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, where the authors proved that the value of the stochastic parity game can be expressed as the nested fixed point of the one-day value mapping.

The difference between our paper and [4] is two-fold.

The value of the parity game is obtained by applying the least and the greatest fixed points to the value mapping of the one-day game. However, in general, the greatest and the least fixed-points are not sufficient in order to obtain the value of the priority game.

To cope with this problem we introduce the notion of the nearest fixed point of a monotone bounded nonexpansive mapping. Our main result is that the value of the priority game can be obtained as the nested nearest fixed point of the value mapping of the one-day game.

 is that our proof is inductive. We give a game interpretation for the nested fixed point formula where some variables are free (not bounded by the fixed point operator). Thus instead of proving the main result in one big step as in [4] we can limit ourselves to the case when just one fixed point is added to the nested fixed point formula.

Introduction

Stochastic two-player zero-sum games model the long-term interactions between two players that have strictly opposite objectives.

The study of stochastic games starts with the seminal paper of Shapley [START_REF] Shapley | Stochastic games[END_REF]. Since then stochastic games were intensively studied in game theory and, more recently, in computer science.

In stochastic games players' preferences are expressed by means of a payoff mapping. The payoff mapping maps infinite plays (infinite sequences of states and actions) to real numbers. The payoff mappings used in computer science tend to be different from the payoff mappings used in game theory. The payoffs prevalent in computer science are often expressed in some kind of logic which implies that they take only two values, 1 for the winning plays and 0 for the losing plays.

On the other hand, the payoff mappings used in game theory are rather real valued: mean-payoff, discounted payoff, lim sup and lim inf payoffs are among the most popular ones.

In this paper we define and examine the class of priority games. The priority games constitute a natural extension of parity games, this latter class is the class of games popular in computer science having applications in automata theory and verification.

However, the priority games are also relevant to the games traditionally studied in game theory. It turns out that the games with the limsup and liminf payoff [START_REF] Maitra | Discrete Gambling and Stochastic Games[END_REF] belong to the class of priority games.

To put the results of the paper in the context we recall below the relevant results concerning the stochastic parity games due to deAlfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF].

Parity games

A stochastic parity game is a zero-sum two-player game infinite game played by two players, player Max and player Min, on an arena with a finite set of states S " rns " t1, . . . , nu.

For each state i, players Max and Min have nonempty sets of available actions, Apiq and Bpiq respectively. At each stage, the players, knowing the current state and all the previous history, choose independently and simultaneously actions a P Apiq and b P Bpiq respectively and the game moves to state j with probability ppj|i, a, bq. Immediately after each stage, and before the next one, both players are informed about the action played by the adversary player.

An infinite sequence of states and action occurring during the game is called a play. The parity games are endowed with the reward vector r " pr 1 , . . . , r n q, where r i P t0, 1u is the reward of state i. The parity payoff ϕphq of an infinite play h is defined to be equal 1 to the reward of the maximal state visited infinitely often in h, i.e. the payoff is equal to r i if i was visited infinitely often in h and all states j, j ą i, were visited only a finite number of times.

The set of all plays is endowed in the usual way with the Borel σ-algebra generated by the cylinders. Strategies σ, τ of players Max and Min and an initial state i P S give rise to a probability measure P σ,τ i over the Borel σ-algebra. The aim of player Max (respectively Min) is to maximize (respectively minimize) the expected payoff E σ,τ i pϕq " ż ϕphqP σ,τ i pdhq for each initial state i.

Since the parity payoff is Borel measurable, by the result of Martin [START_REF] Martin | The determinacy of Blackwell games[END_REF], parity games have value v i for each initial state i, i.e. sup σ inf τ E σ,τ i pϕq " v i " inf τ sup σ E σ,τ i pϕq, @i P S.

One of the techniques used to solve parity games relies on the µ-calculus. In this approach the point of departure is the one-day game2 played at each state i P S. The one-day game has a value for each state i P S and each reward vector r " pr 1 , . . . , r n q. Let f " pf 1 , . . . , f n q (2)

be the mapping that maps the reward vector r P t0, 1u n to the vector of values of the one-day game, i.e. for r " pr 1 , . . . , r n q and i P S, f i prq is the value of the one-day game played at state i when the reward vector is r. We endow r0, 1s n with the product order, x " px 1 , . . . , x n q ď py 1 , . . . , y n q " y if x i ď y i for all i P rns, which makes it a complete lattice. It is easy to see that f : r0, 1s n Ñ r0, 1s n is monotone under ď, thus by Tarski's theorem [START_REF] Tarski | A lattice-theoretical fixpoint theoem and its aplications[END_REF], f has the least and the greatest fixed points. Then one can define the nested fixed point

Fix n pf qprq " µ rn x n .µ r n´1 x n´1 . . . . µ r 2 x 2 .µ r 1 x 1 .f px 1 , x 2 , . . . , x n´1 , x n q,

where µ r i x i denotes either the greatest fixed point if r i " 1, or the least fixed point if r i " 0, and f the value function [START_REF] Crandall | Some relations between nonexpansive and order preserving mappings[END_REF] of the one-day game. The main result obtained by de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF] in the µ-calculus approach to parity games is that v " pv 1 , . . . , v n q " Fix n pf qprq,

where the left-hand side vector v is composed of the values v i for the parity game starting at i, cf. [START_REF] Arnold | Rudiments of µ-calculus[END_REF]. To summarize, the value vector of the parity game can be obtained by calculating the nested fixed point of the one-day value mapping 3 . The µ-calculus approach to parity games was first developed for deterministic parity games (perfect information games with deterministic transitions), see Walukiewicz [START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF]. The paper of de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF] extended this approach to stochastic parity games.

