depending only on Ω, κ, K and T0, so that, for any u ∈
H1((t0, t1), H

2(Ω)) satisfying Lu = 0 in Q, we have

(3.23) C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).
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Proof. Let u ∈ H1((t0, t1), H
2(Ω)) satisfying Lu = 0 in Q and set v = e−tu. Then v solves the following

equation

(3.24) div(A∇v) − v − ∂tv = 0 in Q.

Choose χ ∈ C∞
0 (t0, t1) satisfying 0 ≤ χ ≤ 1, χ = 1 in (t0 + ǫ, t1 − ǫ) and, for some universal constant c,

|χ′| ≤ cǫ.

We multiply (3.24) by χv and integrate over Q. We make then an integrate by parts in order to get

−
∫

Q

χA∇v · ∇vdxdt −
∫

Q

χv2dxdt+

∫

Σ

χuA∇u · νdσdt + 1

2

∫

Q

v2χ′dxdt,

from which we deduce in a straightforward manner

(3.25)

∫

Q

χA∇u · ∇udxdt+
∫

Q

χu2dxdt ≤ e2(t1−t0)
(
C

∫

Σ

(u2 + |∇u|2)dσdx +
1

2

∫

Q

u2|χ′|dxdt
)
.

On the other hand, as supp(χ′) ⊂ (t0, t1) \ (t0 + ǫ, t1 − ǫ), we have

J 2
ǫ =

∫

Q

u2|χ′|dxdt ≤ c

ǫ

∫ t0−ǫ

t0

∫

Ω

u2dxdt +

∫ t1

t1−ǫ

∫

Ω

u2dxdt.

Therefore

(3.26) lim sup
ǫ→0

J 2
ǫ ≤

∫

Ω

u2(x, t0)dx +

∫

Ω

u2(x, t1)dx.

We rewrite (3.25) in the form

(3.27) C‖u‖L2((t0+ǫ,t1−ǫ),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)) + Jǫ.

We apply Hardy’s inequality in lemma 3.1. We obtain

‖u‖L2((t0,t0+ǫ),H1(Ω)), ‖u‖L2((t1−ǫ,t1),H1(Ω)) ≤ cǫs‖u‖Hs((t0,t1),H1(Ω)).

This and (3.27) produce

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)) + ǫs‖u‖Hs((t0,t1),H1(Ω)) + Jǫ.

Making ǫ→ 0, we get by using (3.26)

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)) + ‖u(·, t0)‖L2(Ω) + ‖u(·, t1)‖L2(Ω).

We complete the proof by using the following inequality

C
(
‖u(·, t0)‖L2(Ω) + ‖u(·, t1)‖L2(Ω)

)
≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

To prove this inequality, we proceed as in the proof of observability inequalities for parabolic equation.
First, if s0 = 3t0+t1

4 and s1 = t0+3t1
4 , we get as a straightforward consequence of the Carleman inequality in

Theorem 2.2

(3.28) C‖u‖L2((s0,s1)×Ω) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

Next, pick ψ ∈ C∞([t0, t1]) so that 0 ≤ ψ ≤ 1, ψ = 0 in [t0, s0] and ψ = 1 in [s1, t1]. Then v = ψu is the
solution of the IBVP 




div(A∇v) − ∂tv = −ψ′u in Q,
v = u in Σ,
v(·, t0) = 0.

Hence ∫

Q

A∇v · ∇vdxdt+
∫

Σ

vA∇v · ν − 1

2

∫

Q

∂tv
2dxdt = −

∫

Q

ψ′uvdxdt.

But ∫

Q

∂tv
2dxdt =

∫

Ω

v2(x, t1)dx.
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That is we have ∫

Q

A∇v · ∇vdxdt+
∫

Σ

vA∇v · ν + 1

2

∫

Ω

v2(x, t1)dx. = −
∫

Q

ψ′uvdxdt.

