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Mean-field dynamics for Ginzburg-Landau vortices
with pinning and applied force

Mitia Duerinckx and Sylvia Serfaty

Abstract

We consider the time-dependent Ginzburg-Landau equation in the whole plane with terms modeling
pinning and applied forces. The Ginzburg-Landau vortices are then subjected to three forces: their
mutual repulsive interaction, a constant applied force pushing them in a fixed direction, and the pinning
force attracting them towards the local minima of the pinning potential. The competition between the
three is expected to lead to possible glassy effects.

We first rigorously study the limit in which the number of vortices N. blows up as the inverse
Ginzburg-Landau parameter € goes to 0, and we derive via a modulated energy method the limiting fluid-
like mean-field evolution equations. These results hold in the case of parabolic, conservative, and mixed-
flow dynamics in appropriate regimes of N. — co. We next consider the problem of homogenization of
the limiting mean-field equations when the pinning potential oscillates rapidly: we formulate a number of
questions and heuristics on the appropriate limiting stick-slip equations, as well as some rigorous results
on the simpler regimes.
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1 Introduction

1.1 General overview

We are interested in the collective dynamics of many vortices in a superconductor with impurities, within
the framework of the 2D Ginzburg-Landau model. This is important for practical applications, and is a main
concern of current research in the physics community (see e.g. [10, 44, 70]). Indeed, superconductors are used
in order to carry electric currents without energy dissipation. In most of the interesting superconducting
materials (those with a high critical temperature), vortices occur for a very wide range of values of the applied
magnetic fields, in the so-called “mixed state”. When flowing an electric current through a superconducting
wire, the vortices are set in motion by the Lorentz force exerted by the current, leading to energy dissipation.
This problem is fixed in practice by introducing normal impurities in the material which “pin” the vortices
to their locations if the applied current is not too strong, thus avoiding the energy dissipation.

Physicists are therefore very interested in understanding the effect of such impurities (which are typically
randomly scattered around the sample) on the statics and dynamics of vortices. In particular, they want to
understand the critical applied current needed to depin the vortices from their pinning sites, and the slow
motion of vortices in the disordered sample — named creep — when the applied current has a small intensity
and thermal or quantum effects are taken into consideration (see e.g. [10, 44, 70]).

We will thus study the motion of vortices for the Ginzburg-Landau equations including both a pinning
potential and an applied electric current. The dynamics will be either parabolic (parabolic Ginzburg-Landau
equation), conservative (Gross-Pitaevskil equation), or even mixed. These equations have been studied
in [89, 84] in the mixed case and in [57] in the conservative case, for a fixed number N of vortices in the
asymptotic limit when e (the inverse Ginzburg-Landau parameter, which is also the characteristic lengthscale
of the vortex cores) tends to 0. As seen there, vortices are subjected to three forces: their mutual interaction,
which is a logarithmic repulsion, the Lorentz force F' due to the applied current of intensity J.., and the



pinning force equal to —Vloga in terms of the pinning weight a. The effective vortex dynamics then
corresponds to a system of ODEs of the form

N
h:=loga, Wn(z1,...,zN) ::—Zlog|xi—xj|,
i#]
where the z;’s are the effective vortex trajectories, where J denotes the rotation of vectors by angle 7/2 in
the plane, and where the parameters a > 0 and 3 € R satisfy a? + 32 = 1 and are such that 8 = 0 (resp.
a = 0) corresponds to the parabolic (resp. conservative) case.

The pinning and applied force intensities are parameters which can be tuned, leading to regimes in which
one or two forces dominate over the others, or all are of the same order. In [89] no pinning force is considered,
and the treated regimes lead to the applied force being of the same order as the interaction. In [84] the
pinning and applied forces are chosen to be of the same order, and both dominate the interaction. Finally
in [57] in the conservative case, the critical scaling is considered, that is, with all forces of the same order.

Here we consider the situation when the number N, of vortices is not fixed but depends on ¢, and blows
up as ¢ J 0, which is a physically more realistic situation in many regimes of applied fields and currents. In
the case without pinning and applied current, the mean-field limiting dynamics of N, > 1 vortices in the
parabolic and conservative equations have been rigorously established in a number of settings:

— for the Gross-Pitaevskii equation in the plane, it is shown in [54] in the regime 1 < N, < (log |loge])
that the vorticity of solutions converges to the solution of the incompressible Euler equation in vorticity
form, while in [82] it is shown in the regime [loge| < N. < ™! that the current of solutions converges
to the solution of the incompressible Euler equation;

— for the parabolic Ginzburg-Landau equation in the plane, the convergence of the vorticity of solutions
to the solution of a limiting mean-field equation, first formally derived in [18, 39], is established in [58]
in the regime 1 < N. < (loglog |loge|)'/4, while the convergence of the current to an appropriate
limiting equation is established in [82] in the regime 1 < N, < [logel;

— the situation in the remaining regimes remains an open question.

All those results assume that the initial data is suitably “well-prepared”. The results of [58] and [54] rely
on a direct method and a careful study of the vortex trajectories, while the results of [82] are based on a
“modulated energy approach” which we will describe later, and rely on the assumed regularity of the limiting
solutions (or equivalently of the initial data).

The goal of the first part of this paper is to adapt the approach of [82] to the setting with pinning and
applied force as in [84, 57], but in the whole plane and with N > 1 vortices. We treat here the parabolic,
conservative and also mixed-flow cases, and obtain the convergence to some limiting fluid-type evolution
equations, for which global well-posedness is proved in the companion paper [37]. As described above,
different regimes for the intensities of the pinning and applied forces lead to different limiting equations:
either a nonlocal transport equation involving the pinning potential A and the applied force F', which in the
simplest case takes the following form for the limiting vorticity m,

1/2

ym=div ((a —JB)(Vh—F — VA 'm)m), (1.2)

or a simple linear transport equation with only the pinning and applied forces remaining when these are
scaled to be much stronger than the interaction.

The derivation bears several complications compared to the situation of [82], in particular due to the lack
of sufficient decay at infinity of the various quantities, and also to the fact that the self-interaction of each
vortex varies with its location due to the pinning potential.

We will perform this derivation for a pinning force which varies at the macroscopic scale. The most
interesting situation from the modeling viewpoint is however to let the pinning potential oscillate quickly



at some mesoscopic scale 7., which tends to 0 as € | 0 and can have some interplay with the vortex
interdistance. In real materials the way the impurities are inserted typically leads them to be uniformly
and randomly scattered in the sample. This is well-modeled by a periodic but rapidly oscillating pinning
weight a(x) = ag(x/n.), or even better by a random pinning weight ag(x/7.,w) with some good ergodicity
properties. One is thus led to the question of combining the mean-field limit for the Ginzburg-Landau
evolution equations with an homogenization limit. In other words, can one perform the derivation of the
limiting equation as € | 0, N. T oo and 7. | 0, and in which regimes does it hold?

While the homogenization of the (static) Ginzburg-Landau functional with pinning weight has been
studied in some settings [2, 5, 35], we believe that these questions in the dynamical case are very challenging.
They are in fact already very hard for just a finite number of vortices. Studying the limit as i | 0 of (1.1)
with pinning potential h(z) = ﬁo(x/n) with ho periodic or random, is a question of homogenization of a
system of coupled ODEs and is notoriously difficult. Note that these difficulties seem to be related to the
possible “glassy” properties predicted by physicists for such systems (see e.g. [44]). On the other hand, the
case with no interaction term and with F' constant is much simpler to analyze, and seems to be known under
the term “washboard” in the physics literature. When F' = 0, the particle is simply attracted towards the
local wells of the pinning potential h. Otherwise, the constant applied force F' # 0 can be absorbed into
the term —Vh by adding to the potential h an affine function, which effectively tilts the potential landscape
into a washboard-shaped graph. As will be seen in Section 1.3.1, above some positive value of |F| the tilted
potential has no local minimum, leading the particle to fall downwards. In the setting of a superconductor
with applied current and with pinning, this corresponds to the critical “depinning current” above which the
vortices are depinned from their pinning locations. Note that when the applied force F' varies with x at the
macroscopic scale (still without interaction term) the situation is much more subtle and only partial results
are obtained in [61].

Since our modulated energy method to establish the mean-field limit does not seem well-adapted to
include homogenization effects, we will not say much about commuting the limits ¢ | 0 and n | 0, but
instead, in the second part of this paper, we formulate a few partial results in the direction of homogenizing
the limiting mean-field equations of the form (1.2) obtained in the first part, and we formulate many open
questions which we believe to be interesting both from an applied and a theoretical point of view. This
topic is indeed very delicate on its own, with the same kind of difficulties as for the homogenization of the
corresponding system of coupled ODEs (1.1), but in the case without interaction and with F' constant the
problem is considerably simpler and leads to a well-defined limiting stick-slip equation. Finally, in order to
model thermal effects, one can replace the transport equations of the type (1.2) by their viscous versions,
and we will give a few heuristics in Section 1.3.2 on the corresponding homogenization questions.

Notation. Throughout the paper, C' denotes various positive constants which depend on the dimension
d, and on various controlled quantities, but do not depend on the parameter &, and we write < and 2
for < and > up to such a constant C. We then write a ~ b if both a < b and a 2 b hold. Given
sequences (ag)e, (b:)e C R, we also set a. < b. (or b. > a.) if a./b. converges to 0 as the parameter
goes to 0. Alternatively, we write a. < O(b.) if a. < be, and a. < o(b.) if a. < b.. We add a subscript
t to indicate the further dependence on an upper bound on time t, while additional subscripts indicate the
dependence on other parameters. A superscript ¢ to a function indicates that this function is evaluated at
time t. We let Q = [—%, %)2 denote the unit square, frequently identified with the 2-torus T2. For any
vector field G = (G1,G3) on R?, we denote G+ = (—Go,G1), curlG = 0;G5 — 9G4, and also as usual
div G = 0:G1 + 02G2. We write J : R? — R? for the rotation of vectors by angle 7/2 in the plane, so
that JG = G*. We denote by B(z,r) the ball of radius 7 centered at x in R?, and we set B, := B(0,r)
and B(x) := B(z,1). We use the notation z A y = min{z,y} and =z Vy = max{z,y} for z,y € R. We

denote by LP C(Rz) the Banach space of functions that are uniformly locally LP-integrable on R2?, with norm



Il flle. = sup, || fllLr(B(2)), and we similarly define the Sobolev spaces WEP (R2). Given a Banach space

uloc uloc

X and t > 0, we use the notation [| - | x for the usual norm in L”([0, t]; X).

1.2 Mean-field limit results

Mesoscopic inhomogeneities in the material are usually modeled by introducing a pinning weight a : R —
[0,1], which locally lowers the energy penalty associated with the vortices [59, 16] (see also [17]). In the
time-dependent Ginzburg-Landau equation, first derived by Schmid [78] and by Gor’kov and Eliashberg [46],
and in the simplified version without gauge, the pinning weight appears as follows:

(o + i|log | B)Bywe = Aw, + %(a —Jwel?),  inR* xQ, (1.3)
where Q is a domain of R? and w, is the complex-valued order parameter. Here o > 0, 8 € R, o? + % =1,
and these parameters a and f allow to consider by the same token the parabolic case (« = 1, § = 0), the
Gross-Pitaevskii case (¢« = 0, 8 = 1), and the mixed-flow case (a > 0, 8 € R), and are scaled so as to
obtain a nontrivial limiting dynamics. The case of the equation with magnetic gauge is briefly discussed in
Section 2.2. Since the gauge does not introduce significant mathematical difficulties, we omit it for simplicity
in our analysis. In this context, we aim to understand the dynamics of the vortices in the asymptotic regime
€ | 0 as their number N, blows up, thus describing the evolution of the density of the corresponding vortex
liquid. For simplicity we assume

c <a(x) <1, for all x, (1.4)
which avoids degenerate situations. Physically one would like to consider a pinning weight a that may vanish,
representing normal inclusions [16], however this is much more delicate mathematically (see e.g. [5]).

The equation (1.3) should be supplemented with a boundary condition modeling the inflow of an electric
current. Because the presence of the boundary creates mathematical difficulties which we do not know how
to overcome (due to the possible entrance and exit of vortices), we take the model studied in [89, 84] and
make suitable modifications to consider a version on the whole plane with boundary conditions “at infinity”.
As in [89, 84], the boundary conditions can be changed into a bulk force term by a suitable change of phase
in the unknown function. Dividing also the unknown function by the expected density /a, we arrive at the
equation

(1.5)

Ae(a +illoge|B)Oyue = Aue + Huc(1 — |uc|?) + Vh - Vue + illoge| F* - Vue + fue,
u€|t:0 == uga
with h = loga, f : R2 = R and F : R? — R2, where F becomes an effective applied force corresponding
to the applied current. The parameter \. is an appropriate time rescaling to obtain a nontrivial limiting
dynamics. Within the derivation of (1.5) from (1.3), the zeroth-order term f takes the following explicit
form (but this is largely unimportant, and the scaling in the corresponding bounds (2.1)—(2.2) below may
be substantially relaxed),
VANV
— —|logel?*|F*. 1.6
5~ ghos<l'lP (1.6)
The discussion of the derivation of (1.5) from (1.3), as well as that of the boundary conditions and the
assumptions at infinity, is postponed to Section 2.1. Setting FF =0, a =1, h =0 and f = 0, we retrieve the
equation studied in [82], and our results will thus be a generalization of those in [82].
The goal is to obtain the convergence of the supercurrent defined by

fi=

Je = <vusa iu6>7



where (-, -) stands for the scalar product in C as identified with R?, that is, (x,y) = R(zy) for all z,y € C.
The vorticity is derived from the supercurrent by u. := curl j.. Note that this also corresponds to the density
of vortices, defined as zeros of u. weighted by their degrees, in the sense that

e ~ QWZdiégji, as e 0, (1.7)

with z; the vortex locations and d; their degrees (this corresponds to the so-called Jacobian estimates, a
notion we will come back to in the course of the paper). We wish to show that N 1j. converges as € | 0 to a
velocity field v solving a limiting PDE, which as in [82] is assumed to be regular enough. Note that solutions
of the limiting equations are studied in [37] and shown to be global and regular enough if the initial data is.

The method of the proof in [82] is based on a “modulated energy” technique, which originates in the
relative entropy method first designed by DiPerna [31] and Dafermos [23, 24| to establish weak-strong
stability principles for some hyperbolic systems. Such a relative entropy method was later rediscovered
by Yau [90] for the hydrodynamic limit of the Ginzburg-Landau lattice model, was introduced in kinetic
theory by Golse [12] for the convergence of suitably scaled solutions of the Boltzmann equation towards
solutions of the incompressible Euler equations (see e.g. [71] for the many recent developments on the topic),
and first took the form of a modulated energy method in the work by Brenier [15] on the quasi-neutral limit
of the Vlasov-Poisson system. In the present situation, the method consists in defining a “modulated energy”,
which without pinning takes the form

1
= /2 |V — iu.Nev|? +
R

9 ! (1- |u6|2)27 (1.8)

22

where v denotes the solution of the (postulated) limiting PDE. This modulated energy thus somehow mea-
sures the distance between the supercurrent j. and the postulated limit N.v in a way that is well adapted
to the energy structure. Under some regularity assumptions on v, it is then proved in [82] that, thanks
to the PDE satisfied by v, this quantity (1.8) satisfies a Gronwall relation, so that if it is initially small,
more precisely o(N2), it remains so, yielding the desired convergence N 1j. — v. However, in the regimes
where N. < [logel, the modulated energy cannot be of order o(N2), because each vortex carries an energy
w|d||loge|. For that reason (and assuming that all vortices have positive degrees initially), we need to sub-
tract the fixed quantity mNc|loge| from (1.8). Note that, while the Ginzburg-Landau energy (that is, (1.8)
with v = 0) diverges for configurations u. with nonzero degree at infinity,

0 # deg(ue) := lim . (Vue, iue) - n™,
R

the modulated energy may indeed converge (and does if v has the correct circulation at infinity).
In the present context with pinning weight a, the modulated energy (1.8) should be changed into a

weighted one,

%/R2a(|Vu€ —¢u5N5v|2+2%(1_ |u5|2)2). (1.9)
This leads to several additional difficulties. First, this energy does usually not remain finite along the flow
because Vh, F and f in (1.5) are only assumed to be bounded (in order to realistically represent at least a
fixed applied current circulating through the sample). This leads us to consider a truncated version of (1.9).
In the Gross-Pitaevskii case, we have to assume that Vh, F' and f decay sufficiently at infinity in order to
guarantee the well-posedness of the mesoscopic model (1.5), and hence a truncation of (1.9) is no longer
needed. However, in that case, due to the presence of pinning, the pressure p in the limiting PDE does not
belong to L2, and a different truncation argument then becomes needed in order to deal with this lack of
integrability.



Second, for technical reasons, since the pinning potential A depends on € according to the regime, it is
convenient to replace in the modulated energy the map v by some e-dependent map v. : Rt x R? — R?
which is better adapted to the e-dependence of the potential h, and will be shown separately to converge
to v. Of course, one may prefer to replace v. by its limit v, and directly prove that N !j. is close to v in
the modulated energy as in [82], which would make the proof a bit shorter. This can be done in some of
the considered regimes but not always (e.g. not for the regime (GLj) below), hence it is more convenient
to completely separate the two difficulties, first proving that N !j. is close to v. by means of a Grénwall
argument on the modulated energy, which requires some careful vortex analysis, and then checking that v,
indeed converges to v, which is a softer consequence of the stability of the limiting equation. In this form,
we believe that the proof will appear clearer and more adaptable.

Third, in the present weighted setting, a vortex located at xg carries an energy ma(zg)|loge|, so what
needs to be subtracted from the modulated energy (1.9) is no longer wN.|loge| but

loge
w;dia(:r,;)ﬂoge\ ~ % /]Rz afle,

in view of (1.7). We thus consider the following truncated version of the modulated energy (1.9),

Eonim [ DB (V0. — tuNove P+ 550 e )?). (1.10)
as well as the following truncated “modulated energy excess”,
log e ax . a
Donimfon— 2 [oxm = [ 28 (Ve — tu NP+ 50— P~ fogelu ), (110)

where for all 7 > 0 we set x, := x(+/r) for some fixed cut-off function x € C°(R?;[0,1]) with x|p, = 1 and
X|r2\B, = 0. In the sequel, all energy integrals are thus truncated as above with the cut-off function xz, for
some scale R > 1 to be later suitably chosen as a function of e. We write &, := &,  for the corresponding
quantity without the cut-off xg in the definition (formally R = o0), and also D, := supps; D, g. Rather
than the L%-norm restricted to the ball By centered at the origin, our methods further allow to consider the
uniform L -norm at the scale R: setting x% := xr(- — 2) for all z € R?, we define

* z z a’XZ . a
Efpi=supEiy,  Eipi= /TR(WUE — i Novel + o (1 Juel?)?), (1.12)
* 2 ~ loge R
DE,R = SupDE,R ’ e, R T ¢, R | D) ‘ /G’XR/J'@ (113)

where the suprema run over all lattice points z € RZ?2.

Let us now list our assumptions. For the essential part of the proof, in the dissipative case (o > 0), it
suffices to assume h € W2°°(R?) and F € W1 (R?)? (hence f € L°(R?) in view of (1.6)). In the Gross-
Pitaevskii case, as already explained, we need to restrict to a decaying setting, that is, to further assume
Vh, F € WP (R?)? for some p < oo, f € L*(R?), and additionally div F = 0. Nevertheless, in both cases,
in order to ensure strong enough regularity properties of the solution of the limiting equation (as well as the
delicate global well-posedness of (1.5) in the Gross-Pitaevskii case, cf. Section 2.3), stronger assumptions on
the data are needed and are listed below.

Assumption A. Let >0, € R, o> +32 =1, h:R?> 5 R, a:=¢€" F:R> =5 R? f:R> 5 R,
u? : R? — C, vo,v° : R? — R? for all € > 0. Assume that (1.4) and (1.6) hold, and that the initial data

(u2,ve,v°) are well-prepared in the sense

D*° = sup sup /‘”‘TR(wu; — N2 + ;%(1 — [u?]?)? - |log e|curl <vug,iug>) < N2, (L14)
R>1 zeR? €



with v& — v° in L2, .(R?)?, and with curl v2, curl v° € P(R?). Assume that v° and v° are bounded in

W14(R?)? for all ¢ > 2.

(a) Dissipative case (o> 0):
For some s > 0, assume that u? € Hlloc(Rz;(C), that h € WsT3(R?), F € W”QC’O(Rz) (hence
f € WH*°(R?) in view of (1.6)), that v°, v° are bounded in W*+2:°°(R2)2  and that curl v¢, curl v°,
div (av?) are bounded in H**1 N W+l ‘X’(RQ).

(b) Gross-Pitaevskii case (o =0):
Assume that u? € U + H?(R?;C) for some reference map U € L™(R?;C) with V2U € H(R?C),
V|U| € L*(R?), 1—|U|? € L*(R?), and VU € LP(R?;C) for all p > 2 (typically we may choose U smooth
and equal to e’V=? in polar coordinates outside a ball at the origin). Assume that h € W3 (R?),
Vh € HXR?)? F € H>* N W32 (R?)?, f € H2 N W2%>(R?), and that we have div ' = 0 pointwise,
and a(z) — 1 uniformly as |z| T co. Assume that v2, v° are bounded in W?°°°(R?)2, and that curl v¢,
curl v° are bounded in H*(R?).

We distinguish between the following three main (critically scaled) regimes, in which the relative strengths
of the pinning, the applied forces and the interaction emerge.

(GL;) Weighted mixed-flow case, small number of vortices:
a>0, N; < |logel, Ac F =AXF, h = \h (hence a = a);

Ilog el’
(GL3) Weighted mixed-flow case critical number of vortices:

a >0, N ~ |loge|, |10g5‘ — A € (0,00), Agzl,F:F,hzﬁ(hencea:d);

(GP) Weighted Gross-Pitaevskii case, large number of vortices:
a=0,5=1, N. > |loge|, \c = F = )\F h= h(hencea:d);

|10g€|’

where h and F' are independent of e, and h < 0 is bounded below. Note that, just as in [82], it is not
clear what happens in the Gross-Pitaevskii case with fewer (but still unboundedly many) vortices, nor in the
dissipative case with more vortices (cf. Remarks 1.2-1.4).

Let us intuitively justify the choice of the above scalings. From energy considerations, we expect the
pinning, the applied force, and the interaction to be of order N.|loge||Vh|, N.|loge||F|, and N2, respectively.
The critical scaling (such that pinning, applied force and interactions are all of the same order) should thus
amount to choosing both Vh and F of order N./|loge|. However, the non-degeneracy condition (1.4) for the
pinning weight a = e” imposes for the pinning potential i < 0 to remain uniformly bounded in ¢, hence the
particular non-critical choice in (GP) (with h of order 1 rather than A, > 1).

In the dissipative case, we may also consider sub- or supercritical scalings, for which the pinning either
dominates, or is dominated by the interaction. In these cases, the limiting equations are considerably
simplified.

(GL}) (GL;) with subcritically scaled oscillating pinning, very weak interaction:
a>0, N, < [loge|, \c =1, F = F', h = h (hence a = a);
(GL3) (GLy) with subcritically scaled oscillating pinning, weak interaction:

a>0, N, < |logel, ‘10g€‘<<)\ <1, F=AF, h=\h (hence a = a*);

(GL3) (GL;) with supercritically scaled oscillating pinning, strong interaction:

a>0, N: < |loge|, A\c = IIOgEI,F AeF, h=Xh (hence a = a*e), N < A;

(GL}) (GL2) with supercritically scaled oscillating pinning, strong interaction:

a>0, N. = [loge|, iy — A € (0,00 ), Ae =1, F=F, h=Xh, X <1;

where again h and F are independent of e, with h < 0 bounded below. Since in the present work we are
mostly interested in pinning effects, we may focus on the subcritical regimes (GL)) and (GLj), while for the



two supercritical regimes the pinning effects vanish in the limiting equation and the situation is thus much
easier and closer to [82]. For simplicity, subscripts “e” are systematically dropped from the data a,h, F, f,
the precise dependence being chosen as above.

We are now in position to state our main mean-field results. As in [82] the mean-field limiting equations
are fluid-like equations with an incompressibility condition (hence the existence of a pressure p) which can
be lost when the number of vortices becomes large enough. We begin with the dissipative case, and consider
both critical regimes (GL1) and (GLg), as well as the subcritical regimes (GL}) and (GLj). Note that
the results are slightly finer in the purely parabolic case. In the regimes (GL;) and (GL}), the weight a
naturally disappears from the incompressibility condition div v = 0 due to the assumption a = a* — 1 as
€ J 0. Although all the proofs in this paper are quantitative, we only give qualitative statements to simplify
the exposition.

Theorem 1.1 (Dissipative case). Let Assumption A(a) hold, with the initial data (ul,v2,v°®) satisfying the
well-preparedness condition (1.14). For all ¢ > 0, let u. € Lis.(RT; HL, _(R?; C)) denote the unique global

uloc

solution of (1.5) on RT x R2. Then, the following hold for the supercurrent density j. := (Vu,iue).
(i) Regime (GL1) with log |loge| < N, < |loge|, and div (av?) = div v° = 0:
We have N='j. — v in LS, (RT; L., . (R?)?) as e | 0, where v is the unique global (smooth) solution of

Ov = Vp+(a— JIB)(Vh — F+ —2v)curl v, divv =0, V]g=o = v°. (1.15)

In the parabolic case 8 =0, the same conclusion also holds for 1 < N, < log|loge|.

(ii) Regime (GL2) with N./[loge| — A € (0,00), and v = v°:
For some T > 0, we have N- . — v in Li2.([0,T); Ll (R?)?) as € | 0, where v is the unique local
(smooth) solution of

v =a 'V(a"div (av)) + (a = IB)(V*rh — FH — 2 v)curl v, v|—g = v°, (1.16)

on [0,T) x R%. In the parabolic case 3 = 0, this solution v can be extended globally, and the above holds
with T = oo.
(iii) Regime (GL}) with log [loge| < N. < [loge|, and v2 = v°:
We have NZ1j. — v in L2 (RT; L (R?)?) as € | 0, where v is the unique global (smooth) solution of
v =a 'V(a"tdiv (av)) + (a — IB)(V*h — F1)curl v, V]gmo = v°. (1.17)

(iv) Regime (GLj) with log|loge| < N. < [logel, and div (av?) = div v° = 0:
We have NZ1j. — v in L2 (RT; L (R?)?) as € | 0, where v is the unique global (smooth) solution of

dv = Vp+(a— JB)(VEh — FHcurl v, divv =0, V]t—o = v°. (1.18)
In the parabolic case f = 0 with N./|loge| < \. < e°Ne)/|loge|, the same conclusion also holds for
1 < N, <log|logel.

Remark 1.2. It is not clear how to treat the regime N, > |loge| (with A. = N./|loge|, F = A\.F, h = h)
by modulated energy methods in the dissipative case. The corresponding mean-field equation is formally
expected to take the following degenerate form,

Ov = (a = IB)(—F* —2v)curl v, vl = v°,

for which local well-posedness is obtained in [37].



We now turn to the Gross-Pitaevskii case in the (supercritical) regime (GP). Note that as N, > |loge]|
the well-preparedness condition (1.14) can be simplified. The pinning force Vi is naturally absent from the
limiting equation since in the regime (GP) the interaction and the applied force dominate, but the weight
a (= @) nevertheless remains in the incompressibility condition — in the weighted space L2 — div (av) = 0
since it is of order 1.

Theorem 1.3 (Gross-Pitaevskii case). Let Assumption A(b) hold, withv2 = v°, and with the well-preparedness
condition (1.14) for the initial data (u2,v2,v°) replaced by

a e o a (o]
£ = /§(|Vu§ NP 4 S (1 ul?)) < N2,

For alle > 0, let u. € LS (R*T; U+ H?(R?%;C)) denote the unique global solution of (1.5) on RT x R2. Then,
in the regime (GP) with |loge| < N. < =1, we have N='j. — v in LS (RT; (L' + L?)(R?)?) as ¢ | 0,
where v is the unique global (smooth) solution of

v = Vp+(—F + 2vi)curl v, div (av) =0, viimo = v°. (1.19)

Remark 1.4. The Gross-Pitaevskii model for vortices with N, < |loge| formally behaves like the conserva-
tive flow for a particle system with Coulomb pairwise interactions. However note that no modulated energy
proof is known for the mean-field limit of such a simplified discrete particle system [36] (the only known
proof is by compactness [80]), although it should be easier than for the complete Gross-Pitaevskii model.
We believe that the approach in [58, 54] can be adapted to this case, but it would anyway be limited to
a regime with a very small (unbounded) number of vortices N. > 1. In contrast, the regime N > [loge]
treated here is quite different in nature and should probably not be paralleled with a true particle system.

The structure of the mean-field equations (1.15)—(1.19) is more transparent when expressed in terms of
the limiting vorticity m := curl v. In the case of (1.15) (and similarly for (1.18) and (1.19)), the vorticity m
satisfies a nonlinear nonlocal transport equation,

{@m:div ((a=IB)(Vh—F+2v-)m), (1.20)

curl v=m, divv=0,

while in the case of (1.16) (and similarly for (1.17)) the vorticity m satisfies a similar equation coupled with
a transport-diffusion equation for the divergence d := div (av),

Om = div ((a — IB)(Vh — F + 2Av+)m),
dd —a *Ad+a "t div (A Vh) = div ((a — IB)(V+h — F+ — 2av)am ), (1.21)
curl v=m, div(av)=d.

A detailed study of these families of equations is given in the companion paper [37], including global existence
results for rough initial data. While the limiting vorticity m satisfies strictly different equations in the critical
regimes (GL1) and (GLs), we observe that it satisfies just the same equation in both subcritical regimes (GL)
and (GLj), that is a simple linear transport equation.

The proofs of Theorems 1.1 and 1.3 follow the outline of [82], and rely on all the tools for vortex analysis
developed over the years: lower bounds via the ball construction, “Jacobian estimate”, “product estimate”.
In addition to the problems at infinity created by the non-decay of the forcing F' that we want to allow,
the presence of the pinning weight introduces additional technical difficulties, as always in the analysis of
Ginzburg-Landau. The fact that the energy of a vortex depends on its location makes it more difficult to
a priori control the total number of vortices, and requires localized estimates, in particular localized ball
constructions. Adapting the required tools and analysis to this setting is done in Section 5.
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1.3 Homogenization results and questions

As explained above, the most interesting situation from the modeling viewpoint is to let the pinning
potential h vary quickly at the mesoscale 1. < 1, thus coupling the mean-field limit for the vortex density
with an homogenization limit. More precisely, we set

h(w) = nh®(z, 2/ne), (1.22)

for some ho independent of €, and we will refer to 7. as the “pin separation”. For simplicity, we assume
that h° is periodic in its second variable. Since in the Gross-Pitaevskii case we are anyway limited to less
interesting subcritical regimes, we focus attention on the dissipative case.

1.3.1 Small pin separation limit and stick-slip models

As explained in Section 8.3, our methods only allow to treat a diagonal regime, that is, when the pin
separation 7. tends very slowly to 0, in which case the homogenization limit can simply be performed after
the mean-field limit. The other regimes are left as an open question.

Corollary 1.5. Let the same assumptions hold as in Theorem 1.1. In the regime (GLg), we further restrict
to the parabolic case B = 0. Then there exists a sequence N0 < 1 (depending on all the data of the problem)
such that for all n.o < ne <K 1, choosing the fast oscillating pinning potential (1.22), the same conclusions
hold as in Theorem 1.1 in the form NZ1j. —%. — 0, where V. is now the unique global (smooth) solution of
the corresponding equations (1.15)—(1.18) with Vh(z) replaced by Voh®(z, 2 /1.).

The above result thus reduces in a diagonal regime the understanding of the limiting behavior of the
rescaled supercurrent N_ 1j. to that of the solution V. of the mean-field equations (1.15)—(1.18) with fast
oscillating pinning, that is, a (periodic) homogenization problem for the mean-field equations. In more
general regimes, only two minor rigorous results are obtained:

(a) For very small forcing ||F|jp~ < |[Vh|/L>, in the subcritical regimes (GL)) and (GL)), the vorticity is
shown to remain “stuck” in the limit, that is, to converge at all times to its initial data (cf. Proposi-
tion 8.12). This is a very particular case of the pinning phenomenon evidenced below in the diagonal
regime.

(b) In ashort timescale of order O(7, ), the vorticity is shown to concentrate in each (mesoscopic) periodicity
cell onto the invariant measure associated with the initial vector field (cf. Proposition 8.2). This
mesoscopic initial-boundary layer result is in clear agreement with the description of the dynamics on
larger timescales obtained below in the diagonal regime, where the transport is indeed shown to happen
“along” the invariant measures.

Subcritical regimes. In the subcritical regimes (GL}) and (GL)), the nonlinear interaction term
vanishes (cf. (1.17)—(1.18)): in terms of the vorticity m. we are thus left with a (periodic) homogenization
problem for a simple linear transport equation, but with a compressible velocity field. Such questions were
first investigated in 2D by Menon [61], and are still partially open. The situation is however much simpler if
the pinning potential fzo(x, x/ne) = RO (z/n.) is independent of the macroscopic variable, and if the forcing
is a constant vector [ := F € R2, that is, the so-called “washboard model”. The homogenization result is
then a particular case of the nonlinear setting considered in [27] (see also [38] for the incompressible case,
and [42, 26] for the linear Hamiltonian case), but in the present framework a more precise characterization
of the asymptotic behavior of m. is possible (cf. Theorem 8.7). In the simplest situation, the result is
summarized as follows.
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Proposition 1.6 (Subcritical regimes). Let v, denote the unique global (smooth) solution of (1.17) or (1.18)
with Vh(zx) replaced by Vh®(z/n.), for h® € C%,.(Q) (independent of €) and n. < 1, and with I := F € R?

per
a constant vector. Consider the periodic vector field

= (a—-IB) (VR —F) : Q—R?

and assume that the associated dynamics on the 2-torus Q has a unique stable invariant measure p* €
Pper(Q). Define the averaged vector

k= / rau”.
Q

Then we have M, := curlv. = m in L3 (RT;P(R?)), where m is the unique solution of the constant-
coefficient transport equation

atrh = div (F}}:omm)v ﬁl|t:0 = curl v°.

[Vl

Kee K

Figure 1 — Typical forcing-velocity characteristics exhibiting a stick-slip velocity law.

This result describes a so-called stick-slip velocity law: On the one hand, for F' close enough to 0
the invariant measure pu!" is concentrated at a fixed point, hence the corresponding velocity field is V' :=
—TFE =0, that is, the vorticity gets stuck, as the vortices are trapped in local wells of the pinning potential.
On the other hand, for F large enough the measure pf" becomes non-trivial, hence we have VI #£ 0, that is,
the vorticity is transported, but at a reduced speed due to the attraction by the local wells of the pinning
potential. We further show that the velocity law F +— V¥ := —T'F " is not smooth at the depinning

threshold, but typically has a square-root behavior (cf. Proposition 8.10), denoting & := |F,
Ve = C(1+0(1)(k — ko), as 0<k—kee < 1, (1.23)

where e € S! is some direction, and where k. ce (k. > 0) is the critical depinning threshold in the direction e.
However, no general such result is obtained (cf. open question in Remark 8.11(a)). For very large |F| > 1,
we naturally find V¥ ~ (a—JB)F, that is, the system flows as if there were no disorder. The typical response
of the system in this stick-slip velocity law is plotted in Figure 1. For more detail, we refer to Section 8.5.
Note that a similar frictional stick-slip dynamics is observed for very different physical processes (see e.g.
the Barkhausen effect for the magnetization of a domain under an applied field [47]).

Critical regimes. In the critical regimes (GL;) and (GL3), the nonlinear interaction term can no
longer be neglected (cf. (1.15)—(1.16)). A purely formal 2-scale expansion yields the following heuristics
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for the asymptotic behavior of v.. Note that a rigorous justification of this homogenization limit seems
particularly challenging due to the nonlinear nonlocal character of the mean-field equations and to their
instability as 7. | 0, and moreover the well-posedness of the formal limiting equations (1.24)—(1.25) below
is unclear (since the vector field I'yom[V] is in general not Lipschitz continuous even for smooth ¥). Making
good sense of the formal limiting equations and justifying the limit are thus left as open questions. We refer
to Section 8.4 and Remark 8.5 for detail.

Heuristics 1.7 (Critical regimes — formal asymptotic). For w : R?> — R2, consider the periodic vector field
~Tuw] == —(a - I8)(Vah(z,") — F(z) + 2wt (z)) : Q—R?

and assume that the associated dynamics on the 2-torus @ has a unique stable invariant measure p,[w] €

Pper(Q). We then define the averaged vector field
homlu)(0) = | Tl ()i o).
Q

(i) Regime (GL;) with fast oscillating pinning (1.22):
Let v. denote the unique global (smooth) solution of (1.15) with Vh(x) replaced by Voh®(x,2/n.),
n. < 1, and with h° independent of €. Then we ezpect curlv. = m in Lo (RT; P(R?)), where m
satisfies

Oym = div (Ehom [m] ﬁl), m|;—g = curl v°, (1.24)
where the homogenized velocity is given by the following formula,
Ehom[M](2) := Thom [V A m](z).
Similarly, v. = v := VA" m in LS (R L (R?)), where ¥ thus satisfies
4% = VP + Thom 7] curl ¥, div v = 0, F)imo = v°.

More precisely, for all T > 0, we expect
/ (curl vi(z) —m'(2) pie [VLA_lrﬁt](x/nE))dt — 0,
0

in the strong sense of measures.

(ii) Regime (GL2) in the parabolic case § = 0, with fast oscillating pinning (1.22):
Let 8 = 0, and let v. denote the unique global (smooth) solution of (1.16) with Vh(z) replaced by
Voh(z,2/n.), ne < 1, and with h° independent of €. Then we expect curl v, = m in L3S, (RT; P(R2))
and div (av.) — d in Ly (RT x R?), where m and d satisfy

oy = div (Epom[m, d]m), m|;—o = curl v°, (1.25)

]
8,d = o 'Ad + div (Ehom[ﬁl, El]l rfl)7 d|t=0 = div (av°),
where the homogenized velocity is given by the following formula,
Zhom[M, d)(#) := Thom [V AT M + VAT (2).
Similarly, v. = v := VEA™ M 4+ VA~'d in L2 (RT; L (R?)), where ¥ thus satisfies

0% = a7V div 7+ Dyom[T]- 0wl ¥, Fleg = v°.
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More precisely, for all T > 0, we expect
/ (curlx’zi(w) — () p [VEA " m! + VA_lat](x/ng))dt — 0,
0

in the strong sense of measures.

Due to the competition between the pinning potential and the vortex interaction, the dynamical properties
of the limiting v are expected to change dramatically with respect to the subcritical regimes: the interacting
vortices are now expected to move as a coherent elastic object in an heterogeneous medium, yielding very
particular glassy properties [44, 70]. To describe the dynamics, we again consider the forcing-velocity curve.
Assume that the forcing F :=F € R? is a constant vector, let ¥I" := ¥ denote as above the corresponding
limit of v, as € | 0, and set m’ := curl v'. Formally, the mean velocity is then defined by

1
VE =1lim - [ 2dm™(2). (1.26)

ttoo t

Intuitively, for F close enough to 0, the above heuristics predicts that the vorticity m? should spread due to
the vortex repulsion, until the interaction force ¥ becomes small enough that the invariant measure % [vF]
remains concentrated at a fixed point of the dynamics generated by —I'Z[¥], in which case 'Y, [¢F] =0
holds. We therefore expect, just as in the subcritical regimes, to find V¥ = 0 for F close enough to 0,
VE £ 0 for F large enough, and V' ~ oF — BF+ for very large |F| > 1 (cf. Figure 1). Nevertheless, the
precise picture is expected to become very different at the depinning threshold: the velocity law F +— VT

should still be non-smooth at this threshold, of the form
|V :C(l—i—o(l))(m—/{c,e)c, as 0 <K —kee<<1,

in some direction e € S!, but the value of the depinning threshold k.. > 0 and of the depinning exponent
¢ € (0,1) are expected to differ completely from the case without interaction (1.23) and to be related to the
glassy properties of the system, as predicted in the physics literature [64, 67, 20| (see also [44, Section 5]).
A rigorous justification of this whole description is left as an open question.