From parity games to priority games

The parity games arose from the study of decidability questions in logic. In this framework the winning criteria are expressed in some kind of logic, where there is room for only two types of plays, the winning plays that satisfy a logical formula and the losing plays that do not satisfy the formula. For this reason the rewards in the parity games take only two values, 0 and 1, with the intuition that the reward 1 is favorable and the reward 0 unfavorable for our player (and the preferences are inverse for the adversary player).

However, the restriction to 0, 1 rewards does not allow to express finer player's preferences. This motivates the study of the games that allow any real rewards.

We define the priority game as the game where each state i P rns " S is equipped with a reward r i P R. Like in the parity game the payoff ϕphq of a play h is defined to be the reward r i of the greatest state i that is visited infinitely often in h.

At first glance, the priority game is just a mild extension of the parity game. This impression is reinforced by the fact that deterministic priority games can be reduced to deterministic parity games. (However, we do not know if such reduction is possible for stochastic priority games.)

The interest in priority games is twofold. First, the priority games allow to quantify players' preferences in a more subtle way than it is possible in parity games. While in parity games there are only two classes of plays, the plays with the parity payoff 1 and the plays with the parity payoff 0, in priority games we can distinguish many levels of preferences. As a motivating simple example consider the priority game with three states S " t1, 2, 3u and rewards r 1 " 0, r 2 " 1, r 3 " 3 4 . This game gives rise to three distinct classes of infinite plays: player Max highest preference is for the plays such that the maximal state visited infinitely often is state 2 (these plays give him the payoff 1), his second preference is for the plays that visit state 3 infinitely often (such plays give him the payoff 3 4 ), and his lowest preference is for the plays that from some moment onward stay forever in state 1 (this yields him the payoff 0). It is impossible to capture such a hierarchy of preferences when we limit ourselves to the parity payoff.

The second reason to be interested in the games with priority payoff stems from the fact that not only they generalize the parity games, but they contain as proper subclasses the games with the lim sup and lim inf payoffs [START_REF] Maitra | Stochastic games with Borel payoffs[END_REF]. Let pi k q 8 k"1 be the infinite sequence of states visited during the play, where i k is the state visited at stage k. Let pr i k q 8 k"1 be the corresponding sequence of rewards. The limsup game (respectively liminf game) is the game with the payoff equal to lim sup k r i k (respectively lim inf k r i k ).

To see that a limsup game is a priority game let us take a finite state limsup game and rename the states in such a way that for any two states i, j P rns, if i ă j then r i ď r j , i.e. the natural order of states reflects the reward order. Then the limsup payoff will be equal to the priority payoff.

For a liminf game we proceed in a similar way: we rename the states in such a way that, for any two states i, j P rns, i ă j implies that r j ď r i . Under this condition the liminf payoff will be equal to the priority payoff.

Our approach to priority games is inspired by the µ-calculus approach to parity games. There are two major differences however.

It is impossible to solve the priority games using only the least and the greatest fixed points, we need also other fixed points that we name "the nearest fixed points". To define this notion we use the well known fact that the one-day game value mapping (2) is not only monotone but it is also nonexpansive, which means that, for x, y P R n , f pxq ´f pyq 8 ď x ´y 8 , where x 8 " sup i |x i | is the supremum norm.

In the study of parity games the fact that the one-day game value mapping f is nonexpansive is irrelevant, the monotonicity of f is all that we need in order to apply Tarski's fixed point theorem. When we study the priority games, other fixed points enter into consideration and the fact that f is nonexpansive becomes paramount.

It turns out that the priority games with rewards in R can be reduced through a linear transformation to the priority games with rewards in the interval r0, 1s. Therefore in the sequel we assume that the reward vector r " pr 1 , . . . , r n q belongs to r0, 1s n . Under this condition value mapping f of the one-day game (2) is a monotone nonexpansive mapping from r0, 1s n to r0, 1s n . Since our study of priority games is based on the analysis of the fixed points of f , in Section 3 we prepare the background and present basic facts concerning fixed points of monotone nonexpansive mappings from r0, 1s n to r0, 1s n . All the results presented in Section 3 are either well known or are rather straightforward observations. The only purpose of Section 3 is to regroup in one place all the relevant facts and to introduce the notion of the nearest fixed point µ r x.gpxq of monotone nonexpansive mappings g : r0, 1s Ñ r0, 1s. Intuitively, µ r x.gpxq is the fixed point of g which is nearest to r P r0, 1s. Note that the least and the greatest fixed points of g are special cases of this notion, the greatest fixed point is the fixed point nearest to 1 and the least fixed point is the fixed point nearest to 0. We show that the notion of the nearest fixed point makes sense for monotone nonexpansive mappings from r0, 1s to r0, 1s. In Section 3 we define also, for each vector r " pr 1 , . . . , r n q P r0, 1s n and a monotone nonexpansive mapping f : r0, 1s n Ñ r0, 1s n , the nested nearest fixed point

Fix n pf qprq " µ rn x n .µ r n´1 x n´1 . . . . µ r 2 x 2 .µ r 1 x 1 .f px 1 , x 2 , . . . , x n´1 , x n q, (4) 
which generalizes the nested least/greatest fixed point (3). Section 4 introduces the one-day games. Section 5 constitutes the core of the paper. We prove that the value vector v " pv 1 , . . . , v n q, where v i is the value of state i in the priority games satisfies v " pv 1 , . . . , v n q " Fix n pf qprq, where the right-hand side is the nested nearest fixed point (4) of the value mapping of the one-day game.