We derive from this identity

(3.29) C
(
‖v(·, t1)‖2L2(Ω) + ‖∇v‖2L2(Q)

)
≤ ‖u‖2L2((t0,t1),L2(Γ)) + ‖∇u‖2L2((t0,t1),L2(Γ)) + ‖ψ′u‖L2(Q)‖v‖L2(Q)

Noting that

w →
(∫

Ω

|∇w|2dx+

∫

Γ

w2(x)dσ(x)

) 1
2

defines an equivalent norm on H1(Ω), we get

‖v‖2L2(Q) ≤ cΩ

(
‖∇v‖2L2(Q) + ‖u‖2L2((t0,t1),L2(Γ))

)
.

Applying Young’s inequality, we obtain

‖ψ′u‖L2(Q)‖v‖L2(Q) ≤
1

2ǫ
‖ψ′u‖L2(Q) +

cΩǫ

2
‖∇v‖2L2(Q) +

cΩǫ

2
‖u‖2L2((t0,t1),L2(Γ)).

This inequality in (3.29), with ǫ sufficiently small, yields

(3.30) C‖u(·, t1)‖L2(Ω) = C‖v(·, t1)‖L2(Ω) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)) + ‖ψ′u‖L2(Q).

Bearing in mind that supp(ψ′) ⊂ [s0, s1], we derive from (3.28)

‖ψ′u‖L2(Q) ≤ C‖u‖L2(Ω×(s0,s1))

≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

This in (3.30) yields

C‖u(·, t1)‖L2(Ω) = C‖v(·, t1)‖L2(Ω) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

As the Carleman estimate in Theorem 2.2 still holds for the backward parabolic equation div(A∇u)+∂tu = 0,
we have similarly

C‖u(·, t0)‖L2(Ω) ≤ ‖u‖L2((t0,t1),L2(Γ)) + ‖∇u‖L2((t0,t1),L2(Γ)).

The proof is then complete. �

In light of Proposition 3.1 and Lemma 3.2, we get

Corollary 3.1. There exist ω ⋐ Ω and four constants µ > 0, c > 0, C > 0 and 0 < σ0 < 1, that can depend
on Ω, κ, K, T0 and α, so that, for any u ∈ X 1 satisfying Lu = 0 in Q and 0 < σ < σ0, we have

(3.31) ‖u‖L2((t0,t1),H1(Ω)) ≤ C
(
σµ‖u‖X 1 + e

c
σ ‖u‖L2((t0,t1),H1(ω))

)
.

We now establish a result quantifying the uniqueness of continuation from a subdomain to an another
subdomain. Precisely, we prove

Proposition 3.2. Let ω ⋐ Ω and ω̃ ⋐ Ω and s ∈
(
0, 12

)
. There exist three constants γ > 0, C > 0 and

0 < ǫ0 < 1, depending only on Ω, κ, K, T0, s ω and ω̃, so that, for any u ∈ H1((t0, t1), H
2(Ω)) satisfying

Lu = 0 in Q and 0 < ǫ < ǫ0, we have

(3.32) C‖u‖L2((t0,t1),H1(ω̃)) ≤ ǫ2s‖u‖H1((t0,t1),H1(Ω)) + e
κ
ǫ ‖u‖L2((t0,t1),H1(ω)).

Proof. Set d0 = dist(ω ∪ ω̃,Γ). Fix 0 < ǫ < ǫ0 := min
(
d20
9 , 1

)
and let 0 < δ <

√
ǫ. Let x0 ∈ ω, x ∈ ω̃ and

ψ : [0, 1] → Ω be a C1-piecewise smooth path joining x0 to x so that ℓ(ψ) ≤ dg(x0, x) + 1. Let τ0 = 0 and
τk+1 = inf{τ ∈ [τk, 1]; ψ(τ) 6∈ B(ψ(τk), δ)}, k ≥ 0. We claim that there exists an integer N ≥ 1 so that
ψ(1) ∈ B

(
ψ(τN ), δ2

)
. If not, we would have ψ(1) 6∈ B

(
ψ(τk),

δ
2

)
for any k ≥ 0. As the sequence (τk) is non

decreasing and bounded from above by 1, it converges to τ̂ ≤ 1. In particular, there exists an integer k0 ≥ 1
so that ψ(tk) ∈ B

(
ψ(t̂), δ2

)
, k ≥ k0. But this contradicts the fact that |ψ(τk+1)− ψ(τk)| = δ, k ≥ 0.
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Let us check that N ≤ N0 where N0 depends only on dg and δ. Pick 1 ≤ j ≤ n so that

max
1≤i≤n

|ψi(τk+1)− ψi(τk)| = |ψj(τk+1)− ψj(τk)| .