Since the vortices are elastically coupled by the interaction, the problem is formally analogous to that of
understanding the motion of general elastic systems in disordered media, which is the framework considered
in the above-cited physics papers. In this spirit, a considerable attention has been devoted in the physics
community to the simpler Quenched Edwards-Wilkinson model for elastic interface motion in disordered
media [55, 14]. Note that for this interface model some rigorous mathematical understanding is available:
the pinning of the interface at low forcing is proved in [32] in dimension d > 2, while the (ballistic) motion
of the interface at large forcing is obtained in [22, 33| in dimension d = 2, and more recently in [11, 34] for
various related discrete models in any dimension d > 2. These questions are also related (although again for
different models) to the recent rigorous homogenization results for the forced mean curvature equation and
for more general geometric Hamilton-Jacobi equations [6].

1.3.2 System with temperature

Stochastic variants of the Ginzburg-Landau equation have been introduced to model the effect of thermal
noise [49, 77, 28, 29, 43]. Although we do not study here the mean-field limit problem for such models, for
a finite number N of vortices, in the limit € | 0, we expect the thermal noise to act on the vortices as N
independent Brownian motions: more precisely, in the regime (GLp), the limiting trajectories (z;)¥; of
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the N vortices are expected to satisfy the following system of coupled SDEs (see e.g. [39, Section II1.B]),
dz; = (o — IB) (N IV, Wi (21,...,xn) — Vh(z;) + F(x;))dt + V2TdB!,  1<i<N, (1.27)

N
Wy(x1,...,xN) = —ﬂZlog |z; — ],
i#]
where Bj,..., By are N independent 2D Brownian motions. Such macroscopic phenomenological models,
where the thermal noise acts via random Langevin kicks, are abundantly used by physicists [10, 44, 70].
In the case of a large number of vortices N > 1, in the regime (GL;), it is then natural to postulate that
a good phenomenological model for the limiting supercurrent v := lim. N !j. is given by the (deterministic)
mean-field limit of the particle system (1.27), that is, the following version of (1.15) with viscosity,

Ov=Vp+(a— Jﬁ)(VLIAz R 2v)curl v +TAv, div v =0, V]t—o = v°, (1.28)

while in the regime (GL2) a natural model for the limit v is rather given by the following version of (1.16)
with viscosity,

v =a V(e div(av)) + (a — IB)(V*Eh — FY —2)\v)curl v4+TAv,  v]—g = v°. (1.29)

In the regimes (GL}) and (GLj}), these equations should be replaced by their versions without interaction
term. Note that in [41] the mean-field limit of the particle system (1.27) has been rigorously proved to
coincide with (1.28), although the modulated energy method seems to fail [36].

In this viscous context, we may now consider the homogenization limit of the phenomenological mean-
field models (1.28)—(1.29) with fast oscillating pinning (1.22), or equivalently, with Vh(z) replaced by
VohO(z,2/n.). We denote by v. the unique (smooth) solution of the corresponding equation. We natu-
rally restrict attention to the critical scaling for the temperature, that is, T := 1. T, for some fixed Ty > 0.

Remark 1.8. On the one hand, for temperatures T" < 7., the viscous term in equations (1.28)—(1.29) is
expected to have no effect in the limit, yielding the same asymptotic behavior for 7" = 0. On the other
hand, for T' > 7., the viscous term is so strong that the energy barriers are instantaneously overcome by the
dynamics: for T' = k. Ty with 7. < k. < 1, the limit ¥ of the solution ¥, of (1.28) or (1.29) with oscillating
pinning is expected to satisfy respectively (as suggested by a formal 2-scale expansion)

v =Vp—(a—IB)(F*+ +29)curly, divvi=0,  ¥|=0="v",
or v = a 'V(div v) — (a — IB)(F* + 2\v)curl v, V]t—o = v°,
while for T' = T} of order 1 the limit v should satisfy respectively
A = Vp — (a — IB)(F* + 29)curl v + Ty AV, div v =0,  ¥|mo =v°,
or v = a” 'V (div V) — (o — IB)(F* + 2A7)curl v + Ty A, V=0 = v°.
It is thus indeed natural to rather restrict attention to the less trivial case of the critically scaled temperature

T ~n. (say T := n.Ty for some fixed Ty > 0).

Subcritical regimes. In the subcritical regimes (GL}) and (GL)}), the mean-field equations take the
form (1.28)—(1.29) without interaction term; hence, in terms of the vorticity m. := curl v., with oscillating
pinning, and with critically scaled temperature T' = 7. T, Ty > 0, the equation takes the form

Oym, = div ((a — Jﬁ)(V2B0(~, Ine) — F)rﬁs) + n.ToAm,, Me|t—o = curl v°. (1.30)

The limit 7. | 0 of this equation is a very particular case of homogenization of a parabolic equation with
vanishing viscosity, as studied by Dalibard [25]. Alternatively, using Nguetseng’s 2-scale compactness theorem
(in the form of Lemma 8.9, as in the proof of Theorem 8.7), we easily obtain the following.
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Proposition 1.9 (Subcritical regimes with temperature). Let m. be as above, and assume that ho e
Cy(R%CL.(Q)), and F € Cy(R?). Let i € L>(R? H}.(Q)/R) denote the unique solution of the fol-
lowing cell problem,

Tolryii™ (w,y) + divy (@ = I8)(V2h(z,y) — F(2))(1 + 3" (z,y))) =0, (1.31)

and define the following averaged vector field,
o (@) = /Q(O‘ —I8)(Vah(x,y) — F(2))(1+ 3" (x,y))dy. (1.32)

Then we have m. = m in L2 (RT; P(R?)), where i is the unique solution of the transport equation

Oym = div (Fggmrﬁ), m|s—o = curl v°.

Note that this result is very similar to that of Proposition 1.6, except that here the invariant measure is
replaced by its viscous version (1.31). In order to describe the dynamical properties of this limiting model,
we again investigate the behavior of the typical forcing-velocity curve: we consider a constant forcing vector
F = F € R?, we assume that h%(xz,z/n.) := h°(x/n.) is independent of the macroscopic variable, we denote
by Fg C’)ﬁ’ € R? the corresponding averaged vector (1.32), and we investigate the behavior of the velocity law
F s VBT .= fFf(’)Zf. For large |F|, the picture is essentially the same as in the case without temperature
To = 0. However, since the viscous invariant measure 1 + "7 € P(Q) always has maximal support in the
cell Q, we find V70 =£ 0 for all F # 0, that is, in the presence of temperature Ty > 0 the mass is always
transported (at a reduced speed) and cannot get stuck forever in the local wells of the pinning potential.
The precise behavior of V70 for F close to 0 is then of particular interest. Heuristically, the forcing F # 0
tilts the energy landscape, and the energy barriers of size osc h® := maxh® — min h° are then overcome by
thermal activation even for small F' # 0. The velocity law for this so-called thermally assisted flux flow is then

expected to satisfy the classical Arrhenius law from statistical thermodynamics (see e.g. [44, Section 5.1]),

VET — (1 + o(1)) exp ( - Tgosc EO)F, as To<1 and |F|<1, (1.33)
0

that is, the response should be linear, but exponentially small as a function of Ty. More precise versions of
this asymptotic result, which is related (via characteristics) to the Eyring-Kramers formula, are proved to
hold in any dimension in [13, 48, 8]. Note that for the corresponding problem in dimension 1 (with 8 = 0)
the averaged vector V70 can be explicitly computed, and the asymptotic law (1.33) is easily checked by
hand. The typical forcing-velocity characteristics are plotted in Figure 2(a).

Critical regimes. In the critical regimes (GL;) and (GLs2), the nonlinear interaction term can no longer
be neglected, and we need to consider the homogenization limit of the complete mean-field models (1.28)—
(1.29), with Vh(z) replaced by VohO(z,2/n.), and with critically scaled temperature T' := n.Tp, Tp > 0.
In spite of the vanishing viscosity term, the rigorous justification of this homogenization limit remains very
challenging due to the nonlinear nonlocal character of the mean-field models and to their instability as 7. | 0.
A purely formal 2-scale expansion yields the following heuristics for the asymptotic behavior of v.. Note that
this coincides with Heuristics 1.7 except that here the invariant measures are replaced by viscous versions.
Justifying the limit is again left as an open question. We refer to Section 8.4 and Remark 8.6 for detail.

Heuristics 1.10 (Critical regimes with temperature — formal asymptotics). For all w : R? — R2, consider
the periodic vector field

Lolw] = (a = IB)(Vah(z,-) — F(z) + 2wt (z)) : Q— R2
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Figure 2 — Typical forcing-velocity characteristics in the presence of (low) temperature.

denote by plo[w] € Pper(Q) the unique solution of the following equation on the 2-torus @,
ToA i [w] + div (P [w]fig” [w]) =0,
and define the averaged vector field

D [w)(z) = /Q T, 0] () A% 1] ().

Let v denote the unique global (smooth) solution of (1.28) or (1.29) with Vh(z) replaced by V2h(z, x/n.),
and with T :=nTy, n. < 1, with h and Ty > 0 independent of €. Then the same asymptotic results should
hold as in Heuristics 1.7, but with Thom ] replaced by its better-behaved viscous version T'L0_[].

Noting that the viscous invariant measures i [w] depend smoothly on w — unlike the situation without
temperature —, the local well-posedness of the limiting equations for v is now easily obtained. Again we
are interested in the mean velocity law F' — V70 (defined as in (1.26)). The overall picture is essentially
the same as in the subcritical regimes. However, as in the case without temperature, due to the competition
between the pinning potential and the vortex interaction, the precise dynamical properties of v are expected to
change dramatically: the interacting vortices now move as a coherent whole, satisfying glassy properties [44].
The main manifestation of this difference is visible in the low-forcing low-temperature limit (|F|,Ty < 1),
where the linear Arrhenius law (1.33) is now expected to break down, being replaced by the following so-called
creep law, with stretched exponential dependence in the imposed forcing,

FTo _ ¢ )

VET) = C(1+ o{1)) exp ( o)
for some creep exponent p > 0. This was first predicted by physicists for related elastic interface motion
models [65, 51] and then adapted to vortex systems [40, 66, 45, 19, 20] (see also [44, Section 5] and references
therein). The typical forcing-velocity curves are plotted in Figure 2(b). This particular glassy dynamical
behavior is more generally expected to hold for any elastic object (here, a system of interacting vortices) that
fluctuates in a heterogeneous medium, but even for simpler models no rigorous derivation is available. For
an attempt at a mathematical approach to creep laws, we refer to [3]. Note that the crucial influence of the
interactions on the dynamics is interestingly already exemplified in a simplified 1D model in [39, Section IV].
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1.3.3 Infinite mobility limit and Bean’s model

A further asymptotic limit may be considered in order to reduce the above limiting equations to simpler
laws: let us assume that the forcing Fis time-dependent, but varies on a much larger timescale than the
vortex motion. More precisely, let us consider the following rescaling of the mean-field equations (1.28)-
(1.29) for v. with oscillating pinning potential and with critically scaled temperature T := 7.Tp: in the
regime (GLy),

7758t\75 = Vﬁs + (Oé — Jﬁ)(V%‘iLO(, ’/776) - Fl - QVE)CUI"I\_/E + nsTOA‘_fsv div ve = 0, ‘75"5:0 = VO’
and in the regime (GLo),
NeOpVe = CX*lV(&il div (ave)) + (o — Jﬂ)(vé_}}o(v /ne) — Pt - 2v.)eurl v + 0 ToAve, Velt=0 = v°,

while in the subcritical regimes (GL])—(GL5) we consider the corresponding equations without interaction
term. In the case without temperature (T = 0), in the timescale of variation of the forcing F', we may
heuristically replace the velocity law plotted in Figure 1 by the simplified law pictured in Figure 3, meaning
that the vortices have infinite mobility beyond the depinning threshold, hence rearrange themselves instan-
taneously. Such rate-independent limiting models are known as the Bean or the Kim-Anderson models;
we refer to [17, Sections 6.3-6.4] and [79] for more detail. In the subcritical regimes (GL})—(GLj), for the
model without interaction and without temperature (T = 0), the convergence to a suitable rate-independent
process is proved in any dimension in [87], while an approach to the corresponding case with temperature
Tp > 0 is proposed in [88]. Rigorously treating the critical regimes with interaction is much more delicate,
and is not pursued here.

Vel

Ke.e K

)

Figure 3 — In the Bean and Kim-Anderson models, the exact velocity law typically given by Figure 1 is
replaced by this simplified law.

Acknowledgements: We thank Anne-Laure Dalibard, Jean-Pierre Eckmann and Thierry Giamarchi
for stimulating discussions.
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Part I
Mean-field limits

2 Discussion of the model and well-posedness

For future reference, note that in each of the above regimes, using the explicit choice (1.6) of the zeroth-
order term f, we have the following scalings,

(a) Dissipative case: we have

IVAlle STAX V2Rl S0 (AN),  (IFllwees S A,
Il S nz (LA X + loge®AZ, [Vl Sn(1AA) + [loge*AZ,
hence in the case n. =1,
IVAllwree STAX,  [Fllwree A s S TAX + [logel?AZ, (2.1)

(b) Gross-Pitaevskii case: we have in the case 7. = 1,

||Vh/||H1mW1,oo S 17 ||FHH1QW1‘°° 5 )\s; ||f||H1mW1,o@ S 1 + |10g€‘2)\g. (2.2)

2.1 Derivation of the modified Ginzburg-Landau equation

In this section we derive (1.5). We start from the equations considered in [89, 84], where the applied
current is modeled by a term appearing on the boundary of a bounded domain €2,

Ae(a +ifloge|B)Oywe = Awe + %5 (a — |wel?), in RT x €,
n - Vw, = jwe|loge[n - Jex, on RT x 99, (2.3)

Welt=0 = W

where n is the outer unit normal. As in [89, 84|, we may modify the rescaled order parameter w./y/a in
order to turn the Neumann boundary condition into an homogeneous one, which then makes the imposed
current Joy appear directly in the equation. For that purpose, we assume that a = 1 at the boundary 912,
and that the total incoming current equals the total outgoing current, that is, |, 9q ™ Jex = 0. We then have
Joq an - Jex = 0, so that there exists a unique solution ¢» € H*(2) of

div(aVy) =0, in
n-Vi=n-Je, on .

A straightforward computation shows that the transformed order parameter u. := e~*1°8l¥4y_/,/a satisfies

Ae(a +illoge|B)Oyue = Aue + 4= (1 — |uc|?) + Vh - Vue + illoge|FL - Vue + fue, inRT x Q,

n - V(ue/a) =0, on RT x 9, (2.4)

Us|t:0 = U§>

where we have set

h :=loga, F = —2V*y, and f= A\/\ga - i|log e|?|F)2. (2.5)
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Note that the vector field F satisfies div F' = curl (aF') = 0. In order to avoid delicate boundary issues, ' a
natural approach consists in sending the boundary 02 to infinity and study the corresponding problem on
the whole of R?. The assumption a|sn = 1 is now replaced by the assumption that

a(x) = 1 (that is, h(z) — 0), and Vh(z) — 0, uniformly as |z| 1 oo,

while F, f are simply assumed to be bounded. Noting that 2V+/a = y/aVh — 0 holds by assumption at
infinity, the Neumann boundary condition then formally translates into ﬁ - Vue — 0 at infinity. Further

imposing the natural condition |u.| — 1 at infinity, we look for a global solution u. : RT x R? — C of the
corresponding equation (2.4) with fixed total degree D, € Z, and with

X

lue] — 1, Vu. — 0, as |x| T oo, and degu. = D..

||

2
loc loc (R ’(C))
is proved in Appendix A, as well as additional regularity, but, due to the possibly complicated advection

structure at infinity caused by the non-decaying fields F. f, it is unclear whether the above properties at
infinity are satisfied. In particular, it is not even clear whether the total degree of the constructed solution wu,
is well-defined. This difficulty originates in the possibility of instantaneous creation of many vortex dipoles
at infinity for fixed € > 0 due to forcing and pinning effects, although these dipoles are shown to necessarily
disappear at infinity in the limit € | 0 e.g. as a consequence of our mean-field results. Anyway, since a more
precise description of u. at infinity is irrelevant for our purposes, it is not pursued here. Note that the global
existence and uniqueness for u. in the uniformly locally integrable class is proved even without any decay
assumption on h.

For simplicity, we may further truncate the forcing F, f at infinity, thus focusing on the local behavior
of the solution near the origin. In the Gross-Pitaevskii case, our results are limited to this decaying setting.
Note that then at least one of the conditions div F' = curl (aF') = 0 must be relaxed: we may for instance
rather truncate ¢ and define F' via formula (2.5), so that the condition div F' = 0 is preserved. Since there is
no advection at infinity in this setting, we prove existence and uniqueness of a solution u. in an affine space

o (R*;U. + HY(R?;C)), for some fixed smooth non-decaying “reference map” U, satisfying |U.| — 1 and

loc |
& VU, — 0 as |z| T co. Given D, € Z, we typically choose U, := Up, smooth and equal to e'”<¢ (in polar

[]
coordinates) outside a neighborhood of the origin, which imposes for u. a fixed total degree equal to D..

In the dissipative case a > 0, global existence and uniqueness of a solution u. € Lis.(R*; H&

Remark 2.1. Rather than normalizing the original order parameter w. by the expected density /a, another
natural choice was proposed by Lassoued and Mironescu [60], and consists in normalizing w. by a minimizer
v. of the weighted Ginzburg-Landau energy, that is, a nonvanishing solution of

_AIYE = Z%(a - |’7€|2)7 in Qa
n-Vvy. =0, on 0,

and setting u. := efi\logewws/% with 1) as before. This new order parameter u. satisfies

2~
. ~ - U - > - . ~ - .
Ae(a +i|loge|B) Ot = N + %(1 — |ac|*) + Vh - Vi, +illoge| F* - Vi + fi.,
in terms of h := log +2, F = —2V1y, and f = fi|F|2. We are thus again reduced to a very similar

framework as the one above, and the results could easily be adapted.

1. Another way of avoiding boundary issues would consist in rather considering the equation on the 2-torus. Nevertheless,
the total degree of the map u. then necessarily vanishes, and hence, in order to describe a non-trivial vorticity with distinguished
sign, we would have no other choice than working with the complete Ginzburg-Landau model with gauge. Working with the
gauge actually does not change anything deep, but makes all computations even heavier, which we wanted to avoid for clarity
purposes.
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2.2 Case with gauge

In the dissipative case, it is interesting to make the computations also in the gauged case, which is the true
physical model for superconductors. The evolution equation (2.3) is then replaced by the following, as first
derived by Schmid [78] and by Gor’kov and Eliashberg [46], here written in the mixed-flow case, with strong
(critically scaled) imposed current |loge|Jex : 2 — R? and imposed magnetic field [loge|Hey : 02 — R at
the boundary, and with a non-uniform pinning weight a : R? — [0, 1],

Ac(a +illoge| B) (Opwe —iw V. ) = VQBEU)E + %(a - |w€|2)7 in RY x Q,

0(0;B. — VV.) = V+teurl B. + (iw., Vp w.), in RT™ x Q,
curl B, = |loge|Hey, on RT x 99,
n-Vp.w: =iw|loge|n - Jex, on Rt x 99,

w6|t=0 = wga

where B, : RT x RZ — R? now represents the gauge of the magnetic field curl B,, where ¥, : RT x R2 = R
is the gauge of the electric field —0; B, + V¥, where Vp_ := V —iB; is the usual covariant derivative, and
where the real parameter o > 0 characterizes the relaxation time of the magnetic field. We are then interested
in the asymptotic behavior of the supercurrent density (Vp_(w./v/a),i(w:/v/a)), naturally obtained after
rescaling the order parameter w. by the pinning weight. However, as in [89, 84], it is useful to further
modify the rescaled order parameter w./y/a in order to turn the boundary conditions into homogeneous
ones, which then makes the imposed current and magnetic field Jox and Hoy appear directly in the equation.
Further, for simplicity, in order to avoid boundary issues, under similar assumptions on a as in Section 2.1,
we may formally send the boundary 0 to infinity and study the corresponding problem on the whole of R2.
Without explicitly describing the transformation (which includes a choice of the gauge U.; we refer to [84,
Section 2| for detail), the transformed couple (u., A.) replacing the triplet (w., Be, VU.) then satisfies the
following equation,
)\e(a + i|10g5‘/6)8tu8 = Vigua + 4F (1 - ‘UEIQ) +Vh-Va ue+ i‘logE|Fl -V, ue + fue, in R x Q,

52

o0 A = Vieurl Ac + aliue, Va, us) — %|log5|aFL(l — |uel?), in Rt x Q,

uslt:() = ug7

where h := loga, and where F' and f are given explicitly in terms of a, Jox and H.x. Natural quantities
associated with this transformed model are the gauge-invariant supercurrent and vorticity,
Je i= <vAgu€aiu6>a pe := curl (je + Ac),
and the electric field
EE = —@AE.

We believe that the derivation of mean-field limit results from this gauged version of the model (1.5) does
not cause any major difficulty, and can be achieved following the kind of computations performed in [82,
Appendix C]. Formally, the corresponding results to Theorem 1.1 are the convergences

Je He curl A, E.
N, v, N, m curl v+ H, N s N s

where the limiting triplet (v, H, E) satisfies, in the regime (GL;),
Ov—E=Vp+(a—IB8)(Vth— FL —2v)m,

divv=0

’ 2.6
—oE=v+V+H, (26)
OH = —curl E,
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or in the regime (GL3)

ov—E=a 'V(a " div(av)) 4 (o — JB)(V+h — F+ — 2\v) m,
—oE =v+V+iH, (2.7)
OH = —curl E,

while in the subcritical regimes (GL})—(GL}) the equations are obtained from the above by removing the
nonlinear interaction terms vm. The structure of these equations is maybe more transparent at the level of
the vorticity m := curl v+ H: the system (2.6) takes the form

dm = div ((a —JB)(Vh — F +2vt)m),
cOH—AH+H=m,

divv=0, curlv=m-H
while (2.7) becomes for o > 0,

dm = div ((a — JB)(Vh — F +2vt)m),

dd—a 'Ad+a t div(dVh) + 2d = —1aVh - VEH + div ((a — JB)(V+h — FL — 2\v)am),
cO,H—AH+H=m,

div(av) =d, curlv=m-H,

that is a transport equation for m, coupled with a linear heat equation for H, and in the case (2.7) further
coupled with a transport-diffusion equation for the divergence d := div (av). For simplicity, we focus in this
work on the model without gauge (1.5).

2.3 Well-posedness for the modified Ginzburg-Landau equation

In this section, we address global well-posedness for equation (1.5), both in the dissipative (« > 0) and
in the Gross-Pitaevskii (w = 0) regimes. In the dissipative regime, a well-posedness result for (1.5) in the
space LS (RT; HL  (R?;C)) is obtained in the general non-decaying setting, but no precise description of the
solution is obtained in that case, due to a possibly subtle advection force at infinity. In particular, it is not
even clear to us whether the total degree of the constructed solution is well-defined. In the decaying setting,
in contrast, we do not allow any advection at infinity. As is classical since the work of Bethuel and Smets [9]
(see also [63]), we then consider the existence of a solution u. of (1.5) in the space Ly, (RT; U. + H*(R?; C))
for some “reference map” U., which is typically chosen smooth and equal (in polar coordinates) to e*P<?
outside a ball at the origin, for some given D, € Z. Such a choice U, = Up_ imposes a fixed total degree D,
at infinity. More generally, we may consider the following set of “admissible” reference maps

E(R?) := {U € L°(R%C) : V2U € H'(R%,C), V|U| € L*(R?),1 — |U|* € L*(R?), VU € L?(R%C) Vp > 2}.

Our global well-posedness results are summarized in the following; finer results and detailed proofs are given
in Appendix A, including additional regularity statements.

Proposition 2.2 (Well-posedness for (1.5)).

(i) Dissipative case o > 0, § € R (general setting):
Let h € WHo(R?), a := e, F € L®(R?)?, f € L™(R?), and u? € H}, .(R% C). Then there exists a
unique global solution u. € LS, (RT; HL (R%C)) of (1.5) on RT x R? with initial data u2, and this

solution satisfies Oyu. € L2 (RY; L2 (R?;C)).

uloc
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(i) Gross-Pitaevskii case « =0, 8 € R (d ecaymg settmg)
Lei h € W(R2), Vh € HX(R?)?, a = ¢, F € H 0 W (R%)? with div F = 0, f € H* 1)
W22°(R?), and u? € U + H*(R?; (C) or some U € E1(R?). Then there exists a unique global solution
ue € LS. (RYU + H%(R?;,C)) of (1.5) on RY x R? with initial data uS, and this solution satisfies
e € L2 (RT; L% (R?; C)).

Proof. Ttem (i) follows from Proposition A.2. We turn to item (ii). By Proposition A.1(ii), the assumptions
in the above statement ensure the existence of a unique global solution u. € LiS.(RT;U + H?(R?;C)).
This directly implies that Au., Vh - Vu., F* - Vu., and fu. belong to LIOC(R+;L2(R2;C)). Using the
Sobolev embedding of H'(R?) into L* NL°(R?), and decomposing u. (1 — |u.|?) in terms of u. = U + @i, with
. € L2 (RY; H?(R?;C)), we further deduce that u. (1 — |u.|?) belongs to L2 (RT; L?(R?; C)). Inserting this
into equation (1.5) yields the claimed integrability of dyu.. O

Although a detailed proof of this well-posedness statement is included in Appendix A, we close this
section with some comments on the strategy. In the dissipative case with decaying h, F, f, the arguments
by [9, 63] are easily adapted to the present context with both pinning and forcing. The Gross-Pitaevskii
regime is however more delicate, and we then use the structure of the equation to make a change of variables
that usefully transforms the first-order terms into zeroth-order ones. The additional regularity assumptions
in item (ii) above are precisely needed for this transformation to be well-behaved. Finally, the general result
stated in item (i) for the dissipative case with non-decaying h, F, f, is deduced from the corresponding result

with decaying h, F, f by a careful approximation argument in the space H}, (R?C).
3 Preliminaries on the limiting equations
The limiting equations that we derive are all of the form
0yve = Vp, +1I. curlve, Velt=0 = Vg, (3.1)

for some smooth pressure p, : R? — R, and some smooth vector field I'; : R? — R?. The pressure will either
be proportional to a~! div (av.), or be the Lagrange multiplier associated with the constraint div (av.) = 0.
Before Sections 6-7, we only manipulate these quantities abstractly. In order for all our computations to be
licit, we then need to work under the following integrability and smoothness assumptions.

Assumption B.
(a) Dissipative case (o > 0): There exists some T > 0 such that for all e > 0, all ¢ € [0,T), and all ¢ > 2,

1(vE Vvl e 4 Loynne Seq 1y lewl villpiape Se 1, [[div(ave) iz ane Se 1y
DLz Ao Se AZY2, IVPllere St 1
10 [l e Se AZY2, 10vellze Se 1, 19:pEllLz e S P A
ITellwioe St 1, 10 ez e Se 1.

(b) Gross-Pitaevskii case (o« = 0): There exists some T > 0 such that for all € > 0, all ¢t € [0,T), and all
q>2,

||(V27VV§)H(L2+LQ)0L°° Stg 1, leurl VEHLl AL St l
IPtluone= Seg L [VDEIL2 AL Se 1, [10ville Se 1o 10ipiflne Seg 1,

[T [wroe Se 1, 10 Se
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In the dissipative case of Theorem 1.1 the rescaled supercurrent density N 'j. is shown in Section 6 to
remain close to the solution v. of the following equation

O0yve = Vp, +Tccurl ve, Vs|t:0 = ng (32)
B 2N. .
I. =\ Ya—I5) (vlh . Tog ve), p. i= (\eaa) "L div (av.),

while in the Gross-Pitaevskii case of Theorem 1.3 the rescaled supercurrent density N !j. is shown in
Section 7 to remain close to the solution v, of the following equation

Oyve = Vp, +lccurl ve, div (av.) = 0, Velt=o = Vg, (3.3)
2N, 1
I, .= —Agl(vlh . vs)
log €|

In the present section, we show that the solutions v. of the above equations (3.2)—(3.3) exist and satisfy all
the properties of Assumption B. Using the choice of the scalings for A, h, F' in each regime, we further show
how to pass to the limit £ | 0 in these equations, which is needed to conclude the proofs of Theorems 1.1
and 1.3. Note that in the regimes (GL;) and (GLj), as a consequence of the choice \. | 0, we expect
the solution v. of (3.2) to converge to the solution v of some incompressible equation with the constraint
div v = 0. We thus naturally refer to (GL;), (GL}) and (GP) as the incompressible regimes, and to (GLz)
and (GL}) as the compressible regimes.

3.1 Dissipative case
3.1.1 Properties of solutions to (3.2)

It is instructive to examine the vorticity formulation of the equation (3.2) for v.. Setting m. := curl v,
and d. := div (av), equation (3.2) may be rewritten as a nonlinear nonlocal transport equation for the
vorticity m,, coupled with a transport-diffusion equation for the divergence d.,

Om, = —div (Ttm,), m.|;—o = curl vo,
Orde —(ade) A +(aX) L div (d.VA) = div (alem,.), d.|;=¢ = div (av?), (3.4)
curl ve =m., div(av.)=d..

A detailed study of this kind of equations is given in the companion paper [37], including global existence
results for vortex-sheet initial data. The following proposition in particular states that a solution v. always
exists and satisfies the various properties of Assumption B(a), under suitable regularity assumptions on the
initial data v2. Compared with [37], this result however requires some more work in the incompressible cases
Ae 4 0, as it is then needed to make clear the link with the limiting incompressible equations, in particular
in order to obtain global existence in the mixed-flow case.

Proposition 3.1. Leth:R? =R, a:=¢", F:R? = R2, and let v2 : R? — R? be bounded in W14(R?)? for
all ¢ > 2, and satisfy curl v2 € P(R?). For some s > 0, assume that h € WsT3>(R?), F € W5+t2:%(R?)2
that v° is bounded in W*+2°°(R?)2, and that curl v° and div (av?) are bounded in H*1 N WsThoo(R?),
(i) Compressible regimes . ~ 1 (that is, (GL2)-(GL})):
There exist T > 0 (independent of € ) and a unique (local) solution v. € Ly, ([0,T); v +H2NW 2> (R?)?)
of (3.2) on [0,T) x R%2. Moreover, all the properties of Assumption B(a) are satisfied, that is, for all
te[0,T), and all g > 2,
1ve, VVOllwz 4 Loynns Seq 1o flewrd villpape S 1, [ldiv(avl) ez noe Se 1,

~t

IPEllz e Se L [IVpelle el 10villieane Sel, 10pefliz e Se 1

~t
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In the parabolic case = 0, the solution v, can be extended globally, T = oco. In the small-interaction
regime (GL}), in the mized-flow case B # 0, the existence time T can be taken arbitrarily large for
€ > 0 small enough.

(ii) Incompressible regimes A, < 1 (that is, (GL;)—(GL5)):
Further assume div (av2) = 0. There exist T > 0 (independent of €) and a unique (local) solution v. €
([0, T); v +H2NW?2°(R?)2) of (3.2) on RT xR2. Moreover, all the properties of Assumption B(a)

are satisfied, that is, for allt € [0,T), and all ¢ > 2,

[(VE VOl noynne Seg L, lleurl vilpiape Se 1, [1div(av)) |z qne Se 1,
Ipi e e Se AZY2 IIVDllizre Sely 100ville ane Se AZY2 0vellizre Se s 10t llere Se A

In the parabolic case = 0, this solution v. can be extended globally, i.e. T = oo. In the mized-flow
case B # 0, the existence time T can be taken arbitrarily large for € > 0 small enough.

Proof. Ttem (i) is proved in Step 1 below, while the proof of (ii) is split into three further steps. The proof
of the global existence for the regime (GL)), also stated in (i), is postponed to the last step.

Step 1: compressible regimes. Let s > 0 be non-integer. The assumption ||A]y s, ||[F|lweszeo < 1
yields || A\ZH(VEh — F1)|lyyet200 < 1 in the considered regimes, and also A\Z'N./[loge| < 1 and A\, ~ 1.
Further using the assumptions on the initial data v2, the results in [37] imply that in each of the compressible
regimes (GLa)—(GL)) there exists a unique (local) solution v. € LS ([0, T);vS +H? N W2 (R?)2) of (3.2)
on [0,7) x R? with initial data v°, for some T' > 1. Moreover, it is shown in [37] that this solution satisfies
for all t € [0,7),

IvE=vellmawre e l, [l grawre Sel, [dilliz e Se 1, /mi =1, m! > 0. (3.5)

Note that in the parabolic case 8 = 0 the results in [37] actually give a global solution, that is, T = co. We
claim that all the desired properties of v, follow from (3.5). Combining (3.5) with the assumption that v2
is bounded in W14(R?)? for all ¢ > 2, we obtain

1(vE, Vvl 2 4 Loynree Stag 1-

Using the choice (3.2) in the form p, = (A.aa)~td. with A\ ~ 1, where the divergence d. = div (av.)
satisfies the transport-diffusion equation (3.4), the a priori estimates in [37, Lemma 2.3] give
IpEllzrawroe S IdEllmawsee Se A2 mawre + lalemillmawre= e 1,
where the last bound follows from (3.5). inserting this information into (3.2), we conclude that
10evellz are S IVPElLe Ao + lalemz|lpz qr= e 1.

~t

Testing the transport-diffusion equation 9;d. —(A.a) "1 (Ad. — div (d-Vh)) = div (al'.m. ) against 9;d. yields
[10c 4 S0y 0 [ 1V = = [ aidediv (o) d. VI - alam ),
and hence, integrating in time, with \. ~ 1,
10ede|[E2 1> + %(Asa)AIIVdeHiz SIVAIE: + 110dellz iz (1delle mr + llalellige wes [me iz 1)

St 1+ ([0ede |2 L2
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Absorbing the last right-hand side term, we conclude
[0:pcllizre < [0edellpz e <e 1. (3.6)

All the stated estimates follow.

Step 2: estimates for transport-diffusion equations with large diffusivity. In the incompressible regimes
(GL;1) and (GLY}), the conclusion does not follow as in Step 1, because the corresponding choice p, =
(Acaa)~1div (av.) contains the prefactor (A.a)~! > 1. In particular, the equation (3.4) for the divergence
d. := div (av.) now takes the form

9yde —(Ae) "t Ad. +a~ 1 div (d.VA) = div (al'.m,) (3.7)

PO 2271V,
=div ((a—J,@)(VLh—FL—“;gdvs)ams>,

with a large prefactor (Aca)™! > 1 in front of the Laplacian, and with initial data d2 := div (av?) = 0. In
this step, we consider the model transport-diffusion equation

oyw — vAw + div (wVﬁ) =div g, wli=o = 0,

with large diffusivity v > 1. A direct adaptation of [37, Lemma 2.3] gives the following bounds, for any
v 2 1, using that the initial condition is chosen to be zero,

(a) for all s >0, t > 0, for some constant C' depending only on an upper bound on s and [|Vh|ws.cc,
[w s + v 2 Vllz g < C#/0)V2 gl me < CE2e gl mes
(b) for some constant C' depending only on an upper bound on |Vh||re,
[l -1 < Ce“llgllnz L2
(c) for all 1 < p,q < oo, t >0, for some constant C' depending only on an upper bound on ||Vh||pe,
2 2
[wller e < C(t/v)2e W lgllLp Lo < O/ g]lp Lo

In particular, the same bounds as in [37, Lemma 2.3] hold uniformly with respect to the large diffusivity
v > 1. Further adapting the proof of (3.6) in Step 1, we easily obtain

(d) for some constant C' depending only on an upper bound on |Vh||y1.,

[0wllrz 12 < C/2eC|gllLse

Step 3: incompressible regimes. In the vorticity formulation (3.4), the large prefactor (A.a)™! > 1 does
not affect the equation for the vorticity m., but only the equation for the divergence d., which now takes the
form (3.7). However, for the choice d? = 0, the result of Step 2 ensures that the estimates for d. used in [37]
hold uniformly with respect the large prefactor. Hence, as in Step 1, using the assumptions on the initial
data, the results in [37] imply that in the incompressible regimes (GL;) and (GL)}) there exists a unique
(local) solution v. € Le ([0, T); v® +H?2 N W2 (R?)?) of (3.2) on [0,T) x R? with initial data v°, for some
T = 1. Moreover, it is shown in [37] that this solution satisfies for all t € [0,T),

Ve =vellzawre Se 1, Imillamawre Sel, ez Se 1, /mi =1, m;>0. (3.8)
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Note that in the parabolic case 5 = 0 the results in [37] actually give a global solution, that is, T = oo.
We claim that all the desired properties of v, follow from (3.8). By definition (3.2), we find ||T%||y1.c <S¢ 1.
Combining (3.5) with the assumption that v° is bounded in W14(R?)? for all ¢ > 2, we obtain

IOvE VO llee + Loynnee Seq 1.

Using (3.2) in the form p. = (A.aa)~!d., and applying items (a)—(c) of Step 2, we find

< 1/2

Il riawree S AT iawre Se A2 (laleme |[ppe rimwe) Se A2,

where the last bound follows from (3.8). Similarly, item (a) of Step 2 yields
IVpElliz vz S AZHIVAElliz 2 Se llaleme e 2 Se 1.
inserting this information into (3.2), we deduce

10:vE L e S IVPElLz e + Tl ]|z aree Se A2,

~t

and similarly
10vellizre S IVPelliz e + ITellug Lo Imelrz 2 <o 1.

Finally, item (d) of Step 2 yields
10Dz 2 S A 10kde Lz 12 Se AZHlaTeme | gn Se AT

All the stated estimates follow.

Step 4: global existence in the (mized-flow) incompressible regimes. Using [37, Lemma 4.1(iii)], we find
Ve =vellLe S 1.

Arguing as in [37, Step 1 of the proof of Lemma 4.5|, using the above estimate, as well as [ |mf| = 1 for
all t, we easily obtain

1/2

Vil Se 1+ [[mlfl o™ 22+ [[mL o) + div (vE = v2)llgzlog™2(2 + div (vE = vO)llz ). (3.9)

On the other hand, item (a) of Step 2 yields

||d2”L2 )\1/2||aF me||Lao 2 St Ai/QHVs —VO||L<;° LQHmEHL?" Les + )‘;/2||m€||L§° L2

S A2 | [pee e + A2 |12 e,

~t

hence, in terms of div (v. —v2) = a7 'd. —=Vh - (v. —v2),
Idiv (vE = v)llee Se AY2(L + |[mele o).
inserting this into (3.9), we find
Il Se (14 melrge 1) log 2 (2 + me e 1w + [|div vE[|re<). (3.10)
Item (c) of Step 2 yields

2 [l Se A2 aleme]|ige poe S AY2(L A+ [|velluge po ) Imelege Loe,
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or alternatively, for div v, = a~'d. —Vh - v,,
[div vEl|Lee Se AV (1 + [[vellge Lo ) (1 + Imellrge o)
Combining with (3.10) yields
[div vE[lLee e AY2(1+ me|f e o) Tog" /% (2 + [Ime|Lee Lo + |div vE[|Lee),

and hence, using A < 1 and the inequality alogb < b+ aloga for a,b > 0, in order to absorb the term
||div vi||L~ appearing in the right-hand side,

[div vEl|re Se A2 (1 + e |[foo e ) log(2 + e flrpe 1),
so that (3.10) finally takes the form

Y22 el 1)

Vel S (1 + [[melLge 1<) log
In particular, we have proved the following estimates,
Il Se (U [Imeflfe ), and  fldEflue Se AYZ(1+ [Ime|[fe L)

The result in [37, Lemma 4.3(i)] then gives the following bound on the vorticity m,,
Imtflee S exp [CH(1 + dellie e + Aclive e 1) | S exp [CAY2(1 4 e o)

As A\; < 1, this bound easily implies that for all T > 0 there exists some £¢(T) such that for all 0 < & < g¢(T)
the vorticity m’ (if it exists) remains bounded in L>°(R?) for all ¢ € [0,7]. Then repeating the arguments
in [37, Sections 4.2—4.3], this a priori bound on the vorticity allows to deduce existence and uniqueness of a
solution on the whole time interval [0, T7.

Step 5: global existence in the (mized-flow) compressible regime (GL). Just as in (3.9), we obtain the
bounds ||vi —v2||rz < 1 and

Ve S 1+ [mell 2 Tog" (2 + [[mE|iee) + ldiv (vE = v2) g2 log'/*(2 + [|div (v = v2) 12 ). (3.11)

On the other hand, considering the equation (3.4) satisfied by d., the a priori estimates in [37, Lemma 2.3]
yield

el Se 1+ [lalemelpee 12 Se 1+ [Imellpge 12 + melluge Lo Ve = vEllLge 12 S 1+ Imefluge Lee,
and also
2l Se 1+ flaleme [lige poe e 1+ [[meflnge poe (1 + [vel|nge Loe)-
As by definition div (vi —v2) = a~}(d! — d2) — VA - (vl — v?), the above estimates take the following form,

[div (vE = vl Se 1+ [Jme|pge Lee, (3.12)
[div vE|lLee Se (14 [Jmeflnge noo ) (14 [[vellnse n).