Although the result of Section 5 can be seen as an extension of the µ-calculus characterization known for parity games [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF], there is one point that distinguish our approach from the traditional µ-calculus approach to parity games. In the case of parity games 4 , to the best of our knowledge, the µ-calculus proofs presented previously were not inductive, rather a formula similar to (3) was presented and it was shown, in one big step, that it represents the value of the parity game. The fact that the nested fixed point formula (3) is in some sense recursive, was not exploited to the full extent in the proof.

The novelty of the proof presented in Section 5 lies in the fact that it is genuinely inductive. We provide a clear game theoretic interpretation of the partial fixed point formula Fix k pf qprq " µ r k x k . . . . µ r 1 x 1 .f px 1 , . . . , x k , r k`1 , . . . , r n q,

where the fixed points are applied only to the low priority variables x 1 , . . . , x k , while the free variables x k`1 , . . . , x n take values r k`1 , . . . , r n respectively. Let Gprq be the priority game endowed with the reward vector r. Let G k prq be the priority game obtained from Gprq by transforming all states i, i ą k, into absorbing states 5 , while the states j with j ď k have the same transitions in G h prq as in Gprq. Both games have the same reward vector r.

It turns out that the partial nested fixed point ( 5) is equal to the value vector v " pv 1 , . . . , v n q of the priority game G k prq. We prove this fact by induction starting with the trivial priority game G 0 prq, where all states are absorbing. The inductive step consist in showing that, if [START_REF] Karelović | Nearest fixed points and concurrent priority games[END_REF] is the value of the game G k prq, then adding the new fixed point µ r k`1 x k`1 we obtain the value vector of the game G k`1 prq. In other words, adding one fixed point corresponds to the transformation of an absorbing state into a nonabsorbing one. Note that in priority games the absorbing states are trivial, if a state m is absorbing then v m " r m , i.e. the value of m is equal to the reward r m . Thus transforming an absorbing state into a nonabsorbing we convert a trivial state into a nontrivial one. The crucial point is that in the inductive proof given in the paper we apply this transformation to just one state. And it is much easier to comprehend what happens if one state changes its quality from absorbing to nonabsorbing than when all states are nonabsorbing from the outset.

The preliminary version of this paper appeared in [START_REF] Karelović | Nearest fixed points and concurrent priority games[END_REF].

Stochastic priority games

An arena for a two-player stochastic priority game is composed of a finite set of states S " rns " t1, 2, . . . , nu Ă N (we assume without loss of generality that S is a subset of positive integers) and finite sets A and B of actions of players Max and Min. For each state i, Apiq Ď A and Bpiq Ď B are finite nonempty sets of actions that players Max and Min can play at i. We assume that A and B are disjoint and pApiqq iPS , pBpiqq iPS are partitions of A and B.

For i, j P S, a P Apiq, b P Bpiq, ppj|i, a, bq is the probability to move to j if players Max and Min execute respectively actions a and b at i. An infinite game is played by players Max and Min. At each stage, given the current state i, the players choose simultaneously and independently actions a P Apiq and b P Bpiq and the game moves to a new state j with probability ppj|i, a, bq. The couple pa, bq is called the joint action.

A finite history is a sequence h " s 1 , a 1 , b 1 , s 2 , a 2 , b 2 , s 3 . . . , a t´1 , b t´1 , s t alternating states s i and joint actions pa i , b i q and beginning and ending with a state. The length of h is the number of joint actions in h, in particular a history of length 0 consists of just one state and no actions. The set of finite histories is denoted H.

A strategy of player Max is a mapping σ : H Ñ ∆pAq, where ∆pAq denotes the set of probability distributions over A. We require that supppσphqq Ď Apiq, where i is the last state of h and supppσphqq :" ta P A | σphqpaq ą 0u is the support of the measure σphq.

A strategy σ is memoryless if σphq depends only on the last state of h. Thus memoryless strategies of player Max can be identified with mappings from S to ∆pAq such that supppσpiqq Ď Apiq for each i P S.

Strategies for player Min are defined in a similar way. We use σ and τ (with subscripts or superscripts) to denote strategies of Max and Min.

Σ and T will stand for the sets of all strategies for players Max and Max respectively. An infinite history or a play is an infinite sequence h " s 1 , a 1 , b 1 , s 2 , a 2 , b 2 , s 3 , a 3 , b 3 , . . . alternating states s i and joint actions pa i , b i q. The set of infinite histories is denoted H 8 . For a finite history h, by h `we denote the cylinder generated by h consisting of all infinite histories with prefix h. We assume that H 8 is endowed with the σ-algebra BpH 8 q generated by the set of cylinders.

Strategies σ, τ of players Max and Min and the initial state i determine a probability measure P σ,τ i on pH 8 , BpH 8 qq. We define inductively P σ,τ i for cylinders in the following way. Let h 0 " s 1 be a finite history of length 0. Then

P σ,τ i ph 0 q " # 0 if i ‰ s 1 , 1 if i " s 1 .
Let h t´1 " s 1 , a 1 , b 1 , . . . , s t´1 , a t´1 , b t´1 , s t and h t " h t´1 , a t , b t , s t`1 . Then P σ,τ i ph t q " P σ,τ i ph t´1 q ¨σph t´1 qpa t q ¨τ ph t´1 qpb t q ¨pps t`1 |s t , a t , b t q.