Then

δ ≤ n |ψj(τk+1)− ψj(τk)| = n

∣∣∣∣
∫ τk+1

τk

ψ̇j(t)dt

∣∣∣∣ ≤ n

∫ τk+1

τk

∣∣∣ψ̇(t)
∣∣∣ dt.

Consequently, where τN+1 = 1,

(N + 1)δ ≤ n

N∑

k=0

∫ τk+1

τk

∣∣∣ψ̇(τ)
∣∣∣ dτ = nℓ(ψ) ≤ n(dg + 1).

Therefore

N ≤ N0 =

[
n(dg + 1)

δ

]
.

Let xk = ψ(tk), 0 ≤ k ≤ N . If |z − xk+1| < δ, then |z − xk| ≤ |z − xk+1| + |xk+1 − xk| < 2δ. In other
words B(xk+1, δ) ⊂ B(xk, 2δ).

As above,

I0 = (t0, t1), Ik = (t0 + ǫηk, t1 − ǫηk) with ηk =

k−1∑

j=0

1

2j
, k ≥ 1.

Let u ∈ H1((t0, t1), H
2(Ω)) satisfying Lu = 0 in Q. In the rest of this proof

M =M(u) = ‖u‖H1((t0,t1),H1(Ω)).

From the three-cylinder inequality (2.1), we have

‖u‖L2(Ik+1,H1(B(xk+1,δ))) ≤ C0δ
−3M1−ϑ‖u‖ϑL2(Ik,H1(B(xk,δ)))

.

Setting Λk = ‖u‖L2(Ik,H1(B(xk,δ))), 0 ≤ k ≤ N and ΛN+1 = ‖u‖L2(IN+1,H1(B(x, δ2 )))
, we can rewrite this

inequality in the form

(3.33) Λk+1 ≤ C0M
1−ϑΛϑk .

Let β = ϑN+1. We get in a straightforward manner from (3.33)

ΛN+1 ≤ (C0δ
−3)

1−ϑN+2

1−ϑ M1−βΛβ0 .

Since we can always assume, by changing C0, that C0δ
−3 ≥ 1, the last inequality gives

ΛN+1 ≤ Cδ
−3
1−ϑM1−βΛβ0 .

This and Young’s inequality lead, for σ > 0,

ΛN+1 ≤ Cδ
−3
1−ϑ ((1− β)σ

β
1−βM + βσ−1Λ0) ≤ C1(σ

β
1−βM + σ−1Λ0).

That is

ΛN+1 ≤ Cδ
−3
1−ϑ (σ

β
1−βM + σ−1Λ0).

If δ is sufficiently small B(x0, δ) ⊂ ω. On the other hand ω̃ can be recovred by O(δ−n) balls of radius δ
2 .

Whence, bearing in mind that IN+1 ⊃ (t0 + 2ǫ, t1 − 2ǫ),

(3.34) ‖u‖L2((t0+2ǫ,t1−2ǫ),H1(ω̃)) ≤ δ−
3

1−ϑ
−n

(
σ

β
1−βM + σ−1‖u‖L2((t0,t1),H1(ω))

)
.

Reducing ǫ0 if necessary, we can assume that δ < 1. Then we take σ in (3.34) in order that

δ−
3

1−ϑ
−nσ

β
1−β = δ.

In that case
σ−1 ≤ δ−

m
β ,

with m = 4−ϑ
1−ϑ + n.
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But

β = ϑN+1 = e−(N+1)| lnϑ| ≥ ϑe−N0| lnϑ| ≥ ϑe−
n| lnϑ|(dg+1)

δ .

Hence

δ−
3

1−ϑ
−nσ−1 ≤ e

κ
δ .

This inequality in (3.34) yields

(3.35) C‖u‖L2((t0+2ǫ,t1−2ǫ),H1(ω̃)) ≤ δM + e
κ
δ ‖u‖L2((t0,t1),H1(ω)).