Combining these estimates with (3.11) yields

IVEllLee e 1 [md 122 Jog /(2 + [lmE[|ree) + (1 + [[me]|pge 1o ) log™? (14 [lme|rge poe ) (1 + [|[vellnge 1)),
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and hence, using the inequality alogb < b+ aloga for a,b > 0, in order to absorb the term |[|v||ps L=
appearing in the right-hand side,

[VellLge Loe St (14 [lmelLge Loe) log(1 + [Jme|[rge 1),
so that (3.12) finally takes the form,
v el 1 So (1 -+ el 1) Tog(1 + e ooe 1ov).

The result in [37, Lemma 4.3(i)] then gives the following bound on the vorticity m., in the considered
regime (GL)),

CtN.
[log e

N, .
e S exp |11+ 1 vadiv vl o) | e (

||ma||?ﬁ;>° L°°>'

As N./[loge| <« 1, this bound easily implies that for all T > 0 there exists some £¢(7") such that for all
0 < & < go(T) the vorticity m’ (if it exists) remains bounded in L>°(R?) for all ¢ € [0,7]. Then repeating
the arguments in [37, Sections 4.2-4.3], existence and uniqueness of a solution on the whole time interval
[0, T follows from this a priori bound. O

3.1.2 Passing to the limit in (3.2)

We now show how to pass to the limit in (3.2) as ¢ — 0, which is easily achieved e.g. by a Grénwall type
argument for the L2-distance between v, and its limit.

Lemma 3.2. Leta >0, B € R, let h:R?2 - R, a:=¢e", F:R? = R2 let v. : [0,T) x R2 — R? be a

solution of (3.2) as in Proposition 3.1, for some T > 0, and assume that v° — v° in L2 (R?)2. Then,

(i) in the regime (GL1), we have v. — v in LS ([0, T); L), (R?)?) as € | 0, where v is the unique solution

(in the space L2 (RT;v° +L*(R?)?) with curl v € L2, (RT; L' NL>®(R?))) of
dyv = Vp+(a—JB)(VEih — F+ —2v)curl v, div v =0, V]t=o = v°; (3.13)

(i) in the regime (GLg), with N./|loge| — X € (0,00) and vS = v°, we have v. — v in LS. ([0, T); L*(R?)?)
as € | 0, where v is the unique solution (in the space LS. ([0,T);v® + L2 NW1(R?)?) with curl v €
ie([0,T); LY (R?)) and div (av) € Lis([0,T); L*(R?))) of

loc
v =a 'V(a~div (av)) + (a = IB)(V*h — FX —2X\v)curl v, v]mg = v°; (3.14)
(iii) in the regime (GL}), with v° = v°, we have v. — v in L2 ([0,T); L*(R?)?) as € | 0, where v is the
unique solution (in the space L2 ([0,T);v° + L*(R?)?) with curl v € L2, ([0, T); LY (R?)) and div (av) €
Lise([0,T); L*(R?))) of
ov=a"'V(a tdiv(av)) + (a = IB)(Vih — FYcurl v, v]mo = v (3.15)

(iv) in the regime (GLY), we have v. — v in LS.([0, T); L), .(R?)?) as € | 0, where v is the unique solution

uloc

(in the space L2 (RT;v° + L2 (R?)?) with curl v € L2 (RT; L' NL>®(R?))) of

v = Vp+(a — JB)(V*h — FH)curl v, div v =0, V]t=o = v°. (3.16)
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Proof. We treat each of the four regimes separately. For R > 1, we denote by £5(z) := e 1#=2I/F the
exponential cut-off at the scale R centered at z € RZ2.

Step 1: regime (GL1). Using the choice of the scalings for A, h, F' in the regime (GL;), equation (3.2)
takes the following form, with \. = N./|loge| < 1, and explicitly setting a. := a*e,

Opve = Vp, +(a — Jﬁ)(VLB e 2ve)curl ve, p. := (Aeaa.) "t div (acve),

with initial data v.|i—op = v2 — v° in L2, .(R?)2. As A\. — 0, it is then formally clear from the vorticity

formulation of this equation that v. should converge to the solution v of (3.13).
The existence and uniqueness of a solution v € Lg%, (R*; v° + L*(R?)?) of (3.13) with curl v € L2, (RT; L' N L™ (R?))
are proved in [37]. Moreover, the following estimates hold for all ¢ > 0 and R, 6 > 0,

IVl Se L IO D)z (sg) Seo B (3.17)

The above bounds for v follow from the results in [37] with v° € W$t1°°(R?)2 for some s > 0, and with
v° € LY(R?)? for all ¢ > 2. It remains to prove the bound on the pressure p. Taking the divergence of both
sides of equation (3.13), we obtain the following equation for the pressure p?, for all ¢ > 0,

—Ap' =div ((a — IB)(V*Eh — F+ — 2vt)curl vt ).
By Riesz potential theory, we deduce for all 2 < ¢ < o0,
P llLe Sq (1 + IV llLee)lleurl vVl Lea/era Si 1,
and the bound on the pressure p’ in (3.17) follows.

Now we turn to the Gronwall argument for proving the convergence v. — v in L%, ([0, T); L2, . (R?)?).
Using the equations for v., v, we find

at/agfﬂvg —v|]? = 2/cz€§1z;5(v6 —v)-V(p.—p) — 404/a5§f;¢|v6 —v|?curl v,
+ Z/asgﬁ(a —IB)(Vih — F — 2v) - (ve —v)curl (ve —v). (3.18)
Integrating by parts in the first term, decomposing
div (a:65(ve = v)) = a:VER - (v — V) + Aeaa€ip, —Aea:E5Vh v,

noting that the second right-hand side term in (3.18) is nonpositive, and using the following weighted Delort-
type identity (as e.g. in [37])

(ve —v)eurl (ve —v) = aZ ' (ve = v) T div (ac(ve — V) — zaZ Hve — v[*VEae — a7 H(div (ae Sy, — o)t (3.19)

= Xeap.(ve —v)T = A(Vh-v)(ve —V)J' — %|V5 — V|2VJ‘E — a;l(div (aeSy, ,v))J‘,
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in terms of the stress-energy tensor S, := w ® w — 1|w|?1d, we deduce

0 [ autive v < -2 [ aulp. - p)VER - (ve~v) ~ 2rca [ aip.o. = p) + 2\ [ actp. ~p)v-Th
L 2ha / a:Ep.(a — IB)(VEh — F- —2v) - (v. —v)*
- mg/agg;(vh V)(a—=JB)(Vth — F —2v) - (v. —v)*
— A /aeglgwa —v2 (= JB)(V* h— F+ —2v) - V*h
_ 2/%3% v V(e + BV B~ 2v),

< 1, the property

~

and hence, using (3.17) in the form [[v![y1 < 1, the assumption |[(Vh, )|

~

|VEL| < R71€% of the exponential cut-off, and the pointwise estimate |S,,| < |w|?, we obtain

& / 065l — v < (R™? — A.a) / aeilp. P + Co(R™2 + A, / a-E5(pl + [v?) + C. / actilve — ]2,

Choosing R = A\;™ for some n > 1, we obtain R~2 < A, and hence, for ¢ small enough, using (3.17) to
estimate the second term, we obtain

& / 0:65lve — v Sog RP(R2 4+ 02) + / 0 lve —v[2 < A0 4 / AT

For 6 > 0 small enough, the conclusion follows from the Gréonwall inequality.

Step 2: regime (GLg). Using the choice of the scalings for A., h, F' in the regime (GL3), equation (3.2)
takes the following form,

.. 2N
Ove = a 'V (a"tdiv(av.)) + ((a - JIp) (VLh —Ft - |log5\vg ))curl Ve,

with initial data v.|i=g = v°. As N./|loge| — X € (0,00), it is formally clear that v. should converge to
the solution v of equation (3.14). Note that the existence and uniqueness of the solution v are given by
Proposition 3.1 just as for v., and yields in particular the following bounds for all ¢ € [0,T),

(v v oo St 1, llcurl v <e 1. (3.20)

~t

Using the equations for v, v, we find

4aN,

at/ag;|v€—v|2 :2a*1/&5§(v5—v).w ~Ldiv (a(v. —v))) —

+2 / ags, ((a —39)(VHh - B -

|10g5|/ agq|ve —v)?curl v,

|10g€|

4<|10g€| )\)/agf%(vsfv)~(a—,}]ﬂ)vcurlv.

Integrating by parts, using the weighted Delort-type identity (3.19) in the form

—v)
) )(curl v, —curl v)
N,

(ve —v)curl (ve —v) = a~ (ve —v)t div (a(ve —v)) — %|VE —v2PVth —a~Ydiv (aSy. — )",

31



using the properties (3.20) of v,v., and the assumption ||(Vh, F)|ly1. < 1, and simplifying the terms as in
Step 1, we easily obtain

at/aggwg—vﬁ < —204_1/d_1§}'§|div (6(ve —v))2
z * ~ A2 2 NE
+ Ct [ Exlve — V]| div (a(ve —v))| + Cy | a€R|ve — V| +Ct‘7|10g5\ - )\‘,

hence 9, [agglve —v|* < Cy [ a&q|ve — v[* + 04(1), and the conclusion now follows from the Grénwall in-
equality, letting R 1 oco.

Step 3: regime (GL}). Using the choice of the scalings for A, h, F' in the regime (GL}), equation (3.2)
takes the following form

2N,
v )curl Ve,

Ouve = 7' V(a ! div (ave)) + (o = I) (V4R = B = po v

with initial data v.|t—g = v°. As by assumption N./|loge| — 0, it is formally clear that v. should converge
to the solution v of equation (3.15) as ¢ | 0. Existence, uniqueness and regularity of this solution v are given
by Proposition 3.1 just as for v, and the proof of convergence is obtained as in Step 2 (with A = 0).

Step 4: regime (GL,). Using the choice of the scalings for A, h, F' in the regime (GL}), equation (3.2)
takes the following form, with a. := a*<,

201N,

L SIS RT =

Ve )curl Ve,

p. i= (Aeaa.) "t div (acve.),
with initial data v.|;—o = vo — v° in L2 .(R?)2. As by assumption A-'N./|loge| — 0, it is formally clear
that v. should converge to the solution v of equation (3.16) as € | 0. Existence, uniqueness and regularity
of this solution v are given by [37] as in Step 1, and the proof of convergence then similarly follows. O

3.2 Gross-Pitaevskii case
3.2.1 Properties of solutions to (3.3)

Let us examine the vorticity formulation of equation (3.3) for v.. Setting m. := curl v., equation (3.3)
may be rewritten as a nonlinear nonlocal transport equation for the vorticity m,,

3.21
curl ve. =m,, div(av.)=0. (3:21)

{&m6 = —div(['fm.), m.|4=p = curl v,
Given the form of T'; in (3.3), this equation can be seen as an “inhomogeneous” 2D Euler equation with
“forcing”. A detailed study of this kind of equations is given in the companion paper [37]. The following
proposition states in particular that a solution v. always exists globally and satisfies the various properties
of Assumption B(b), under suitable regularity assumptions on the initial data v?2.

Proposition 3.3. Let h: R? - R, a :=e", F : R? - R?, and let v : R — R? be bounded in W14(R?)?
for all ¢ > 2, satisfy curl v2 € P(R?). Assume that h € L°(R?), Vh, F € L*NW?>>°(R?)?, that a(z) — 1
uniformly as |z| 1 oo, that v° is bounded in W?2°°(R?)? with div (av®) = 0, and that curl v° is bounded in
H(R?). Let the regime (GP) hold.
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Then, there exists a unique (global) solution v. € LiS.(RT;ve +H? N WH(R?)?) of (3.3) on RT x R2.
Moreover, all the properties of Assumption B(b) are satisfied, that is, for allt >0, and all 2 < g < oo,

||(V27VVZ)||(L2+LQ)0L°° Sta 1, [|curl V2||L1mL°° N
IPtlLanne Seg 1 IVPElLzane Se L 10vElle e 1, [|0ipt|e Seg 1.

Further, for all 8 > 0 and ¢ > 1, we have for all t > 0,

IV, — Y)le o % + /| el 2P (3.22)
x|>0

Proof. We split the proof into three steps.

Step 1: preliminary. In this step, we prove the following Meyers type elliptic regularity estimate: if
b € L°(R?) satisfies 1/2 < b < 1 pointwise, and b(z) — 1 uniformly as || 1 oo, then for all g € L' NL?(R?)?
the decaying solution v of equation — div (bVv) = div g satisfies, for all 2 < ¢ < oo,

[lle Sq 9llea oo are S gl e

Let b be fixed as above. Set b, := x, + b(1 — x;-), and decompose the equation for v as follows,
—div (b,Vv) = div (g + (b — b,) Vo).

Given 1 < p < 2, the Meyers perturbative argument [62] gives a value k, > 0 such that, if belL™® (R?) satisfies
#p < b <1, then for all k € L' NL*(R?)? the decaying solution w of equation — div (bVw) = div k satisfies
(IVwllLe Sp ||k||Le. By definition, for r large enough, the truncated coefficient b, satisfies k, < b, < 1, hence

IVoller Sp llg + (b= br) Vol|Lr.

Using the elementary energy estimate ||Vvl||r2 < ||g/|1.2, and noting that b, = b on R? \ Bs,., we find by the
Hoélder inequality,

Vol Sp llgllee + V0l san) S lglle + 7@Vl < llgllie + 7262 lg]le.
On the other hand, rather decomposing the equation for v as follows,
—Av =div (g + (b—1)Vwv),
we deduce from Riesz potential theory, with 2 < ¢ :=2p/(2 — p) < o0,
[vllLe Sq llgllee + [Vl

Combining this with the above, the conclusion follows.

Step 2: proof of Assumption B(b). The assumptions ||h||ws., [|(Vh, F)||ps qwzee < 1 yield A7 (V2R —
FH)|ltaawz < 1 in the considered regime, and also A\-'N./[loge| = 1 and A\-! < 1. Further using the
assumptions on the initial data v°, the results in [37] imply that there exists a unique (global) solution
ve € LS (RT; v +H?2 N W1 (R?)?) of (3.3) on RT x R? with initial data v2. Moreover, it is shown in [37]
that this solution satisfies in particular, for all ¢ > 0,

||VZ _V§||H10WL°° S,t ]., HmzHHlmLoo St ]., /mi =1, mz Z 0. (323)
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(As such, in order to ensure v. € Lo (RT;ve +H?2(R?)?), the result in [37] would actually further require
h € Wst3:°0(R?) and Vh, F,v° € W5+2:°(R?)?2 for some s € (0, 1), due to the use of the Sobolev embedding
for H*T1(R?) into W*°(R?) in the proof of [37, Lemma 4.6]. However, this use of the Sobolev embedding
is easily replaced by an a priori estimate for v, in W*+1:°°(R2)2 for which it is already enough to assume
e.g. h € W3°°(R?) and Vh, F,v° € W2>°(R?)2, as we do here.)

We claim that all the desired properties of v, follow from the bounds (3.23). Combining (3.23) with the
assumption that v¢ is bounded in W14(R?)? for all ¢ > 2, we obtain

IOvE VO llee + Loynnee Seq 1

Applying the operator div (a-) to both sides of equation (3.3), we find the following equation for the pressure,
in the considered regime (GP),

—div (aVpt) = div (altm!) = —div (ami(\J'VEh — FE —2vh)t). (3.24)

An energy estimate directly yields
IVpLlle: S llamf A"V A — R —2vh) | S0 1, (3.25)

and similarly, first differentiating both sides of equation (3.24),

IV2pEliee < IVPlle + ||V (@mi (A9 h — B = 2v) ) |2 <0 1. (3.26)
Inserting (3.25) into equation (3.3) yields

18:vellrz < [[VPLllpz + [Temiflrz <S¢ 1.
Applying to equation (3.24) the Meyers type result of Step 1, we find for all 2 < ¢ < o0,
P Sq lamiAZ VR — B = 2vh) | pe Si 1.

Combining this with (3.26), we deduce from the Sobolev embedding ||pL||Lenr~ Sq¢ 1 for all ¢ > 2. First
differentiating both sides of equation (3.24) with respect to the time variable, the Meyers type result of
Step 1 further yields, for all 2 < g < oo,

oy (mt(AT'VER — B —2vh ) || e
S melle aree 10vEllLz + [Te0me (|12

St L+ [P0y [l e

10l <q

Using equation (3.21) to express the time-derivative of the vorticity, and using the assumption H)\E_IVE -
Fllps awree S 1, we find

ITe0me [l e S ITElFs e I VmElLz + [ITEl e fme L e
Se TR s awroe S THIVEIRS e e 1,
and hence ||0;pL||Le <¢ 1. All the stated estimates follow.
Step 3: proof of (3.22). For all t > 0, testing equation (3.24) against (1 — x,)p’, and using [Vx,| <
0 (1 = x,)"/? and the inequality 2zy < 2% + 32, we find
/&(1—><g)IV102|2 =/dp§ ng-Vpé—/&(l—xg)Vpé -Fém§+/dp2 VX T2mi

[, _
5 [a0 Vel e ® [ P [P,

o<|z|<20
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Absorbing the first right-hand side term, and recalling that Step 2 gives ||I'%||Le, [mil;z <¢ 1, and
Ipt|lLe Spie 1 for all 2 < p < oo, we obtain with the Holder inequality,

Jooxomttsee [l [0 st e [0 xomif
o< |z|<20
and thus

IV, —p)I2s < / (1= xo) VDL + 072 /

G T / (1= o)t .
oS |T |20

It remains to estimate the last right-hand side term. For all ¢ > 0, using again the bounds of Step 2 and the
estimate |Vx,| < 071 (1 — x,)'/?, we deduce from equation (3.21),

0 [ (1= xolmt? =2 (1= ) mbeurl (Ut
= 2/ e S /(1 — xo)TL - V- |m?
= 2/ |m! 2T - Vi y, + / Im|%curl ((1 — x,)I'L)
Soot [ P 4 [t S+ [0 ),
hence by the Gronwall inequality,

/(1 — X))l Si 07+ /(1 — o)Jeurl v2|2,
and the result (3.22) follows. 0

3.2.2 Passing to the limit in (3.3)

We now show how to pass to the limit in (3.3) as € | 0, which is easily achieved by a Grénwall type
argument for the L2-distance between v, and its limit. Note that in the limit, pinning effects are in this case
only present through the constraint.

Lemma 3.4. Let h: R? - R, a:= ¢, F: R? = R?, and let v. : [0,T) x R?> — R? be a solution of (3.3)
as in Proposition 3.3, for some T > 0. Then, in the regime (GP), with v2 = v°, we have v. — v in
> ([0, T); L*(R?)?) as ¢ | 0, where v is the unique solution of

v =Vp+(—F +2vH)curl v, div (av) = 0, V]t—o = v°. (3.27)

Proof. Using the choice of the scalings for A, h, F' in the regime (GP), equation (3.3) takes the following
form,

Opve = Vp, +()\E_1Vﬁ —F+ 2vj)curl Ve, div (ave) = 0, Velt—o = v°.

As A\Z1 — 0, it is formally clear that v. should converge to the solution v of equation (3.27) as € | 0. Note
that the existence, uniqueness and regularity of this solution v are given by Proposition 3.3 just as for v,
and yields in particular the following bounds for all ¢ € [0,T),

I v lwree Se 1, flewrl vefles Se 1, (0% Pl <e 1, (3.28)

~t
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and for all 6 > 0,
||(VtaV2)||L2(BR) St Rga ||(pt>p§)||L2(BR) St R’ (3.29)

For R > 1, we denote by {5(x) := e~ 17=2l/F the exponential cut-off at the scale R centered at z € RZ2.
Using the equations for v, v, we find

6t/d§f%|ve —v|]? = Q/dgé(ve —v)-V(p.—p)+ 2/&5%(—}% +2v1t) - (ve —v)(curl v, —curl v)
+2x;t /dff%VlAz < (ve —v)curl v,

Integrating by parts in the first term with div (a5 (ve —v)) = aVER - (ve —v), and using the weighted
Delort-type identity (cf. (3.19)) in the form

(ve —v)ourl (v. —v) = —%|v5 VPV — 6 (div @Sy, o),
we deduce
0 [ agalv. v = 2 [ aVE (ve =)o~ p) — [ 6T he (<F 4 2 v - v
- Q/asvs,v V(ER(FL +2v)) + 207! /aggvﬁ - (ve —v)eurl v,

and hence, using (3.28)—(3.29), the assumption ||(Viz,ﬁ') lwie S 1, the property |VER| < R7IE% of the
exponential cut-off, and the pointwise estimate |Sy,| < |w]

8t/&5ialve —vP S ROV 1A% /&Eleve —v[*

Choosing 6 = 1/2, the Gronwall inequality yields sup, [a-&glve —v[? <t R™' + AZ2, and the conclusion

e

follows, letting R 1 oo. O

4 Computations on the modulated energy

In this section, we adapt to the weighted case with pinning and forcing the computations of [82] involv-
ing the modulated energy excess. Their point is to compute the time-derivative of the modulated energy
excess (1.13) and express it with only quadratic terms in the error instead of terms which initially appear
as linear, thus making a Gronwall argument impossible. These computations are based on purely algebraic
manipulations using all the equations and appropriate quantities that we will now describe.

For simplicity, in the estimates in this section, we focus on the non-oscillating case 1. = 1, and we consider
the regimes (GL1), (GL2), (GP), (GL}), and (GL5).

4.1 Modulated energy

We first recall the definitions of modulated energy and energy excess in (1.10)—(1.13). In order to prove
that N 'j. is close to v, we follow the strategy of [82], and consider the following modulated energy, which
is modeled on the weighted energy density e., plays the role of an adapted measure of the distance between
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NZ1j. and v, and is localized by means of the cut-off function y g at some scale R > 1 (to be later optimized

as a function of ¢),
axgr ) a
Eeri= / <|VUE lusNeVsF + T&‘Q(l - |us|2)2)'

As usual, this modulated energy & r further needs to be renormalized by subtracting the expected self-
interaction energy of the vortices (compare with Lemma 5.1), which then yields the following modulated
energy ercess,

logs ax . a
D.ri=&r——F— | | / /TR(‘vus*ZUstVsFer(l*|u€|2)2*|10g5|ﬂ5)~

As seen in the introduction, the cut-off xr is not needed in the Gross-Pitaevskii case, where we only treat
the case when h and F' decay at infinity. We write &, := &£, » for the corresponding quantity without the
cut-off xg in the definition (formally R = c0), and also D, := supp>q D: k-

On the one hand, rather than the L%-norm restricted to the ball B centered at the origin, our methods
further allow to consider the uniform L -norm at the scale R: setting X% = Xr(- — 2), we define

Elpi= sgpé’,f,pb, CR= / X (|VUE iueNeve|® + % 2(1 — [uel?) )
where henceforth the supremum always implicitly runs over all lattice points z € RZ?, and similarly
Ds R ‘= SUPDE R» D:,R =& g |10g€\ / X R he-
Note that by definition we have for all € R? and all L > 0,

. _ L d *
[Vue — WENEVEHLZ(BL(z)) +e€ 1H1 - |u5|2||L2(BL(r)) < (1 + E) e,R* (4.1)

On the other hand, in order to simplify computations, we need as in [82] to add some suitable lower-order
term, and rather consider, for some scale ¢ > 1 (to be later optimized as a function of ¢),

5 a . axXRr
Seoni= [ 5 (xalVue = iueNovel? + QL= [P+ (1= e (N2 + ).
and similarly for the modulated energy excess,

R A loge
Deyo,r := e o,k — | |

a . a
:/i(mvueﬂugmvgu%uf e )2 (1= Jue2) (N2, o + Fxn) = Nogelxpe ), (4:2)

where the field 1. , g is chosen as follows,

1 AP
logel g iy 4 AeBllosel

log €| n
N, XE N VXr-ve, (4.3)

L,
(QF p€ Q) + Ng €

1/15,9,1% = 3XR|V8|2 -

with p. , := X, P.. This choice is motivated by the fact that it yields some crucial cancellations in the proof
of Lemma 4.4. Again, replacing xr and p, , by x% and pZ , = xj D., we further define 5 o.r and DE oR
for z € R?, and we then set E oR = supZE o and D ==sup, D , g (where again the supremum
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implicitly runs over all lattice points z € RZ?). The truncation scale p > 1 is introduced here to cure the
lack of integrability of the pressure p, in the Gross-Pitaevskii case: since the pressure p, does in general
not belong to L*(R?) (cf. Assumption B(b) above, which is indeed optimal in that respect), we define a
truncated pressure p, , := X,D.- (In contrast, note that in the case without pinning and forcing the pressure
always belongs to L?(R?), see [82].) To unify notation, we set in the dissipative case Pe.oo = Pe With ¢ := oo,
and we then drop for simplicity the subscript o, writing ¥ r := Ve, 00, R, EA'E’R = SAE,OO,R, and so on.

In the dissipative case, as a consequence of (2.1) and of Assumption B(a), 9. g is bounded uniformly
with respect to R in LP(R?) for all 2 < p < oo (but not in L?(R?)), and using the bound (2.1) we have in
the considered regimes, for all ¢ € [0, 7)) and 6 > 0,

N i I L P L (1.4
N, t N,

In the Gross-Pitaevskii case, in the considered regime (GP), the bound (2.2) and Assumption B(b) rather

yield, for all ¢ € [0,T") and 6 > 0,

||¢§,R||L2 See 1+

[log |

||w2,g,R||L2 + ”ath,g,RHL? St 1+ TAEQQ <o (4.5)
1>

Based on these estimates, the following lemma states that the additional term in é:g,g, r is indeed of lower

order, so that the modulated energy & , g itself controls the various quantities that we are interested in.

Lemma 4.1 (Neglecting lower-order terms). Let h: R? = R, a :=e", F : R? — R? satisfy (2.1)-(2.2), let
ue : [0,T) x R? — C, and let v. : [0,T) x R? — R? be as in Assumption B. Further assume that 0 < ¢ < 1
and o, R > 1 satisfy for some 6 > 0, in the dissipative case (with N, < |logel),

~

N. \1/2
e(N? + N.[loge|(A\-R? + A\Y/? + R7'"%) + R+ RA\?[loge|?) < N. (1 A @) (4.6)
or, in the Gross-Pitacvskii case (with N < e=1),
N, \1/2
N2(f R N. (1/\ € ) 4.7
EN("+ R) < Ne(1A 0o (4.7)

Then for all z € R? we have

N. \V2, .
Seo(N) (1A =) T (€xp) 2,

(c:-z,t _ gz,t — ﬁz,t _ Dz,t
| e, R ‘ &R |10g5‘

€,0,R €,0,R

Proof. We focus on the dissipative case, the other case is similar. The Cauchy-Schwarz inequality yields
€= E2al S [ 1L TucPIN2I02 Al + £

1/2
< ([ Xt = u)?) (N1 /O + o)
S (€2 R) A (VIVE R/ (G 2z + Bl fllL)-

Arguing just as in (4.4), using (2.1), Assumption B(a), and the fact that |VXR(x)/X}{2(x)| S R 'y <or.
the choice (4.3) of 9. g yields, for all § > 0,

Ilogsl(
N,

”wsaR/X}ltz/QHL? St 1+ —— AR+ )\;/2 +R71+9).
€

Combined with (2.1) and with assumption (4.6), this proves the result. O
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4.2 Physical quantities and identities

Next to the supercurrent density je := (Vue,iuc) and the vorticity pe := curl j., we define the vortex
velocity V. := 2(Vu,,i0puc). The following identities are easily checked from these definitions:
Otje = Ve + V{(Oue, iue), O e = curl V, (4.8)

and also, using equation (1.5) for w.,

div je = (Aue,iue) = Aea(Opue,ius) — jo - Vh (4.9)

A B 1
= 2PI8El g0 ) + 1B 91 ) 4 ogelg@ — fucf?).

We then consider the weighted energy density
o i= 5 (1Yl + 555 (1= [ucl?)? + (1= [uc ) f).

In the same vein as when introducing the modulated energy and energy excess, we define the following
modulated vorticity and modulated velocity,

fic == curl (Nove +(Vue — iucNove,iugs)) = pe + curl (Nove (1 — |uc]?)), (4.10)
Voo 1= 2(Vue — iue Nove, i(Oyue — iueNep, ) = Ve + NeveOi|ue|* — Nep, ,Vue[*. (4.11)

For the computations, we will also need the 2 x 2 stress-energy tensor Se,
SH = a(Opue, Dyue) — %Id <|Vu5|2 + 2%(1 —Juel?)? + (1 — |u€|2)f>7 (4.12)

and its modulated version S.,
S'fl = a((akuE — iU Neve p, Ot — tue Neve ) + Nf(l — |u5|2) vgykvgﬁl>
— 214 (Ve = i Nove 4 55 (1= Juel)? + (1= fue NV 2 + ). (4.13)
We close this section with the following pointwise estimates.
Lemma 4.2. We have
lje — Nove| < |Vue — iusNeve| + |Vue — iue Nove||1 — |ue|?| + Ne|vel|1 — uel?|,
|| < 2|Vue|? < 4|Vue — iue Nove|? + AN2 v |? + AN2[1 — |uc)?||ve)?,
[Ve| < 2(|VuE — tue Nove||Opue | + Ne|ve||Opue| + Ne|1 — |u8|2|\v5||8tu5\),
Vel < 2/00uc||Vue — iuc Nove| + 2N |p. ol Vue — iuc Neve| + 2Ne|p, |1 — luc | Vue — iue Nove|,
|Ot|ue] < [Opue — iucNep.|,
[V|uel| < |Vue — iueNeve|.
Proof. The first estimate is obtained as follows,
lje — Neve| < (Ve — iue Neve, iug)| + Ne|1 — |uc|?||ve]
< Ve — iue Nove| + | Ve — iue Nove|[1 — |uc|?| 4+ Ne|ve| |1 — Jue ],

while the estimates on V. and ‘N/'E’Q similarly follow the definitions. The estimate on p. is a direct consequence
of the representation p. = curl (Vue,iuc) = 2(Vau,,iViue). Finally noting that

. U, LU 2
|0ste — iucNep, |* = |0|ucl|® + Juc|?|0y— —i— N.p. | ,
|t | e |
the result on 0;|u.| follows, and the result on V|uc| is obtained similarly. O
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4.3 Divergence of the modulated stress-energy tensor

In the following lemma we explicitly compute the divergence of the modulated stress-energy tensor: as
already mentioned, it will be crucial in the sequel in order to replace some linear terms in the error by
quadratic ones (cf. Step 3 of the proof of Lemma 4.4 below).

Lemma 4.3. Letu. : [0,T)xR? — C be a solution of (1.5) as in Proposition 2.2, and let v, : [0,T)xR?* — R?
be as in Assumption B. Then, defining by (div S, Vi ==, 01(Se)w the divergence of the 2-tensor S, where
(5.)w denotes the (k,1)-component of S., we have

div S. = a\.a <8tu5 — U NeP, p Ve — iusNgv5> — apg(NEVEL—Hog e|F/2) + aN.(N.v, —jE)Lcurl Ve

6|log5\f/€ 0t aNE(Nng —je)(div ve +Vh v =Acap, ,) — %(1 — |u )V f
- th(|Vu5 e Neve P+ L (1= ue?)? 4+ (1 — [ue|?)(N2Jve|? + f)) + aAAN.[log e|vedi(1 — |ue|?)
2 aX:p 2 a 1 2
+ a)\eaNEvngyg(l — Jue|?) + 5 Nc|loge|p, ,V|uc|” + §N5|10g5\(F - Vue|*) ve

Proof. A direct computation yields, for the stress-energy tensor,

L1 = Jul?) + VA Vu. + fu5>

div S, =a <Vug, Aug +
= SVA(IVue + S0 = Jue)? + (L= fue2)f) = S0 = w2V (4.14)

On the other hand, the modulated stress-energy tensor may be decomposed as

Sg =85. —aN.v.®j. —aN.je ® v, —|—aN82vE® Ve —

(N6|VE|2 - 2Va'js)7
which, combined with (4.14), yields

a,

div S. :a<VuE,Au6 — (1 — |ug] )+Vh~VuE+qu>
a
- th(WuEP 50— 2?4+ (1= uc)f) = 50— |uc) v f
1
_aN. (jEVh Ve 4 VeVh- o = NeveVh ve +5 Nefve [PV = va-jEVh)
—aNgj. div ve —aN (ve- V)je — aNevdiv jo — aN:(je - V) ve —|—aNE2vEdiv Ve —|—aNE2(V€~ V) ve
- aNEQ Z Vel vve,l +aN, sz,l vjs,l + alN, Zja,lvve,l;
1 1 1

where we denote by v.; and j.; the [-th component of the vector fields v. and j., respectively. Noting that
(F-V)G -3, VG, = F*curl G, and using equation (1.5) for u., this becomes

div S. = a). ((a + iB|loge|)dyue, Vu.) — a|log5|<Vus,iFJ‘ -Vue) — al|logelgje
— SA(IVuel? + N2|vel? = 2Novee o + 55 (1= uel)? + (1 = Jucf) )
— 7(1 — |uc|*)Vf — aN. (]EVh Ve —|—vth - je — NeveVh -VE)

2
+ aNE( — Vjug + (Nove —jE)Lcurl ve —vediv je + (Nove —je) div ve ) (4.15)
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Using identity (4.9), the first right-hand side term above may be rewritten as

e ((a + i8|log g|)Dpue, Vue)
= Aev <8tu5 — iU Nep, ,, Ve — iu5N5v6> + N A.av  (Orue, tue)

Ae
+ NoAcap, , je — N2\ alu.|? De Ve +76|log e|Ve

1
= Aea (Qyue — uNep, ,, Ve — iueNove) + Neve(div jio + j - V) + 5J\f5|1ogg|(FL Vue|?) ve

Ap
2

A
+ Nclloge|vedy(1 — |ucl®) + NoAcap, , je — NZAeatue|*p, ,ve —&—%ﬁﬂoga\Vg.

Inserting this into (4.15), recombining [Vu.|* + N2|vc|* = 2Nove- jo = [Vue —iuNove|* + N2 (1= |uc?)|ve|?,
noting that (Vu.,iF* - Vu.) = —Fu./2, and using (4.11) to transform V. into VL ,, we obtain

div S. = a\.a <0tu5 — U Nep, p Ve — iu€N5v5> + aN.ve(div j. 4+ jo - Vh)

a .
+ §Ns\log6|(FJ‘ Vlue|*) ve +ar.fN.|loge[v 0y (1 — |uc|?) + AeaaN. De.pJe

ar:f
2

— SVA(IVue — i Nove 4 50— Jue)? + (1= fue (N2 v + 1))

ar:f ~
—aN2 ) alu.|? De,oVe +?€|10g5\\/;79 + N¢|loge| ps’QV|u€|2 — ape(NovE —|loge|F/2)

(1= |ue|®)Vf — aNe(je Vh -ve +v.Vh - j. — Nov.Vh -v.)

e

+ (INE((NEVE —jo)teurl v —vodiv j. 4+ (Nove —j2) div v ),

and the result follows after straightforward simplifications. O

4.4 Time-derivative of the modulated energy excess

In the present section, we prove the following decomposition of the time-derivative of the modulated
energy excess ﬁg@ r- As will be seen in Sections 6—7, mean-field limit results are then essentially reduced
to the estimation of the different terms in this decomposition. To simplify notation, it is stated here using
truncations centered at z = 0, but the translated result of course also holds for all z € R2.

Lemma 4.4. Let « >0, BE€R, and let h: R? - R, a:=e", F:R? = R?, f:R? = R satisfy (2.1)-(2.2).
Let u. : [0,T) x R? — C and v. : [0,T) x R? — R? be solutions of (1.5) and (3.1) as in Proposition 2.2 and
as in Assumption B, respectively. Let 0 < e < 1, o, R > 1, and let T, : [0,T) x R? — R2 be a given field
with ||T||y1.00 <¢ 1. Then, we have

a _ 7S 1% E D H d g n /
ODeor=1Igrt+ L rt 1, ntiorntlornt i ort,nt1lor+ IR
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where we have set

ISQ’R = — /XRVf‘EL . S.,
Boni= [ “5EVes (SABllogell + [logel (V40 - P4) — 2Nove),
1= = [ SR (logel(VHh - ) - 2Nv
I£Q7R = — /)\EaaXR|8tu5 — quNEpE,Q\2 — /)\saaXRI‘j‘ . <8tu€ — e Nepe 4y Ve — iusN€V5> ,
IE oR = aXRFJ‘ Vh<|Vu5 —iu Nove|? + 2 (1 — Jue|?)? — |10g€|ﬂ5),
and also

Ig{QVR = /aXRNE (f‘j‘ (Je — Neve) + (Orue — iusNEpE,g,iUE))(div Ve +ve - Vh = Aap, ),

Iag,Q,R = /G’XRNE(NEVeE _je) . (PE - f‘s)curl Ve +/>\aaaXR(Fe - FE)L : <atua - quNEpg,g7 Vue — quN€V€>

2
+ /aXR(fa —T) - (Neve —Hlog5|Fl/2)u5 + /aXRAEBNE\logE|(f5 — FE)l Ve 8t|u5|2,

+/%(f€— Ot V(1Y — i Nove P + 5 (1= [ue?) )—‘r/aXTR)\Eﬁﬂoggﬂ;;’g-(Fg—f‘e)L

- ) ) loge
coR = f/VXR.SE.I‘jf/aVXR. (<atu5*’LU5N5peyg,qu*ZU5N5V5>+| 5 ‘VJ‘)

and where the error I. t.o.r s estimated as follows, for all @ > 0, in the dissipative case, in the considered
regimes,

t
/ 1L o 1l St e(AZYPNZ + R(1 + A2[logel®) + Nelloge|(1+ A\ R%)) (€2 z)"/? < eR|loge|* (€2 )2,
0
(4.16)

or in the Gross-Pitaevskii case (GP),
L o.rl Sto eNEXp + Ne(EL )2V (b = pe )llne +eNZo” (€2 )12, (4.17)

Proof. We focus on the non-decaying setting, as the other case is similar. We split the proof into three steps,
first computing the time-derivative 0;&; , r, then deducing an expression for 0,D; , r, and finally introducing
the modulated stress-energy tensor to replace the linear terms by quadratic ones, which are better suited for
a Gronwall argument.

Step 1: time-derivative of the modulated energy. In this step, we prove the following identity :

. . aN?
Oi&eor = _/GVXR (Ogue, Ve — tue Neve) +/ 9 875((1 - |u€|2)('¢)€,97R - XR‘V5|2))

+ /NEaXR@tug,quﬂdiv Ve +ve Vh)

logel .

+/axR(NE(N€V5 —j) - Bve —Aea|Opue|? — Nove- Vi — v) (4.18)
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For that purpose, let us first compute the time-derivative of the modulated energy density

1 .
gat (XR|VuE —du.Neve|? + 272(1 —Jue|?)?+ (1 - |u5|2)(N521/18,Q,R + fXR)>

; , , ate
= xr(Vue —iuNeve, VOiue — iue N Opve —i0uc Neve) — X r{Opue, 6—2(1 — Jue|?))