Note that the set of cylinders is π-system (i.e. a family of sets closed under intersection) thus a probability defined on cylinders extends in a unique way to all sets of BpH 8 q.

To define the stochastic priority game we endow the arena with a reward vector r " pr 1 , . . . , r n q associating with each state i a reward r i P R.

Given the reward vector r, the priority payoff is a mapping

ϕ r : H 8 Ñ R
such that for an infinite history h " s 1 , pa 1 , b 1 q, s 2 , pa 2 , b 2 q, s 3 , pa 3 , b 3 q, . . . ϕ r phq " r , where " lim sup

t s t . (6) 
Thus the priority payoff is equal to the reward of the greatest (in the usual integer order) state visited infinitely often.

The aim of player Max (player Min) is to maximize (resp. minimize) the expected payoff

E σ,τ i rϕ r s " ż H 8 ϕ r phqP σ,τ i pdhq.
The priority game has value v i for a starting state i if

inf τ PT sup σPΣ E σ,τ i rϕs " v i " sup σPΣ inf τ PT E σ,τ i rϕs.
From the determinacy of Blackwell's games proved by Martin [START_REF] Martin | The determinacy of Blackwell games[END_REF] it follows that the priority game has value for each initial state. (The Blackwell games do not have states but the result of Martin extends to the games with states as shown by Maitra and Sudderth [START_REF] Maitra | Stochastic games with Borel payoffs[END_REF].) A strategy τ of player Min is ε-optimal, ε ě 0, if for each state i and each strategy σ of player Max, sup

σPΣ E σ,τ i rϕs ď v i `ε.
Symmetrically, a strategy σ of player Max is ε-optimal if for each state i and each strategy τ of player Min,

inf τ PT E σ,τ i rϕs ě v i ´ε.
An ε-optimal strategy with ε " 0 is called optimal.

If the reward vector is such that rew i P t0, 1u for each state i then we obtained the parity payoff. A proof of determinacy of stochastic parity games using fixed points was given by de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF].

Normalizing the rewards

In the sequel it will be convenient to assume that all rewards belong to the interval r0, 1s rather than to R.

This can be achieved without loss of generality by a simple linear transformation. Let a " min iPS r i , b " max iPS r i and gpxq " 1 b´a x ´a b´a . Then 0 " gpaq ď f pxq ď gpbq " 1 for x P tr 1 , . . . , r n u. Changing the reward vector from r " pr 1 , . . . , r n q to gprq " pgpr 1 q, . . . , gpr n qq transforms linearly the priority payoff of all plays h since ϕ gprq phq " gpϕ r phqq.

By the linearity of expectation, this implies that for all starting states i and all strategies σ and τ we have gpE σ,τ i pϕ r qq " E σ,τ i pgpϕ r qq. This implies that v i is the value of state i for the game with the priority payoff ϕ r if and only if gpv i q is the value of i for the game with the priority payoff ϕ gprq . Similarly a strategy is ε-optimal for the priority payoff ϕ r if and only if it is ε b´a -optimal for the priority payoff ϕ gprq .

3 On fixed points of bounded monotone nonexpansive mappings

In this technical section we introduce monotone nonexpansive mappings, that play a crucial role in the study of stochastic priority games. The solution to stochastic priority games given in Section 5 relies heavily on fixed point properties of such mappings examined in Section 3.1. In Section 3.2 we define and examine the nested nearest fixed points of monotone nonexpansive mappings.

The duality of the nested nearest fixed points is studied in Section 3.3. An element x " px 1 , . . . , x n q of R n will be identified with the mapping x from rns " t1, . . . , nu to R and we can occasionally write xpiq to denote x i .

The set R n is endowed with the natural componentwise order, for x, y P R n , x ď y if x i ď y i for all i P rns.

A mapping f : R n Ñ R k is monotone if for x, y P R n , x ď y implies f pxq ď f pyq (we do not assume that k " n, thus x ď y and f pxq ď f pyq can relate to componentwise orders in two different spaces).

We assume that the Cartesian product R n is endowed with the structure of a normed real vector space with the norm ¨ 8 , for x P R n , x 8 " max iPrns |x i |. Thus, for x, y P R n , x ´y 8 defines a distance between x and y.

We say that a mapping f : R n Ñ R k is nonexpansive if, for all x, y P R n , f pxq f pyq 8 ď x ´y 8 .

Such a mapping f can be written as vector of k mappings f " pf 1 , . . . , f k q, where f i : R n Ñ R, i " 1, . . . , k. Clearly, f is monotone nonexpansive iff all f i are monotone nonexpansive.

We say that a mapping f : R n Ñ R k is additive homogeneous if for all λ P R and

x P R n f px `λe n q " f pxq `λe k ,
where e n and e k are the vectors p1, . . . , 1q in R n and R k respectively having all components equal to 1.

Crandall and Tartar [START_REF] Crandall | Some relations between nonexpansive and order preserving mappings[END_REF] proved the following result.

Lemma 1 (Crandall and Tartar [START_REF] Crandall | Some relations between nonexpansive and order preserving mappings[END_REF]). For additive homogeneous mappings f : R n Ñ R k is the following conditions are equivalent:

(i) f is monotone, (ii) f is nonexpansive.
We will need only the implication (i)Ñ(ii) that we prove below for the reader's convenience. Moreover, if the result holds for mappings from R n to R then it holds for mappings from R n to R k . Thus we assume in the proof that that f : R n Ñ R.