One more time Hardy’s inequality in Lemma 3.1, for some fixed s ∈
(
0, 12

)
, yields

(3.36) ‖u‖L2((t0,t0+2ǫ),H1(ω̃)), ‖u‖L2((t1−2ǫ,t1),H1(ω̃)) ≤ 2scǫsM.

If 0 < ǫ ≤ ǫ0, for some sufficiently small ǫ0, we can take δ =
√
ǫ

2 , then (3.35) and (3.36) entail

C‖u‖L2((t0,t1),H1(ω̃)) ≤ ǫsM + e
κ√
ǫ ‖u‖L2((t0,t1),H1(ω)).

Substituting ǫ by ǫ2, we obtain

C‖u‖L2((t0,t1),H1(ω̃)) ≤ ǫ2sM + e
κ
ǫ ‖u‖L2((t0,t1),H1(ω)).

This is the expected inequality.
�

We are now ready to prove the result showing how one can quantify the uniqueness of continuation from
an interior data

Theorem 3.1. Let ω ⋐ Ω. There exist two constants C > 0 and γ > 0, depending only on Ω, κ, K, ω and
T0, so that, for any u ∈ X 1 satisfying Lu = 0 in Q, we have

C‖u‖L2((t0,t1),H1(Ω)) ≤ ‖u‖X 1

∣∣∣∣ln
( ‖u‖X 1

‖u‖L2((t0,t1),H1(ω))

)∣∣∣∣
−γ

+ ‖u‖L2((t0,t1),H1(ω)).

Proof. Let u ∈ X 1 satisfying Lu = 0 in Q. From Corollary 3.1, there exist ω̃ ⋐ Ω and four constants µ > 0,
c > 0, C > 0 and 0 < σ0 < 1 so that, for any 0 < σ < σ0, we have

C‖u‖L2((t0,t1),H1(Ω)) ≤ σµ‖u‖X 1 + e
c
σ ‖u‖L2((t0,t1),H1(ω̃)).

But according to Proposition 3.2, with fixed s ∈
(
0, 12

)
, there exist three constants γ > 0, C > 0 and

0 < ǫ0 < 1 so that, for any 0 < ǫ < ǫ0,

C‖u‖L2((t0,t1),H1(ω̃)) ≤ ǫ2s‖u‖X 1 + e
κ
ǫ ‖u‖L2((t0,t1),H1(ω)).

The last two inequalities yield

(3.37) C‖u‖L2((t0,t1),H1(Ω)) ≤ (σµ + ǫ2se
c
σ )‖u‖X + e

κ
ǫ e

c
σ ‖u‖L2((0,T ),H1(ω)), 0 < σ < σ0, 0 < ǫ < ǫ0.

Reducing σ0 if necessary, we assume that σµ0 e
− c

σ0 < ǫ
1
2s
0 . In that case we can take in (3.37) ǫ so that

ǫ2se
c
σ = σµ. We get, by using that ǫ ≥ σp, with p = µ

2s ,

C‖u‖L2((t0,t1),H1(Ω)) ≤ σµ‖u‖X + e
κ
σp e

c
σ ‖u‖L2((t0,t1),H1(ω)), 0 < σ < σ0.

Whence, where q = max(1, p),

(3.38) C‖u‖L2((t0,t1),H1(Ω)) ≤ σµ‖u‖X + e
c

σq ‖u‖L2((t0,t1),H1(ω)), 0 < σ < σ0.

We end up getting the expected inequality by minimizing with respect to σ. �



16 MOURAD CHOULLI AND MASAHIRO YAMAMOTO

4. Stability of parabolic Cauchy problems

In order to prove our stability estimate for the Cauchy problem, one additional step is necessary. It
consists in quantifying the uniqueness of continuation from the Cauchy data to an interior subdomain. To
do that we start with the following proposition.

Proposition 4.1. Let Γ0 be a nonempty open subset of Γ and ν ∈
(
0, 12

)
. There exist ω ⋐ Ω and two

constants C > 0 and c > 0, depending only on Ω, κ, K, Γ0, s and T0, so that, for any u ∈ H1((t0, t1), H
2(Ω))

satisfying Lu = 0 in Q and 0 < ǫ < t1−t0
2 , we have

(4.1) C‖u‖L2(ω×(t0,t1)) ≤ ǫν‖u‖H1((t0,t1),H1(Ω)) + e
c

ǫ2
(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
.