1
+ 500 (1= [ue) (N24e o5 + FXR)). (4.19)
Note that the first term in the right-hand side may be rewritten as

(Vue — tue Neve, VOrue — tue NoOpve —i0pue Neve)
. ) . NZ o o N2 2
= (Vue, Vo) — NoOyve- je — Nover (Vue, i0sue) — Neve- (iug, Vouue) + 7|u8| O¢|ve|” + 7|v5\ Ot ue|

= div (Vue, Orue) — (Opue, Aue) — NoOpve: jo — Nover (Vue, i0pue)

— Neve (0pje — (i0pue, Vue)) + at(|u5|2\vg|2)
2

N:
= div (Vue, Orue) — (Opue, Aug) — Never Opje — Neje - Opve + - (|u5| \V€| ), (4.20)
where
div (Vue, Opue) = div (Opue, Vue — iu Neve) + div (Neve (Opue, iue))
= div (Osue, Vue — iue Neve) + Ne(Opue, due) div ve +Neve (0je — V). (4.21)

Combining (4.19), (4.20) and (4.21), the time-derivative of the energy density takes on the following guise,
after straightforward simplifications,

1 . a
50 (Xl Ve — i Nevel? + T~ Juel)” + (1= [us?) (N2 0.+ Sx))

= xr div (Opuie, Ve — iue Neve) + NeX r(Optie, tue) div ve —=Nexrve: Ve + Nexr(Neve —je) - Orve

— XR <atu67 Aue +

Al

1
57(1 - |Ue|2)> + iat((l — Jue|*) (N2te .k — NZXR|V]? + fXR))-

Integrating this identity in space yields

. a
815/ (XR|VUS 'LUENEV5|2 2X§ (11— E‘ ) +(1- |u8|2)(N521/)E,Q,R + .fXR))

= /GXR (Ne(atug,iu5> div v —=Never Ve + Ne(Neve —je) - Opve —<3tu€, Au, + agua (1 — Juel )>)
a 2 2 2 2 .
+ / §at((]~ - ‘us‘ )(Ng ws,g,R - Ng XR|V5‘ + fXR)) - /V(CLXR) ' <3tus7vus - ZuENEVE>'

Decomposing V(axr) = axgVh + aVxg, and using the equation (1.5) satisfied by wu. in the form

AUe

<8tuE,Au5 — (1= |uc|?) + Vh - Vu5> = <8tu5,)\€(oz + if|log e|)dyu. — illoge|FL - Vu, — fu5>

|10g€|

= \a|du|* + —=—F+ .V, — f8t|u,5|2

the result (4.18) follows after straightforward simplifications.
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Step 2: time-derivative of the modulated energy excess. In this step, we prove the following identity:

0De,o,n = / Ve (loge|(VEh — F1) — 2Nev.) + / axrNe(Neve —je) - Tecurl v

- /)\EaaXR|8tu€ - iuaNEpm,\2 + /aXRN€<8tuE — iu:Nep,,iue)(div ve +v.- VA — Acap,)

logel e,
)
2

+ /aXRNg(Nng —Je) - V(Pe = Pep) — /aVXR . <<8tu5 — U Nep, p Ve — iue Neve) +

. an?
= [ aNZo.(1 = fuel?) (v Vi + xrlaiv v+ v TB) + [ TEB((1 = ) (e~ xrlvel?)

alN¢|loge N,
/E|g‘|at(1|u5|2)(vj.vXR+/\ef}XRpgg XRVe- (th FL g e ve))

2 [log ¢|
aN¢|loge| i N " N,

- — V(1 — h—2F——2 . (4.22

/ 5 P, V(1= [ucl?) - (V XPH'XR(V |1og5| ) (4.22)

Noting that by identity (4.8) we have

|log5|/axpﬁt,uE = |log;5\/aXR(:uerE = f\logs|/aXRVE~VJ‘hf |10g6\/aVE-VJ‘XR,

it is immediate to deduce from (4.18) the following identity for the time-derivative of the modulated energy
excess,

8t e.0.R = / |10g€|(VLh FJ‘) —2N.ve) + /aNEXR@tuE,qu}(div Ve +ve-Vh)

. aN?
+ /GXRNE(NEVE —Je) - Opve —/)\aaaXthua‘Q +/ D) 8,5((1 - |u5|2)(w87Q7R - XR|VE|2))

Vj) . (4.23)

1
— /aVXR . ((&uE,VUE —duc Neve) + | O§€|

Now using equation (3.1) for the time evolution of v, and an integration by parts, we find
[ axaN. Vv =)o,
= /aXRNe(NeVE —Je) - Tecurl ve 4+ / axrNe(Neve —je) - Vp,
= /aXRNa(NEVE —Je) - Pecurl ve +/axRNE(Neva —Je) - V(Pe = Peg)

- /aXRNEpg,Q(NE div v, —div j¢) — /CLXRNapaQ Vh - (Neve —je) — /aNEpeygVXR - (Neve —Je).
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Combining this with identity (4.9) yields
/aXRNE(NEVs _js) < Orve

= /aXRNE(NEVE —Je) - Tecurl v, +/aXRNe(NaV5 —Je) - V(P — Pe g)

- /GXRNEPM; Vh - (NEVE _js) - /aNEp&g VXr - (NEVE _js)

— /axRngs,g (NE div ve +je - Vh — Aea(Orue, tue) + |10g8|FJ‘ Vlue|? - %&\%\2)
= / axrN:(Neve —je) - Tecurl ve + / aXrNe(Neve —je) - V(pe = Do p) — / axrNZ p. o(div ve +ve- Vh)
— [ aNep.  Txn Voo =)+ [ axadin, (Ao ing - PEL P w4 2O g ).
Inserting this into (4.23), we then find

0,D. oR= / |log5|(vi—h F+) - 2N, VE) /aXRNE@tus,qu)(div Ve +ve- VR4 Acap, ,)

- /aXRNs Pe g(div Ve +ve: Vh) + /QXRNs(NsVs —Je) - Tecurl v, +/G’XRNE(NEV5 —Je) - V(pe _ps,g)

aNf 2 2 aXR 2 _ il 2
+ at((l — Jue| )(d’e,g,R — XR|Ve] )) + TN6|10g5|ps,g(>‘sﬂat|ue| — F~ - Vl]ue| )

IOgE\

- /)\504(10(1%|(Q)tu€‘2 - /aVXR : (<atu5a Vue — Z.USNEVE> + VL + Nepe Q(N Ve ]6)) (424)

Using identity (4.11) to transform V. into 17579, the first right-hand side term may be rewritten as
/ XEy (lloge|(VEh — FL) — 2N.v.)
a
. / XE (74 Novedh(1 = [uel?) + Nop. ,V]ue|?) - (flog el (VEh — F1) — 2N,v,),

while the last right-hand side term of (4.24) becomes

Ilog |

/aVXR. <<8tu5,Vu5 —tueNeve) + V24 4+ Nop, o(Neve jg))

= /aVXR . ((&ue — U Nep, p Ve — iue Nove) + N2 Pe Vel — |uc|?)

log e N_lloge N.|loge
N g |vL E‘Qg |vjat(1f|us|2)+%ps,gvllusl2)~

Further decomposing

|(9tua|2 = |Opue — iueNEpE,g\2 + 2N.p (O — quNEp&Q,qu} + Z\f‘f\pad2 -1 - \uE\Q)N82|pE7g|2,
<6tu5,iu5> = <atu5 - iUstpg,g7iUe> + |Ue|2N€pe,97

the result (4.22) easily follows after straightforward simplifications.
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Step 3: conclusion. In the right-hand side of (4.22), the term [ axpNz(Neve —je) - Tecurl v, is linear
in N.v. —j, preventing a direct Gronwall argument. As already explained, just as in [82], the idea is to
replace this bad term by others involving the modulated stress-energy tensor S., which is indeed a nicer
quadratic quantity. For that purpose, let us integrate the result of Lemma 4.3 in space against yzI's, where
[e:[0,T) — WE(R9) is a given field (we would like to simply choose T'. = I, but as we will see a suitable
perturbation of it is needed), and obtain

/XRfé' div S, = /)\Eaang‘j‘ . <8tu5 — e NeDe 4y Ve — iugN€V5> —/aXRf‘g - (Ncve +]|log 5|FJ‘/2),uE
+ [ axaNe(Wov ~jo) - Tecurl v+ [ A6 logell™d - Ve + [ AB5EN.Jlogel e, T2 - Ve

+ /aXRNEI_‘j “(Neve —je)(div ve +Vh -ve =Acap, ,) + /aXR)\EﬁNEHogd@t(l — |uc|?)(TL ve)

— [ B0 h (Ve — Voo + 5 (1 fu?)? <1—|u5|2><N3|va|2+f>)—/“’§R<1—| T f

_ a —
+/A€aaXRN§p€,Q(1— lue|2) (T -v5)+/§1va|1ogs|uvL Y |ue ) (DL ve).

In this last right-hand side, the term [ axpN:(Nove —je) - I'.curl v, exactly corresponds to the bad term
in the right-hand side of (4.22). Replacing it by this new expression involving the modulated stress-energy
tensor, and treating as errors all the terms involving the difference I'. — I'., we find

3
ODe pr = ZT]R +1 gt 1, R —/XRVfé‘ 0 S — / AcaaxrlZT - (Opu. — iueNep, o Ve — iuNeve)

a ‘
/ﬁlﬂ‘ Vh |Vu5 itue Nove|? Jr (17 |uc|?) ) f/AgaaXthus—zusNEpagF

a ~
+ /aXRI‘E - (N.ve +|loge| F*/2) e + / %VM (=AeBllogeTE + [loge|(VER — FL) — 2N.v.)

+ /aXRNE(@tuE — iU Nep, ,, 1) + f‘j‘ - (Je — NEVE))(diV Ve +ve: Vh = Acap, ,),

where I o.r and I, are given as in the statement, and where we have set
TEO,Q’R ::/aXRNE(NEVE —Jje) - V(pe _p5,9)7

a :
T! , & ::/ >;R(l — |ue|P)(N2|vo|* + f)TL - Vh — /aN2pE o(L = |ue®)(ve: Vg + Xr(div ve 4 ve- Vh))

# [ Gl 91 = [ XanaNZp 1 )T

aN.|log e - N,
T2, 5= —/%pwva — Jue?) - (vix,?, +XR(VLh_ 2F+ — AT —2|10g€|v5)>

a _
+ [ BN Jlogel (P V(1= fuc )T v,

aNc|loge N,
12, = [ NEEL0 = ) (VT4 b, v (T4 - P - 20T 2 ) )

N2
+ / OV 0 (1 = Juel?) (e g — xrlvel?)).
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It remains to estimate these four error terms 77, p, 0 < i < 3. First consider the term T7, . In the

dissipative case we take o = oo, and T? co.r = 0. In the Gross-Pitaevskii case, using the pointwise estimate
of Lemma 4.2 for j. — N.v., and using Assumptlon B(b), with in particular

V(L =Pl )z are S IVPLI2 aree + 07 IPE pllz Are St 1,

we find

| e,0, rl St Nel|Vue —du:N. VsHLz(BZR)(HV(PE pe,g)”Lz + 11— |u€|2||L2(BzR))
+ N2|1 = [uclP 2y IV (Pe = Pe o) 12
St 8]\75‘5';:1% + (1 +eN)N (&2 )1/2||V(p5 pa,g)HL"’-

Second, using (2.1)—(2.2), Assumption B, and the assumption ||| <; 1, we obtain in the dissipative case
T2 grl St e(AV2NZ + R(1+ MJlogel)) (€2,2)"%,
or in the Gross-Pitaevskii case,
T2 o 1l St (N2 + A2llogel?) (€2 5) /2.

Integrating by parts, T2 -o.r bakes the form

N, \log€|
12,5 =— [ SRS )

_ _ N.
x div (apE’QVLXR +axrF*(TF ~v2) + ap. ,xr (th —9Ft — \BTL -2 |logs|v6))’

and hence, again using (2.1)—(2.2), Assumption B, and the bound ||T'c|[y1.. < 1, we obtain, for all > 0, in
the dissipative case, in the considered regimes,

172 o rllLy Se.o eN[logel(1+ AR%)(EXR)Y?,
or in the Gross-Pitaevskii case,
72,5 1l Sto eNelloge|(1+ A-0”) (€2 p)"/? < eNZo*(E2 )2,

Finally, we observe that the choice (4.3) of ¥, , g exactly yields

aN2 aN2
TE?)»Q,R = / B =(1- |u5| )at(¢e,g,R - XR|V€|2) = / 2 =(1— |u€| )(atz/’e,g,R —2XR Ve Ove),

and hence, using (4.4)—(4.5) and Assumption B, in the dissipative case, we find

log |
N,

172, mlls S eN2(1+ 250 ) (E2,0)1/2 S Ncflogel (€2 2)/2,

€

or in the Gross-Pitaevskii case,
0
| €0, R| 5N529 (5;,1%)1/2-

The estimate (4.16) now follows from the above with I , =T, g + T} , g + T2 , g + T2, &- O
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5 Vortex analysis

In this section, we first recall and revisit some standard tools for vortex analysis, which are needed in
order to control the various terms appearing in the decomposition in Lemma 4.4. They will only be used in
the dissipative case, so we may restrict to the situation when N, < [loge]|.

5.1 Ball construction lower bounds

We need a version of the ball construction lower bounds a la Jerrard-Sandier [72, 52] which is localizable
in order to be adapted both to the weighted case and to the setting of the infinite plane with no finite energy
control (hence no a priori finiteness assumption on the number of vortices), and which further yields very
small errors (we need an error of order o(NZ2), which gets very small when N. diverges slowly). For that
purpose we use the version developed in 75|, which in particular allows to cover the plane with balls centered
at the points of the lattice RZ2, make the standard ball construction in each ball of the covering, assemble
all the constructed balls, and then discard some balls from the collection so as to make it disjoint again. The
error in the lower bounds given by this ball construction is essentially N.|logr|, where r is the total radius
of the balls, so that we need to take r large enough (almost as large as O(1) when N, diverges slowly), but
here the pinning weight adds again a difficulty since it may vary significantly over the size of the balls of this
construction, thus perturbing the lower bound itself.

The following preliminary result describes the precise contribution of the vortices to the energy, and in
particular defines the vortex “locations”.

Lemma 5.1 (Localized lower bound). Let h : R?2 — R, a := e, with 1 < a < 1, let u. : R? — C,

~

ve : R?2 = R?, with |jeurl ve|2npe S 1. Let 0 < e < 1,1 < N, < |loge|, R > 1, and assume that
log&l p < [loge|. Then, for some 7 ~ 1, for all ¢ > 0 small enough, and all r € (51/2,7’), there exists a
locally finite union of disjoint closed balls BL p = L+Jj Bi, BI .= B(yj,rj), monotone in 1, covering the sgt
{z : |ue(z)| < 1/2}, such that Zj:yjeBR(z) r; <r for all z € RZ?, and such that, letting d; := deg(u.,0B7)

and v p =27 Zj d;jéy;, the following hold,
(i) Localized lower bound: for all ¢ € W1>°(R?) with ¢ > 0, we have for all j

1

. a *
3 [ o190 = i Novel? + 5250~ w2 )?) 2 ()l (/) — Ol ) 9~
Bi €

5*
_ 2772 _ &R -
o(erE +d;10g (2 + “Ogg'))nqsnL . (51

and similarly, for all p € W (R?) supported in a ball of radius R,

1 . 2 a 212 log(r/e) r "
- - —(1— > ov /e — -
2 /;.R¢<|Vu€ fue Neve|” + 252(1 |uel®) ) =T, Pl gl = O(rEE R)IIVOIL

& &
- 2 AT2 e,R e,R -
O(r NZ + (NE + “Og€|) log (2+ |10g€|)>||¢||L ; (5.2)

(ii) Number of vortices:

g*
Sup/ VLRl S Ne+ = (5.3)
z JBR(z) |log €]
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(111) Jacobian estimate: for all vy € [0,1],

r ~ <y (N g:vR 7/25* 2
sup [V g — fiell (2 (Br(z))s ST et +e€ er T €
> log <]

Proof. Step 1: proof of (i)—(ii). We use the notation 5:7R = sup, fBR(Z) €., with

N =

€e = %\Vug —iuNove|? + Cilmsl; (1 — Jue|?)?, Omin := ir;f a(x) >
Note that by assumption we have in particular E:'E* rR<ER < e1/5. We may apply [75, Proposition 2.1] with
Q. = R? A, = N.v., with ¢ replaced by £/\/amm, and with open cover (Uy)a = (Br(2)).crzz (note that
the argument in [75] indeed works identically on the whole space, and that the energy bound is only needed
uniformly on all elements of the open cover). For some gy, Co,7 ~ 1, for all € < gy and all r € (¢'/2,7), we
obtain a locally finite collection B. p of disjoint closed balls covering the set {x : |u-(x)| < 1/2}, such that
for all B € B[  we have

/B (ég + N752|curl V5|2) > 7r\dB|(10g é — Co>,

where we have set dp := deg(u.,dB), and where Cp is defined as in [75, equation (2.4)]. Moreover, the
construction in [75] ensures that the collection BL 5 is monotone in 7, and that Br(z) N B[ g has total radius
bounded by r for all z € RZ?. By [75, Lemma 2.1], we have Cp < 16[loge| '€ < |loge|~1€Z 4, so that
the above becomes, for all B € BQ I

N? &
/ (és + 7€|curl VE|2) > 7r|dp|log(r/e) — |dB|O(log (2 + =k )) (5.4)
B

flog <]

Let r € (¢'/2,7) be fixed, and set Bl p =W, Bi, BY := B(yj;,r;), with corresponding degrees d; := dp;.
Noting that by assumption we have

/ jeurl v [? < [BI] < 12,
BJ

the result (5.4) takes the following form, for all j,

~ ) . ) g:,R N 2 AT2
é. > m|d;|log(r/e) — |d;|O| log (2 + O(ryN?). (5.5)
Bi |log |
Using the assumption log £ p < [loge| and the choice r > €'/2 the above right-hand side is bounded from
below by Z|d;l|loge|(1 —o(1)) — O(r;NZ), and hence, summing over B/ € B  with y; € Br(z), we find for
all € > 0 small enough,

Qo ~ *
Fhosel 30 4yl < [ EHONE) 3w S EnarNE,
J:y; €BR(2) Bri1(2)0B; p J:y; €EBR(2)
and hence, with the choice N < |loge| and r < 1,
8*
dj| S N =& 5.6
Z | ]‘ ~ € + |10g€| ) ( )

Jy; €BR(2)
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that is, item (ii). Let us now prove item (i). Let ¢ € WH>*(R?), ¢ > 0. For all BY € B 1, we have from (5.5)

[ otz o) [ e-nivels | e

&
> w0010 10g(/¢) ~ 0014510 1o (2+

llo g5|)) 7¢(yj)0(r12'N62)*Tj”V@ﬁ”LOO/Vés,

Bi

hence
~ 2 T2 g *
[ i = motuplas os(r/e) = 0 (72N2 4 1l (24 122 ) ol = Olryé2 Vol
Bi |lo g el

Further assuming that ¢ is supported in Bg(z) for some z € RZ?, summing the above with respect to j with
Yy;j € Br, setting v p := 2w Zj djdy,, and using (5.6), we find

_ _ log(r/e) - 2 Ar2 E R ER x
> v /e — ) ) o — .
[ o2 0T ot =002 4 (Nt el Yiog (24 of) Yol — 002 ) Vsl

Ttem (ii) then follows by definition of €. with amin < a.

Step 2: proof of (#i). Using item (i) and arguing just as in [82, item (5) of Proposition 4.4], for v € [0, 1],
we obtain for all 7 € (¢'/2,7) and all ¢ € CJ(R?) supported in Bg(z) for some z € RZ?,

[t

WS loller D ldyl

J:yj€BR(z)
) 1—l|u 2\2
+ E’Y/QH(bHCW / (\Vu8 —iuNove|? + % + No|1 — |uc|?||curl v5|)
Br
< w( )|¢|m (57/26;,% +52W2N§/ |curl v€|2>||¢>m, (5.7)
| el Br
and the result follows from the assumption ||curl v¢l|r2 < 1. O

In Section 6 below, strong estimates are proved on the modulated energy excess D p, but these estimates
involve the modulated energy &  itself. In order to buckle the argument, it is thus crucial to independently
find an optimal control on &7 , or equivalently on the number of vortices. Note that in the case without
pinning and forcing no cut-off is needed and this difficulty is absent (the excess is then indeed simply defined
by D. = & — mNc[loge|, cf. [82]). This control of £ 5 is the main content of the following result, and
allows to further refine the conclusions of Lemma 5.1 above. Particular attention is needed in the regime
N. < log|loge| to ensure an error as small as o(N2) in the lower bound. Various useful corollaries are further
included. In particular, item (vi) gives an optimal control of the energy inside the balls, measured in LP for
any p < 2; and since this result in LP is already enough for our purposes, it is not necessary here to adapt
the more precise Lorentz estimates of [83, Corollary 1.2] to the present weighted context, and we instead use
a more direct argument adapted from [86].

Proposition 5.2 (Refined lower bound). Let h : R? — R, a :=e", with 1 < a <1 and |Vh|L~ S 1, let
ue : R?2 — C, ve : R?2 — R2, with ||curl vl e, [VellLe S 1. Let0<e <1, 1< NE < |logel, and R > 1
with [loge| S R S [loge|™ for some n > 1, and assume that D g NZ2. Then &X r S Nellogel holds for all
€ > 0 small enough.

Moreover, for some 7 ~ 1, for all € > 0 small enough and all r € (51/2,77), there ezists a locally finite

union of disjoint closed balls BL p, monotone in r and covering the set {z : |u.(x)| < 1/2}, and for all
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ro € (€2,F) and r > 1o there exists a locally finite union of disjoint closed balls BQURT, monotone in r

and covering the set {z : |[uc(z)] — 1| > |loge|™"}, such that B’ C Bgf’go, such that for all z € RZ?
the sum of the radii of the balls of the collection B p centered at pomts of Br(z) is bounded by r and the

sum of the radii of the balls of the collection BZORT centered at points of Br(z) is bounded by Cr, and such
that, letting BL p = ¥, B/, B’ = B(y;,s;), dj = deg(u.,0B7), and defining the point-vortex measure
Vg = QWZ d; 0y, , the following properties hold,

(i) Lower bound: in the regime N. > log [loge|, for e °We) < r < N.|loge|~t, we have for all z € R?,

1 . . loge -
3 [ (Ve —iweNon 50— ) 2 BB fanilur gl o), G9)
&, R

while in the regime 1 < N. < log|loge| we have for all e °Ne) < r < 1 and all 7o < 7 with
el/?2 < ry < N.|loge|™t, for all z € R?,

1

loge
5 [ (Vi = i+ 50— ) 2 P [, o2 (59
B; i

(i) Number of vortices: for e'/? <r <1,
Sup/ Vgl < N, (5.10)

and moreover in the regime 1 < N, < |log €|1/2 the measure V. R 1s nonnegative for all e—o(DN: " loge| <
r<T;
(i4) Jacobian estimate: for e'/? < r < 1, for all v € [0, 1],
sup V2 g = ficll(c2 (Ba(e)))- S 77N+ N.|logel, (5.11)
z

sup e = ficll (02 (Br () S €7 Nelloge|™ (5.12)
hence in particular, for all v € (0,1],
sup licll(ca(Brez)) = Ne, sup el (ca(Brez)))s = Ne; (5.13)
(iv) Excess energy estimate: for all ¢ € W1>°(R?) supported in a ball of radius R,
[ 6(Vue — tweNove Pt 250~ ) — ogelic) $ (DL + oND)olhwne (514
(v) Energy outside small balls: in the regime N. > log |loge|, we have for all e °WNe) < r < 7,

sup/ X§<|Vus —iu.Nove|? + %(1 — |us|2)2) <D p+ o(N?), (5.15)
RQ\B;R 13

z

while in the regime 1 < N, < log |loge| we have for all r > e °We) and all ro < r with e'/? < ry <

N:|loge|™t,

sup/ i <|Vu8 — iu.Nov,|? + (1 — Jue?) ) <D p+ o(N?); (5.16)
R2\B°;"

z

o1



(vi) LP-estimate inside small balls: in the regime N. > log|loge|, we have for all €'/ < r < 7, for all
1<p<?2,

- / il Ve — itz Nove P < (DX + o(N2)P/2, (5.17)
,R

z

while in the regime 1 <€ N. <

~

N:|loge|™t, forall1 <p <2,

log [loge| we have for all v > €'/2 and all 7o < r with €'/? < ry <

sup / L XRl Ve — iueNevel” S, (D2 g + o(N2)"2. (5.18)
o

z
£, R

Proof. We split the proof into nine steps. The main work consists in checking that the assumptions imply
the optimal bound on the energy & p < N|loge|. The conclusion is obtained in Step 5 for the regime
N, 2 log |loge|, but only in Step 8 for the complementary regime. The various other conclusions are then

~

deduced in Step 9.

Step 1: rough a priori estimate on the energy. In this step, we prove &7 5 < R?|loge|?, and hence by the
choice of R we deduce & p < |loge|™ for some m > 4. Decomposing p. = Nccurl v¢ +curl (j. — Ncv.), the
assumption D} < N2 yields for all 2z € R?,

llog |
rR<DIp+

/axf{us < N2+ N, |10g6|/aXR|cur1 v€|—|—|log5|/|V (ax®)||je — Nevel.  (5.19)

Using the pointwise estimate of Lemma 4.2 for j. — N.v., using |V(ax3)| < 1p,,(2), llcurl vl $ 1, and
[IvellLe S 1, we obtain

9 N9 1/2 . 9 1/2
nShogeP +llogel ([ (1 —fw)?) ([ IVu - iuNove?)
Bar(2) B2 (2)

1/2
+ R|log€\(/ |Vue — iusNEv€|2) + RNE|log8|(/
Bar(z) B

< [loge|? + eflogel&Z i + Rlloge|(£5 5)"/2.

(1 - fue?) "

2r(2)

Taking the supremum over z, and absorbing £  into the left-hand side, the result follows.

Step 2: applying Lemma 5.1. The result of Step 1 yields in particular log £ p < [log |, which allows to
apply Lemma 5.1. For fixed r € ('/2,7), let BL p =4; B’ denote the union of disjoint closed balls given by

Lemma 5.1, and let v  denote the associated point-vortex measure. Using Lemma 5.1(ii) in the form

S*R
[Vl gl = dj| < = (5.20)
/BM )

o
v, €Ba(:) " gl

Lemma 5.1(i) gives, for all ¢ € W1>°(R?) with ¢ > 0, if ¢ is supported in a ball of radius R,

1
5/ 6 (IVue = iuNovel? + 555 (1 = [uc )

&, R

, ose

/ O pl — O(rE" )Vl

—0(r2N3+logr(s |1i;s|)+(N€ ) tog (2 1 2) Yol (520
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We now prove the following consequence of these bounds,

z

sup/ ax§(|Vu5 ite Nove|? —|— (1 — |uc|?) )
R2\BT

< D* * R e,R &R ) )
< DE,R+O<r6’57R+(|logr| +r|10g5\)( g |10g€|) n (NE+ “OgE') log (2+ |1Og€|) (5.22)

First, the lower bound (5.21) applied to ¢ = ax% is rewritten as follows,

1
5/ aXZR(|Vu6 iue Nove | + 5z 2(17 |uc|?) )
R2\B"

T,z * 2 g* g;R E:R
<T05+ O r€2p + N2 4 flogr| (Ve + =) 4 (N + =2 ) 1og (24 =) ),
’ |lo g€| |log | log €|

where we have set
1
T;‘; =g /ax§(|Vu€ —iu.Nov.|? + (1 — |ue)?)? = |log5|V;,R>.

If V. p was replaced by p. in this last expression, we would recognize the definition of the excess D: g,
and the result (5.22) would follow. Hence, in order to deduce (5.22), it only remains to check that for all
¢ € W1>°(R?) supported in a ball of radius R,

[ i = v2.0] (N + 2 ol -+ ofogel 6l (52

Using the result of Step 1 in the form 51/2\log5|€§R < 1, Lemma 5.1(iii) with v = 1 yields

| [ o0 = vz 0] & 7 (Ve Yl -+ ofogel ol

It remains to replace [i. by p. in this estimate. By definition (4.10), with [[v |~ < 1 and |V¢| <

~

15, ll@llw1.~, and using the result of Step 1 in the form e RN,|log E|(5;"R)1/2 = 0(1), we find

| [ ot —no| < v [ Vel - P
Bag(2)
1/2
SRNolwre( [ 1= lu?)

Bar(2)

S eRN.(E ) 2 (|9]wie = ol[loge| ™) ¢l (5.24)

and the result (5.23) follows.

Step 3: energy and number of vortices. In this step, we show that (5.20) is essentially an equality, in the
sense that for all €1/2 < r <« 1,

(5.25)

sup/xiaIVQRI SN+ \loeésl SN. +Sup/xlevr,
z

z

The lower bound already follows from (5.20). We now turn to the upper bound. Since the energy excess
satisfies D p < N2, we deduce from (5.23)

1 1 &
cr<D R+|og5\ |ogs|/ XRV ER+O<N +r\log€|(N + llog 5)) (5.26)
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Taking the supremum in 2, and absorbing & ; in the left-hand side with » < 1, the upper bound in (5.25)
follows.

Step 4: estimate on the negative part of the vorticity. In this step, we prove that for all e'/? < r < 1,
sup [ XVl < (14 (1)) sup [ L + O, (5.27)
z z

This result is used in Step 5 below in order to replace [ axjvl g (vesp. [axfue) by [ XzVL g (vesp. [ XFhhe),
which happens to be crucial if we want to avoid integrability assumptions on Vh, as we do here. The lower
bound (5.21) of Step 2 with ¢ = ax% yields for all y € R?, using the upper bound in (5.25) to replace the
energy & p in the error terms,

1 . ) loge
enzy [ axh(IVe - ineNo 5= ) = FE [l

E,R

5*
— O((|logr| + r|10g5|)<N€ + sup/x§|V;R|) + (NE + sup/x%\ugﬁo log (2 + long;)).

For e—°(°82) <y <« 1, using the result of Step 1 in the form log Er p < |logel, we obtain for all y € R?,

loge ‘s z T
20> T [ anpivz ol - oogelsup [ Xt ol - O(N-lioge, (529
z

On the other hand, the upper bound (5.26) yields

llog €|

EgR < /axzjzl/g,R + O(Nc|logel) + o(1)&Z g, (5.29)

and thus, taking the supremum over y and absorbing £ , in the left-hand side,

1 T
< llogel(1+ (1)) sup [ axlvZ gl + O(N.flogel),

so that (5.29) takes the form, for all y € R2,

10g€ z r
20 < B [ anor o+ OV logel) + ool b [ xilvZ ol

Combining this with (5.28), dividing both sides by %\log ¢|, and taking the supremum over y, we find
sup [ Xav2n)” < sup [ @il nl ~ o) < O + o(1)sup [ Xl
z z z

This implies

sup / XalvE gl = sup / g+ 2077 p)7) < sup / a4+ O(N2) + o(1) sup / A
z z z z

and the result (5.27) follows after absorbing the last term in the left-hand side.

Step 5: refined bound on the energy. In this step, we prove & p < (N: + log|loge|)[logel. By (5.20)
this implies in particular sup, [ x% |Vl z| < Ne + log[loge|. In the regime N, 2

~

log |log ¢, these bounds are
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already the optimal ones. The regime with a “small” number of vortices 1 < N, < log [loge]| is treated in
Steps 6-8 below. Let e'/2 < 1 < 1 to be suitably chosen later. Using (5.23), the bound on the energy excess
D: p S N2 yields for all z € RZ?

|1og €|

p < Dipt 5 [ axiue S N+ logel [ XlvEnl + r(N.floge] + &2 ),

and hence, using the result (5.27) of Step 4,
. *1r S Ne|loge| + |loge| sup/x‘lzgl/;R + TS;’R.
Using (5.23) again, and absorbing &£* g in the left-hand side with r <1, this takes the form
- r S Nelloge| + [loge] bup/ﬁ%ug. (5.30)
It remains to estimate f X5 te. Decomposing p. = N.curl v, +curl (jo — N.v.), using the pointwise estimate

of Lemma 4.2 for j. — Neve, using |Vxi| S R 'p,,0), [[VXEIL: S 1, [Jeurl v £ 1, |[vefu= < 1, and
using the result of Step 1 in the forms eR™'EZ , <1 and 8(5:,}%)1/2 < 1, we find

/X%Me = NE/Xﬁcurl Ve —/VLXZR - (je = Neve) SN+ / IVx%||Vue — iue Neve|.

Regarding the last mtegral we distinguish between the contributions inside and outside the balls B, , with
|VXR| SR 1]132}:{(2) <R™ X2R7 ||VXRHL2 S 1, and [Bag(z )QBQRJ N 2 )

/X%HE S Ne + /2\ |VX§%HVU5 - iu5N5V5| + Ril/ |Vu5 - Z.Usj\fsve|
R B;‘,R BQR( )ﬂB

1/2
<N+ (/ X5r|Vue — ’quNEV5|2> + rR_l(/
R2\B! B

Estimating the last right—hand side term by rR~1 (ES’R)UQ, using (5.22) to estimate the first, using the bound
on the energy excess D} p < N2, and noting that k1/210g'?(2 + k) < k holds for k> 1, we obtain

1/2
|Vu5—iu€NEVE|2) . (5.31)

2r(2)

/X@%SN%%ﬁkV”+”T%QMU”H”%Mﬁ%d+$RW2

E* 1/2 £* 1/2
+ ( - &R ) [log 7| +1og< .k )
[log e [log ¢|

(‘:* * 1/2
5NE+r1/2(N5|10g5\)1/2+r1/2(€ )1/2+o(1) +|logr|1/2< + =R )
|log el |loge
Combining this with (5.30) yields
NN +7“1/2N10g6 1/2+r1/25 12 4 (1) =8 +logr1/2(N+ E’R) ,
and hence,

*

<N+ |logr| + 7’1/2|log€|
H0g€|
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The result then follows from the choice r = |loge|~2.

Step 6: refined lower bound in the regime with a “small” number of vortices. In this step, we treat the
regime 1 < N, < log|loge|, for which the result of Step 5 is not optimal. More precisely, we consider the
whole regime 1 < N. < [loge| and we show the following: for all 79 € (¢'/2,7) and 7 > rg, there exists a
locally finite union of disjoint closed balls /% , monotone in , covering the set {z : ||u.(z)| —1| > [loge| '},
such that for all z the sum of the radii of the balls intersecting Br(z) is bounded by Cr, and such that for

all € > 0 small enough, and all ry < r satisfying
e'/? < ry < N2|loge| (N, + log [loge|) ™, eToW) < < 1, (5.32)

we have for all z € R?,

1 loge R \2
7/&,0, aX?%OVUE iueNe Va| + (1 —|u a| | = ‘/ 1)( o ) —O(Nf), (5.33)
50

2 log £
and similarly, for all B = B(yg,rg) € l’;’g“RT with degree dp,

1
5/3 <|VuE iueNove|? + (1—|ug| ) )

|log5\

op— Bn(Ne =)~ Cldaltog (

R
.34
[log €| )’ (5:34)

[log e

where the Ep’s satisfy sup, ZBeB:?;{mBR(z) |Eg| < 1. In the sequel, we focus on (5.33), while (5.34) is

proved similarly, based on Lemma 5.1(i) in the localized form (5.1) rather than in the form (5.2). We split
the proof into three further substeps.

Substep 6.1: enlarged balls. In this step, given some fixed ro € (51/ 2 7), we construct the enlarged
collections of balls BT” for » > rg. According to [74, Proposition 4.8], and using the energy estimate of
Step 5, we have

Hl({a: € Bg(2), ||ue(z)| — 1| > loge|™ 1}) < C’E\log5| ‘r < Ce|log5\4

where H! denotes the 1-dimensional Haussdorff measure. From [74, Section 4.4.1] and [75, Section 2.2], it
follows that we may cover the set {z : ||luc.(z)| — 1| > |loge|~!} by a locally finite union of disjoint closed
balls such that for all z the sum of the radii of the balls intersecting Br(z) is bounded by Ce|loge|*. We
then combine this collection of balls with the collection B[’%. Inductively merging as in [74, Lemma 4.1]

any two such balls that intersect into a ball with the same total radius, we obtain a new collection B;?R of
disjoint closed balls that cover the set {x : ||u:(x)] — 1] > |log &:|’1}7 and such that for all z the sum of the
radii of the balls intersecting Br(z) is bounded by rq + Celloge|® < Cry.

Let us now grow the balls of this new collection B » following Sandier’s ball construction, as described
e.g. in [74, Theorem 4.2]. This consists in growing snnultaneously all the balls keeping their centers fixed
and multiplying their radius by the same factor ¢. If some balls touch at some point during the growth, the
corresponding balls are merged into one larger ball containing the previous ones and of same total radius.
This construction ensures that the balls always remain disjoint. Stopping the growth process at some value
of the factor ¢, and setting r = trg, we denote by B;ORT the corresponding locally finite collection of disjoint
closed balls. By construction, for all z, the sum of the radii of the balls that intersect Br(z) is bounded by
Ct(ro + Celloge|®) < Cr. Note that by construction B.%, C Bro = BTO’TO but for r > 7 the collection Bro’
has a priori no clear relation with the collection B{ p
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Substep 6.2: preliminary estimate. According to [83, Lemma 3.2] (applied with ¢ = d and A = 1), we
have, for any S'-valued map v with degree d on a generic ball B, and for any vector field A : 0B — R?,

1 2 1 2
7/ |Vo — ivA|? + / |curl AJ? > _ L + f/ ‘V’U — A — ivd~ )
2 Jop 2 JoB r

where 7 denotes the unit tangent to the circle 0B. Applying it to v = \ZE| and A = N.v., and noting that
|Vu, — iuF|? = |uc|? |V|u5‘

following improved lower bound on annuli: if ||u.| — 1| < [loge|~! holds on 9B, then we have

+ |V]uc||? holds for any real-valued vector field F, we obtain the

1 1
7(1+0(\10g5|_1))/ |Vu5—iu€N5V5|2+fN€2/ |curl v |?
2 OB 2 B
d? d? 1 2
> T T4 5= Oogel ) [ |Vue — iuNov. —iued | (535)
r 2 2 9B T

Substep 6.3: proof of (5.33). Let rg > 0 be chosen as in (5.32). We start from Lemma 5.1(i) with
¢ = ax%, combined with the refined energy estimate of Step 5 and the choice of ry, which yields

1
5/ ax§(|VuE — qu. N, v5| —I— (1 — \u5| ) )
B%

log(ro/¢) - &R
> % [ izl = o) = (N + =

)1og (2+ ben ) (5.36)

[log <]

We next need to show that this lower bound for the energy is essentially maintained during the ball growth
and merging process, hence holds as well for the collections BZORr with r > rq.

Assume that some ball B = B(y, s) gets grown into B’ = B(y, ts) without merging, for some ¢ > 1, and
assume that B’ \ B does not intersect BE . s0 that [Juc| — 1] < [loge|~! holds on B’ \ B. Let d denote the
degree of B (hence of B'). Since by assumption we have

la(z)xz(x) — aly)xmW)] < x2W)la(x) — a(y)| + a(x)Ixk(x) — xE (W) < C(R™' + x&W) [z —yl, (5.37)

we may write

1 4 . a a(y) X7 .
7/ aXR<|vua - Zu’ENEVE|2 +53 (1- |Us|2)2> 2 W)X () / Vue — ZUENEVE|2
2 B’\B 2e 2 B’\B
—CR™! |- =yl[Vue — iu5N5V8|2 - CX?%(?J)/ |- —y[|Vue — anNaVa‘Q-
B/\B B\B

Using that |uc| < 1+ |loge|~! holds on B’\ B, the last right-hand side term above is estimated as follows,

/ ‘ ) _y”vus - iustVs|2
B\B
dr |2

dr |2 ) )
§2/ | -—y||u8|2‘7‘ +2/ |- —y ’Vue—ngevg — Uy ———
B/\B |- =yl B'\B |- =yl

< Cd%ts + 2ts /
B'\B

_dr
|- —yl

‘Vug — U NeVe —iU,
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where 7(z) = (x — y)*/|z — y| is the unit tangent to each circle centered at y, and we may then deduce

1 z

f/ ax§(|Vu5 iue Nove |2 + (1 — |ucl?) ) > w/ Ve — iueNove|?

2 /p\B 2 B'\B

d
T (5.39)
|- =yl
Again using that ||u.| — 1| < [loge|~! holds on B’\ B, the estimate (5.35) on the ball B(y, p) for p integrated
between s and ts takes the form

— CtsR™1 |Vue — iucNove|? — CdPtsxi(y) — Ctsxfz(y)/ ‘Vug — U N.ve —iu,
B\B B\B

1+ O(logel )3 [

1
s |Vue — iucNove|? > nd? logt — gdzts — iNgts/ |curl v.|?