Proof. For x, y P R n , e n " p1, 1, . . . , 1q P R n and λ " x ´y 8 we have y ´λe n ď x ď y `λe n . Thus for f : R n Ñ R monotone and additive homogeneous we obtain f pyq ´λ ď f pxq ď f pyq `λ.

Thus |f pxq ´f pyq| ď λ " x ´y 8 .

Fixed points of monotone nonexpansive mappings

We say that a monotone mapping f :

R n Ñ R k is bounded if f pr0, 1s n q Ď r0, 1s k .
The set of bounded monotone nonexpansive mappings will be denoted by M n,k r0, 1s. Moreover BMN will stand for the abbreviation for "bonded monotone nonexpansive".

In this section we introduce the notion of the nearest fixed point of BMN mappings generalizing the least and greatest fixed points.

In the following lemma states basic properties of fixed points of BMN mappings.

Lemma 2. Let f P M 1,1 r0, 1s. Define by induction, f p0q pxq " x, f p1q pxq " f pxq, f pi`1q pxq " f pf piq pxqq, for x P r0, 1s. Then (i) for each x P r0, 1s the sequence pf piq pxqq, i " 0, 1, . . . , is monotone and converges to some x 8 P r0, 1s. The limit x 8 is a fixed point of f , f px 8 q " x 8 , (ii) if x ď y are fixed points of f , f pxq " x and f pyq " y, then for each z such that x ď z ď y, f pzq " z, (iii) the sequence pf piq p0qq, i " 0, 1, 2, . . . , converges to the least fixed point K f of f while the sequence pf piq p1qq, i " 0, 1, 2, . . . , converges to the greatest fixed point J f of f . The interval rK f , J f s is the set of all fixed points of f .

If 0 ď x ď K f then the sequence pf piq pxqq converges to K f .

If J f ď x ď 1 then the sequence pf piq pxqq converges to J f .

If 0 ď x ă K f then x ă f pxq. If J f ă x ď 1 then f pxq ă x.
Proof. (i) Suppose that f pxq ď x. Then inductively, since f is non-increasing, f pi`1q pxq ď f piq pxq for all i, i.e. the sequence f piq pxq is non-increasing. Since this sequence is bounded from below by 0 it converges to some x 8 . The case of f pxq ě x can be treated in a similar way. Since f is nonexpansive |f px 8 q ´f pi`1q pxq| ď |x 8 ´f piq pxq|. Because the right-hand side tends to 0 we can see that f piq pxq converges to f px 8 q. On the other hand, f piq pxq converges to x 8 . Therefore f px 8 q " x 8 .

(ii) Let 0 ď x ď z ď y ď 1 and f pxq " x, f pyq " y. Since f is monotone, f pxq ď f pzq ď f pyq. Thus, since f is nonexpansive, 0 ď f pyq ´f pzq ď y ´z and 0 ď f pzq ´f pxq ď z ´x. This implies that f pzq " z.

(iii) is a direct consequence of (i) and (ii).

Let f P M 1,1 r0, 1s. For a P r0, 1s we define the nearest fixed point µ a x.f pxq of f to be µ a x.f pxq :" lim i f piq paq.

Lemma 2 shows that this is really a fixed point of f which is closest to a, i.e. |a μa x.f pxq| " min zPr0,1s t|a ´z| | f pzq " zu.

Moreover, the least and the greatest fixed points of f P M 1,1 r0, 1s are respectively equal to µ 0 x.f pxq and µ 1 x.f pxq.

We can see also that

µ a x.f pxq " $ ' & ' % µ 0 x.f pxq if a ď µ 0 x.f pxq, a if µ 0 x.f pxq ď a ď µ 1 x.f pxq, µ 1 x.f pxq if µ 1 x.f pxq ď a, (7) 
i.e. the fixed point nearest to a is equal either to the least or to the greatest fixed point or is equal to a itself.

Let f P M n,1 r0, 1s. Fixing pr 1 , . . . , r k´1 , r k`1 , . . . , r n q P r0, 1s n´1 we can consider the mapping

x k Þ Ñ f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q.
from r0, 1s to r0, 1s. This mapping belongs to M 1,1 r0, 1s thus, given r k P r0, 1s, we can calculate the nearest fixed point µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q.

This fixed point depends on r " pr 1 , . . . , r k´1 , r k , r k`1 , . . . , r n q, thus we can define the mapping

r0, 1s n Q pr 1 , . . . , r k´1 , r k , r k`1 , . . . , r n q Þ Ñ µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q P r0, 1s (8) 
Lemma 3. If px 1 , . . . , x n q Þ Ñ f px 1 , . . . , x n q is BMN then the mapping (8) is BMN.
Proof. Let r " pr 1 , . . . , r n q, w " pw 1 , . . . , w n q P r0, 1s n . Define two sequences pr i k q, i " 1, 2, . . . and pw i k q, i " 1, 2, . . ., such that

r 1 k " r k and r i`1 k " f pr 1 , . . . , r k´1 , r i k , r k`1 , . . . , r n q and w 1 k " w k and w i`1 k " f pw 1 , . . . , w k´1 , w i k , w k`1 , . . . , w n q.
By Lemma 2 both sequences converge to some r 8 k and w 8 k respectively and r 8

k " µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q and w 8 k " µ w k x k .f pw 1 , . . . , w k´1 , x k , w k`1 , . . . , w n q. We shall prove by induction that for all i, That ( 8) is monotone is obvious and left to the reader.