Proof. Pick 0 < ǫ < t1−t0
2 , 0 < η < ǫ and let s ∈ [t0 + ǫ, t1 − ǫ]. Let x̃ ∈ Γ0 and x0 = x0(x̃) and ρ be as in

the definition of the uniform exterior sphere property. Fix r > 0 in such a way that B(x0, ρ+ r) ∩ Γ ⊂ Γ0.

Let φ ∈ C∞
0 (B(x̃, ρ + r)), φ = 1 on B(x̃, ρ + 3r

4 ) and |∂αφ| ≤ cr−|α|, |α| ≤ 2, where c is a constant
independent on r. Set, where 0 < δ < 1 is to be determined in the sequel,

Q0 = [B(x0, ρ+ r) ∩Ω]× (s− η, s+ η),

Q1 = [B(x0, ρ+ r/2) ∩Ω]× (s− δη, s+ δη),

Q2 = {[B(x0, ρ+ r) \B(x0, ρ+ 3r/4)] ∩Ω} × (s− η, s+ η),

Σ0 = [B(x0, ρ+ r) ∩ Γ]× (s− η, s+ η).

We apply Theorem 2.2, with Ls = L, λ fixed and ψ = (ρ + r)2 − |x − x0|2, to φu so that u ∈
H1((t0, t1), H

2(Ω)) satisfies Lu = 0 in Q in order to obtain

(4.2) C

∫

Q1

u2e−2τϕdxdt ≤
∫

Q0

(L[φu])2e−2τϕdxdt+

∫

Σ0

(u2 + |∇u|2 + (∂tu)
2)e−2τϕdxdt.

But

L[φu] = Lφu+ 2A∇φ · ∇u.
Whence, supp(L[φu]) ∩Q0 ⊂ Q2 together with (4.2) yield

(4.3) C

∫

Q1

u2e−2τϕdxdt ≤
∫

Q2

(u2 + |∇u|2)e−2τϕdxdt +

∫

Σ0

(u2 + |∇u|2 + (∂tu)
2)e−2τϕdxdt.

Let

α = η−2
[
e4λ(ρ+r)

2 − eλ(2(ρ+r)
2−(ρ+r/2)2)

]
:= η−2α̃,

β = η−2
[
e4λ(ρ+r)

2 − e2λ(ρ+r)
2
]
:= η−2β̃,

γ = η−2
[
e4λ(ρ+r)

2 − eλ(2(ρ+r)
2−(ρ+3r/4)2)

]
:= η−2γ̃.

Then it is straightforward to check that

ϕ(x, t) ≤ α

1− δ
in Q1,

ϕ(x, t) ≥ β in Σ0,

ϕ(x, t) ≥ γ in Q2.

Noting β
α < 1 < γ

α , we can choose 0 < θ < 1 so that

1

1− δ
= θ

β

α
+ (1− θ)

γ

α
= θ

β̃

α̃
+ (1− θ)

γ̃

α̃
> 1.

With this choice of δ, (4.3) yields

(4.4) C

∫

Q1

u2dxdt ≤ e−4bη−2τ

∫

Q2

(u2 + |∇u|2)dxdt + e4aη
−2τ

∫

Σ0

(u2 + |∇u|2 + (∂tu)
2)dxdt.
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Here a = 1
2 (1− θ)(γ̃ − β̃) and b = 1

2θ(γ̃ − β̃).

Let η = ǫ
2 , s0 = t0 + ǫ− ǫ

2 , s1 = s0 + δ ǫ2 . . . sk = s0 + kδ ǫ2 . Let N = N(ǫ) so that

N⋃

k=0

[
sk − δ

ǫ

2
, sk + δ

ǫ

2

]
⊃ [t0 + ǫ, t1 − ǫ].