’

11 . . dr |2
+ (1 —-0O(Jloge|™))= ‘Vug —du:Neve —iue——| . (5.40)
2 B'\B |- =yl

Combining this with (5.39), we are then led to

11 2 .
(14 Clloge| 1)5/ aXR(|VUa—WeNeVa|2 o 2(1—| ue|?) )

B/\B
2 2 2 1o 2 -1 . 2
> a(y)xr(y)md®logt — Cd*ts — —NZts |curl v¢|* — CtsR |Vue — iu Nove|
2 B’ B\B
dr 12
+ (M(l — Clloge|™") — Cts)xfz(y)/ ‘Vu‘E — due Neve —iugiT
2 B\B |- =yl
For ¢ small enough and ts < min{1, jc infa} =: 7 (note that by assumption 7 ~ 1), the last right-hand side
term is nonnegative, so that we conclude
—1 1 z
(1+Clogel ™5 [ axip(|Vue — iuNovel? + 55 (1 = [ucf?)?)
2 Jpn\B
> a(y)x%(y)nd* logt — Cd*ts — §N€2t5 |curl v.|* — CtsR™! |V — iue Nove|?
B’ B\B

> a(y)xy(y)rd* logt — Cts(d® + N2) — CtsR™'Er . (5.41)

If the ball B = B(y, s) belongs to the collection l’;’;?j{ for some r > 7, only a finite number of balls of
the collection B[’ are included in the ball B. Denote them by BJ = B(yj,sj), j = 1,..., k. By definition,
the degree d of B is then equal to d =}, d;, where d; denotes the degree of BJ. We may then write

a(y)Xi(y)d® > a Zd > Z a(y;)Xa(y;)d; —CZId 1y = Y511 By (=) ()
2 Z y] XR y] SZ |dj|IlB2R(Z) (yj)a
J

and hence, in terms of the point-vortex measure v_,
;

1 ' T
i) 2 5 [ oz =cs [ (5.42)
2R(Z
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Therefore, if the ball B = B(y, s) belongs to the collection BTO’T for some r > ry and gets grown without
merging into a ball B’ = B(y, ts) for some t > 1 with ts < 7, then combining (5.41) and (5.42) yields

1 » .
(14 Clloge| 1)5/ GXR(|VUE_'LU'5N6V£|2 2% 2(1_| E| ) )

B\B
> 18t [ e Cslo t/ |70 |—C’ts(N +/ |70 )2—C’tsR*1€*
=2 XRVe R g R e =R e, R»
2 B Bar(z) Bar(2)

and hence, using Lemma 5.1(ii), the inequality [logt| < ¢ for ¢ > 1, and the choice R 2 |loge],

1 a logt & 2
- z VE_'ENEEQ — (1= 622>>7/ z . To Ct (N )
Q/BI\BaXRQ e = i Nevef? o 575 (1= e ) 2 50 [ il - Cos(Ne 4 2

By construction of the ball growth and merging process, this easily implies the following: if a ball
B = B(yg, sp) belongs to the collection BZ"RT for some rg < r < 7, then we have

1 log(r/r . EXp\2
5/ - aXR(‘vue — iucNeve|* + % 2(1 — Jue|?) ) M/ aXZRVE:JR —Csp (Ne + =k ) .
B\B°, B

2 [log ¢|
Summing this estimate over all the balls B of the collection BT that intersect Bag(z), and recalling that

the sum of the radii of these balls is by construction bounded by Cr, we deduce for any ro <r <7,

1 ] 2 2

- i (19ue = fueNeve P+ 55 (1= fue)?) z—og(’"/m)/ax%vlla Cr(Ne+ =)

2 Jzro.r\ 5o 2 ’ |1 gEl
BE,R \BE,R

Combining this with (5.36), and recalling that by definition B ' C BEOR, we deduce

1
5/:7"0 s aXZR(|qu ZUEN VE| + (1_ ‘UE| ) )
Bs,é
log(r/e © &R \2 ER &R
> 7(2/ ) /axRV&R — CT(N + o €|> —o(NZ) — C(Na + \106g6|> log (2 + |108g€|>, (5.43)

and hence, using Lemma 5.1(ii) and the choice (5.32) of r,

1
i/wo, aXR(|Vu5 ite Nove |2 to2 (17\ ue|?) )

£ &g &
|10g€| / Xl — C’|log7“|< |log12\> - (IIOgIZI)2 —o(VS) - C(N " oge |) 10g< |1ogi|)

|1ogs| v EXR \2 2
XRV, aR 1)(|10g€|> O(Na)a

that is, (5.33).

Step 8: optimal bound on the energy. In this step, we prove 55 r S N:|loge|, thus completing the result
of Step 5 in all regimes. Note that by Step 3 this also implies sup, [ x%|v! R| < N.. By Step 5, it only
remains to consider the regime with a “small” number of vortices 1 < N. < log |log gl. Let 1o < r < 1 be

~
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fixed as in (5.32). On the one hand, using the estimate (5.23), we deduce from the result (5.33) of Step 7,

1
5/ i ax’f,z(|VuE iue Nove | + 52 2(1— luc|?) )
R2\B."

& & 2
< DZR+O<ro|log5|(N o g€|)> +o(1)<|10g’i|) + o(N?)

and hence, using the assumption D
of rg,

< N2, the suboptimal energy bound of Step 5, and the choice (5.32)

ERN

1

Er 2
- 2 (| Vue — iue Nove 1— |u. < N2 4 o(1)( =2 ). 5.44
Z/RQ\B%axRQ e = e N P+ 55 (1= fue)2) 5 82 + o() (=) (5.44)

On the other hand, combining the estimates (5.30) and (5.31) (with B{ p replaced by BZORT) of Step 5, we
find

. 1/2 s
> r S Nelloge| + [loge] (sup/ X Vue — zuENEvE|2) +r|loge|R 1(EE,R)l/Q.

Bro:r

Now inserting (5.44) yields
"R S Nelloge| + 0(1)€X g + loge| R (EX5) 2,

and thus, recalling the choice R 2 [loge|, and absorbing £ ; in the left-hand side, the result £ p < N¢|loge|
follows.

Step 9: conclusion. The optimal energy bound S;R < Nc|loge| is now proved. In the present step, we
check that the rest of the statements follow from this bound. We split the proof into seven further substeps.

Substep 9.1: proof of (i). The result (5.8) follows from (5.21) in Step 2 with ¢ = ax%, combined with the
optimal energy bound. Repeating the argument of Step 6 with the optimal energy bound rather than with
the suboptimal bound of Step 5, the choice (5.32) can be replaced by £'/? < 7y < N.|loge|~!. For such a
choice of 1y, and for r > 7y as in (5.32), the result (5.33) together with the optimal energy bound directly
implies the result (5.9) for a “small” number of vortices 1 < N. < log |loge].

Substep 9.2: proof of (ii). The bound (5.10) on the number of vortices follow from the result (5.25) of
Step 3 together with the optimal energy bound. It remains to prove that in the regime 1 < N. < |loge|'/?
for e=0(MN"logel < - < 7 each ball of the collection BZ p has a nonnegative degree. This is a refinement of

the result of Step 4. The lower bound (5.21) of Step 2 Wlth ¢ = ax% can be rewritten as follows, using the
optimal energy bound, for all z € R?,

- lloge]
poge| [ axi02n) =52 [ axillvial - vZn)

loge
<ERrR-— | § |/ax§u§7R+O<rNE|1oge| —1—7“2N€2 +N8|10g7“|> —l—o(Nf),

and hence, using (5.23) to replace v/ p by pi in the right-hand side, and using the assumption DZ p < < N2,
we find

|log ]| /X%(V‘;R)7 < Nf + rNc|loge| + Nc|logr|. (5.45)
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1/2

Dividing both sides by [log |, we deduce in the regime N. < [loge|*/2 with =DV logel <« N1,

sup/x%(ug,R)_ <1,
z

which means that for ¢ small enough there exists no single ball B7 € BQ r With negative degree d; < 0. This
proves the result for r < N7 1. Now for N1 < r < 7 the same property must hold, since, by monotonicity

of the collection B p with respect to r, for any 7 > r’ the degree of a ball B € BL r equals the sum of the
degrees of all the balls B' € B (r") with B’ C B.

Substep 9.3: proof of (v). In the regime N, > log [loge|, for e=°Ve) < r <« N.|loge| =, the result (5.15)
follows from (5.22) together with the optimal energy bound. Monotonicity of BL g With respect to r then
implies (5.15) for all 7 > e~°V<) in the regime N, > log [loge|. In the regime 1 < N, < log [loge|, it suffices
to argue as for (5.22) in Step 2, but with the lower bound (5.21) replaced by its refined version (5.33): for
ro < r with e1/2 < 7y < N.|loge|™" and e7°(Ve) < r < 1, the estimate (5.33) together with (5.23) indeed
yields

1 - . a
5/ - axR(|VuE —ducNove|* + 55 (1= |u8|2)2)
RE\BLY 2
1 1
< 7/ aXZR(\Vug—iugNEV€|2+i2(l—|u5|2 2 |og<€| / %VER-FO N2)
2 R2 2e
<DIgn +TON lloge| + o(N2) = DI g+ o(N?),

and the result (5.16) follows by monotonicity of B;DRT with respect to r.

Substep 9.4: proof of (iii). The Jacobian estimate (5.11) follows from Lemma 5.1(iii) together with the
optimal energy bound, and the estimate (5.12) with v = 1 similarly follows from (5.24). The result (5.12)
for all v € [0,1] then follows by interpolation (as e.g. in [53]) provided we also manage to prove, for all
¢ € L°(R?) supported in a ball Bg(z),

[ otne-

Let ¢ € L°(R?) be supported in Bg(z), for some z € RZ?. By definition (4.10), we find

(5.46)

/(;5(/15 — pe) = NE/QS (1- lue|?)curl v, +2(Vue — iue Nove, ue) vf;)
< N[l /B (11 = fuc?[lewr] ve| + 2[ve [T = Jue|?[|Vue — iucNeve | + 2|ve|[Vue — iucNeve ),
r(z
and hence we obtain with the optimal energy bound, with ||vc||pee, |curl vc|r2 < 1,
[ ol = 1) 5 (eNZloge| + RN-Jloge)
that is, (5.46).

Substep 9.5: proof of (iv) in the regime N, > log |loge|. We focus on the regime N, >> log [loge|. Let
e'/? <7 <1 to be later optimized as a function of . We write as before BL 5 = l¢J; B/, B/ = B(y;,r;), we
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denote by d; the degree of B/, and we set v p = 213", d;d,,. Given ¢ € WH>(R?) supported in the ball
Bg(z), we decompose

/2 <|VuE — juNove|? + (1 — |ue]?)? — \log5|y§7R)
R

/ (|VuE — juN, VE\ —|— (1 — Jucl?) )
R2\BT ,

+Z ‘ /BJ ‘V'Uzg ZUEN V€| + (1 — |u5| ) ) — 27T¢(yj)d]|10g€|

IN

IN

ol | x%(\We e Noval? 4 oo (1= [ )?)
RZ\B;R

. a
1ol S Xy / <|Vug i Nev? o (1 |u6|2)2) — 2nd,[log &
7 B c

+7’||V¢||Loc/ (|vufwszv vel’ + 55 (17\%\ )) (5.47)

BQR(Z)PIB; R
Combined with the optimal energy bound, the localized lower bound (5.1) in Lemma 5.1(i) with ¢ = 1 yields
for all 7,

1 . a
5/ , (\ws — e Nevel* + 55 (1 - |u5|2)2) > w|d;||loge| — O(r}NZ + |d;|[log 7| + |d;| log N.),
BJ

and hence

/B‘ (|qu — ueNove|? + 272(1 - |u€|2)2> — 2n|d;||log |

</ (|qu iveNovel? + 255 (1—|ug| ))—27r|dj||log6|—|—0(r]2»N62+|dj||logr|+|dj|logNE).
Bi

Noting that x%(y;) < x%(y) + O(R™r;)x5x(y;) holds for y € Br(z), using the optimal energy bound and
R 2 |logel|, we obtain

X=(Y;) 522

/ (|Vu5 —iuNove|? + —(1 — |u5|2)2) — 2m|d;|[loge]
Bi
. a 4
< [ (190 N 4 25 (1= fue)?) = 2l o]
Bi
+X3r ()0 (rjNe + 17 NZ + |dj|[log 7| + |d;| log Ne).
Inserting this into (5.47), and using the bound of item (ii) on the number of vortices, we find
/(;5<|VuE iueNove|? + (1— lue|?)? — |log5|V§7R>
. a ,
<lloh~ [ x§(|VusfwsNevg|2+@<1f|ue|2>2fuogsm,g)+0(1+r2N3+Ne|logr|+Ns tog N2) o]~

Vol [ (Ve — i Neve P 4 5550 = fuef?)?),

Bagr (Z)QB:‘R
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where the last term is estimated by r& p[|[V¢[lLe < rNe|loge|||V@[|Le, and where (5.23) can be used to
replace v p by g in both sides up to an error of order (rNc|loge| + 1)|¢[[w1.. In the present regime

N. > log [log ¢|, we may choose e °Ve) < r < N_|loge|~!, and the conclusion (5.14) follows for that choice.

Substep 9.6: proof of (iv) in the regime 1 < N, < log|loge|. We turn to the regime 1 < N, < log |loge],
in which case the proof needs to be adapted in the spirit of the computations in Step 7. Let ¢ € W1>°(IR?)
be supported in the ball Bg(z), and let e~eWlogel/Ne < 1y <« N_/|loge|. First arguing as in Substep 9.5
with this choice of g, we obtain

~

‘ a .
/ 0 ¢(|qu — iU Novel? + 555 (1= Juef?)? = 1og(r0/e)u€?R)
B

<l | 3190 = 0 Nove P 551 = ) = o(ro/ 22T + oV elwa. (5:45)
e, R

Now we consider the modified ball collection 5‘20}{ with » > rg, as constructed in Step 7.1. Assume that
some ball B = B(y,s) gets grown into B’ = B(y,ts) without merging, for some ¢ > 1, and assume that
B’ \ B does not intersect B;?R, so that by construction ||u.| — 1| < |loge|~! holds on B’ \ B. Let d denote
the degree of B (hence of B’). We may then decompose

1 . 2
‘2/3/\B¢(Vug —du Neve|® + 20 2(1 —|u | ) ) —7T¢(y)d10gt‘

< || llnee

1
,/ <|Vu5 iue Nove|? + o3 (1 — Juc)?) ) —ﬂdlogt’
2 /B
1 . 2 a 22

+Volg [ ,\B|-—y|(|ws e Nova? 4 oo (1= [ )?),
and hence, arguing as in (5.38),
1
‘2/ qb(\Vug iue Nove|? +tos (1 — |ucl?) ) —W(ﬁ(y)dlogt‘

B\B

< [[@llLe

1
7/ <|VuE iueNove|? + (1—| %) ) —ﬂdlogt‘
2 /B

dr 12
+ ts]| V|| (C’d2 +/ ’Vug — iuNove fiugiT +/ a2 (1 — |ucl?) > (5.49)
B'\B |- —yl B\B 4

Let us estimate the last right-hand side term of (5.49). Applying the lower bound (5.33) with e replaced
by 2¢ (with € < 1/2), together with the optimal energy bound, we obtain, for 7 > ro with e °Ve) < r < 1,

1 2 log(2¢)
|Og€| 7«0 g a R‘V |—0(N2) |0g 3 | /ax |I/ |_0 NQ)
1

2
< 7/ axi (Ve - iue (1- Iual2)2)
2 Jarys 2(25)2

. o gs\ 2
<D:rp+ Lhe 1652 o a2XR(1 — Jue|?)2.
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Using (5.23), the bound of item (ii) on the number of vortices, and the choice of o, we then find

3
16¢2

P N logs log 2 -
[ e P < D2t P Lo vz + 82 [ izl + o002)
&, R

2
< D;,R+0(N52) <NZ.

Combining this with the result (5.16) of item (v), we deduce the (suboptimal) estimate
XZ
sup [ M1 )P 5 N2 (550)
z Rd &
Injecting this result into (5.49), together with the bound of item (ii) on the number of vortices, we find

1
‘2/ (\Vug —uNeve|? + (1 — |uc]?) ) —7T¢(y)dlogt‘
B\B

< CtsN2| VL= + ||6]| L=

;/B/\B <|VuE —iuNove|* + 2152(1 — |u5|2)2) — Wdlogt’
dr |2
=l
Recalling the improved lower bound (5.40), and combining it with the bound of item (ii) on the number
of vortices, and with the assumption |curl v.||L~ < 1, we find for ts < 1,

+ ts]| V|| / ‘Vus — iue Neve —iu, (5.51)
B'\B

1+ O(logel )3 [

s (|Vu8 — iuNove|? —|— (1 — |ucl?) ) > mdlogt — CtsN?

a1 . . dr |2
+ (1 —O(Jloge|™)) = ‘Vua — U Nove — U ——
2 B/\B |- =yl

Injecting this estimate into (5.51) yields

1

)2/3/\B¢<Vus iusNove|* + % 2(1— ue|?) ) ng(y)dlogt‘

1 ) a
< C|lollwr.e (2/ (|Vu5 —du.Nove|? + 2—2(1 — |u5|2)2) — mdlog t)
B/\B 6
+ CtsN2ollwroe + Cllolwnoellogel ™ [ (Ve = iucNove P+ 5550 u)?).
B/\B
Arguing as in (5.42), together with the bound of item (ii) on the number of vortices, we find

2o (y )dlogt—logt/ pv%| < ||V¢||Looslogt/ V%] < C[[V@lLectsNe,

so that the above becomes

1 logt ro
‘2/3’\B¢(VUE e Nove|? —|— (1—| ue|?) ) _T/B/(WE’R

1 . a
< O |lwis (2 /B/\B (|Vu5 —iueNeve* + 55 (1 - |u5|2)2> — rdlog t)

_ ) a
+ CtSNEQHd)HWLoo + C||d]|w.o |log €] ! / <|Vu5 — ZUEN€V5|2 + 2—‘?2(1 — |u5|2)2).
B\B
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By construction of the ball growth and merging process, this easily implies the following: if a ball

B = B(yg, sg) belongs to the collection BTO = for some 7o < r < 1, then we have

; a IOg(T/’I"o T
‘ /B\gm (17 Nl + 51— ef?)?) = 2B [ guly
. a .
< C”‘ZS”WL‘X’ (/ ~ (|vus - ZUENEV6|2 + 272(1 — |U5|2)2) — IOg(T/’I‘O)/ VE,OR)
B\B;OR e B

+ CopN2dlhwn = + Clollwn~llogel ™ [ (190 = ineNove P+ 5751 = ucl?)?).

DN | =

Since by assumption ¢ is supported in Bgr(z), we may write ¢ = x%¢. Using that |x%(y) —x%(yp)| S spR™1
holds for all y € B, and recalling the choice R 2 [loge|, we then find

1 log(r /7o ro
)2/3\@ o (IVue = iuNove? + 555 (1 = Ju|)?) f#/BstE,R
1 log(r/r ,
(A R R R
B\ T?
s Ol ([ (19— Do+ 250 ) +logr/m) [ 1]

< Clolbwrs ([ (19 = tneNove 4 52500~ a)2) = tog(r/r0) [ it
B\B %

+CSBN€2||¢|W1,OQ+C||¢||W1,m|log5|_1</ <|Vu5—zuEN vel? + (1—|u€| ) )—i—log(r/ro)/B|u£?R|>.

Summing this estimate over all balls B of the collection BTO 5 that intersect Bg(z), recalling that the sum
of the radii of these balls is by construction bounded by C’r and using the optimal energy bound and the

bound of item (ii) on the number of vortices, we deduce

1 log(r/m -
T (T Rl IR

2
<C||¢||W1,m( Lo X190 = NPt 52 (0 [ )2)  log(r/ro) | x%v:f’R)
BTO»T 70R R2

PNl + Cllé e log ] (8;,23 thogel [ )
Bagr(z)
< ot ([ X1 N2+ 50— ) ~logtr/ro) [ Xt +o(2)).
B0\, w

8), and recalling that by definition B’ C B , we deduce

Combining this with (5.4

To

L , a log(r/e)
‘ /B 81 Ve — dueNevel? + 55 (1= fual?)?) - =552 / Pln

2
‘ a .
< Cl|p|lwr. (/BTO i X§(|Vu€ —iu.Nove|? + @(1 - ‘u5‘2)2) —log(r/e) /2 XarVlr + 0(N3)>.
R R
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Using (5.23) to replace /% by ue in both sides up to an error of order (roNc[loge| + 1)[|¢[lwr~ <
N2||¢||w1., the result (5.14) follows.

Substep 9.7: proof of (vi). We adapt an argument by Struwe [86] (see also [76, Proof of Lemma 4.7]).
Recalling that |Byg(z) N BL 5| < 77, a direct application of the Holder inequality yields

J

which only implies the result if we are allowed to choose the total radius r small enough. Otherwise, it is
useful to rather work on dyadic “annuli”. For all integer 0 < k < K, := |logy(r/e'/?)|, define the “annulus”

p/2
Xzl Vue — tuNeve P < r2_p(/ Xzl Vue — iuaNavg\Q) < 7“2_1’(N\€|1og5|)p/27

r r
R BE,R

Ey = B% "\ Br% "', We set for simplicity s, := r27*. Applying the Holder inequality separately on each
annulus yields
z . P z . 2 r/2 Ve |1—-p/2

X&|Vue — iusNev P < Xz Vue — iuNov| |Bar(z) N BaR\

BI g B
- 2 . 2\P/? 1-p/2

3 (| XalVue = iweNeve ) [ Bag(2) 0 B! 72

k=0 7 Ex

Using that |Bag(z) N Bg{g < e, that |Bagr(2) N Ey| < s%, and that the integral over ng in the right-hand
side is bounded by £Z p < Nc|logel, we deduce

J

It remains to estimate the last integrals. Using Lemma 5.1(i)—(ii) in the forms (5.2) and (5.3), together with
the optimal energy bound, we obtain

K
€ p/2
Xa|Vue — iuNove [P < el 7P/2 (N |loge|)P/? + Z si_p(/ X5 Vue — quNEVEF) . (5.52)
k=0 R

s
T 2 k+1
,R \BE,R

1 . a
2 /B; axi(IVue = i Nove 2 + 55 (1 fuc[2)?)

loge 2 Shad
> bi‘/ale/efE — O(N.Jlog 1] + si1Nellog e]) — o(N2),

and hence, using (5.23) to replace l/j’k}%rl by pe,

1

f/ ax%|Vue — iucNove|? < D? p 4 O(N.|log spy1| 4 sk1N:|logel) 4+ o( N2).
2 ]RZ\B%I;FI ’

If r < Nc|loge| ™1, then s; <7 < N|loge|~! for all k, so that we find

1
- / Xz|Vue — iu&-Ngvg|2 < Nf + N:(|logr| + k). (5.53)
2 Jee\slit

Inserting this into (5.52) yields for all p < 2, with r» < N.|loge| ™1,

K
/B X&|Vue —iue Neve [P S 517p/2(Ns|10g5Dp/2 + Z(Tzik)Qip (Nf + Nf/2|logr|p/2 + Nf/zkpﬂ)

g.R k=0
<p al_p/2(N€|log El)p/2 + 7“2_pr + r2_pN§’/2|logr|p/2.
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In the regime N. > log|loge|, we may choose e °Ne) < r <« N,|loge|~!, and the above yields for that
choice

/ X7|IVue —iu.Nov.|P <, NP. (5.54)
LR

Combining this with the result (5.15) of item (v) and with the Hélder inequality, the result (5.17) easily
follows.

We now consider the regime 1 < N, < log |loge|. In that case, we need to prove (5.54) for larger values
of the radius r > e~°(Ne)

, and the above argument no longer holds. Given £'/2 < ry < N:|loge|™t, we
replace the 1n1t1a1 total radius e'/2 by ry, and for ro < r < 1 we consider the modified dyadic “annuli”

Ey = BT”’T2 \B””r2 VRO with 0 < k < K = |log,(r/70)|. We set for simplicity 8 := (r27%) V7. The
decomposmon (5. 52) is then replaced by

[ N = Nl S 7 logel 4 Y ([
B"T(JT‘

. ) 2\ P/2
Xz Vue — iue Nov| ) , (5.55)
o R k=0 R

3705 k4+1
Z\BE‘R

where it remains to adapt the estimate (5.53) for the last integrals. The lower bound (5.43) of Step 7 together
with the optimal energy bound and with the bound of item (ii) on the number of vortices yields

1 log(s €
5 e (9 = o+ 550 = ) zw [ il o)

Ilogfl v
XRV ER O(N:[log sp41|) — O(NEQ)?

and hence, using (5.23) to replace v % by pe,

1 . z
3 / o axg|Vue - iuNove|? < DZ g + O(Nc|log sg41| + roN:[logel) + o(N2).
R2\B 0:8k+1

The choice ro < N.|loge|~! then yields

1
: / ARV — iuNov? S N2+ No(flog | + k).
R2\B 0:5k+1

Inserting this into (5.55), the result (5.18) follows as before. O

Based on the above vortex-balls construction, we have the following approximation result, which is easily
obtained just as in [74, Proposition 9.6].

Lemma 5.3. Let ¢'/? <1y <r <7, and let BL p and BTO’T denote the collections of the balls constructed

in Proposition 5.2. Then, given T'. € W2>(R?)2, there erist approzimate vector fields I.,T. € W2>(R?)?
such that T, is constant in each ball of the collection B" L g and T. is constant in each ball of the collection

[;’;?j{, such that | Tl < |De|lLe and ||Dc|lpe < ||Te|lLe, such that for all 0 <~ <1,
ITe = Teller + ||f‘€ —Tefler S rl_’yHVFEHL"O»
and such that for all R > 1,

sup||V(F -T.) HL1(BR(Z))+sup||V(F — TRz S TRV lwrce.
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5.2 Additional results

In order to control the velocity of the vortices, the following quantitative version of the “product estimate”
of [73] is needed; the proof is omitted, as it is a direct adaptation of [82, Appendix A] (further deforming
the metric in a non-constant way in the time direction; see also [73, Section III]).

Lemma 5.4 (Product estimate). Denote by M. any quantity such that for all ¢ > 0,
IEIE)IE M, 151&1 [log | M_ 15%1 [loge|™" log M, = 0.

Let u. : [0,T] x R2 —C, ve: [0,T] xR? - R?, and p, : [0,T] x R? - R. Assume that 8;7’;% < |logel|? for all
t, and that 5 < M., where we have set

T
55*,’; = Sup/ (6’;”; + /X§|8tuz - iu2N€p2|2>dt.
0

z

Then, for all X € W1>([0,T] x R*)? and Y € W1>°([0, T] x R?), we have for all z € R?,

T ~ ClﬁgM|
‘/ /X%V}'XY‘ |10g50‘g6 (/ /XR‘ (Orue — tuN:p,) Y|2 / /XR| Vue — iusNove) - X|2>
0

+C(1+” X Y)HWlao [0T]><R2))( 1/8+€N)(5 + zup 6 +N2>

We now turn to some useful a priori estimates on the solution u. of equation (1.5). We begin with the
following (very suboptimal) a priori bound on the velocity of the vortices, adapted from [82, Lemma 4.1].

Lemma 5.5 (A priori bound on velocity). Let o > 0, 3 € R, and let h : R> = R, a := e, F : R? — R?,
f:R? = R satisfy (2.1). Let u. : [0,T) x R? — C and v. : [0,T) x R? — R? be solutions of (1.5) and (3.2)
as in Proposition 2.2(i) and in Proposition 3.1, respectively. Let 0 < ¢ < 1, 1 < N, < |loge|, and R > 1
with eRY < 1 for some 6 > 0, and assume that 5*; <t Nc|loge| for all t. Then, in each of the regimes
considered, (GL1), (GLa), (GL}), and (GL3), we have for all § > 0, for all t,

t
o? sup/ /ax%\@tu5|2 <i0 Ne|loge|® + RONZ|loge? < RN [logel®.
z Jo

Proof. We focus on the non-decaying setting7 as the other case is similar. Integrating identity (4.18) in time,
reorganizing the terms, and setting D8 R = fg [ ax3|0ruc|?, we obtain

t t
/\Eang% = ;,’I% - gazj% - /0 /GVXZR : <atus7vue - anNaV5> + /0 /NEX7%<825U'57Z'U€> div (ava)
aNEQ Z, aNé? o z2,0 z [e]
+ [ SR Pz - xatP) - [ 23R - Pz~ e
. loge
/ /aXR N eVe .]E) - 0ve —Neve- Vo — ‘7§|FJ_ : Vs)
0

Noting that |Vx%| < R (x%)'/2, using the pointwise estimates of Lemma 4.2 for V. and j. — N.v., and
using assumptions (2.1), the properties of v. in Proposition 3.1, the bound (4.4) on ¥7 x, and Lemma 4.1 in
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the form 8;; SED R + 0o(N?) < N:|logel|, we find for § > 0 small enough, in the considered regimes,

AeaDZ} Sio Nelloge| + RV (Nefloge|)'/2(D2,) 2 + No(1 4 e(Ncfloge|)'/?) (D) /2

)

[log e
N.

+ eN2(N.|loge|)'/? (1 + 2R+ 2 4 R‘1+9)> + N-(Nc|loge)Y2(1 + eN.) + eAZ V2 N2 |log e

+ (Ne + Acfloge]) (1 + eN.)(Nefloge|) /2 + N.R?) (D2 ;) '/
So Nelloge| + (Ne + Ac[loge|) (Ne[loge|)'/? + N.R?) (DZ5) "2 + o(1).

Absorbing (D: 2)1/ 2 in the left-hand side, and noting that either A. = 1 or A. “é\é =i in the considered

regimes, the result follows. O

The following optimal a priori estimate is also crucially needed in our analysis in the presence of pinning,
due to the absence of a factor 1 5 in front of the 5 (1 — |uc|?)2-part of the energy density as it appears in the
term I c.0,p 1 Lemma 4.4 A simple computatlon based on the lower bound results of Proposition 5.2 yields
a similar bound with N, replaced by N2 (see indeed (5.50)), but the optimal result below is much more
subtle. It is proved as a combination of the Pohozaev vortex-balls construction of [74, Section 5], together

with some careful cut-off techniques inspired by [74, Proof of Proposition 13.4].

Lemma 5.6. Let a >0, B€R, and let h: R2 - R, a:=¢€", F:R? - R?, f:R? = R satisfy (2.1). Let
ue 1 [0,T) x R? = C and v, : [0,T) x R? — R? be solutions of (1.5) and (3.2) as in Proposition 2.2(i) and
in Proposition 3.1, respectively. Let 0 < e < 1,1 < N < |logel|, and R > 1 with eR|loge|®> < 1, and assume
that S:It? <t N:|loge| for all t. Then, in each of the regimes considered, (GL;), (GLa), (GL}), and (GLY),
we have for all t

! sup/ /XR — |ue)?)? <4 N.. (5.56)

Proof. To simplify notation, we focus on the case z = 0, but the result of course holds uniformly with respect
to the translation z € RZ2. We split the proof into three steps.

Step 1: Pohozaev estimate on balls. In this step, we prove the following Pohozaev type estimate, adapted
from |74, Theorem 5.1|: for any ball B,(zo) with r < 1, we have

! GQXR
042/ / 5 (1— luz|?)? <¢ rAN:|logel?
0 JB.(z0) 26

a
[ B (G NP g )+ 1 PO D). 65)
OB, (z0)

For any smooth vector field X and any bounded open set U C R?, we have by integration by parts
—/ XRVX:S‘E:/ XRdivS;~X+/X~S;~vXR—/ xrX - S:-n,
U U U au

and hence, for U = B,(xg), r > 0, and X =z — o,

—/ XRTrggz/ XRdivSE-(x—xo)—i—/ (x—mo)-SE-VXR—T/ XRS::n®n.
B, (o) B, (z0) By (z0) 9B.-(z0)
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By definition (4.13) of the modulated stress-energy tensor S., this means

a o
/ axR(—g(l—|uE|2)2+(lf|u5|2)f) :/ x g div SE~(:z:fx0)+/ (x — ) - Se - Vxr
Bo (o) 2 By(z0)

BT(mO)

+ 7“/ SXR (|nJ‘ (Ve —iueNovo)|? = |n - (Vue — iu.Nov,)|?
OB, (zo) 2

+ %(1 —uel?)? + (1= Jue2) (N2 (jnt vel? = nve]?) + f)),

so that we may simply estimate

a? o -
[ Saprer [ awSier [ Sxallids [ al- s
B.(z0) <€ B.(0) B.(z0) Br(zo0)

a . a
+r / AR (Ve — i Neve? + 525 (1= Jue)? + 1 = [uc PV 2 +1£1)) - (5.58)
9B, (z0) 2e

2

It remains to estimate the first three right-hand side terms. Using the pointwise estimates of Lemma 4.2,
using assumption (2.1) and the boundedness properties of v, p, (cf. Proposition 3.1), and noting that A, < 1
holds in the regimes considered, Lemma 4.3 directly yields

|div S.| < Acllogel|@pue||Vue — tuc Neve| + No(1 + A2 [loge)(1 4 |1 — |ue|?))|Vue — iuNov.|
+ AN [log e||0sue| (1 + |1 — |uc|?|) + (N2 + Ac|log e|)|[Vue — iue Nove|? + e72(1 — |u|?)?

11— Jue 2| (N2(Ne + Acflog e]) + A2flog e[2) + N2(N. + Aclogel),

which gives, using N, <

~

llog e,
|div §5| < Ae|Opuc]? + Aellog e?| Ve — iuc Nove|* + )\EN82|log (1 + (1 —Juc®)?) +e72(1 — uc|?)%

By Lemma 5.5 with R = 1, we deduce for all r <1,
o? /ot/B - |div S.| <¢ AeN.[loge|® + A-N2|loge|*(1 4 e N.|loge|) < A.N.|loge|>.
e

Inserting this into (5.58), and noting that (2.1) in the form ||f||r~ < |loge|? yields

/B all = [uc?||f| Se er(Nelloge)' /2| fllre < erllogel?,

(2o
and
/BT(IO) IVxglS:| S R /137.(%) (IVUE — iu.Nove)? + 5%(1 —Jue)? + (N v |t + mz))

S R™H(Nefloge| +&*(NZ + || fli)) < Neflogel,

the result (5.57) follows.

Step 2: estimate inside small balls. In this step, we prove the desired estimate (5.56) for the integral
restricted to suitable small balls centered at the vortex locations. More precisely, since we have by assumption
E p < Neloge| < |logel|?, we may apply [74, Proposition 4.8] for any x € (0,1). This yields a finite union

e, R ~
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B. ¢ of disjoint closed balls with total radius (B o) = £"/2, covering the set {x € Bag : |Ju.(z)| —1| > e"/4}.

We then prove that
2 ! a’*xr 2\2
o / / 2 (1_ |u5| ) ,St NE' (559)
0o JB., 2€

For that purpose, we let the initial collection of balls BE o grow, and we use the Pohozaev estimate of Step 1

as in 74, Proof of Theorem 5. 1] By [74 Theorem 4.2], there exists a monotone family (B%)s>o of unions of
disjoint closed balls, such that B? = B, ¢, B¢ has total radius 7(B2) = e*r(B. o) for all s > 0, and BS = ¢* " B!
for all 0 < r < s with [r,s] C R+ \ Tz, for some finite set 7. C R (correspondmg to the merging times in
the growth process). For all s > 0 with r(52) < 1, the result (5.57) of Step 1 gives the following estimate,
for all 6 > 0,

i [, S e ) N e

282

GXR
DI //8 (1Y = e Novel? + S5 (1= ) + 1= fuc 2| (N2 2 + ).

B, (x)€Bs Br(@)

Integrating this estimate over s and applying |74, Proposition 4.1], we find, for all s > 0 with 7(B<(s)) < 1,

a
sa//so 522 1—|u5| <a/dv/ /U 2:2)"%1—|ug|2)2

a
<4 s(BY)Nflogel® + //\ B (Ve = i Nove? 4 55 (1= fue)? + 1 = Juc PV v 2 + 1))
Bg BEO

2

and hence, using assumption (2.1) and the boundedness of v. (cf. Proposition 2.2(i)), and the assumed
energy bound,

t 2
Sag/ / a2X2R(1 — |ucl?)? e sr(BE)N:|loge|® + Ne|logel.
0 BE,O €

Recalling that 7(B2) = e*c"/2, this yields for all s > 1 with r(B2) < 1

)

t 2 NI
az/ / CXR (1 |y 2)? <, et 2N, flogel? + Nelo8El
B..o 2e2 s

and the result (5.59) now follows for the choice s = [loge"/4|.

Step 3: estimate outside small balls. It remains to show that the desired estimate (5.56) also holds for
the integral restricted to the complement of the small balls B, . More precisely, we prove in this step for all
0 >0,

of R (I WMl < e R gl + <Rllogel (5.60
[ue|—1]<er/4

The conclusion (5.56) of course follows from this together with (5.59), choosing § > 0 small enough. In order
to prove (5.60), we adapt the argument of [74, Proof of Proposition 13.4]. For 0 < ¢ < 2=%/%, we define a
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cut-off function (. as follows,

Y, if0<y<1/2
45 if12<y <1y

C(y) =41, if 1—ef/* <y <14et/4
L4 et e/ <y < 3/

Writing u. := p.e’?s locally, the equation (1.5) for u. yields in particular

ape

€2 (1- ,0?) + Vh-Vp: — pe|10g5‘Fl Ve + fpe. (5.61)

aA0ppe — BAcllogelpedrpe = Dpe — pel Vipel* +
Testing this equation against xr((:(pe) — pe), and rearranging the terms, we obtain
[ (= CENVa + [ B (el = p)(1 = 02) = ade [ xrlcclon) - po)oun:
- 0cllogel [ xape(6-(pe) = p)0uee + [ (6pe) =9IV Vot [ xnlceor) — polpelVioeP

- / Xr(C(pe) — pe)Vh- Voo + [loge| / xpe(Ce(pe) — pe)F* - Vs — / Xr(Ge(pe) — pe)foe. (5.62)

Using that the cut-off function (. satisfies for all y > 0

) —yl S Ny qj<aye 1G) —yl <1 -yl <1 —97, (5.63)
|Cé(y) -1 5 ]1|y71\§5‘/4 + EN/4]1|y—1\§1/27 (C(y) —y)(1—y) >0, (5.64)
and noting that
aXR 212 / aXR 2 /aXR 2
71_5§ 751_61_g§ 7&4&5_51_57
/ps—llﬁa"/“ o2 (L= p%) iz 2 (1= pe)(1 = p2) =5 Pe(Celpe) = pe) (1= p2)

we obtain from (2.1), (5.62) and (5.63),

a
/ xa (Vo + 55 (1= p2)?) S e/t / Xr([Vpel? + oIV )
|pe—1]<en/a 2e lpe—1]<1/2
+ Ac|log el XR“_pg|(|8tp5|+pe|at¢s|)+(l+)‘e|log6|)/ XrlL = P2|(|Vpe| + pe| Veoe|)
lpe—1]<1/2 lpe—1]<1/2

+/ XR\flllfng/ IV xallL - 221V pel.
lpe—1]<1/2 lpe—1|<1/2

Since |Vue|? = [Vpe|? + p2 |V |2, and [0,uc|? = [0ipe|? + p2|Orpe|?, we obtain with assumption (2.1),

a
[ (TP g (= 1aePR) S Vel g+ AclloBE L = Pl 07t
‘p€_1|§5N/4 €
+ (L Acflog eDlI1 = [ue*[lL2(Bym) VttellLz(B,m) + B(L 4+ AZ[log el |1 — |uel?[|L2 (5,p)-
By the integrability properties of v, (cf. Proposition 3.1), we have for all § > 0

”VUEHLZ(Bm) So [|[Vue — iu5N5V5||L2(B2R) + NE(RG + 11— |U€|2||L2(BQR))a

72



hence, using also Lemma 5.5, with A. <1 and N, < [loge|,

t
a K
o/ (1l + 55 (1 = fuel)?) Suo e/ R logel? + eRllogel’,
0 Jlpe—1|<en/4 €

and the result (5.60) follows. O

6 Dissipative case: main proof

In this section we prove Theorem 1.1, that is, the mean-field limit result in the dissipative case o > 0,
in both critical regimes (GL;) and (GL3) (that is, with N, < |loge| and N, =~ |log¢|, respectively), and we
further consider the subcritical regimes (GL}) and (GL5). More precisely, the rescaled supercurrent density
N:1j. is shown to remain close to the solution v. of equation (3.2). Combining this with the results of
Section 3.1 (in particular, with Lemma 3.2), the result of Theorem 1.1 follows.

6.1 Modulated energy argument

Using the various estimates and technical tools developed in Section 5, we may now turn to the estimation
of the various terms in the decomposition of Lemma 4.4, and deduce the smallness of the modulated energy
excess by a Gronwall argument. This is the main step in the proof of the mean-field limit result stated
in Theorem 1.1. (In this section, as we assume « > 0, multiplicative constants are allowed to additionally
depend on an upper bound on a~1.)