|r i k ´wi k | ď r ´w 8 . Clearly, |r 1 k ´w1 k | " |r k ´wk | ď max i |r i ´wi | " r ´w 8 . Suppose that |r i k ´wi k | ď r ´w 8 . Then |r i`1 k ´wi`1 k | " |f pr 1 , . . . , r k´1 , r i k , r k`1 , . . . ,
Note that the usual point of view (at least when only the greatest and the least fixed points are applied) is that, for a mapping f P M n,1 r0, 1s taking the fixed point µ r k x k .f px 1 , . . . , x k´1 , x k , x k`1 , . . . , x n q bounds the variable x k , i.e. we consider this expression as the function of the variables x 1 , . . . , x k´1 , x k`1 , . . . , x n while r k is considered as a constant. In other words, for a given fixed r k we can consider the mapping px 1 , . . . , x k´1 , x k`1 , . . . , x n q Þ Ñ µ r k x k .f px 1 , . . . , x k´1 , x k , x k`1 , . . . , x n q.

From Lemma ?? it follows that this mapping belongs to M n´1,1 .

Clearly, Lemma ?? adopts a lager point of view where, although is some sense the variable x k becomes bound by the fixed point µ r k x k , at the same time r k becomes a "new" variable. This larger point of view is interesting since it allows to examine how the nearest fixed point changes in function of r k . In the next section we will define the nested nearest fixed point µ rn x n . . . . µ r 1 x 1 .f px 1 , . . . , x n q of a mapping f P M n,n r0, 1s. From the traditional point view this expression defines some special fixed point of f , i.e. some special element d P r0, 1s n such that f pdq " d.

However d depends on or more precisely is a function of r " pr 1 , . . . , r n q. And it is interesting and fruitful to examine the function pr 1 , . . . , r n q Þ Ñ µ rn x n . . . . µ r 1 x 1 .f px 1 , . . . , x n q. Lemma 4. If f P M k,m r0, 1s and g P M m,n r0, 1s then g ˝f P M k,n r0, 1s, i.e. the composition of BMN mappings is BMN.

Proof. For x, y P r0, 1s k , we have gpf pxqq ´gpf pyqq 8 ď f pxq ´f pyq 8 ď x ´y 8 . Trivially, monotonicity is also preserved by composition.

Nested fixed points of bounded monotone nonexpansive mappings

In this section we define the nested nearest fixed point operators Fix k : M n,n r0, 1s Ñ M n,n r0, 1s, k " 0, 1, . . . , n.

Each Fix k can be decomposed into n operators Fix k i ,

Fix k i : M n,n r0, 1s Ñ M n,1 r0, 1s, i P rns, so that, for f P M n,n , Fix k pf q " pFix k 1 pf q, . . . , Fix k n pf qq. Let f " pf 1 , . . . , f n q P M n,n r0, 1s, where f i P M n,1 r0, 1s, for i P rns. We set Fix 0 pf q to be such that Fix 0 pf qprq " r, for r P r0, 1s n . Thus Fix 0 pf q is the identity mapping and does not depend of f . Note that Fix 0 i pf qprq " r i , i.e. Fix 0 i pf q is the projection on the ith coordinate. In general we set

Fix k i pf qprq " r i , for all 0 ď k ă i ď n.
It remains to define Fix k i pf qprq for i ď k. The definition is by induction on k. Suppose that Fix k´1 pf q is defined. For r P r0, 1s n and ζ P r0, 1s let us set F k´1 i pζ; rq :" Fix k´1 i pf qpr 1 , . . . , r k´1 , ζ, r k`1 , . . . , r n q, for i P rk ´1s.

Note that F k´1 i pζ; rq depends on ζ and on pr 1 , . . . , r k´1 , r k`1 , . . . , r n q but does not depend on r k . Thus F k´1 i is in fact a mapping from r0, 1s n to r0, 1s. Then we define

Fix k k pf qprq :" µ r k ζ.f k pF k´1 1 pζ; rq, . . . , F k´1 k´1 pζ; rq, ζ, r k`1 , . . . , r n q, (10) 
Fix k i pf qprq :" F k´1 i pr 1 , . . . , r k´1 , Fix k k pf qprq, r k`1 , . . . , r n q, for i P rk ´1s,

Fix k i pf qprq :" r i , for i P tk `1, . . . , nu.
Since the definition of the nested fixed point mappings uses only the composition and the nearest fixed point operators, Lemmas 4 and 3 imply that Corollary 5. If f P M n,n r0, 1s then, for all k P t0u Y rns, Fix k pf q P M n,n r0, 1s.

Let us note finally that Fix k pf q depends only on f 1 , . . . , f k but is independent of f k`1 , . . . , f n .

Duality for the bounded monotone nonexpansive mappings

In this section we define and examine the notion of duality for the BMN mappings.

For r " pr 1 , . . . , r n q P r0, 1s n we set 1 ´r :" p1 ´r1 , . . . , 1 ´rn q. Given a BMN mapping f : r0, 1s n Ñ r0, 1s the dual of f is the mapping f : r0, 1s n Ñ r0, 1s such that f pr 1 , . . . , r n q " 1 ´f p1 ´r1 , . . . , 1 ´rn q.

The dual of f " pf 1 , . . . , f k q P M n,k r0, 1s is defined as f " pf 1 , . . . , f n q.

We can write this in a more explicit way if for f " pf 1 , . . . , f k q P M n,k r0, 1s we define 1 ´f :" p1 ´f1 , . . . , 1 ´fk q.