If Qkj (resp. Σk0) denotes Qj (resp. Σ0), j = 1, 2, when s is substituted by sk, then it follows from (4.3)

N∑

k=0

C

∫

Qk
1

u2dxdt ≤ eaǫ
−2τ

N∑

k=0

∫

Qk
2

(u2 + |∇u|2)dxdt + e−bǫ
−2τ

N∑

k=0

∫

Σk
0

(u2 + |∇u|2 + (∂tu)
2)dxdt.

Note that the intervals
[
sk − ǫ

2 , sk +
ǫ
2

]
can overlap, but their union can cover at most two times a subdomain

of (t0, t1). Whence

(4.5) CI ≤ eaǫ
−2τN + e−bǫ

−2τM, τ ≥ τ0,

where we used the following temporary notation

I = ‖u‖L2([B(x0,ρ+r/2)∩Ω)]×(t0+ǫ,t1−ǫ)),

M = ‖u‖L2((t0,t1),H1(Ω)),

N = ‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0)).

In (4.5), substituting τ by ǫ2τ , we get

(4.6) CI ≤ eaτM + e−bτN, τ ≥ ǫ−2τ0.

Set

τ1 =
ln N

M

a+ b
.

If τ1 ≥ ǫ−2τ0, then τ = τ1 in (4.6) yields

(4.7) CI ≤MϑN1−ϑ,

with ϑ = b
a+b .

When τ1 < ǫ−2τ0,

M < e(a+b)ǫ
−2τ0N.

This inequality entails

(4.8) I ≤M =MϑM1−ϑ ≤Mϑe(1−ϑ)(a+b)ǫ
−2τ0N1−ϑ.

So in any case one of estimates (4.7) and (4.8) holds. In other words, we proved

e−
c

ǫ2 ‖u‖L2([B(x0,ρ+r/2)∩Ω)]×(t0+ǫ,t1−ǫ))

≤ ‖u‖ϑL2((t0,t1),H1(Ω))

(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)1−ϑ
.

Fix ω ⋐ B(x0, ρ+ r/2) ∩Ω). Then the last inequality implies

e−
c

ǫ2 ‖u‖L2(ω×(t0+ǫ,t1−ǫ)) ≤ ‖u‖ϑL2((t0,t1),H1(Ω))

(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)1−ϑ
.

(4.9) C‖u‖L2(ω×(t0+ǫ,t1−ǫ)) ≤ σγe
c

ǫ2 M + σ−1e
c

ǫ2
(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
,

for σ > 0, where γ = 1−ϑ
ϑ .

Once again from Hardy’s inequality in Lemma 3.1, where M1 = ‖u‖H1((t0,t1),H1(Ω)),

‖u‖L2(ω×(t0,t0+ǫ)), ‖u‖L2(ω×(t1−ǫ,t1)) ≤ c′ǫνM1.

Combined with (4.9), this inequality yields

C‖u‖L2(ω×(t0,t1)) ≤
(
σγe

c

ǫ2 + ǫν
)
M1 + σ−1e

c

ǫ2
(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
.
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In this inequality we take σ so that σγ = ǫνe
c

ǫ2 . Noting that σ−1 ≤ ǫ−
ν
γ , we find

C‖u‖L2(ω×(t0,t1)) ≤ ǫνM1 + e
c

ǫ2
(
‖u‖H1((t0,t1),L2(Γ0)) + ‖∇u‖L2((t0,t1),L2(Γ0))

)
.

The proof is then complete. �

Proposition 4.1 gives an estimate only in L2(ω × (t0, t1)). But we can derive from it an estimate in
L2((t0, t1), H

1(ω)) by using the following Caccioppoli type inequality for the parabolic equation Lu = 0.

Lemma 4.1. Let ω0 ⋐ ω1 ⋐ Ω. There exist a constant C > 0, depending only on Ω, κ, K, T0, ω0 and ω1,
so that, for 0 < ǫ < t1−t0

4 and u ∈ H1((t0, t1), H
2(Ω)) satisfying Lu = 0 in Q, we have

(4.10) C‖u‖L2((t0,t1),H1(ω0)) ≤ ‖u‖H1((t0,t1),L2(ω1)).