Proposition 6.1. Let a >0, BeR, o> +52 =1, and let h: R> 5 R, a:=¢", F:R2 - R?, f:R> - R
satisfy (2.1). Let ue : [0,T) x R? — C and v. : [0,T) x R? — R? be solutions of (1.5) and (3.2) as in
Proposition 2.2(i) and in Proposition 3.1, respectively, for some T > 0. Let 0 < ¢ < 1 and R > 1 satisfy
1 <« N: < |loge|, |loge|/Ne < R < |logel™ for some n > 1, and assume that the initial modulated energy
excess satisfies D', < NZ. Then,
(i) iflog loge| < N. < [loge|, we have D', <4 N2 for allt € [0,T), in each of the regimes (GL;), (GLa),
(GL}), and (GL3);
(ii) if 1 < N. < loglloge|, in the pure dissipative case o = 1, § = 0, the same conclusion D:)’E < N?
holds for all t € [0,T) in the regime (GL1), as well as in the regime (GL,) with Ao < e* <) /[loge|.

In particular, in both cases, we deduce N='jo — ve — 0 in L2 ([0,T); L, (R?)?) as € | 0. If we further

uloc

assume DI5, < N2, then for any £ > 1 we obtain more precisely, for allt € [0,T) and L > 1,

< N—l . 1 L 2

Sup 1N Je = Vel 4 12) (B (2)) Ktot ( + W) : (6.1)
Remarks 6.2.

(a) If we further assume |lul|p~ <; 1 for all ¢, we note that the convergence N:'j. — v. — 0 actually
holds in L5, ([0, T); LP, .(R?)?) for all p < 2. In the parabolic case 3 = 0 without forcing F = f =0, a
maximum principle type argument gives that ||u||L < 1 implies ||ul||p~ <1 for all t > 0 (see e.g. [21,
Proposition 4.4]). However, the same argument fails in the presence of forcing F, f # 0. Moreover,
such a uniform L°°-bound on wu,. is expected to fail in the Gross-Pitaevski case o = 0, due to the time
reversibility of the equation in that case, and it is also expected to fail in the dissipative case a > 0,

B # 0. We therefore systematically avoid to use such L*-estimates here.
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(b) The main reason why we obtain no result in the case N, > |loge| with our computations is as follows:
the estimate (6.18) at the end of Step 3 yields

t
Dl g < 0 (N2) + Cy(1+ )\504)/ D r,
0

where in the case N, > |loge| we need to choose a rescaling \. = N./|loge| > 1, so that in the case
a > 0 the conclusion fails to hold due to the prefactor A,a > 1. This problem formally disappears in
the Gross-Pitaevskii case a = 0, for which the regime N, > |loge| is indeed treated in Section 7.

Proof. We choose R > |loge|/N. with R% < [loge| for some 6y > 0. Given the assumption DIp < N2 on
the initial data, for all € > 0 we define T, > 0 the maximum time < T such that D::; < Nf holds for all
t < T.. By Lemma 4.1 and Proposition 5.2, we deduce D", < N2 and for all ¢ < Tz,

Ep S Nelloge|,  EXp Sy Nelloge|, DIy, <S¢ N2, DI < DI+ 0y(N2). (6.2)

The strategy of the proof consists in showing that for all ¢t < T,
t
D:ﬁa Se o(N2) + /o iy (6.3)

By the Gronwall inequality, this implies D}, <, N2, hence D::E < N2 for all t < T.. This gives in
particular T, = T, and the main conclusion follows.

To simplify notation, we focus on (6.3) with the left-hand side Dt g centered at z = 0, but the result
of course holds uniformly with respect to the translation. We split the proof of (6.3) into four steps. We
begin with the general mixed-flow case in the regime log |loge| < N. < |loge|, while Step 4 describes the
modifications needed in the proof for the purely parabolic case in the regime 1 < N, < logl|loge|. The
additional stated consequences are deduced in Step 5.

Let us first introduce some notation. For all t < T., as we are in the framework of Proposition 5.2
with ul,vi, we let BL := B! p denote the constructed collection of disjoint closed balls B.*g (uf, vt) with total

£ foR)
radius 7. := |loge|~*e F. Let then I'Y denote the corresponding approximation of I't glven by Lemma 5.3.
We decompose . := al'. g — ST 0 Wlth

o= AT (VLh—FL— 2N )

floge] '°
Step 1: time-derivative of the modulated energy excess. Lemma 4.4 yields the following decomposition,
ODer=Ig+ I g+ I+ I + TP+ T8+ T+ I + 1L g, (6.4)

where the eight first terms are as in the statement of Lemma 4.4, and where the error I, g s estimated as
follows (cf. (4.16)), in the considered regimes,

t
/0 I gl < eR(N.floge]) /2 [log e[ = o(N?).

Step 2: estimating the error terms. In this step, we study the three error terms I R IE r» and I p, and
we prove

i t
N. |
/0 (T4 T2+ ) S0 0(N2) + o) /O [ xwlon — iu V... (6.5)
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We begin with the estimation of I”'p. Using (6.2), Lemma 5.5, and the boundedness properties of p, (cf.

Proposition 3.1), the quantity 5:’ r defined in Lemma 5.4 is estimated as follows, in the regimes considered,
for all 6 > 0,

t t
ehsw [ ezptsw [ [0l + N2ip. P+ N2 Ju Pllp.P)
z 0 z 0
Seo RON[logel® + AZ'NZ(1 4 e(Ne|loge])!/?) < R%[logel*,

hence, choosing 6 > 0 small enough, é::”lt% <; |logel®. Choosing e.g. M. = [loge|*’, and using the obvious

estimate |[Vxg| < R 'xp 1/2 , Lemma 5.4 then yields

t t t
‘ / /aVE . VJ-XR So(1) 4+ R71|log5|71</ /XR|8tu5 —qu.N, ps|2 +/ / [Vue — iu5N5v5|2>,
0 0 0 Bogp

and hence,

‘/ < o(1) + R- // Vot — i Neve? 4 55 (1= fl?)? 4+ 1= e PN vel? + 1)
Bar

t
+R_1 //XR\atuE—iugNEpE\g—i—// |Vu5—iu5N€V5|2).
0 0 JB2r

By (6.2), (2.1), and the integrability properties of v. (cf. Proposition 3.1), with the choice R > |loge|/Ng,

‘/ | <¢o0(1) + R™'N.|loge| + R~ //Xg\atug iue N, p, |2 (6.6)

< o(Nf) +o0 |log65| /0 /XR|8tuE — tu: N P, % (6.7)

We now turn to the estimation of I¢ . Using (2.1) and the pointwise estimates of Lemma 4.2, we find

|Ig’R| [ I [ (NE/ (|Vte —iue Nove |+ No |1 — |u|?]) [curl v |+ N, 11— Jue ||| Vue —iue Nove|
Baor Bar

+)\E/XR(|VUE iue Nove|? —|— (1 — |uc]?) )—I—)\€|10g5|/XR|8tuE—iusngE’QHVuE — tue Nove|
F OV Afoge) [ (Ve o 22—l 2 [ xalvePlvid + ogel 1)

AN floge8] [ xalO. — iu N.pI(v.] + 11 - |u5|2>).

By (6.2), by Lemma 5.3 in the form ||z — ¢||p~ < 7. = [loge|~*e~VNe, and by the integrability properties
of v¢ (cf. Proposition 3.1), we deduce in the considered regimes for all § > 0,

e VNe _ ) /2
12 0] St SR Nellogef? (14 [l — N ) (63)

and hence, for > 0 small enough such that R’ < |loge|, we conclude

N,
< 2 £ . 2
12 gl St 0<N€)+O<|log6\> /XR|8tus iueNep,|”. (6.9)
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Regarding the last term I¢ p, the definition of the pressure in (3.2) simply yields I¢ , = 0, and the conclu-
sion (6.5) follows.

Step 3: estimating the dominant terms. We now turn to the estimation of the five first terms in (6.4),
showing more precisely that

t
D¢ S o(N2) +/0 D k. (6.10)

As this result obviously holds uniformly with respect to translations of the cut-off functions, the conclu-
sion (6.3) follows. We begin with the estimation of the first term Ig g Since for all ¢ the field T is by
definition constant in each ball of the collection BL and satisfies || VI < ||VIL||Le, we obtain

12015 [ xaldel 5 [ axn(Vue - iueNov P 4 0= )+ [ rft - [ucPIOVE G 415,
R2\ B, R2\

e

Since B, has total radius r. := |log5\_4e_m, and since the choice N, > log |loge| ensures r, > e °(Ne) e
may apply Proposition 5.2(v), which shows that the first integral in the above right-hand side is bounded
by D p + o(NZ). Further using (6.2), (2.1), and the integrability properties of v. (cf. Proposition 3.1), we
obtain in the considered regimes, with eR|loge|® <1,

15 5] S D2 g+ o(N2) + e(Nelloge|) /2 (N2 + RAZ|loge|*) S DL 5 + o(N2). (6.11)

We turn to I7;. Since (T, Vh)|lL= <; 1, Lemma 5.6 yields

t
| 1= ou //“Xer V(e — i Novel? o+ 5% (1~ Juel?)? ~ [logelp. ).
0

and hence by Proposition 5.2(iv) and Lemma 4.1, with ||(T¢, VA)|[[wie e 1,

Nt

t t
/ g Seo(N, / D..p St o(NZ) + / D, . (6.12)
0 0

The term I ‘g is simply estimated by

1P ‘R < ——— /aXR|8tu€ iue Nop,|* + —_ /CLXR| Vue — iuNove) - THP (6.13)
We finally turn to IEYR. Using o? 4+ 32 = 1, we have by definition
Ioo—BTF =T.o—Balsy+ flep) = o’Teg — aflL, = al.,

and hence I ' takes on the following guise, in terms of I'c, I'c o,
aXR -~ axXR -~
Vg = Acfloge] / %V - (Teo — BTL) = Acaloge] / %V T..

As shown in Step 2, the quantity é_’g‘ﬁ defined in Lemma 5.4 satisfies g;’}’; <¢ [loge|®. Choosing e.g. M. =
llog e|*°, Lemma 5.4 then yields, for any A ~ 1,

[ el <00

C'log|loge ¢ .
+ )\501(1 + 1§g€|g | < / /aXR|atua U €p5|2 / /CLXR‘(VUE - ZuaNsve) : Fs|2> )
0
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and thus, using the optimal energy bound (6.2), and noting that A. N. log [log €| < N2 holds in the considered
regimes,

t
’/o IZR‘ < Ot(NEQ) + (x\g +o0 |10g€| / /aXR|8tuE — U, 6pE|

AcaA )
+ 54 //aXR|(Vusfzu€NEVE)~F5\2. (6.14)
0

We now distinguish between two cases:
t t
aset) [ [axnio —iwNep P <5 [ [ axal(Vu. - iweNov) TP, (615)
0 0

t t
(Case 2) / /aXR|8tu5 —du.N.p,|* > 5/ /axR|(VuE —iu.Nove) - T (6.16)
0 0

In Case 1, choosing A = 2 in (6.14) yields

t
)/0 IXR‘ Sot(NEZ)+</\5+0 |log5| / /alec?tug iucNep,|?

et
+ €

axr|(Vue —iuNov,) - To]?.

In Case 2, the condition (6.16) can be rewritten as

1t : ! :
Z/ /axR\ﬁtug —du:Nep,|? +/ /axR|(VuE —iu.N.ve) - T
0 0
L1y [ ‘ 5 1 ff , )
-+ —) axr|Ose — iue Nep |* + = axr|(Vue —iusNeve) - Te|?,
10/ J, 2/,
and choosing A =4 in (6.14) then yields, with N_/|loge| < A. in the considered regimes,

t
‘/ IEYR‘ < 0i(N2)
0

+ Ae a(( +7_~_ //GXR|8tUs U ep5| +35 //GXR‘ Vue —iu-Neve) - Te |2>

Further noting that in Case 1 the condition (6.15) together with the energy bound (6.2) yields

N, .
0( c )/GXR|3tUs fzustpE\Q <o ( / /axR|Vu5 iue Nove|® <y 0(N2)
[log e |log€|

and combining this with (6.5) and (6.13), we observe an exact recombination of the terms, and obtain in
Case 1

t
A .
/ (IXR‘FI R+Id,R+I§,R+IQR+Ié,R) <= axr|Vue _ZU8N6V5|2|F8‘2 +Ot(N52)v (6.17)
0
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and in Case 2
t
/()(LXR*‘I R+IdR+Ig +1'g + I g)

Aeer (1
<G mo) [ [

so that (6.17) holds in both cases for ¢ > 0 small enough. Using a? + 32 = 1, we have by definition
I -Tep=all.o|> = all'.|?, and hence the term I” ’p takes on the following guise, in terms of I'c, I'c o,

axr|Vue —iu-N.ve |2|Te|? + o:(N2?),

G’XR‘]‘—‘E|2/J/E‘

Ae
IER = —?|log5| /aXRI‘8 Teope =—

Together with (6.17), this yields

t
d
/0 L+ I+ I+ g+ I g+ I + I R)

< et

axr(|Vue — iusNove]® — [loge|pe ) |Te|* + 0y (NZ).

Combining this with (6.4), (6.11), (6.12), and with 75:7’% < N2, we conclude

Ay .
aXR(|VU£ - ZUENEV€|2 - |10g5|M6)|F€|2a (6.18)

t
DL < 0i(N?) +Ct/ D,
0

and the result (6.10) now follows from Proposition 5.2(iv).

Step 4: refinement in the purely parabolic case. We consider the parabolic case « = 1, § = 0, in both
the critical regime (GL;), and the subcritical regime (GLj) with \. < e°(N<) /|loge|, and we show that the
assumption N, > log|loge| can be dropped. In the proof in Steps 1-3 above, the limitation comes from the
fact that we need to use balls B. with a particularly small total radius r. in order to obtain smallness of
the error term I? , 5 in (6.8), while on the other hand the term % - o.r corresponds to the energy outside the

small balls B, so that we need to have r. > e~ (=) to be allowed to apply Proposition 5.2(v). However, in
the parabolic case, the worst terms in [ 597 oR vanish, and the total radius r. may then be chosen to be much
larger.

Let us thus consider the regime (GL;) or the subcritical regime (GL}) with A, < e /|logel, in the
parabolic case @« = 1, § = 0, and with a “small” number of vortices 1 <« N, < log|log5|. Let 7. =

(Ae|loge|)=2 > eo(Ne ) and choose £1/2 < 7 < N.[loge|~!. For all t < T, as we are in the framework of
Proposition 5.2 with u},vt, we let BL := Bé g denote the corresponding collection of disjoint closed balls

O(Ns)

~~0 ~
BQEI’{E (ul,vl). Let then I‘t denote the associated approximation of I‘t given by Lemma 5.3. As in Step 1,

gr e

Lemma 4.4 yields the following decomposition, with . replaced by T’
) IR+IVR+I£R+I£R+I§R+IdR+I + 12 g + I g

where all the terms are estimated just as before, except I? , and I ES r- We begin with the discussion of 17 ,

78



For a =1, 8 =0, this term takes on the following simpler form,

IfyR = /aXRNE(NEV8 —je) - (Te — fs)curl Ve +/)\€axR(F€ — I‘E)J‘ - (Opue — iU NP, Ve — it Nev,)

+/“>§R(r —T)t Vh(|Vu€ iueNove? + 5 21— Ju] ))
+/aXR(f6 —Fs)-(N5V5+|10g5|FL/2),u5. (6.19)

We estimate each of the four right-hand side terms separately. We begin with the first term. Using the
pointwise estimates of Lemma 4.2 and the integrability properties of v, (cf. Proposition 3.1), we find

/aXRNE(NEVE _je) : (Fe — fg)CU.I‘l Ve
= , ' N\ 1/2
§N6||FEF6||L°°</ XR‘VUg*ZUENEVA‘F (/ ~ XR‘VUg*ZUENEVA ) >
Bt R2\Bt

+ N||T. —feHLw(/XR\l — \uE\QHVuE — due Neve| +N5/XR|1 — |u8|2|\cur1 v5|),

and hence, using (6.2) and Proposition 5.2(v)—(vi) with p = 1 to estimate the first two integrals in the
right-hand side, and using Lemma 5.3 in the form ||[TL — Tt < 7e < 1,

~

/CLXRNE(NEVE —je) - (De = To)eurl ve < N2||T. — fEHLoo < N2
For the second term in (6.19), using (6.2) and again Lemma 5.3, with 7.\ < N¢|loge|~!, we obtain
/)\eaXR(Fe - fe)L : <atue - iueNsp@ Vu, — iu5N5V5>
1/2 = : 2\ /2
A (N log ) /2T = Pl ([ xrlpue — iu-Nep.|?)
N )
< o(N?) + (|1 ‘> /XR|3tUs — iucN.p.|?.

For the third term in (6.19), using (6.2), and (2.1) together with Lemma 5.3 in the form ||(D.—T'.)- VAL~ <,
Fede < Ne|loge| ™!, we find

/“’;R(r Tt VA(IVue — e NovalP 4 501~ uef?)?) < N2

It remains to estimate the fourth term in (6.19). Using (6.2), Proposition 5.2(iii) in the form (5.13) with
v = 1/2, the regularity properties of v, (cf. Proposition 3.1), (2.1) in the form || F||c1/2 < Ac, and Lemma 5.3

in the form |T. — Tcllci/z < 2= = (A:|loge])~t, we obtain

/ axr(Fe — o) - (Nove +log e F*/2)e < Nellaxa(Fe — To) - (Nove +llogel FL/2) /s
< N(N. 4 Afloge))||Te — Tellcre < N2.

Inserting these various estimates into (6.19) now yields

N,
I2 o St o(N2) + o

‘10g€€|) /XRlatuE _iu€N€p5|27
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proving that (6.9) again holds in the present setting. On the other hand, since the total radius satisfies
7. > e °We) | we may apply Proposition 5.2(v), so that the estimate (6.11) for If:gﬂ can again be obtained
just as in Step 3, and the conclusion (6.3) follows.

Step 5: consequences. In the previous steps, the result D::E <y N2 for t € [0,T) is proved in both
cases (i) and (ii) of the statement. We now show that it implies the convergence N 1j. — v. — 0. For all

t € [0,T), Proposition 5.2 yields 5;’12 <; N.|loge|, and for r € (¢'/2,7) we denote by Bg:}i the constructed

collection of disjoint closed balls corresponding to ut,vt, R and total radius r. Let e (V<) < < 7. For all

€9 £
t € [0,T), Proposition 5.2(v)—(vi) gives

sup/ Xa|Vue —iu.Nove|? <¢ N2,
R2\B['},

z

and for all 1 < p < 2,

z

sup/’rt X&|Vue —ius Nov [P < NE.

&R

Using the pointwise estimates of Lemma 4.2, we deduce

z

sup/ |.7€ - N€V€| St SUP/ |VUE - iueNeVs| +5N€|logs|
B(z) z JB(z)
S\ 172
< Sup/ X7|Vue — tusNeve| + sup (/ |Vue — iusNeve| ) +o(N:) < N,
= JBlL z NBE\BLL

hence N-'j. —v. — 0 in L ([0, T); L., (R?)?). More precisely, we may decompose for all I > 1,

uloc

sup [|je — Nevellwr 4128y (2) St sup/ . X7z Vue — iuesNeve| + sup ||[Vue — quNgvaﬂLz(BL(Z)\Br,%)
z z Ty z &

e,R

+ Nesup |1 = [ue* 2y o)) + sup 11— [ue (L2 (m, (o) Ve — iue Navellz (s, (2))
z z

hence

sup |7 — NEVE”(Ll +L2)(BL(2)) St o(Ne)(1+ L/R) + 5N€(Ns|10g5|)1/2(1 + L/R) + eNc|loge|(1 + L/R)27

and the result (6.1) follows. As stated in Remark 6.2(a), under the additional assumption that |Jul||L~ <; 1,
the convergence N 'j. — v. — 0 also holds in L%, ([0,7); LY (R?)?) for all 1 < p < 2; this follows from a

loc
similar argument as above, replacing the pointwise estimate of Lemma 4.2 for j. — N.v. by

|l7e — NeVe‘ < |u€\|Vu5 - iueNEVE‘ + Ne|1 - |u5|2||V5‘. O

7 Gross-Pitaevskii case

In this section, we prove Theorem 1.3, that is, the mean-field limit result in the Gross-Pitaevskii case in
the regime (GP) (in particular, with N > [loge|). More precisely, the rescaled supercurrent density N !j.
is shown to be very close to the solution v, of equation (3.3). Combining this with the results of Section 3.2
(in particular, with Lemma 3.4), the result of Theorem 1.3 follows.
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7.1 Preliminary: vorticity estimate

Although the vortex-balls construction and the localized lower bound of Lemma 5.1 could be adapted to
the present setting with N, > |log ¢|, we only need the following optimal estimate on the number of vortices
based on an estimate on the modulated energy excess. Since the vector field VA is assumed to decay at
infinity, the proof is considerably reduced. (Note that in the absence of pinning and forcing no cut-off is
needed and the corresponding property is completely trivial: the excess is then indeed simply defined by
D. =& — wiNc|logel, cf. [82].)

Lemma 7.1. Let h: R? - R, a := ", with a <1 and |Vh||i2qap~ <1, let ue : R?2 = C, v, : R?2 = R?,
with ||curl vellpiane S 1 and ||[vellne S 1. Assume that 0 < e < 1, |loge| < N. Se™ !, R > 1, and assume
that the modulated energy excess satisfies D* 5, < N2. Then,

g, R ~

P lrrell iz oo By~ < Nes

hence in particular
sup |€2 g — DZ g| S Nelloge| < NZ.
z

Proof. Let ¢ € H'N W1 (R?) be supported in a ball of radius R. We decompose

/¢U6 = /d’(NgCUﬂ ve +eurl (e — NEVE)) = NE/(Z)CUTI Ve _/VLd)' (je — Neve),

hence, using the pointwise estimates of Lemma 4.2,

/¢/~Ls S Nelldlis + (€202 IVlLz + € pI VL. (7.1)

< N2 and |[|[Vh|p2qp~ < 1, we obtain

~

In particular, using the assumptions D p

2 = D2+ llogel [ axie S N2+ logel (€2,)" + 22
and hence, taking the supremum in z and absorbing &  in the left-hand side, for € > 0 small enough,
PR SN2+ (1+eNo)’loge* S NZ.

Inserting this into (7.1) yields [ ¢p. S Nel|9|l g1qp1.0, and the result follows. O

7.2 Modulated energy argument

Using the estimates of the previous section, we may now turn to the estimation of the different terms in
the decomposition of Lemma 4.4, and deduce the smallness of the modulated energy excess by a Gronwall
argument. This is the main step in the proof of the mean-field limit result stated in Theorem 1.3.

Proposition 7.2. Leta =0, 3=1, andleth : R*> - R, a:=e", F : R? = R2?, f : R? — R satisfy (2.2). Let
ue 1 [0,T] xR% — C and v, : [0,T] x R? — R? be solutions of (1.5) and (3.2) as in Proposition 2.2(ii) and in
Proposition 3.3, respectively, for some T > 0. Let0 < e < 1, [loge| < N. < e ', R > [[Ortie |10 12+ llog g%,
and assume that the initial modulated energy satisfies 5:7’1% < NZ.

Then, in the regime (GP), we have 5:”;% <4 N2 for allt € [0,T), and in particular N='j. —v. — 0 holds in
L>([0,T); L., (R?)?) as € L 0. Under the stronger assumption £5° < N2, the same convergence holds in

uloc

L([0,77; (L' + L?)(R?)?).
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In the present regime N. > |loge|, Lemma 7.1 states that |D. p — & gr| < N2. Hence, as opposed
to the more difficult situation treated in Section 6, the different terms appearing in the decomposition in
Lemma 4.4 now only need to be estimated by means of the modulated energy & g, without having to take
care of the renormalization on the small balls around the vortex locations. In particular, the vector field
I'. does no more need to be truncated on the small balls, and we simply set I'. = I'.. For this choice,
all terms involving the vortex velocity f/E,g are easily seen to vanish. This simplification is crucial since in
the present conservative case we have no good a priori control on the velocity (apart from rough a priori
estimates of the form [|dyue — iucNop_ |12 < e~ ?), and this prevents us from treating the case N, < [loge|
in the Gross-Pitaevskii case.

Proof. In the sequel, we choose 1 < ¢ < R with ¢% < (eN.)~! for some 6, > 0. Regarding the global
truncation at the scale R, it is not really needed in the present context (as a consequence of the decay
assumption on the fields Vh, F, f), and can be sent to infinity arbitrarily fast; here it suffices to choose
R > sup,e(o.7) |0suc||2 + [loge[?* (where the right-hand side is indeed finite by Proposition 2.2(ii)). Given
the assumption 5*’1% < NZ on the initial data, for all e > 0, we define 7. > 0 as the maximum time < T

such that 86 » < N2 holds for all t < T.. By Lemmas 4.1 and 7.1, we deduce D* ’Q r < NZandforallt <T,

Dip Se N2, & p e N2, Dl e N2, EXp SEN, ptol(N2), € p SDI L+ o0(N2). (7.2)

The strategy of the proof now consists in showing that for all ¢ < T,
A~ t t A
Elpr St o(N2) + /O Y OB (7.3)

This estimate is proved in Step 1 below. To simplify notation, we focus on (7.3) with the left-hand side f:';’&R
centered at z = 0, but the result of course holds uniformly with respect to the translation. By the Gronwall
inequality, it implies E R < N2, hence 5 B <t N2 for all t < T.. This gives in particular 7. = T', and
the main conclusion follows Whlle the addltlonal stated consequences are deduced in Step 2.

Step 1: proof of (7.3). Using the constraint 0 = a~!div (av.) = div v. +v.- Vh, and choosing T, := T,
the result of Lemma 4.4 takes the following simpler form,

8t,ﬁs,g,R == Issng + IVQR +IEQR +I€I—IQR +I;19R +I€ ,0,R? (74)
where we have set
Boni= — [ xnVEE 5,
a ~
Y, pi= /L;R Veo - (—Aclloge|lF + [loge|(VFh — F-) — 2N.v.),
a
I‘f&R = / éRFE : (|10g5|(th - FL) - 2Nsvs),u67
A = “Xer Vi(|Vue — iu.N. 1- )|
e,0,R = |Vue — iue Vs‘ ( |us| ) llog &|pee |,
no._ & .l . . [loge| ~
IZ, g = Vxr - S -T2 aVxgr - ((Osue — iueNop,, Ve —iucNeve) + 5 Vo)

and where the error I , p is estimated as follows (cf. (4.17)),

1L o.rl Sto eNEXp + Ne(€L )2V (D = pe )llee +eNZo” (€2 )2,
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Choosing # > 0 small enough, and using Proposition 3.3 in the form ||[V(p —pL ,)[lL> < 1 (cf. (3.22)), we
obtain

12 .l St €8 R+ o(N)(E2 )2 (7.5)

The choice (3.3) for T’z gives IZQ,R = IEQ r = 0, hence

E\7 k)
atﬁE,Q;R - I €,0,R + I £,0,R + Ie,g,R + Ié,g,R' (76)
It remains to estimate the first three right-hand side terms. By (2.2) in the form [|f||;: < N2, and by the
integrability properties of v, (cf. Proposition 3.3), the first right-hand side term is estimated by
B0 S IV m [ (90 = fuNove P S0 = P 4 1= [P IVZ v +111)
St Een+eN2(Eer)'? SEr+0(N2). (1.7)

We turn to the second right-hand side term in (7.6). Lemma 7.1 yields

1, < T Vil [ xa(|9u - fuNove P+ 501 fuc)?) + floge]

/aXRFsl - Vh pe

< & rlTz - Vh||L= + Ne[loge|axrl'z - Vh||gan1,ao7
and hence, using (2.2) and the properties of v. (cf. Proposition 3.3),
1P g St Eor + Nelloge| < & g + o(N7). (7.8)

It remains to estimate the third right-hand side term in (7.6). Arguing as above, we find
) a
Eon SR [ (190 = ducNove? o 500 P + L e P2y + 1))
Bar

+ R loge| / |0yt — iuc Nepe ,||Vue — iucNeve|
Bar
Si €+ o(NZ) + R loge| (€2 )" /?||0rue — iueNep, yllL2(5p)-
The properties of p, (cf. Proposition 3.3) yield for all § > 0,

[0t — iueNep, 2 (Bory S N10tielltz By + NellPe ollLz(an) + NellPe plliee (Bam 11 = [tcl*|l12(5ym)
Nte IlatuEHL2 (B2r) +NQ +€N( iy )l/Qa

so that the above takes the form

I, r St &g+ R*2|log5|2||(9tu5||i2(BzR) + 11?72(1*6’)N52|log5|2 + o(Nf).

E?

Using the choice R 2 ||9;ucl|r2 + [loge|?, and choosing 6 > 0 small enough, we deduce I7*, <S¢ £ p+0(N2).
Combining this with (7.5), (7.6), (7.7), and (7.8), we conclude

~t

8t,ba,,g,R < 65*71% + O(Na?)

Integrating this in time with 15:2 < N2, using (7.2), and noting that the same result holds uniformly with
respect to translations of the cut-off functions, the conclusion (7.3) follows.
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Step 2: conclusion. As explained, the result of Step 1 implies 7. = T and 5:7’1'; <y N2 forall t € [0,7).

We now show that it implies the convergence N !j. —v. — 0. Using the pointwise estimates of Lemma 4.2,
we obtain

e = Nevellwt 4 12)(Br(z)) S Ve = ite NevellL2 (o) (1 + 11 = [ue? L2 (Br(z)) + Nelll = [uel?l|L2 (8 (2)
< No(1+¢eN.) < AN,

and the conclusion follows, letting R 1 co. O

Part 11
Homogenization questions

8 Small pin separation limit

In this section, we aim to combine the mean-field limit with the homogenization limit of a small pin
separation 7. | 0. Only partial results are obtained here for this double limit. We focus on the dissipative
case, and for simplicity we restrict to the periodic setting, that is, B(x) = nalAzo(gm x/ne) with RO periodic in
its second variable.

8.1 Modulated energy argument

In this section, we adapt the result of Proposition 6.1 to the case with fast oscillating pinning. Since for
simplicity we have not been looking for precise rates of convergence in Proposition 6.1 (that is, refinements
of the o(N2) error in (6.3)), we are only in position to treat inexplicit diagonal regimes 7. o < 7. < 1, for
some suitable 7. o. Further refinements are left to the interested reader.

Proposition 8.1. Given a fast oscillating pinning potential (1.22), we consider the regimes (GL1), (GLs),
(GLY), and (GL3). Then, the solution v. of the corresponding limiting equation (3.2) exists up to time n.T,
where T > 0 is as in Proposition 3.1. In particular, except in the regime (GLg) with B # 0, the time T can
be chosen either infinite, or at least arbitrary large for € > 0 small enough (independently of . ).

Moreover, there exists some exponent o > 0 and some increasing bijection 6 : RT — R such that, if
the initial modulated energy satisfies D3, < N2, then we have in the corresponding regimes, with the same
restrictions as in Proposition 6.1, for all0<t < nel,

t
swp DL SN2 = DL <olt/n) (w00 4t [ D). (8.1)
0<s<t 0

Proof. We adapt the proof of Proposition 6.1 to the present case with fast oscillating pinning. For that
purpose we first need to check how the solution v, of the limiting equations (3.2) depends on the small
parameter 7., thus adapting the result of Proposition 3.1. A scaling argument shows that the solution
Ve exists up to time 1. T, where T is as in Proposition 3.1. Moreover, an inspection of the proofs in [37]
together with a scaling argument shows that all the estimates in Proposition 3.1 still hold up to multiplicative
constants of the form n-760(t/n.), for all 0 <t < 1T, for some exponent o > 0 and some increasing bijection
6 : R™ — RT. (Of course this is but a rough estimate, but it is enough for our purposes here.) Note that a
scaling argument yields more precisely, for all 0 < ¢ < n.T,

[T Lo < 0(t/n.),  IVTE|Le < nz'0(t/ne),
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for some increasing bijection # : RT — RT. Repeating the proof of Proposition 6.1, but now taking into
account this n.-dependence, the conclusion follows. O

8.2 Local relaxation for slowed-down dynamics

The result of Proposition 8.1 a priori prevents us from applying a Gronwall argument beyond times of
order 7n.. As the following shows, in this short timescale, in each (mesoscopic) periodicity cell, the vorticity
gets projected onto the invariant measure for the cell dynamics associated with the initial vector field I'Y
(where T'; is the vector field driving the limiting equation (3.2)). This initial-boundary layer is captured in
the framework of 2-scale convergence. The proof of this short-time result is very easy since the non-linearity
does not play any role in this timescale. In contrast, in the next sections, we give formal arguments that on
larger timescales the effective vector field is given by the cell vector field projected onto the corresponding
invariant measure (which is indeed in agreement with the present short-time result), but on such large
timescales the nonlinearity truly enters into play and a rigorous justification is still missing.

Proposition 8.2. Let Assumption A(a) prevail, with the initial data (u2,v2,v°) satisfying the well-preparedness
condition (1.14). We consider the regimes (GL1), (GLa), (GL}), and (GLj), with fast oscillating pinning
potential (1.22). Let u. : RT x R? — C be the solution of (1.5) as in Proposition 2.2(i). Let T > 0 denote
the finite existence time given by Proposition 3.1 in the regime (GLg) in the mized-flow case 8 # 0, and set
T := oo otherwise. Let also g denote the unique solution of the following transport equation on RT x Q,
for all x € RY,

O (z, -) = divy (Fo(x, g (z, )), Mg (x, ) |t=o = curl v°(z), (8.2)
I°(z,y) := (o — IB)(Vah(z,y) — F(z) + 26v°(2)t),

where K := 1 in the regime (GL1),  := X\ in the regime (GLz), and k := 0 in the regimes (GL])—~(GLj).
Then, there exists ne,0 < 1 (depending on all the data of the problem), such that for any choice n. g <n. < 1
the rescaled vorticity NZ ' ulet 2-scale converges to 1y, in the sense that, for all ¢ € C2°([0,T) xR?; C.(Q)),

per

liﬁ}//d)(t,x,x/ne)Ngl,ugst(x)dxdt: // o(t, z, ) (z, y)dyddt.

Proof. Let v. : [0,7:T) x R?> — R? denote the solution of the limiting equations (3.2) with oscillating
pinning (1.22), as given by Proposition 8.1. Now using Proposition 8.1 in the form of (8.1), and choosing
Ne,0 < 1 large enough such that 7_§o(N2) < NZ, the Gronwall inequality yields for any choice 7.0 < 7. < 1
that D:”?{t <t o(N2) holds for all 0 < ¢ < T. Hence, arguing as in Step 5 of the proof of Proposition 6.1,
we deduce N 1j7=t(z) — vI=t(z) — 0 in LS (RT; LY (R?)?) as € | 0. It now remains to determine the
asymptotic behaviour of v7=t.

Step 1: 2-scale convergence of curl vt Let f/i := v and . := curl ¥.. Taking the curl in both sides
of (3.2), we deduce

O = 1 div (Derire ), Me|i—o = curl vg, (8.3)
2N,
Io=A""(a— ~F v
o —18)(Vh-F+ Tog )

By [37, Lemma 4.1(iii)] in the dissipative case a > 0, with [|h|wi., [[AoH (ViR — F5)|Lee, [[v2]|Lee,
div (av2)||L2 < 1, we deduce that [ [vi —v2|? <t forallt € [0,7.7). On the other hand, by [37, Lemma 4.2],

85



with further [jcurl v2|[L~ < 1 and [A\Z'V(VEh — F1)|l~ < nt, we find [jeurl vE||p~ $i/p. 1. After time
rescaling, this implies for all ¢ € [0,7),

[l S e S (8.4

Nguetseng’s 2-scale compactness theorem [68, 4] (e.g. in the form of [38, Theorem 3.2]) then states that
there exists 1y € LS, (R*; L°(R? x Q)) such that (up to a subsequence) r. 2-scale converges to mg, in the
sense that for all ¢ € C°(R* x R?;C2,(Q)) we have

per

leiﬁ)l//gb(t,x,x/ns)rﬁz(w)dxdt: // B(t, x, y)imf (z,y)dydadt.

Testing equation (8.3) against ¢*(z, z/n.), we find

/(bo(x,x/ng)curl v°(x)dx+/ Orp(t, z, x/no )il (z)dadt
= [ @ 010t ww/n) + Vaolt. /1) - T dat,

and hence, passing to the limit ¢ | 0 (up to a subsequence), using that v. — v° in LS (R*; L2 (R?))
(cf. (8.4)), we obtain in the considered regimes,

//(;S(Om,y)curl ve(z)dydx + // Orp(t, x, y)ml (z,y)dydrdt = //  (z,y)Vad(t, z,y) - T°(z,y)dydrdt.

This proves that mg satisfies the weak formulation of the linear transport equation (8.2), and therefore
coincides with its unique solution, mg = my.

Step 2: conclusion. Let ¢ € C°(RY xR?; C22,(Q)), with ¢(t,z,y) = 0 for t > Tg or x| > Ry. Integration
by parts yields

] // o(t, 2, /nyeurl (j2 /N, (o) dedt — // ¢<t,x,y>m3<x7y>dydxdt\ (8.5)
To
< YVl / /B j;f/NE—GEH\ // o(t, 7, /) eurl ¢t (z)dedt — // o(t, .y, y)dyded|.

By Step 1, the second right-hand side term goes to 0. It remains to estimate the first term. In the very
beginning of the proof, we have shown that fOTO [5,, 132" /N = ¥'| — 0 holds uniformly with respect to the
0

choice of 7. 0 < 1. < 1. Now choosing 7., ¢ < 1 large enough ensures that for any 7.9 < 7. < 1 the first
right-hand side term in (8.5) also goes to 0. O

8.3 Homogenization diagonal result

Although the result of Proposition 8.1 a priori prevents us from applying a Gréonwall argument beyond
times of order 7, it is possible to find some perturbative diagonal regime where the conclusion holds for
all times. (While this regime is still denoted by 1.0 < n. < 1 for some large enough 7.9 < 1, it should
be emphasized that the sequence 7. needs here to be taken in practice incomparably much larger than
in Propositions 8.1-8.2.) In such a regime, the homogenization limit may simply be performed after the
mean-field limit.
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Corollary 8.3. Given a fast oscillating pinning potential (1.22), we consider the regimes (GL1), (GLsg),
(GL}), and (GLY), and in the regime (GLg2) we restrict to the parabolic case 8 = 0. Then there exists
Neo < 1 (depending on all the data of the problem), such that for all n.o < ne < 1 the conclusions of
Proposition 6.1 hold in each of the corresponding regimes.

Proof. Since the regime (GL2) is excluded here in the mixed-flow case 8 # 0, Proposition 8.1 asserts that
the solution v, of (3.2) with oscillating pinning exists up to time 7.7, where T" > 0 can be chosen arbitrarily
large for € > 0 small enough (independently of 7). Hence, choosing 1. < 7. < 1 with 7, ¢ large enough,
the existence time 7.7 can itself be taken arbitrarily large. Now given the assumption DZ:E < N2 on the

initial data, for all € > 0 we define 7. > 0 as the maximum time such that D::;% < N2 holds for all t < T,
so that Proposition 8.1 yields for all 0 < t < T,

t
B < 0(t/n.) (70N + 0" [ D),
0

for some exponent ¢ > 0 and some increasing bijection § : R™ — RT. Hence we find by the Grénwall
inequality, for all 0 <t < T,

DipsH

~

(5o,

€

for some exponent o > 1 and some other increasing bijection § : R* — R¥. Choosing [#7!(N.//0(N2))]~/7 <
Ne,0 < 1, for any 7. 9 < 1. < 1 we deduce f)é r < N2 for all t > 0, and the conclusion now follows as in
Step 5 of the proof of Proposition 6.1. O

In this diagonal regime, the problem is thus reduced to determining the asymptotic behavior as € | 0 of
the solution v, of the limiting equation (3.2) with fast oscillating pinning potential (1.22). As the following
shows, we may further replace v, by the solution v. of the simpler corresponding equations in Lemma 3.2
with fast oscillating pinning potential. Determining the asymptotic behavior of v. exactly coincides with an
homogenization problem; this is precisely the content of Corollary 1.5.

Corollary 8.4. Given a fast oscillating pinning potential (1.22), we consider the regimes (GL1), (GLa),
(GLY), and (GLY), and in the regime (GLg) we restrict to the parabolic case B = 0. Let v. be the solution
of (3.2) with fast oscillating pinning as in Proposition 8.1, and let V. be the solution of the corresponding
equation (3.13)-(3.16) in Lemma 3.2 with Vh(z) replaced by Voh®(x,z/n.). Then there exists n.o < 1
(depending on all the data of the problem) such that for all neo < n. < 1, choosing the fast oscillating
pinning potential (1.22), the solutions v. and V. exist on arbitrarily large time intervals as € | 0, and the
same conclusions hold as in Lemma 3.2 in the form v, —v. — 0.