Then using this notation, for f P M n,k r0, 1s, we can write succinctly

f prq " 1 ´f p1 ´rq. Lemma 6. If f is BMN then f is BMN.
Proof. Let pr 1 , . . . , r n q ď pw 1 , . . . , w n q. Then p1 ´r1 , . . . , 1 ´rn q ě p1 ´w1 , . . . , 1 ´wn q and f p1 ´r1 , . . . , 1 ´rn q ě f p1 ẃ1 , . . . , 1 ´wn q. Thus f pr 1 , . . . , r n q " 1 ´f p1 ´r1 , . . . , 1 ´rn q ď 1 ´f p1 ´w1 , . . . , 1 ´wn q ď f pw 1 , . . . , w n q, i.e. f is monotone.

Finally f prq ´f pwq 8 " p1 ´f p1 ´rqq ´p1 ´f p1 ´wqq 8 ď p1 ´rq ´p1 ´wq 8 " r ´w 8 , i.e. f is nonexpansive. Lemma 7. If f P M n,1 r0, 1s then, for all k P rns and r " pr 1 , . . . , r n q P r0, 1s n , µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q " 1 ´µ1´r k x k .f p1 ´r1 , . . . , 1 ´rk´1 , 1 ´xk , 1 ´rk`1 , . . . , 1 ´rn q.

Proof. Let J f and K f be respectively the greatest and the least fixed points of the mapping

x k Þ Ñ f r 1 , . . . , r k´1 , x k , r k`1 , . . . , r n .
Similarly let J f , K f the greatest and the least fixed points of the mapping

x k Þ Ñ f p1 ´r1 , . . . , 1 ´rk´1 , 1 ´xk , 1 ´rk`1 , . . . , 1 ´rn q.
Since f p1´r 1 , . . . , 1´r k´1 , x k , 1´r k`1 , . . . , r n q " 1´f pr 1 , . . . , r k´1 , 1´x x , r k`1 , . . . , r n q we have K f " 1 ´Jf and J f " 1 ´Kf .

There are three possibilities concerning the position of r k relative to K f and J f .

If J f ď r k then µ r k x k .f r 1 , . . . , r k´1 , x k , r k`1 , . . . , r n " J f .
However, in this case we have also 1 ´rk ď 1 ´Jf " K f implying that

µ 1´r k x k .f p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q " K f .
In a similar way if r k ď K f then µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q " K f and µ 1´r k x k .f p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q " J f .

The last case to examine is when K f ď r k ď J f . Then

µ r k x k .f pr 1 , . . . , r k´1 , x k , r k`1 , . . . , r n q " r k
and, on the other hand,

K f ď 1 ´rk ď J f , implying µ 1´r k x k .f p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q " 1 ´rk .
Lemma 8. Let g P M m,k r0, 1s and f P M k,n r0, 1s. Then f ˝g " f ˝g, i.e. the dual of the composition of BMN mappings is equal to the composition of duals.

Proof. For r P r0, 1s n we have pf ˝gqprq " 1 ´pf ˝gqp1 ´rq " 1 ´f pgp1 ´rqq " 1 ´f p1 ´p1 ´gp1 ´rqqq " 1 ´f p1 ´gprqq " pf pgprqq.

The following lemma examines the duality for the nested nearest fixed points.

Lemma 9. Let f " pf 1 , . . . , f n q P M n,n r0, 1s. Then for all k, 0 ď k ď n, and r P r0, 1s n

Fix k pf qprq " 1 ´Fix k pf qp1 ´rq.

Proof. Induction on k. r Þ Ñ Fix 0 pf qprq " r is the identity mapping independently of f . Thus the left-hand side of ( 11) is equal to r and the right-hand side is 1 ´p1 ´rq " r as well.

For each 0 ď k ď n, let us set 

Fix k pf qprq " H k prq " pH k 1 prq, . . . ,
H k prq " 1 ´Hk p1 ´rq. ( 12 
)
Our aim is to prove the last equality for k under the assumption that it holds for k ´1.

By definition

H k k p1 ´rq " µ 1´r k x k .f k pH k´1 1 p1 
´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q, . . . , H k´1 k´1 p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 , . . . , r n q, x k , 1 ´rk`1 , . . . , 1 ´rn q.

Let us define a mapping G k P M n,n r0, 1s:

G k :" pH k´1 1 , . . . H k´1 k´1 , π k , π k`1 , . . . , π n q,
where π i px 1 , . . . , x n q " x i , i " k, k `1, . . . , n, is the projection on the i-th coordinate. Since π i " π i , i.e. the dual of the projection is equal the same projection mapping we can see that the dual to

G k is G k " pH k´1 1 , . . . H k´1 k´1 , π k , π k`1 , . . . , π n q.
Therefore, by Lemmas 8 and 7, " H k´1 m p1 ´r1 , . . . , 1 ´rk´1 , 1 ´Hk k prq, 1 ´rk`1 , . . . , 1 ´rn q " 1 ´Hk´1 m pr 1 , . . . , r k´1 , H k k prq, r k`1 , . . . , r n q " 1 ´Hk m prq.

H k k p1 ´rq "µ 1´r k x k .f k ˝Gk p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 . . . , 1 ´rn q " µ 1´r k x k .f k ˝Gk p1 ´r1 , . . . , 1 ´rk´1 , x k , 1 ´rk`1 . . . , 1 ´rn q " 1 ´µr k x k .f k ˝Gk r 1 , . . . ,
Finally, for m ą k,

1 ´Hk m p1 ´rq " 1 ´p1 ´rm q " r m " H k m prq.
This terminates the proof of ( 12).