Proof. Let u ∈ H1((0, T ), H2(Ω)) satisfying Lu = 0 inQ. By Green’s formula, for any v ∈ L2((t0, t1), H
1
0 (Ω)),

we have

(4.11)

∫ t1

t0

∫

Ω

A∇u · ∇vdxdt −
∫ t1

t0

∫

Ω

∂tuvdxdt = 0.

Let φ ∈ C∞
0 (ω1) satisfying 0 ≤ φ ≤ 1 and φ = 1 in ω0.

Taking v = φ2u in (4.11), we get in straightforward manner
∫ t1

t0

∫

ω1

φ2A∇u · ∇udxdt = −2

∫ t1

t0

∫

ω1

(φ∇u) · (uA∇φ)dxdt +
∫ t1

t0

∫

ω1

φ2∂tuudxdt.

But ∫ t1

t0

∫

ω1

φ2A∇u · ∇vdxdt ≥ κ

∫ t1

t0

∫

ω1

φ2|∇u|2dxdt.

Therefore

(4.12) κ

∫ t1

t0

∫

ω1

φ2|∇u|2dxdt ≤ −2

∫ t1

t0

∫

ω1

(φ∇u) · (uA∇φ)dxdt +
∫ t1

t0

∫

ω1

φ2∂tuudxdt.

An elementary convexity inequality yields

(4.13) 2

∣∣∣∣
∫ t1

t0

∫

ω1

(φ∇u) · (uA∇φ)dxdt
∣∣∣∣ ≤

κ

2

∫ t1

t0

∫

ω1

φ2|∇u|2dxdt+ C

∫ t1

t0

∫

ω1

u2dxdt.

On the other hand, we have

(4.14)

∣∣∣∣
∫ t1

t0

∫

ω1

φ2∂tuudxdt

∣∣∣∣ ≤
∫ t1

t0

∫

Ω

φ2u2dxdt +

∫ t1

t0

∫

Ω

φ2(∂tu)
2dxdt

We combine (4.12), (4.13) and (4.14) in order to get

C‖∇u‖L2((t0,t1),L2(ω0)) ≤ ‖u‖L2(ω1×(t0,t1)) + ‖∂tu‖L2(ω1×(t0,t1)).

Or equivalently

C‖u‖L2((t0,t1),H1(ω0)) ≤ ‖u‖H1((t0,t1),L2(ω1)).

�

We observe that if u ∈ H2((t0, t1), H
2(Ω)) satisfies Lu = 0, then ∂tu ∈ H1((t0, t1), H

2(Ω)) satisfies
L∂tu = 0. Therefore, as an immediate consequence of Caccioppoli’s type inequatity (4.10) and Proposition
4.1 (applied both to u and ∂tu), we have

Corollary 4.1. Let Γ0 be a nonempty open subset of Γ and ν ∈
(
0, 12

)
. There exist ω ⋐ Ω and two constants

C > 0 and c > 0, that can depend on Ω, κ, K, T0, s and Γ0 so that, for any u ∈ H2((t0, t1), H
2(Ω))

satisfying Lu = 0 and σ > 0, we have

(4.15) C‖u‖L2((t0,t1),H1(ω)) ≤ ǫν‖u‖H2((t0,t1),H1(Ω)) + e
c

ǫ2
(
‖u‖H2((t0,t1),L2(Γ0)) + ‖∇u‖H1((t0,t1),L2(Γ0))

)
.
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We are now in position to complete the proof of Theorem 1.1. We recall that

C(u,Γ0) = ‖u‖H2((t0,t1),L2(Γ0)) + ‖∇u‖H1((t0,t1),L2(Γ0)).

In light of inequality (3.38) in the end of the proof of Theorem 3.1 and inequality (4.15), we get

C‖u‖L2((t0,t1),H1(Ω)) ≤
(
σµ + e

c
σq ǫν

)
M + e

c
σq e

c′
ǫ2 C(u,Γ0).

The rest of the proof in quite similar to that of the end of Theorem 3.1.

References

[1] L. Bourgeois, Quantification of the unique continuation property for the heat equation, Math Control and Related fields,

in press.
[2] M. Choulli, Applications of elliptic Carleman inequalities to Cauchy and inverse problems, BCAM Springer Briefs in

Mathematics, Springer, Berlin, 2016.
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