Note that here the correct choice of the diagonal regime 7. ¢ < 1 could be made completely explicit in
terms of the rate of convergence of N./|loge| to its limit. This is however not made precise here, as anyway
we are limited to some unclear diagonal regime when combining this with Corollary 8.3.

Proof. This convergence result directly follows from the computations in the proof of Lemma 3.2, taking
into account the n.-dependence of v. and V., and applying the Gronwall inequality in a diagonal regime as
in the proof of Corollary 8.3. O

In the next sections 8.4-8.5, we examine the various homogenization problems arising in the above result.
Although the justification of the homogenization of the nonlinear equation arising in the critical regimes
seems out of reach, the situation is simpler in the subcritical regimes.
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8.4 Critical regimes: formal asymptotics

In this section, we investigate the asymptotic behavior of the mean-field equations in the critical regimes (GL1 )—
(GLy) with fast oscillating pinning (1.22). In order to extract the effective equations that should rule the
system in the limit 7. | 0, we use a formal 2-scale expansion (see [7] for a general presentation), which
yields the result of Heuristics 1.7. However, as emphasized in Remark 8.5 below, due to both the nonlinear
nonlocal character of the mean-field equations and their instability as 7. | 0, the rigorous justification of this
homogenization limit seems to be a very difficult task, and is not pursued here. Regarding the interpretation
of the formal limiting equations as a stick-slip model, we refer to Section 1.3.1.

Formal justification of Heuristics 1.7. We focus on the regime (GL1), while the formal justification is easily
adapted to the regime (GLg). The only difference is that in the regime (GLsg) it is further needed to restrict
to the parabolic case § = 0 in order to get global existence for the solution ¥, of (3.14) with fast oscillating
pinning, since otherwise the finite existence time would a priori shrink to 0 as 7. | 0 (cf. Proposition 8.1).
Let v. : RT x R? — R? denote the unique (global) smooth solution of (3.13) with Vh(zx) replaced by
VQhO(mvx/ns) (See [37])7
Ove = Vp, + ccurl v, div v. =0, Velt—o = vg,
[e = (a—1JB) (V%ﬁo(’ /ne) — Pt 2\75),

with 2% and F independent of €. Let us recall the more convenient vorticity formulation of this equation:
the vorticity m. := curl v, satisfies

Om. = —div(l'im.), v.=V'g,  Ag =nm.. (8.6)

As a consequence of [37, Lemmas 4.1(iii) and 4.2, we find [|¥! — v°[|;2 $¢ 1 and [[mf||Le <S4/p. 1. In order
to obtain the effective equations satisfied by v, in the limit 7. | 0, we use a formal 2-scale expansion (see [7]
for a general presentation): we assume that v. satisfies the following natural 2-scale Ansatz,

Ve(x) = Vot t/ne, m,x/me) + nevi(t,t/ne, @, x/n) + O(n2), (8.7)

mg () = mo(t,t/ne, @, /0:) + n-im (8, /0, 2, 2/1:) + O(02),

!7;(1") = go(t, t/nsv €z, ‘T/T,E) + negl(ta t/nEv €z, I/Tls) + 77?!?2@7 t/n& €z, ‘r/na) + O(TIS)
We denote by (¢, 7, x,y) the coordinates corresponding with (¢,t/n.,x,z/n.). Injecting the above ansatz into
equation (8.6), and formally identifying the powers of 7., we derive the following equations,
0,mgy = diVy(FO [Vo}ﬁl@), (88)
dymg + 0,my = div, (T°[Vo]mp) + div, (T°[vo]my) + div, (T [¥1]my),
Vo =Vago+ Va1,
vygo = Oa Aygl = 07 Axgo + 2v$ : vygl + Ayg2 = ﬁlOa

where for any vector field w we have defined for simplicity the following vector fields,

O] := (a — JB)(Vah° — F 4 2w™),
Mw] :=2(a - JB)wt.

The first two equations in the last line of (8.8) imply that both gy and g; are independent of the y-variable.
The third equation then ensures that vo = V3 go is also independent of the y-variable. Averaging both the
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first and the last equations on the periodicity cell @, and denoting for simplicity (-) := | o dy the averaging
operator, we find
07 (mg) = 0, Yo = Vi o, Azgo = (o),

which implies that (mg) is independent of the 7-variable, hence the same holds for gy and V. The 2-scale
Ansatz (8.7) then takes the more precise form

V(@) = V(@) + 31 (4 /e, fne) + O(nd),
mg(«) = mo(t, /1, @, x/n:) + nema (b ¢/, x,2/0.) + O(12).
Further averaging the second equation in (8.8) on the periodicity cell @), we obtain
O,y = div, (T"°[¥o]my), (8.9)
dr(mo) + 0 (my) = div, ((M°[¥o]mo)),
Yo = VE AL im).

Let us now take a closer look at these equations (8.9). For any € R? and t € R, consider the periodic
flow ¢, : Rt x Q — Q associated with the periodic vector field I'°[v§](z,-) : Q — R?,

0-0%4(y) = —T°[¥o)(x, 67 1 (1))-
The first equation in (8.9) then yields
ﬁl()(tv T,T, y) = (( ;,t)*ﬁlo(ta 0’ Z, )) (y)

Now applying s~ ! fos dr to both sides of the second equation in (8.9), passing to the limit s 1 co, and recalling
that (mg) is independent of the T-variable, we formally deduce

B, (ito) (t, ) = divs /

[ (1m s | TG 65 i)t 0,2, ). (8.10)

sToo

By assumption, the periodic vector field T°[¥{](z, ) admits a unique stable (normalized) invariant measure
pz[Vh] € P(Q). By the ergodic theorem, for any 1) € Cper(Q), we deduce for p,[v]-almost all y € Q,

s [ 0T ) = (0 palFh]).

In view of the unique stability assumption, it is most natural to admit that the above also holds for
mo(t,0,x,-)-almost all y € @, in which case we find

tim [ o (s ot gpar)ay = i [ (570 [t toar ot 0.2,y
= (mo) (t, ) (0 el
that is, .
lim 3_1/0 mo(t, 7, x,y)dr = <Iﬁ0>(t,$)ﬂw[‘76]v

sToo

in the weak-* sense of measures. In particular, the limit in the right-hand side of (8.10) is explicitly computed,

9y (mo) (1, ) = div,, (T[] (2, )pea [74]) 1mo) (1, ). (8.11)

Combining this with the first and the last equations in (8.9), the heuristics follows. O
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Remark 8.5 (Obstacles to a rigorous justification). As described below, there are essentially three distinct
weaknesses in the above formal justification of Heuristics 1.7.

(a)

The first part of the justification consists in formally deriving the relations (8.9) for the 2-scale expansion
of V.. This derivation is based on formally inserting the 2-scale Ansatz in the equation for v. and
identifying the powers of 7.. However, due to both the nonlinear nonlocal character of the equation for
Ve and its instability as 7. | 0, a rigorous justification seems difficult to obtain, as we explain here.

In order to justify formal 2-scale expansions, a powerful tool is given by Nguetseng’s 2-scale weak
compactness theorem [68, 4]. Since the equation for v, is nonlinear, this technique is of course not well
suited, and since the nonlinearity is in addition nonlocal, E’s technique of 2-scale Young measures [38]
is also of no use.

Another way to proceed (see e.g. [25, Section 3.1]) consists in approximating the solution v. by the
first terms of its formal 2-scale expansion (8.7): by definition this approximation satisfies the very same
equation as V. up to a small error, and this could be combined with a quantitative uniqueness principle
to ensure that v. remains close to its expansion. However, the linear part of the equation with fast
oscillating forcing and the nonlinear interaction part are difficult to conciliate, and we do not know of
any stability estimate which does not blow up in the homogenization limit. On the one hand, the L'-
contraction principle for the vorticity holds in the linear case but interacts badly with the nonlinearity.
On the other hand, the nonlinear interaction part calls for energy-type estimates (that is, estimates
on the L*-distance between supercurrent densities), but the evolution of such metrics (as well as the
2-Wasserstein distance) is sensitive to the blowing Lipschitz norm of the oscillating forcing vector field.
This issue is linked with the particularly strong instability of the equation upon perturbations as 7. | 0.

The last part of the justification consists in checking that the relations (8.9) imply the closed equa-
tion (8.11) for the averaged vorticity (mg). If the (normalized) invariant measure p,[v'] was truly
unique for all x, ¢, then the given justification would be perfectly rigorous. Unfortunately, in the periodic
setting, due to the gradient structure, this uniqueness (or unique ergodicity) is impossible, while the
uniqueness assumption for a stable invariant measure seems more reasonable. The flaw in the above
justification then lies in the assumption that unstable invariant measures do not play any role in the
limit in (8.10), which is however not obvious and would require some argument.

Finally, the well-posedness of the limiting equation (1.24) or (1.25) is unclear. The main difficulty is
that the map R? x R — R? : (z, Z) + I'pom[Z](x) is not even expected to be Lipschitz-continuous in
Z: indeed, as explained in Remark 8.8 and Proposition 8.10, for fixed x, this map typically vanishes for
Z in some bounded domain (pinning phenomenon), and is expected to have a power-law behavior with
some power < 1 at the boundary of this domain (fractional depinning rate). Note that no comparison
principle is expected to hold here (compare indeed with [85, Section 6.5]), so that a good notion of
viscosity solutions seems unavailable.

Remark 8.6 (Toy model with vanishing viscosity). For simplicity, we may consider the corresponding
homogenization problems with a vanishing viscosity, that is, adding in the right-hand side of equation (3.13)
or (3.14) for v. a term +Dn.Av,, for some D > 0. A similar formal 2-scale expansion as above then yields
the following modification of the relations (8.9), in the case of the regime (GL1),

9,y = DAmg + div,, (T9v0]my), (8.12)
3y (mo) + O (m1) = div, ((M°[vo]mo)),

Yo = VA (img).

From these relations the interpretation is now much easier: the first equation implies the (exponential)
convergence of mg(t,7,z,-) to (mg)(t,z)al[vh] as 7 1 oo, where the viscous invariant measure a2[v§] €
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Pper(Q) is the unique (smooth) solution to the following equation on the periodicity cell @,
DA [75] + divy (TO[v5) 2 [¥5]) = 0.

The formal limiting equation then takes exactly the same form as in Heuristics 1.7, but with I'yom [w] replaced
by its better-behaved viscous analogue,

D [w)(z) == /Q T, (] (4)dfi o] (4).

In this case, the last two difficulties (b) and (c) pointed out in Remark 8.5 above disappear: the viscous
invariant measure is easily checked to be always uniquely defined, and the corresponding limiting equation for
m is (locally) well-posed. Nevertheless, the difficulty (a) remains unchanged (that is, the rigorous derivation
of the relations (8.12) for the 2-scale limit), and finding a rigorous proof still seems challenging.

8.5 Subcritical regimes

In the subcritical regimes (GL))—(GLj), the interaction of the vortices vanishes in the limit, and we are
left with a much simpler linear transport equation with fast oscillating forcing for the vorticity m. := curl v,
(obtained as the curl of equations (3.15)—(3.16) in the form of Corollary 8.4),

oym, = div (f‘grﬁs), Me|i—¢ = curl v¢,
[.(2):=T(z,z/n.), T:=(a—JBLy To(z,y):=Vah'(z,y) - F(x).

With its fast oscillating gradient part, this linear transport equation is referred to as a washboard or wiggly
system. QObviously the macroscopic dynamics strongly depends on microstructural events, for instance if
some mass gets stuck in local minima: the typical mental picture is that of a particle sliding down a rough
slope (like a washboard), thus taking a jerky path downwards, sometimes getting stuck along the way. Due
to its gradient part, the corresponding vertical flow I'(x,-) on the periodicity cell @ cannot be uniquely
ergodic, so that the problem of determining the asymptotic behavior of the solution m. lies outside the
classical theory of averaging. This problem was first studied in dimension 1 by [1], and later investigated in
dimension 2 by Menon [61].

Menon’s results [61] show that the space R? splits into three regions associated with different dynamical
properties: (1) an open set where the mass gets stuck (pinning region), (2) a transition region with a
combination of sticking and slipping, and (3) the rest of the plane with only slipping. The slipping region
is actually further split into countably many resonance zones where the limiting vector field has a constant
direction given by the (rational) rotation number of the underlying microscopic cell flow, and the direction
of the vector field varies continuously but not smoothly across the boundary of the resonance zones: given
an initial position far from the pinning region, its path downwards is typically rough like a Cantor function.
The dynamics is indeed particularly rich in dimensions d > 2: through the forcing 13‘, the macroscopic
variable x acts as a bifurcation parameter for the topology of the underlying microscopic cell flow, and the
bifurcations in the topology generate changes in the macroscopic motion between stick and slip, as well as
between (rational) slipping directions. Note that Menon’s results [61] are only partially justified, and are
restricted to dimension d = 2 (due to some key topological arguments).

Simplified model. In order to exemplify the complexity of the structure of the limiting motion described
above, let us consider (in general dimension d, say) the easier case of a constant forcing I’ € R? together with
a wiggly potential h® that only depends on the microscopic variable; we thus consider the linear transport
equation

O, = div (Ifme),  1icfe—o = m, (8.13)

Pl(z) =T (/n.),  TF(y) = (a—IB)(VA'(y) - F).
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In this context, there is a true separation of scales in the limit 7. | 0, and we may simply study the bifurcation
of the limiting motion with respect to the constant forcing F. This system is a very particular case of the
general nonlinear systems studied in [27] under additional well-preparedness conditions, but a more precise
result is obtained here (see also [38] for the easier incompressible case, and [42, 26] for the corresponding
Hamiltonian setting).

We first introduce some notation and make some regularity assumptions. The periodic vector field —I'F’
on the unit cell Q C R? defines a dynamical system on the d-torus @. Assume that RO is smooth and non-
degenerate, in the sense that for F' # 0 this dynamical system admits a finite number of (normalized) ergodic
invariant measures (uf )", € P(Q), 1 < Ly < oo. For F = 0 we only assume that the dynamical system
admits a finite number of (normalized) ergodic invariant measures on int @), while the boundary Q) is assumed
to be made of unstable fixed points of the dynamics, thus yielding an infinite family (6,),caq of ergodic
measures on this boundary. (This assumption is motivated by the typical choice ho < 0, (iNLO)*l({O}) = 0Q;
cf. the explicit example in Figure 4.) For all 1 < k < L we define the minimal invariant sets A,f = supp p,f ,
and we let B,f denote the set of ,u,f -generic points. We order the ergodic measures in such a way that \B,f | >0
holds for all 1 <k < Kg, and |Bf| =0 for all Kr + 1 < k < Lp, with 1 < Kp < Lp. By construction,

Note that in dimension d = 2 the dynamical picture is particularly simple, as Denjoy’s version of the
Poincaré-Bendixson on the 2-torus [30] (see also [81]) asserts that minimal invariant sets are either fixed
points, periodic orbits, or the whole torus.

Figure 4 — In dimension 2, a typical choice for the pinning potential is e.g. h°(z) := — cos(mz1)? cos(mx2)?
forz e Q=1[-3,3)%

The limiting behavior of the solution m, of (8.13) is then characterized as follows; note that the result is
much simpler in the case Kr = 1, that is, if there exists a unique stable (normalized) invariant measure.

Theorem 8.7. Let the above notation and assumptions hold, and let 1 € P NL>(RY) satisfy

m(z) — w’(z,z/n.) — 0, (8.14)

3

strongly in L' (R?) as ¢ | 0, for some w® € L*(R%; Cper(Q)). Let F € R?, and denote by i, € L2, (RT; P(R?))
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the unique solution to the transport equation (8.13) with initial data mg. Then we have for all t > 0,

where for all k we denote by 1y, € LS, (RT; P(RY)) the unique solution of the (constant-coefficient) transport
equation

oymy, = div (]."kFIhk), ]."kF = / ]."F(y)d,uf(y), My |i—g = My = / w(-, y)dy.
Q B

F
k

In particular, if the stable invariant sets of the dynamical system generated by —T'F are all reduced to a point
(that is, if AL is a point for all 1 < k < Kp), then we have . Sme = fQ w (- y)dy = Zszl my, for all
t>0.

Remarks 8.8.

(a) Stick-slip motion. In this remark, we consider the behavior of the limit m as a function of the forcing F,
and we argue that the space R? of values of I splits into three regions: (1) an open bounded set around
0 for which the limiting solution is stuck m = m° (pinning phenomenon), (2) a transition region for
which a part of the mass is stuck and another part is transported, and (3) the rest of R? for which there
is only transport (with possibly a superposition of different effective velocities). The link with Menon’s
results [61] is thus clear. A natural question consists in studying the precise behavior of the effective
velocity as a function of F' beyond the pinning region. The behavior at the depinning threshold, that is,
for forcing F' just across the boundary of the pinning region, is shortly addressed in the sequel of this
section (see Proposition 8.10 below). On the other hand, for very large [F'| > 1, the deviation of the
effective velocity due to the wiggly potential h° naturally tends to O,

—IF = (a=JB)F — (a —IB) /Q Vhldpy, = (a — JB)F(1+ o(1)).

We first consider the case F' = 0, hence —T° = —aVA? + SVLh0. For energy reasons, we note that the
only invariant sets are then necessarily made of unions of fixed points of the dynamics. The last part
of Theorem 8.7 then allows to conclude that the limiting solution m is constant in time. Now for F
close enough to 0, the stable invariant sets of —I'f" are still made of stable fixed points, which are simply
deformations of the stable fixed points of —I'°, and we conclude that the limiting solution m still remains
constant. In contrast, for larger values of F', the topological nature of the stable invariant sets may
change, yielding a possible combination of both stable fixed points and other types of stable sets, hence
by Theorem 8.7 a combination of pinning and transport. Finally, for |F| > ||Vi~10||Loo, we note that the
map —I'F" no longer has a fixed point (since the condition on F implies [TF|? = (a2 +2)|VA? — F|?> > 0),
so that Theorem 8.7 yields pure transport in that case.

(b) Initial-boundary layer. While the initial data m; may have some microscopic heterogeneities, which are
assumed to be given by w°(-,-/7.), it is instantaneously relaxed to an invariant measure ZkKZF 1 (- /me )y,
in a timescale of order O(7.). This initial-boundary layer at the microscopic scale could be described in
similar terms as in Proposition 8.2.

We now turn to the proof of Theorem 8.7. It is obtained from a suitable version of 2-scale convergence
methods. More precisely, we use the following L'-version of Nguetseng’s 2-scale compactness theorem [68, 4];
as it is not standard in this form, we include a short proof.
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Lemma 8.9 (a la Nguetseng). Let (g,), be a bounded sequence in LiS (RY; L (R?)). Further assume that
it is tight, in the sense that for all T > 0,

lim sup sup/ |gf7| =0. (8.15)
Lroo (0,71 n>0 J|z|>L

Then, there exists a subsequence, still denoted by (g,)n, and an element gy € Lis,(RT; M(RY Mper(Q)))
(where M (resp. Mper) denotes the space of Radon measures (resp. periodic Radon measures)), such that
we have for all T >0 and all ¢ € L'([0, T]; Cp(R%; Cper (Q))),

lim/OT/wt(%:v/n)gf,(fE)dmdt= /OT //wat(wyy)dgé(w,y)dta (8.16)

nl0

We say that g, 2-scale converges weakly-*to go. Moreover, if 1, — 9 holds strongly in L' ([0, T]; Cy(R%; Cper(Q))),

then we find
T T
: t t _ t t
i [ [ vl e @ade = [ ]t st vy

Proof. Let T'> 0 be fixed. The boundedness assumption on g, gives sup,) ||gy[|L (0, 77;L1 (r4)) < Cr, so that
we find for all ¢ € L*([0, T]; Co(R%; Cher(Q))),

T
‘/ /W(az,x/n)gé(az)daﬁdt‘ < COrllYllLr(0,17:00 RE:Cper (@) -
0

The sequence (g,), may thus be seen as a bounded sequence of elements in the dual of the Banach space
LY([0,T); Co(RY, Cper(Q))), that is, a bounded sequence in the space L>°([0, T]; M(R% Mper(Q))). Combin-
ing this with the additional tightness assumption (8.15), we deduce that there is a subsequence, still denoted
by (gy)y, and an element gy € L>([0, T]; M(R%; Mper(Q))) such that g, converges weakly-* to go in that
space, in the sense of (8.16). O

With this compactness result at hand, we now sketch a proof of Theorem 8.7.

Sketch of the proof of Theorem 8.7. Let F be fixed, and write for simplicity Ay := AL, By := Bf, and
i 2= pf . We split the proof into four steps.

Step 1: 2-scale compactness argument. In this step, we show that up to a subsequence the solution m,
of (8.13) 2-scale converges weakly-* (in the sense of Lemma 8.9) to some limit gy € LiS (RT; M (R4 M (Q))).

per

Moreover, denoting for simplicity by (-) := [, 0 dy the averaging operator, the limit mq satisfies the following
equations:

— div, (T"F1mg) = 0, (8.17)

O (myg) = div, (I 1), (thg)]i=0 = (w°) = m°. (8.18)

Equation (8.17) means that m(x, -) is an invariant measure for the vector field —T'¥" on @ for almost all ¢, z.
For F # 0, by assumption, we may then decompose mg as a linear combination

Lg
m(z,y) = Y & (@) (y). (8.19)
k=1
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For F = 0, by assumption, a similar decomposition holds in int @Q: there exists g € Lis.(R*; M(R? Mper(Q)))
such that for all ¢, 2 the measure 1 (x, -) is supported in 9Q, and such that

Lo
mf(z,y) = mh(z,y) + > &(@)(y).
k=1

Since 10, is nonnegative and has constant mass 1, it is bounded in L>°(R*;L'(R%)). Moreover, as the
velocity field 'Y is bounded in L™°(R%)¢, the tightness of the initial data (1h?). easily implies the tightness of
the solutions (). in the sense of (8.15). Therefore, by Lemma 8.9, up to a subsequence, m. 2-scale converges
weakly-* to some g € Lo, (RT; M+ (R% M, (Q))). We now prove that this limit satisfies equations (8.17)—

per

(8.18). Testing the equation for m. against a test function *(z,z/n.), with ¢ € C}(RT x R% ;Cher(Q)), we
find

/ / Ot (e it ()t + / (@, 2/ne)dins ()
R+ Rd
/R ) / LVt (1) + Vbt (5, 3/me)) - TF (e dii ().

Choosing ' (z,y) := n-¢'(z,y) with ¢ € CHRT x R CL,(Q)), and letting € | 0 (along the subsequence),
we find

/R+ //RdXQ V¢! (z,y) - TF (y)di (z, y)dt = 0,

that is (8.17). Now choosing ¢! (x,y) := ¢!(z) with ¢ € C}(RT x R?), letting ¢ | 0 (along the subsequence),
and using assumption (8.14), we obtain

/R+//Rdeat¢t(x wydt+//RdXQ 2)dw® (z,y) /R+//Rde 6(t,2) - TF (y)dint, (. y)dt,

that is (8.18).

Step 2: localization. Let 1 < k < Kp be fixed. Denote by Bj, the 1-periodic extension of By on RY. In
this step, we show that, if m2(R%\ 7.B}) = 0 for all ¢, then &4 (z) = 0 holds for all j # k for almost all ¢, z.
In particular, this implies m{(z,y) = &L (z)ux(y) almost everywhere.

Given the smoothness assumptions, viewing By, as the attraction basin associated with Ay, it follows that
we must have n - ' = 0 on the boundary dB;.. Note that the method of propagation along characteristics
together with the Liouville-Ostrogradski formula yields the following estimate for the solution m. of (8.13),

gl < [[m2flue exp(tfidiv I [|L=) < [[@2]|L> exp(ans AR |lL=),

hence m. € LS, (RT; L (R%)) (although of course no e-uniform bound holds in that space). We may then
deduce by integration by parts, for all ¢ > 0,

8t/7,53,;dm£:/7,533 n-TE(z)mk(z)do(z) =0,

that is, m’ (9. B,) = m2(n.B},) = 1, and the conclusion follows from the decomposition (8.19).

Step 3: convergence of partitioned initial data. Decompose mg = ZkK:Fl mg , with mg , = ﬁl?]l,,EB;c. In
this step, for all k£, we show that m_ ; converges weakly in L'(R?) to m{ := ka w(+, y)dy.
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For any test function ¢ € L°°(R?), assumption (8.14) yields

k1oo

lim sup ‘ /gbdrhék - gb(z)wo(a:,x/ne)dx‘ < lilleSup/ lp(z)| Mg (x) — w®(x, x/n:)|dz =0,
ne By, o

while by periodicity we may compute (see e.g. [4, proof of Lemma 5.2])

hm/¢> (x,2/ne) Ly . epydr = // (z,y)drdy = /¢dmk7
RdXBk

and the result follows.

Step 4: conclusion. By linearity, with the choice of the m¢ ;’s in Step 3, we may decompose . =
SOF 1. g, where for all k the function m. ; € L™ (R*t; M*(R%)) is the unique solution of the following
equation,
me ..

oy, p, = div (T, ),

Up to a subsequence, for all k, we know by Step 1 that m, j 2-scale converges weakly-* to some mg €
e (R MT(R?; MEL.(Q))), which satisfies

— div, (T"1mg 1) = 0,
O (Mo k) = dive (Mo k), (o x)|i=o = My,

where the first equation implies for mg j a similar decomposition (8.19) as in Step 1. By Step 2, since we
have by construction m¢ , (R \ . By) = 0 for all &, we deduce Iﬁ67k(x, y) = (m . (z,))uk(y). Inserting this
form into the above equations, we find

Oy (o) = div (Tf (o)), Tk = (T k), (o k) t=0 = My

This is now a linear transport equation for (g ). Uniqueness allows us to get rid of all extractions of

subsequences, and the conclusion follows, since by linearity we necessarily have mg = ZkKZF 1 Mo %, where mg
is the weak limit extracted in Step 1. O

As noticed in Remark 8.8(a), the question of determining the depinning rate at the depinning threshold
is of particular interest. While obtaining a complete answer seems difficult due to the variety of possible
dynamical behaviors, we consider the simplest situation when the depinning is due to the bifurcation of a
unique stable fixed point into a stable periodic orbit. A square-root power law is then obtained under a
non-degeneracy condition. An additional assumption is made for simplicity, which reduces the computation
to a 1D setting (being then comparable to some explicit computations in [1, 50]). This assumption is satisfied
for 8 = 0 and for a forcing F' that is parallel to a coordinate axis when the pinning potential i has similar
symmetries as in the example of Figure 4 (see indeed Figure 5). Yet, we believe that the same result holds
in more general situations.

Proposition 8.10. Let e, |e| = 1, be some direction, and consider the system (8.13) with F = ke. Assume
that the vector field —T'"¢ has a unique stable invariant set for all k > 0, and assume that there exists a critical
value k. > 0 such that this invariant set is a fized point for 0 < k < k¢, and is a periodic orbit for k > k.
Further assume that the image of the periodic orbit O C Q remains the same for all k > k.. Assume that h°
is smooth, and is non-degenerate in the following sense: for all x and all |v| =1, ifv~V(anﬂVJ-)}~LO(:r) =0
holds, then (v-V)*(aV — BV1)RO(x) # 0. Then, the effective velocity T¢ defined in Theorem 8.7 satisfies,
as K | ke,
I = C(1+0(1))(k — ke) e,

for some constant C > 0 depending on the shape of h°.
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Figure 5 — In dimension d = 2, for the typical example of pinning potential RO given in Figure 4, with o = 1,
B = 0, we plot the stream lines of the vector field —T'(®%) for growing values of k. The assumptions of
Proposition 8.10 are clearly seen to be satisfied: for Kk < k. = 7 there is a unique stable fixed point, while
for K > k. = 7 the stable fixed point gives way to a periodic orbit with image O = {0} x [—1/2,1/2).

Remarks 8.11.

(a) While Proposition 8.10 above is proved in the particularly simple situation of the bifurcation of a fixed
point into a periodic orbit, it would be interesting to determine the best general lower bound on the
Hélder regularity of the multivalued map F s {TF ... I‘f;p} at the depinning threshold, for smooth hO.
We do not pursue this question here, but note that at least the continuity of this map essentially follows
from the argument in [61, Section 7.2] together with the result on circle maps in [69, Theorem I.1].

(b) Without the non-degeneracy assumption for the pinning potential fzo, the behavior can be very different:
if 7O is degenerate at order k for some 0 < k < oo, in the sense that the power 2 in the expansion (8.21)
near critical points is replaced by a power k + 2, then we indeed rather obtain I'f¢ ~ (k — Hc)l_l/ (k+2)¢
as | k. (Although in this case the effective velocity I'f¢ is still a Hélder function of &, and is at least
of class C''/2, examples of non-smooth pinning potentials 2% € C%'(R?) can be constructed for which
the Holder property fails at k = k.; see e.g. [50, Example 1.3].)

Proof. Choose an arc-length parametrization (¢)o<;<r of the periodic orbit O, where |9;¢'| = 1 for all
t > 0, and where the period T' € R is the total length of the orbit. Since O is the image of the (unique
stable) periodic orbit of —I'*¢ for all kK > k., we find 9;¢! = —T*¢(¢t)/|T"¢(¢p!)| for all ¢ > 0. We then
deduce that for all £ > k. the unique stable ergodic invariant measure p,; € Pper(Q) takes the form

[ same= ([ sonreoan) ([ oeea)

so that the effective velocity is given by
T T 1 T =
o = ([ rregoreeehytan) (e = @0 - an) ([ Ireeh)ar)
0 0 0
Now setting é := ¢7 — ¢°, we obtain

= (/ e ar) e
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Consider the finite collection (t;) 3-]:1 of all points ¢ € [0, T] such that ['*<¢(¢!) = 0. By smoothness of h° and
by the minimality assumption defining k., the function f(t) := [['®<¢(¢!)| is smooth, hence satisfies for all j,

fit) =0, f'(t;) =0, (8.20)

and also

0 = 0 T%%(¢") |1, = 9" - V(aV — BV (41).
A direct computation then yields
F(t5) = T%(¢")| "M |0sg" - V(aV — BV E)RO(61)|> — 2|17 (") 71 0," - V(aV — BV )R (¢1) - ;" |2
+ [ (¢t)| 71,0t - V(aV — VRO (¢4) - V(aV — BV (¢4 - Dt
+ (8:9")®2% © V2(aV — V)R (¢%)
= (0:0")%* @ V(aV — BV )R (¢"),

where ® denotes the complete contraction of 3-tensors. The non-degeneracy assumption now implies f”(t;) #
0. Combined with (8.20), this yields

2C; = f(t;) = (0:¢")%* © V*(aV — BVH)R(4"7) > 0.
A Taylor expansion around t; allows to write
D72 (¢, )| = Cj(t —15)* + O((t — 5)*), (8.21)

for [t —t;| < 1. Let 6 > 0 be small enough such that [t; —t;41| > 26 is satisfied for all j, and define

Is .= t; —0,t; +0 = inf  |T®e¢(¢! 0.
) +1[J U+ ]v Cs te[é,%‘]\15| (Qb )| >

T -

J

For k > k. sufficiently close to k., we may then compute

/ e (") dt = (a2+ﬁ2)_”2/ [VhO(¢") = we| "t < (o + 5%) 72T (s — v — k),
[0,T1\Is 0,7\ Is

and hence, setting for simplicity e, g 1= e — Bet,

T
/ Tre(h)|7Hdt < | [Te(¢") = (5 — Ke)ea,pl "Mt + T(a® + B%) 72 (cs — |k — k)
0 Is

ti+o B
/ (|Cj(t—tj)26t¢tj — (kK — Ke)ea, gl —C|t—tj\3) 1dt+C’(05— |I€—I€c|)_1
t

1
L 2,4 2 2 t; 1/2 3\ 71 -1
:22/0 ((Cjt +(I€*l€c) 720jt (H*Iﬁc)at(’bf ‘ea,ﬁ) —Ct ) dt+0(657 |/{7/{C|)

1/2

T o) .
= 01/2(2)1/2 Z/ ((t4 - 2t26t¢tj eap + 1)1/2 . C’C'j_l/2(f€ _ /10)1/2153) dt
(K — ke =170

+Clcs — |k — Iic|)_1.
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Multiplying by (k — x.)'/? and letting & | k., this yields

imsup(s — ) 05| < Cm Z / —220,6" - o + 1)1, (8.22)

KlKe

Symmetrically, we have a similar lower bound

T J tj+<5 B
Jy I @Otz 3 [0 1008 (5 = meJeasl + Ol = )= O )

) 1/2
_ FoRe '”C 29 it 1/2 —-1/2 12,3\
= T 1/22/ (t' = 262040" - eap + 1)~ 4 CC;| (K—KC)/t) dt

—Cles — |k — ke|)
so that the equality actually holds in (8.22),
lim (k — ke)Y2DPe 7! = . |Cl/2 Z/ —2620,0" - e 5+ 1)V 2at,
and the result follows. O

8.6 Small applied force implies macroscopic frozenness

Beyond diagonal regimes, we may at least prove the following intuitive result: in the presence of a small
applied force ||F||L~ < ||Vh| e, but with fast oscillating pinning potential, the vortices are pinned in

the limit. The proof below is based on energy methods, and is limited to subcritical Ginzburg-Landau
regimes (GL}) and (GL3).

Proposition 8.12. We consider the dissipative case a > 0, B € R, o? + 32 = 1. Let Assumption A(a)
hold, with the initial data (u2,v2,v°®) satisfying the well-preparedness condition (1.14). For all ¢ > 0, let

fo) fo)
u. € L®(RT; HY, .(R?%;,C)) denote the unique global solution of (1.5) on RT x R? with initial data u?, and
with

—1
z S v ETaRTE Y
|10g | ~ (Ne |10g6|)1/2
h(z) := )\5775 (x T/ne), [ F][we < A

1 < N < |logel, <N < A,y

We consider the regime (GL}) with v2 = v°, and the regime (GLS) with div (av®) = 0. Then for all v > 0
there holds NZ'p. = curl v° in L2 (RT; (C27(R2))*).

Proof. We choose v, := v? in the definition of the modulated energy, thus setting for all 2 € RZ?,

[log e

ax .
2nim [ BE (Vi - NP 4 5 (1= ), DipimEia-

and & p 1= sup, &Z p, Df p = sup, D p. We further consider the following modification of this modulated
energy, including suitable lower-order terms,

i [ (Ve - e Nve P b o (0 P 4 (1= [uef?)f = N2~ Nofloge]v2 P ).
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and 5‘:’ R i=Ssup, éj) r- The lower bound assumption on 7. allows to choose the cut-off length R > 1 in such

a way that \-! < R < n.e~(N.|loge|)'/2.
By Proposition 5.2, the assumption on the initial data implies £p < CoN.[loge| for some Cp =~ 1. Let
T > 0 be fixed, and define 7. > 0 as the maximum time < 7" such that the bound 5:1’;% < (Co + 1)N|loge|

holds for all ¢ < T.. Note that, using the bound || f||Le < Aenz ! + AZ|loge|? (cf. (1.6)), the choice of 7. and
R, and the assumption [[v2||r2 1 (p,n) So RY for all § > 0, we deduce for all ¢ < T,

|E2r — EXRI S /x%ll — [l P[(| | + NZ[ve” + Ne[log e||ve| | F|)
SeR(Anz! + A2floge|*)(EXR)Y? + eRPo(ANc|loge|)(E25)/? < A-N.[logel, (8.23)

hence in particular é’:lt% < Ncllogel for all t < T.. We split the proof into three steps.

Step 1: evolution of the modulated energy. In this step, for all € > 0 small enough, we show that T, = T,
and that for all ¢t < T,

AeCt
4

/ t [ aexilonal? < €25~ 24+ AN fog ) S: Nellogel. (8.24)
By integration by parts, we find
8,55’;’}% = /ax%((Vug — e Nove, Vopue) — Nevee (Vue — duNove, i0pue)
= (0 e e Dr) — (= N2w2P = Nellogel v ) (ue, dpuc))
= —/aXZR<Au5 + %(1 — |uc|?) 4+ Vh - Vu, +illoge| F* - Vu, + fus,ﬁtus>
+ Ns/axf%(vg -Vh+div v2)(0ue, tue) — /aVX‘IZ% (Ve —iueNove, Opue)
— /ax%(|10g€|FL + 2N v2) - (Vue — tuNev2, idsue ),
hence, inserting equation (1.5) in the first right-hand side term,
atégyR = f)\sa/ax’f%\atusf — /ax§(|log5|FJ‘ + 2N v2) - (Vue — iusNevy, i0sue)
+ Ne/sz div (avg)(Orue, tue) — /aVX‘f% (Ve —iue Nove, Opue).

In particular, using the assumption |Vh| L~ < Ao, and using that 5;7’;% < N.|logel, we find for all ¢t < T,

A )\ (0% o . o
OEIR < — ; /ax%|8tug|2 - /axﬁ(ﬂog e|F+ +2N.v2) - (Vue — iu.N.v2,idu.)

+ CA;lefxf%\ div (av)[2(1 + |1 — [ue)?]) + OA;lR”/ a|Vue — iucNove|?
BQR(Z)

AeX
< —
- 2

/ax§|8tu5|2 — /aXZR(Hog £|FL + 2N v2) - (Vue —iu Nove, i, )

+COATINZ [ div (av2)[IE2 poe (3, + CAZ TR Neflogeel,
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so that the assumptions on div (av?) and the choice of the cut-off length R yield

HER <

ax|Oue|* — /ax}%(ﬂoge\FL +2N.v2) - (Vue — iucNove, idus) + o(A: Nellogel).
(8.25)

Simply using the Cauchy-Schwarz inequality to estimate the second term, with ||(F, v2)||L~ < 1, we find the
following rough a priori estimate,

A )\EOZ P — z . o
&R < — 1 /aXR|8tu€|2 +COX; 1|10g6|2 /aXR|Vu€ - zugNng|2 + o(Ae Nc|logel)

< 7)\501

<-= ax%|0us|? + ONIN_|logel?),

and thus, integrating in time, with A. > N./|loge|, we find for all t < T,

et

axh|Owe® < EXp — EX% + oi(|logel*) ¢ [logel*.

This rough estimate now allows us to apply the product estimate in Lemma 5.4 (with v. = v2 and p, = 0),
using |logel||Fllr~ + N < Ac|loge|, to the effect of

t
‘ / /ax%(\longL + 2N v2) - (Vue —iu Nove, iopu,)
0

logel|||Fllue + Ne / (* ; ¢ ; , .
< | [l £l (/ /CLXR|5tUs|2+/ /aXR|VuE —Z’LLENEV€|2) +0:(1)
llog €| 0 0

¢
5)/ /ax§|8tu5|2—&—ot(/\ENg\logsD.
0

Inserting this into (8.25), and integrating in time, we find for all ¢ < T,

52 52,0 )\ « k z
€< (5 - 000) [ [ @it + o N.Jloge),
0
and the result (8.24) follows for all ¢ < T.. In particular, combined with (8.23), this yields for all t < T,
Er T < 82 T+ o(ANc|loge|) < 52 r +ot(A-Nclloge|) < E2p + or(A-Ncllogel) < (Co + 04(1))N-[log el

and thus, taking the supremum in z, the conclusion 7. = T follows for € > 0 small enough.

Step 2: lower bound on the modulated energy. In this step, we prove that for all t < T,

[log e|

8;’}% > /ax%ué — o(A:Nc|logel),

hence, by (8.23) and by the assumption that £ = %\logd [ acxzue + o(N2),

Elp —Eip < Elq — Elp + o(A-N.|loge|) < g |/ — ub) + o(AN.|loge)).

As we show, this is a simple consequence of Lemma 5.1. (However note that we may not directly apply
Proposition 5.2(i)—(iii), since in the present situation the assumption R > [loge| does not hold.) Noting
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that [|[V(ax%)|lLe S Ae + R71 < A, we deduce from Lemma 5.1(i) with ¢ = ax%, &

*r S Nelloge|, and
e Ne<r<,

1
22 B [ alut al - OO Nellogel) — O(N2) — O(N. log N.)

_ lloge

/ axalvE gl — O(logr)) / altZ &l = oA N.log ),

hence by item (ii) of Lemma 5.1, with the choice of the radius r > e~ V=,

. 1og6 loge z o r
p> 5, [loge] / axr|vi gl — O(Nellogr|) — o(A:Nelloge|) > |27|/O'XRVE,R — 0(AcNeloge]).

By Lemma 5.1(iii) in the form (5.7) and by (5.12) with v = 1, using again that ||V (ax%)|lL~ S Ae, we may
now replace v p by e in the right-hand side,

\10g€|

z
aR—

[ axise = 00N floge)) — (AN fog ).

and the result follows.

Step 3: estimate on the total vorticity. In this step, we prove that for all t < T,

‘/GXR

We first prove (a weaker version of) the result with a replaced by 1, and the conclusion then follows by
noting that a = exp(\.n.h°) indeed converges to 1 as € | 0. Using identity (4.8), we write

¢
/XR Me / /XRat/’I/E / /XRCUTIV / /VLXE'V;

t
- 72/ /vag (Ve — iueNeve,i0su) +N5/ /Vfo{.Vg (1 — |ucl?).
0 0

AeNe.

Applying the product estimate of Lemma 5.4 as in Step 1, with [Vxg| < R~ x4 1/2 , we find for all |loge|~2 <

K <|loge|? and for all t < T,
/ /XR|8tu€\ + K*R™ / / [Vue —ius Nove| )—l—ot lloge|™)
Bar

‘/x%(ui -
N [ 1= IV + Ve [ 1= PG

|10g€|/ /XR|(9,¢U5‘ + K?2R72N. + &N. lloge| + o([loge|™h).

Using (8.24) to estimate the first right-hand side term, and choosing A\-! < K2 < \.R?, we obtain

K72 Sz,t \+ —2 2p—2 —1
\/xR S ioge] 5 EXR) T+ oK TN+ KPRTN. + ofloge| )
Seo(lloge|TN(EXG — E2R)T + o(ANL). (8.26)
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It remains to smuggle the weight a into the left-hand side. For all ¢ < T', Lemma 5.1(iii) together with (5.12)
yields for /2 < r < A,
‘/ 1—a)xg(ue —v2 )

and hence, by Lemma 5.1(ii), with ||[1 — a||pe <7 < A,

L AN,

=@t 11 = acluoe [ XRIVZE] + 00N < AN

Combining this with (8.26) and with the result of Step 2, we deduce

| / axa(pe = 12)

and the result follows.

(ANN2),

St ofllog =l EZR ~ 20 + 00N £ o(1)] [ axrlut -

Step 4: conclusion. Combining the results of Steps 1 and 2 with the assumption 5'521% = %|log el [axiud+
o(N2), we find
et

il < llogel [ axilc — ud) + or(ANlogel)
and hence by the result of Step 3,
T
/ /axfﬂ@tug\z <1 N.|loge|.
0

The product estimate of [82, Appendix A] (see also Lemma 5.4) then yields for all X € W1°°([0,T] x R?)?2

and all [loge|™! < K < [loge|,
1 (T T _ )
<§/ /x§|8tu5|2 —|—K/ /X§|X - (Vue — zu5N5V5)|2)
0 0

T
]
+o(1) (1 + [ X310 (0,77 xR2))
S (K™ Ho(N2) 4+ KN- +0(1) (1+ [ X ([0 (10,77 x2) )

hence, for a suitable choice of K,

T
sl [ ]
z 0

This proves N-'V. = 0 in (C}([0,T] x R?))*, so that identity (4.8) yields 9(N='p.) = N eurl Vo = 0 in
(CL([0,T); C%(R?)))*. Arguing as in Step 5 of the proof of Proposition 6.1, the well-preparedness assumption
on the initial data implies N7 15 — v° in L. .(R?)?, hence in particular N 'p® = curl v° in (CF(R?))*.
We easily conclude N1y = curl v° in (C([0, T]; C2(R?)))*. The conclusion then follows, noting that by
Lemma 5.1(iii) and by (5.12) the sequence (N: *u. ). is bounded in L>([0, T]; (C%7(R?))*) for all v > 0, and
using interpolation (as e.g. in [53]). O

N-(1+ HX“%/VLOO([O,T]XRQ))'

A Appendix: Well-posedness for the modified Ginzburg-Landau
equation

In this appendix, we address global well-posedness for equation (1.5), proving Proposition 2.2 as well as
additional regularity. We begin with the decaying setting, that is the case when Vh, F, f are assumed to
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have some decay at infinity. Note that in this setting no transport is expected to occur at infinity. As is
classical since the work of Bethuel and Smets [9] (see also [63]), we consider the existence of solutions u.
of (1.5) in the affine space Li>.(RT; U + H!(R?;C)) for some “reference map” U, which is typically chosen
smooth and equal (in polar coordinates) to e'”<? outside a ball at the origin, for some given D, € Z. Such a
choice U = Up, imposes a total degree D, at infinity. More generally, we consider here the following spaces
of “admissible” reference maps, for all k£ > 0,

Ep(R?) :={U € L™(R?%,C) : V?U € H*(R* C),V|U| € L?(R?),1— |U* € L*(R?),VU € LP(R?C) Vp > 2}.

(Note that this definition slightly differs from the usual one in [9], but it is more suitable in this form in the
presence of pinning and forcing.) The map Up, above clearly belongs to the space E..(R?). Global well-
posedness and regularity in this framework are provided by the following proposition. Note that a stronger
decay of the coefficients Vh, F, f is required in the Gross-Pitaevskii case, although we do not know whether
it is necessary.

Proposition A.1 (Well-posedness for (1.5) — decaying setting). Set a := e”, with h : R? — R.

(i) Dissipative case a > 0, 8 € R:
Given h € WH*(R?), F € L®(R?)?, f € L NL>*(R?), with Vh, F € LP(R?)? for some p < oo, and
uS € U+ HY(R%,C) for some U € Ey(R?), there exists a unique global solution u. € LS (RT;U +
H(R%C)) of (1.5) on RT x R? with initial data u?.
Moreover, if for some k > 0 we have h € WFtL(R2) F € Whk>(R2)2, f € H* N Wk (R?), with
Vh, F € WFP(R2)? for some p < 0o, and U € E(R?), then u. € LiS.([6,00); U + HETY(R2; C)) for all
§ > 0. In particular, if in addition u® € U + H*1(R2%;C), then u. € LS. (RT; U + H1(R2;C)).

(i) Gross-Pitaevskii case « =0, 8 € R:
Given h € W2>®(R?), Vh € HY(R?)?, F € H> N W?*(R?)? with div F = 0, f € L>NL>*(R?), and
uS € U+ HY(R%,C) for some U € Ey(R?), there exists a unique global solution u. € LS (RT;U +
H(R%*C)) of (1.5) on RT x R? with initial data u?.
Moreover, if for some k > 0 we have h € WF2°(R?), Vh € H*1(R?)2, F € HF2 0 Wht2o0(R?)2
with div F =0, f € H*L nWkLo(R2), and u® € U + H*TY(R2,C) for some U € Ej41(R?), then
ue € LS (RT; U + HF1(R2;C)).

The proof below is based on arguments by [9, 63], which need to be adapted in the present context
with both pinning and forcing. The conservative case e = 0 is however more delicate, and we then use the
structure of the equation to make a crucial change of variables that transforms the first-order terms into
zeroth-order ones. As shown in the proof, in the dissipative regime, the decay assumption Vh, F € LP(R?)?
(for some p < o0) can be simply replaced by (|Vh|+ |F|)VU € L*(R?;C)2.

Proof. We split the proof into seven steps. We begin with the (easiest) case a > 0, and then turn to the
conservative case a = 0 in Steps 4-7.

Step 1: local evistence in U + H**1(R%;C) for a > 0. In this step, given k > 0, we assume h €
Whtheo(R2) F € Who(R?)?2, f € HF N WF>®(R?), Vh,F € WFP(R?) for some p < oo, and u® €
U + H*1(R?;C) for some U € Ej(R?), and we prove that there exists some 7' > 0 and a unique solution
ue € L°([0,T); U + H*1(R2;C)) of (1.5) on [0,T) x R2. To simplify notation, we replace equation (1.5) by
its rescaled version

(a+iB)0wu = Au+ au(l — [ul?) + Vh - Vu +iF* - Vu + fu, ult=o = u®. (A1)
We begin with the case k = 0, and briefly comment afterwards on the adaptations needed for k > 1. We

argue by a fixed-point argument in the set Eyuo(Co,T) == {u : lu = Ull e g1 < Co, ult=o = u°}, for some
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Cy,T > 0 to be suitably chosen. We denote by C' > 1 any constant that only depends on an upper bound
on a, a1, |8, [llws.x, [(F, £, 0) e, 11— [UP ]z, 1AUlgz, [ llz, and [([F] + [VA)VU 12, and we add
a subscript to indicate dependence on further palrameters. ,
The kernel of the semigroup operator e(*+%#)™ 4 is given explicitly by S*(z) := (a+iB)(4mt)~te~(atib)lzl/(41),
Since a > 0, this kernel decays just like the standard heat kernel,
St (z)| < CtLe—olel?/(4) (A.2)
and we have the following obvious estimates, for all 1 <r < oo, k > 1,
||St||LT < (/wtl/rfl7 ||katHLT < thl/rflfk/? (A3)
Setting 4 := u — U, we may rewrite equation (A.1) as follows:
(a+iB)0yt = Nt + AU + a(t + U)(1 — |U|?) — 2a(t + U) (U, a) — a(a+ U)|al?
+Vh-Vi+Vh-VU +iF*+ - Va4 iF*t - VU + fa+ fU, (A4)

with initial data di|i—¢ = @° := u°—U. Any solution 4 € L>([0,T); H'(R?; C)) satisfies the Duhamel formula
@ = 2y a0 (4), where we have set

t
Suae (@) = ST+ (0 i8) ™ [ 81 Zunge ()i,
0

Zu.ao(0°) := AU + a(a® +U)(1 — |U|?) — 2a(a® + U)(U, %) — a(a® + U)|a®|?
+Vh-Vi® +Vh-VU +iF*t -V +iF - VU + fa° + fU.

Let us examine the map Zy 40 more closely. Using (A.3) in the forms [|St||: < C and ||[VS!||1 < Ct=1/2,
we obtain by the triangle inequality

¢
[Z0.ae (@) s < 18+ € [ (14 (8= 9)72) (14 [l + 12 s + Va0 ) s,
0
and hence, by the Sobolev embedding in the form ||4°|| s < C||4%| g1, for all 4 € —U + Ey 40 (Co,T),

IZv.a0 (@)l < Cla® |l + C(T +TY?)(1+ GF).

Similarly, again using the Sobolev embedding, we easily find for all 4,9 € —U + Ey 40 (Co, T)

t
[Bv.ae (@) = Ev,ae (0)[lLge a1 < C/O (L4 (=) A+ 8] + [0°1F2) 18" — %[l ds
<C(T+TYV) 1+ CP)l = blluge -
Choosing Cy := 1+ C||@°||gr and T := 1 A (4C(1 + C§))~2, we deduce that =y 4o maps the set —U +
Ey . (Co,T) into itself, and is contracting on that set. The conclusion follows from a fixed-point argument.

Let us now briefly comment on the case £ > 1 and explain how to adapt the argument above. We again
proceed by a fixed point argument, but estimating this time =g g0 (w) in H**1(R2;C) as follows

t
1Zv,a0 (@) || re+s < (IS Lal6° ] gresa +C/ (18" ller + IVS*=* L)1 Zu.ae (@) |
0
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where we easily check with the Sobolev embedding that

1 Zv,a (@) | e < Cr(1+ [ [Fis0), (A.5)
for some constant Cj > 1 that only depends on an upper bound on «, afl, 181, k, 1l es1.o0y || F || vprsoo s
I lzeewroe s [1UllLe, IVIUllLz, IV2U e, 1= [U Pz, and 35, ([(IV7F| 4 [VIVA) VU |z. Similarly
estimating the H*"!1-norm of the difference Z¢s 40 () — 740 (9), the result follows.

Step 2: regularizing effect for o > 0. In this step, given k > 0, we assume h € WFTLo(R?) F ¢
Wkoo(R2)2) f € HF n Wk (R?), Vh, F € WFP(R?)? for some p < oo, and U € Ex(R?), and we prove that
any solution u € L>([0,T); U + H*(R?;C)) of (A.1) satisfies u € L®([6,T); U + H*T1(R?;C)) for all § > 0.
We denote by Cy > 1 any constant that only depends on an upper bound on a, a™', |8, k, [|2[lyr+1.,
[F lwr.oes | fllsamsces (Ul 11 =[Oz, IVIULz, [IV2Ules 35 I(VIF]+ VI VA)VU |12, and
lu® — Ullg:. We write C' for such a constant in the case k = 1. We denote by Cj, > 1 any constant
that additionally depends on an upper bound on ¢, t~%, and |ju — UllLge g1~ We add a subscript to indicate
dependence on further parameters.

Let u € L*°([0,T); U + H'(R?;C)) be a solution of (A.1), and let @ := u — U. We prove by induction
that ||@||gr+1 < Cgy for all ¢ € (0,7) and k > 0. As it is obvious for k& = 0, we assume that it holds for
some k > 0 and we then deduce that it also holds for k replaced by k 4 1. Using the Duhamel formula
@ = Ey,g0 () as in Step 1, we find

t
9574 iz <I9S [Vl + € [ 198177 94 e () s (4.6)
t/2

t/2
+ C/ ||Vk+1St’S * Zy,a0 (’&S)Hdes.
0
A finer estimate than (A.5) is now needed. Arguing as in [9, Lemma 2| by means of various Sobolev
embeddings, we have for all 1 < r < 2
IV Zu,a0 (@) Iz 4 1r < Cr(L+ |13 + 18| 5r2). (A7)

(Note that we cannot choose r = 2 above because of terms of the form |4°V|a*|?|Lr, and that the term
|4 77> in the right-hand side simply comes from the forcing terms (Vh + iF1) - Vit in the expression for
Zy,a0(0').) By a similar argument (see e.g. [63, Step 1 of the proof of Proposition A.8]), we find for all k > 0
and 1 <r <2

IV* Zuao (@) 2 e < Crr (L4 a3 + (12 o). (A.8)

We may then deduce from (A.6) together with Young’s convolution inequality and with (A.3), for all 1 <
r <2,

t
[VEH At |2 < (VS| [ Va° e +0/ IV S 2\l e [V Zuae (6°) |12 4 1rds
t/2

/2
e / VLS 1 | Ze (%) 2 ds
0

t
<Ot 4 Ck,r/ ((t =) 24 (t = 8) ")+ |03 + 185 pyresr )ds
t/2

t/2
+c/ (t — &)~ ®HD2(1 1 as|30)ds
0

t 1/3
< Ck,t + Ck,t sup ||’[LGH:;_II¢ + Ck,t(/ |vk+1ﬁ,s“izd$> .
0

t/2<s<t
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By induction hypothesis, this yields |[V*T1a([2, < Oy + Cry [3 [|[V¥T1a%]2,ds, so the result follows from
the Gronwall inequality (combined with a simple approximation argument based on the local existence result
of Step 1 in the space U + H**(R?;C)).

Step 3: global existence for a > 0. In this step, we assume h € L™(R?), f € LQQLOO(]RQ), Vh,F €
L?” NL>(R?) for some p < oo, u® € U+ H'(R?;C), and U € Ey(R?), and we prove that (A.1) admits a unique
global solution u € LS. (RT; U+ H!(R?; C)). We denote by C' > 0 any constant that only depends on an upper
bound on @, a~, |81, [llwr.<, |(F, D), 11— [UPl2, 18Uz, [fllez o, and [[(F|+ [VA)VU2.

Given a solution u € L>([0,T); U + H'(R?;C)) of (A.1), we claim that the following a priori estimate
holds for all t € [0,T)

k 1
S| 1ol v 5 [ (9 —v)P+ - PR+t - UF) < 0 - Ul (A9)
0

Combining this with the local existence result of Step 1 in the space U + H'(R?;C), we deduce that local
solutions can be extended globally in that space, and the result follows. It thus remains to prove the
claim (A.9). For simplicity, we assume in the computations below that u € L>°([0, T); U + H?(R?; C)), which
in particular implies d;u € L>([0,7); L?(R?;C)) by (A.1). The general result then follows from a simple
approximation argument based on the local existence result of Step 1 in the space U + H?(R?; C).

We set for simplicity (o +i8)~! = o/ +i’, o’ > 0. Using equation (A.1), we compute the following
time-derivative, suitably regrouping the terms and integrating by parts,

1
iat / lu —U* = /(u —U, (& +if)(Au+ au(l — |[u|?) + Vh-Vu +iF* - Vu + fu))
= 70//|V(u U+ O//a|u — U2 = |uf?)
-F-/(u—U,(o/—H’B’)(Vh-V(u—U)—|—iFl V(u—-U)+ flu=-0)))
+ /(u —U, (o' +if) (AU +aU(1 — |u*) + Vh-VU +iF*+ - VU + fU)),
which we may now estimate as follows
1
5at/|u— U < —o//|V(u— )2 +C/|u— U +C’/|u— UV (u— U]
+/IU*U|(|AU| 1= [l + (VA + [F]) VU + | £])
!/
< —%/W(u—U)|2+C+C/|u—U|2+C/(1— lu|?)?.
On the other hand, again using the equation, and integrating by parts, we compute
1
32 [ V=0 = [(V(u-0), Vo) =~ [(5(u-0),0)

- /((a +iB)0yu — AU — au(l — |ul?) = Vh-Vu —iF+ - Vu — fu, dyu)

= fa/|6tu|27i@t/a(lf|u\2)2+/<Vh~V(ufU)+iFJ‘-V(ufU)Jrf(ufU),atu)

+/(AU+Vh'VU+iFl-VU—f—fU,atu)
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and hence
1 1
iat / |V(’U, — U)|2 + Z@f/a(l — |U,|2)2

- a/|atu|2 +0/|atu|<\u— Ul + V(u— 1)) +C/|atu|<\AU| + (V| + |FIVU| + | )

IA

< —%/|8tu|2+C+C/|u—U|2+C/|V(u—U)|2.

We may thus conclude
ol +0, [ (290 =)+ 20 = [u2)? + Sju—UP
2 ! ] \2 4 2
1 _ 2, @242 1 2
<C+C 2\V(u U)| +4(1 [ul?) +2|u U,

and the claim (A.9) follows from the Gronwall inequality.

Step 4: a useful change of variable. We now turn to the conservative case a« = 0. The first-order terms
(that are forcing terms) in the right-hand side of (1.5) can then no longer be treated as errors, since the lost
derivative is not retrieved by the Schrédinger operator. The proof of local existence in Step 1 can thus not
be adapted to this case. The global estimates in Step 3 similarly fail, as there is no dissipation to absorb the
first-order terms. To remedy this, we begin by performing a useful change of variables transforming first-
order terms into zeroth-order ones, which are much easier to deal with. Since by assumption div F' = 0 with
F € L>(R?)?, we deduce from a Hodge decomposition that there exists 1 € H (R?) such that F = —2V1.
Using the relation a = e”, and setting w, := \/ngei“ogsw, a straightforward computation yields that the
equation (1.5) for u. is equivalent to

{&(a + iflog el 8)0iwe = Awe + % (o — [wel?) + (fo +igo)ws, R xR, (A10)

— 2O e illoge )
We|i—o = w2 = \faeo81¥q2,

where we have set

A 1 1
foim £ 200 LogeP IR, gy = Llogela eurl (aF).

Vva
We look for solutions w,. of the above in the class W + H!(R?;C), for a “weighted reference map” W, that
is an element of

E¢(R?) := {W € L™(R?C) : V’W € H*(R?;,C), V|W| € L*(R?),a—|W|? € L*(R?), VW € L*(R* C) Vp > 2}.

For k > 0, and Vh, Vi € H**1(R?)2, we indeed observe that w. is a solution of (A.10) in L>°([0,T); W +
HFT1(R%;,C)) for some W € E¢ if and only if u. is a solution of (1.5) in L>°([0,T); U + H*+1(R?;C)) for
some U € Ey.

Step 5: local existence for a = 0. In this step, given k > 0, we assume h € WF1:°(R2), Vh € H*(R?)2,
fo,g0 € HFEnWHhHLeo(R2) and w® € W + H*™(R%; C) for some W € Ef,(R?), and we prove that there
exists some 7' > 0 and a unique solution w. € L>([0,T); W + H*+1(R2;C)) of (A.10) on [0,T) x R?. To
simplify notation, we replace equation (A.10) (with @ = 0) by its rescaled version

10w = Aw +w(a — |w|?) + (fo + igo)w, wli—g = w°. (A.11)
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We begin with the case £k = 0, and comment afterwards on the adaptations needed for & > 1. We argue
by a fixed-point argument in the set Eyw,yo(Co,T) := {w : [w — W{|Lee g1 < Co,wli=0 = w°}, for some
Co, T > 0 to be suitably chosen. We denote by C' > 1 any constant that only depends on an upper bound
on [Vhllyz e, |(fo g0)lmmnmwroes (e, W), la = [W[2lgz, [VIW][lgz, and AW/, and we add a
subscript to indicate dependence on further parameters.

Let S* denote the kernel of the semigroup operator e
equation (A.11) as follows:

—i#A - Setting W = w — W, we may rewrite

10 = L+ AW + (0 + W) (a = [W]*) = 2(d + W)W, ) — (0 + W)[d]* + (fo + igo)ib + (fo + igo) W,
with initial data w|,—9 = ¥W° := w® — W. Any solution @ € L>([0,7); H!(R?;C)) satisfies the Duhamel
formula @ = Ew, 5o (W), where we have set

¢
EW’UA,O (lf})t = St *W° — Z/ St_s * ZW’leO (ws)d&
0
Zwe (0°) == AW + (0° + W)(a — [W[*) = 2(d° + W)(W, %) — (b° + W)[@*|* + (fo + igo)d® + (fo + igo)W.
Similarly as in Step 1, we find || Zw,g0 (@°)]|r2 < C(1 + [|@°]|3,1). On the other hand, arguing as in |9,
Lemma 2| by means of various Sobolev embeddings, we have the following version of (A.7) without forcing:
we may decompose V Zyw, o (0°) = Zjy po (0°) + Zfy; o (w*), such that for all 1 <r <2
1Z3y e @)z < CQ+ [[@0%[3), 12300 (@%)l|Lr < Cr(1+ [[0°][3) (A.12)

(Recall that we cannot choose r = 2 above because of terms of the form e.g. ||@*V[@*|?||L-.) Let us now
examine the map Zyy 40 more closely. We have

t
1Ewaae (@) < 1* * (0°, Vi) 2 + H / D (Z e (%), Lo (), Ly (6°)) s

and hence by the Strichartz estimates for the Schrédinger operator [56], for any 1 < r < 2,
IEw.ae (@)llLge 12 < Cllo® ||z + Cl(Zw,ie (@), Zype () llLg, 2 + Crll 200 (0) | 20/ c0r-2) -
The above estimates for Zyy ;0 then yield for any 1 <r < 2

1
r

IEwe (0)l|Lge 11 < Clli° ||z + (CT + C.T2 7)1+ [@F s 1)
Choosing r = 4/3, this yields in particular, for all @ € —W + Ew 40 (Co,T),
1Ew,e (@)L 1 < Clld°[lan + C(T + T2*)(1 + CF).

Similarly, again using Sobolev embeddings and Strichartz estimates, we easily find for all o,w € —W +
Ew,we(Co,T)

IE w00 (0) = Ew,oe (@)lluge 1 < O +T*)(1+ CF)[6 — bl ge a1

Choosing Cy := 1+ C||0°|| g1 and T := 1 A (4C(1 + C3))~*/3, we may then deduce that Zyy 4o maps the
set —W + Ew 40 (Co,T) into itself, and is contracting on that set. The conclusion follows from a fixed-point
argument.

Let us now briefly comment on the case £ > 1 and explain how to adapt the above argument. We again
proceed by a fixed point argument, estimating this time Zyy, 40 (1) hence Zw g0 () in H*T1(R?; C). Arguing
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similarly as e.g. in [63, Step 1 of the proof of Proposition A.8] by means of various Sobolev embeddings, we
have the following version of (A.8) without forcing: for all k > 1,

IV Zw e (@) llLge (12 4 1y < Cr(L A+ [ @700 g, (A.13)

for some constant Cj, > 1 that only depends on an upper bound on k, | VA grawr., [|[(fo, 90) | gr+1awe+1.00,
|(h, W) lLee, lla — W2z, IVIW ]|z, and ||[V2W|| grt1. The result then easily follows as above.

Step 6: global existence for o = 0. In this step, we assume h € L®(R?), fo € L2NL>®(R?), gy €
H'NWh>(R?), and w® € W + H'(R?; C) for some W € E§(R?), and we prove that (A.11) admits a unique
global solution w € L{S (R*; W + H'(R?;C)). We denote by C' > 0 any constant that only depends on an
upper bound on ||hHL°°7 HfOHLzﬁL‘”a HgO”Hlﬁle‘”a ||WHL°°7 H]- - |W|2HL27 and ”AVVHL2

Given a solution w € L°([0,T); W + H*(R?;C)) of (A.11), we claim that the following a priori estimate
holds for all t € [0,T)

(9 = WP+ S PP+ o = W) < C 1+ e = W), (A.14)

Combining this with the local existence result of Step 5 in the space W + H!(R?;C), we deduce that
local solutions can be extended globally in that space, and the result follows. So it remains to prove the
claim (A.14). For simplicity, we assume in the computations below that w € L*([0,T); W + H?(R?;C)),
which in particular implies dyw € L°°([0,T); L*(R? C)) by (A.11). The general result then follows from a
simple approximation argument based on the local existence result of Step 5 in the space W + H?(R?; C).

Using equation (A.11), we compute the following time-derivative, suitably regrouping the terms and
integrating by parts,

30 [ lw=WP = [ {itw=W), 80+ w(a ~ [w) + fow + igow)
:/<i(w—W),AW+W(a—|w|2)+fow+z‘gow>+/g0|w—W\2
< C+C’/|w7W|2+C’/(af w?)>. (A.15)
Likewise, we compute
8t/|V(w—W)|2 :2/<V(w—W),V8tw>
=2 [ (A= W),80 - gow)
+2/<V(w— W), goV(w — W) 4+ goVIW + (w — W)Vgo + WV g0)

< —2/(A(w—W),8tw—gow>+C+C/|V(w—W)|2+C’/\w—W|2, (A.16)
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where we have

-2 /(A(w — W), 0rw — gow)

-2 /(i(@tw — gow) — w(a — |w|*) — fow — AW, yw — gow)

2 [ wla—[ul?) + fow + W, 000 - gou)
= -0, [ (5o PP - sl - 22W,0)) +2 [ go(a— WP -2 [ go(a - wP)
—2/fogo|w\2 —2/90<AW»“)>

< —at/ (3a—hwP)? — folw — WP = 2w, AW + foW¥) +C+C/(a— |w|2)2+C/|w—W|2.

Combining this with (A.15) and (A.16), we obtain
1
at/ ((c = fo)lw =W+ [V(w = W)[* + S (a = [w*)* = 2(w, AW + f0W>)
<C+ C/ (jw =W+ |V(w - W)+ (a— |w]?)?)

and the result easily follows from the Grénwall inequality, choosing a large enough constant C' in the left-hand
side.

Step 7: propagation of regularity for o = 0. In this step, given k > 0, we assume h € WHF+1L>(R2),
Vh e H*(R?)?, fo,90 € H* T nWHkHLe0(R2), and w® € W + H*(R?;C) for some W € Ef, | (R?), and we
prove that the global solution w of Step 6 belongs to Li> (RT; W + H**1(R?;C)). We denote by C} > 1 any
constant that only depends on an upper bound on k, ||VA| grawr.ces |[(fos go) || mr+iawrtiioe, |[(hy W)L,
la—|W2||lL2, IVIW]|||L2, and [[V2W || gx+1. We add a subscript to indicate dependence on further parameters.

Let w € L>([0,7); W + H'(R?;C)) be a solution of (A.1), and let w := w — W. We argue by induction:
as the result is obvious for k£ = 0, we assume that it holds for some k£ > 0 and we deduce that it then also
holds for k replaced by k + 1. By a similar argument as e.g. in [9, Lemma 4] or in [63, Step 1 of the proof of
Proposition A.8], we have the following version of (A.8) without forcing (which generalizes (A.12) to higher
derivatives): for all k& > 0 we may decompose VF! Zy g (0') = VAT Z), oo (wh) + VFHZE, oo (w') such
that for all 1 < r < 2 ’

IV** Z5y o (@) |12 + IVFF 2y 0 (@)

L < O (1 |0 [0,
or even more precisely,
IV Zy e (@) 2 + IV 2 e () L < Cror (1 10" 1) (1 4 [[0° | gyt )- (A.17)

Using Duhamel’s formula @ = Eyy, 40 (W) and applying the Strichartz estimates for the Schrédinger opera-
tor [56] as in Step 5, we find for all k >0 and 1 <r <2

t
750t g < 1805 VEF 100 g + H [ 879 2 )
0

1.2
< OIVF® 2 + CIVM Zgy o (D)l 12 + CollVET 25 0 (@) | 2rror-2 11
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and hence, by (A.17), for all k£ > 0,
[ [ e < Crlld® i + Cror (L 4+ )1+ 101 e o) (14 1Dl 2502 gricsn)-

The result then follows from the induction hypothesis and the Gronwall inequality. O

In the dissipative case, we now prove a well-posedness result for equation (1.5) in the general non-
decaying setting, that is without decay assumption on the coefficients Vi, F, f. Since the forcing does not
decay, subtle advection forces may occur at infinity, preventing the solution u. from staying in the same
affine space Lis.(RT; U + H'(R?;C)) for any stationary reference map U. The well-posedness result below
is therefore simply obtained in the space L°°(R*; H! (R?*; C)), which yields no information at all on the
behavior of the constructed solution at infinity. It is in particular completely unclear whether the total
degree of the solution remains well-defined for positive times. In the proof below, the key observation is that
the Grénwall argument for the energy in Step 3 of the proof of Proposition A.1 can be localized by means of
an exponential cut-off. Note that the same argument does not seem applicable to the Gross-Pitaevskii case.

Proposition A.2 (Well-posedness for (1.5) — non-decaying setting). Set a := e, with h : R? — R. In the
dissipative case o > 0, B € R, given h € WH°(R?), F € L*(R?)?, f € L*(R?), and u? € H}, .(R* C),
there exists a unique global solution u. € Lis,(RY; HY (R?;C)) of (1.5) in RT x R? with initial data u, and

uloc €7

this solution satisfies Oyu. € L2, (RT; L2 .(R% C)). Moreover, if for some k > 0 we have h € WFHL°(R?),

uloc
F € Who(R2)2, f € Whe(R?), and w2 € HYTL(R%C), then u. € LS, (RY; HYL(R?C)) and du. €
i)c?c (R+; Hﬁloc(R2; (C))

Proof. We split the proof into four steps. We denote by £7(z) := e~1*~*| the exponential cut-off centered at
z € RZ?, and &(x) := £°(z) = e~ 1*I. To simplify notation, we replace equation (1.5) by its rescaled version

(a+iB)0u = Au+ au(l — [ul?) + Vh - Vu+iF+ - Vu+ fu, =0 = u°. (A.18)

Step 1: global existence with k = 0. In this step, we assume h € W1°(R?), F € L™(R?)?, f € L*(R?),
and u® € H .(R? C), and we prove that there exists a global solution u € Lis. (RT; Hl _(R?;C)) of (A.18)
on RT x R? with initial data u°. We denote by C' > 1 any constant that only depends on an upper bound
on «, aila |B|7 ”(hvv}Lro f)HLOOv and ”uo‘ H

We argue by approximation: for all n > 1, we let x,, := X(:/n) for some fixed cut-off function x with
X|B, =1 and x|g2\p, = 0, and we set h, := xnh, ap = el F, := x,F, and f, := xnf. Note that by
construction ||(hn, Vhn, Fy, fn)|lLe < C. We also need to approximate the initial data u® € H}, (R?;C):
for all n > 1, we let p,, := n?p(nz) for some p € C°(R?) with [ p =1, and we set ug, := xn(u®*p,) +1— xn.
By definition, we have ug, € Ejp, the sequence (ug), is bounded in H} .(R%* C), and as n T oo we obtain
up, — u® in HY (R%C), and a, — a, Vh, — Vh, and F,, — F in L (R?)%2. By Proposition A.1, there
exists a unique global solution u,, € Ly, (RT; U+ H!(R?;C)) of the following truncated equation on R* x R?,

(@ +iB)0stin, = Aty + aptin(1 — [un|?) + Vhy, - Vu, + anl Vg + folin, Up|t=0 = uy,. (A.19)

In order to pass to the limit n 1 co in (the weak formulation of) this equation, we prove the boundedness of
the sequence (uy), in Lis,(RT; HL . (R?%* C)), that is, we claim that the following a priori estimate holds for
allt >0,

||Ufl||H1

uloc

< sup ||up |1 (B2 + @'/ ? sup [|Osun L2 12 (2)) < Ce . (A.20)

Before proving this estimate, we show how to conclude from this. Up to a subsequence, the sequence u,, con-
verges weakly-* to some u in L2, (R*; H!,__(R?;C)). Since moreover d;u, is bounded in L _(Rt; L?(B(z); C)),

uloc
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uniformly in z, and as H'(B(z);C) is compactly embedded into L?(B(z);C), we deduce from the Aubin-
Simon lemma that u, — u strongly in L5 (R*; Hl, ' (R?;C)). This allows to pass to the limit in the weak

u

formulation of equation (A.19), and deduce that the limit v is a global solution of (A.18) on R* x R? with
initial data u°.

It remains to prove (A.20). We set for simplicity (o +i3)~! = o’ +if’, o’ > 0. Using equation (A.19),
integrating by parts, and using |V&?*| < €7, we compute the following time-derivative, for all z € RZ?,

1

5at/g'2|un|2 :/§Z<un,(a’+zﬂ’)(Aun+anun(1— n2) + Vo - Vit + iFE - Va4 Fotin))
< / £, (of + i) M) + / an€ un (1~ [un?) + C / € | [Vn| + C / € fun?
< —a’/{Z\VunF+C/§Z|un|\Vun|+C/§Z|un|2,

and hence

1 z 2 al z 2 z 2
5875 & un| S_E EVun|”+C | & unl”.

On the other hand, integration by parts yields

30 [ €190 = [€(Fu,.0) = - [ € 0m,) - [ V€ (Tun,d),

hence, inserting equation (A.19) in the first right-hand side term,
1
5(% /§'Z|Vun|2

- /§Z<(a + z'ﬁ)atun - anun(l - |un|2) —Vhy - Vu, — ZF:— -V, — fnunvatun> - /ng ’ <Vunvatun>

IN

—a [ €0l - 0 @1~ [unPP +C [ €(unl + [TunlOrual,
and thus
50 [ €190+ 300 [an 1= < =5 [ €10+ C [ € (unl + 0.
We may then conclude
30 [ €unl +1Vua) + 30 [ @€ = uaPP + 5 [ 1ol <€ [ € (unf? + V).
By the Groénwall inequality, this yields for all ¢ > 0 and z € RZ?,
[ewpemimeg [aca-wpva [ e
< [+ vy + 5 [ a0z PP),

and hence, using the Sobolev embedding of HY, _(R?) into Li..(R?) (see e.g. (A.23) below),

uloc

[eir s mumeg [oca-wir2va [ [eme < (i e vir)

2
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The claim (A.20) then follows from the boundedness of uS in H}

uloc

(R%; C), noting that
I¢I2s,., = sup [ €°1¢P (A.21)
uloc cR2

Step 2: global existence with k > 0. In this step, given k > 0, we assume h € WFtL>o(R?) F ¢
Wk(R2)2, f € Wk (R?), and u® € H*T1(R?;C), and we prove that the global solution u constructed in

uloc

Step 1 then belongs to L (RT; H5T1(R2: C)). We denote by Cj, > 1 any constant that only depends on

uloc

an upper bound on k, o, o=, |8, ||(h, Vh, F, f)||y#.-, and ||UOHHk1+1, and we write Cy; if it additionally
depends on an upper bound on ¢. o

We argue again by approximation. We consider the truncations Ay, an, Fy, fn,us defined in Step 1, as
well as the solution u, to the corresponding equation (A.19). We claim that for all k£ > 0, for all ¢ > 0,

el gzss + N0eunllis < Che. (A.22)

The desired result then follows by passing to the limit n 1 co. This result is proved by induction on k. As
for k = 0 the result already follows from Step 1, we assume that ||uf || k. < Ct holds for some k > 1, and
we deduce that (A.22) also holds for this k. Integrating by parts, we find

1 ,

5at/gﬂvk“unﬁ = /5Z<vk+1un,vk+1atun> < C/§Z|Vk+1un||vk8tun| —/§Z<VkAun,Vk8tun),
hence, inserting equation (A.19) in the first right-hand side term, and developing the terms,
1 :
5at/gﬂv’fﬂunﬁ’ < —a/£Z|Vk8tun|2 +C’/§Z|Vk+1un||vk8tun|

+ /§Z<vk (anun(l - |un|2) + Vhy, - Vuy, + Z'Fd_ - Vu, + fnun)avkatun>

k+1 k—1
< —a/§Z|Vk8tun|2+CkZ/EZ|VjunHVk8tun|+CkZ/§Z|Vjun|3|Vk8tun\
=0 =0
+C/§Z|un|2|vkun||vk8tun|
k+1
<

k—1
! . ,
—§/£Z|Vk6tun|2+C’k2/§z|vjun|2—|—C’k2/§Z|Vjun|6+C’/§Z|un|4|vkun|2.
i=0 i=0
Note that the Sobolev embedding in the balls Bs(z) yields

[evunrs Y e@ [ vl

TEZ2 Bs(w)

ST E@([ (Pl 9 )

€72

S(Xew/

z€Z? Ba(z)

. . 3 . . 3
(Vun? + 195 0a2)) 5 ([ €092 1970, ) ", (a23)

and similarly
/§Z|Un|4|vkun|2 < (/ﬁz\unﬁ)lﬂ(/§Z|Vkun|4)1/2 < (/gzwun|2)2(/§z(|vkun|2+ |vk+1un|2)).
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Inserting these estimates in the above, and using (A.21), we obtain
/mvk“u |2+04/£Z\Vk8tun|2 < ck 1+/£Z|V3un| ) + G 1+/§Z|Vu | /mv“l nl?
< ok<1 g )+ O+ iy ) [ €195 a2
By the induction hypothesis, we deduce for all ¢ > 0

8t/§ |Vk+1 t|2+a/§ IV’“(?tunP <th+ckt/§ |vk+1 t|2

and the result (A.22) follows from the Grénwall inequality, taking the supremum over z.

Step 3: uniqueness. In this step, we assume h € WH>(R?), FF € L*(R?)?, and f € L*(R?), and we
prove that there exists at most one global solution u € L2, (R*; HL (R2%;C)) of (A.18) on RT x R? with

uloc
given initial data u°. We denote by C' > 1 any constant that only depends on an upper bound on «, a™?!,

8], and [|(h, Vh, F, f)l|re.

Let ug,up € Lis,(RT; HL (R?C)) denote two solutions as above. We set for simplicity (o +i3)~! =

o’ +18', o’ > 0. Using equation (A.18) and integrating by parts, we find
%@/{ﬂul —up|? < 70//5’2|V(u1 —ug)|? + C/§Z|u1 —ug||V(ur — u2)| + C/§Z|u1 — upl?
+ /a£z<u1 —us, (o +4B") (ur (1 — ur]?) — ua(1 = |usl?)))
—%/ /§Z|V(u1 —ug)|* + C/§Z|u1 —ug 2 (1 + Jug| + |uz])?. (A.24)
It remains to estimate the last integral. For that purpose, we decompose

/leul—wl (Jor] + [a)? < 3 €5 / iy — (] + fual)?

w€z? Ba(2)

1/2 1/2
sY @[ pu-uwl) ([ gnl )
ez? Bz () Bz ()

hence, using the Sobolev embedding of H3/4(By(z)) (and of H'(By(z))) into L*(By(x)),

/fz‘ul — | *(Jun| + |uz))® < [|(ur, ue ||H1 Z E@)|lu — u2||i13/4(32(w)).

w622

Using interpolation and Young’s inequality then yields, for any K > 1,

3/2 1/2
lur =2l gy oy 11 = 2l ()

/sﬂul (| + Jual)? S s, )l Y €

17622

<K~ Z & (x /B( : IV (w1 — u2)|? + K3(1 + || (ug, ug) ||Hl Z £ (z / e )|U1 — ug|?

TEZ2 TE€Z2

< K1 /gz‘V(ul — u2)|2 + K3(1 + ||(U1,UQ)H§{11110<;) /€Z|u1 — u2|2.
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Inserting this into (A.24) with K ~ 1 large enough, we find

1
§8t/52|ul — U2|2 < C(l + ||(U1,U2)H§_Iiloc) /§Z|u1 — U2 27

and the conclusion u; = us follows from the Grénwall inequality. O
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