The one-day game

In this section we define an auxiliary one-day game. This simple game constitutes an essential ingredient in our solution to the general priority games. Let x " px 1 , . . . , x n q P R n be a reward vector assigning to each state i the reward x i . A one-day game M pxq is the game played in the following way. If the game starts at a state k then players Max and Min choose independently and simultaneously actions a P Apkq and b P Bpkq. Suppose that upon execution of pa, bq the game moves to the next state m. This ends the game and player Max receives from player Min the payoff x m . A one-day game played at state k given the reward mapping x will be denoted M k pxq.

Note that M k pxq can be seen as a matrix game where M k pxqra, bs :"

ÿ mPS x m ¨ppm|k, a, bq
is the (expected) payoff obtained by player Max from player Min when the players play actions a and b respectively. The value mapping of the one-day game is the mapping f " pf 1 , . . . , f n q from R n to R n such that, for each state k P rns,

f k px 1 , . . . , x n q :" valpM k pxqq, (13) 
where valpM k pxqq is the value of the matrix game M k pxq, In other words, f k px 1 , . . . , x n q is the value of the one-day game played at state k seen as a function of the reward vector x " px 1 , . . . , x n q.

We will be interested in f k pxq seen as a function of the reward vector x " px 1 , . . . , x n q. Since all entries in the matrix game M k pxq belong to R, f k pxq P R, i.e. f k is a mapping from R n into R.

Lemma 10. The value mapping f of the one-day game defined in (13) is monotone and non-expansive.

Proof. It is easy to see that f is monotone and it is also straightforward that f is additively homogeneous, i.e, for all x P R n , f px `λ ¨en q " f pxq `λ ¨en , where e n " p1, . . . , 1q P R n is the vector with 1 on all components. By Lemma 1 this implies that f is nonexpansive.

Stopping priority games

Stopping priority games are a variant of priority games where some states are stopping or equivalently where some states are absorbing.

We solve the stopping priority games by induction on the number of non-stopping states and we show that the value function can be expressed as the nearest fixed point of the value function (13) of the one-day game.

Let pS t , t ě 1q be the stochastic process such that S t is the state visited at stage t.

For each state k P rns we define the random variable

T ąk : H 8 Ñ N Y t8u such that T ąk " mintt | S t ą ku.
Thus T ąk is the time of the first visit to a state greater than k.

We define a new stochastic process S rks t , t P N, that we shall call the stopped state process: for all q ě t. For a given reward vector r and k P rns we define the stopping priority payoff ϕ The games with payoff ϕ rks r will be called stopping priority games. We will also speak about the ϕ rks r -game to refer to the game with payoff ϕ rks r . Similarly ϕ r -game will stand for the usual priority game.

S rks t " # S t if T ąk ě t, S q if q " T ąk ă t.
Note that once a state j greater than k is visited the game with payoff ϕ rks r is for all practical purposes over, independently of what can happen in the future the payoff is equal to the reward r j of this state and the states visited after the moment T ąk have no bearing on the payoff.

In the ϕ rks r -game the states rks will be called non-stopping while the states ą k, will be called stopping.

Note that since we have assumed that S " rns, i.e. n is the greatest state, we have ϕ rns r " ϕ r .

Note also that stopping states are trivial. If i ą k then for all plays h starting at i, ϕ rks r phq " r i , thus E σ,τ i pϕ rks r q " r i for all strategies σ, τ , in particular the value of stopping state i, i ą k, is r i .

Dual game

We have constructed a ε-optimal strategy for Max and Min for the game starting at k but the strategy for Max was constructed under the condition r k ă w k while the strategy for Min was constructed under the condition r k ď w k .

How to obtain ε-optimal strategies for both players for two remaining cases (r k ě w k for Max and r k ą w k for Min) we use the natural duality of the nested fixed points and the games.

Let G be a priority game. The dual game G is obtained in the following way:

(Di) G has the same states, actions and transition probabilities as G, (Dii) if r " pr 1 , . . . , r n q is the reward vector in G then r " pr 1 , . . . , r n q is the reward vector in G, where for z P r0, 1s, z :" 1 ´z, (Diii) players Max and Min exchange the roles, in the dual game for each state i P S, Apiq are the actions of player Max while Bpiq are the actions of player Min, moreover in the dual game player Max wants to minimize the priority payoff ϕ r while Min wants to maximize the priority payoff ϕ r .

To avoid confusion, we write Max and Min to denote the players, respectively, maximizing and minimizing the priority payoff in the dual game.

A strategy σ is a strategy of player Max in G if and only if it is a strategy of player Min in the dual game G. A symmetric property holds for strategies of player Min.

For each play h we have ϕ r phq " 1 ´ϕr phq, thus E σ,τ i pϕ r q " 1 ´Eτ,σ i pϕ r q, where the left hand side is the expected payoff in G, while E τ,σ i pϕ r q is the expected payoff in G when Max plays according to τ and Min plays according to σ.

This implies that v i " 1 ´vi , where v i is the value of state i in G while v i is the value of i in the G. Moreover, a strategy is ε-optimal for player Max in G if and only if it is ε-optimal for player Min in G. A symmetric property holds for strategies of player Min.

Constructing ε-optimal strategies

The rest of this section is devoted to the proof of the following main result characterizing the values of the stopping priority games by means of the nested nearest fixed points.

Theorem 11. Let f : r0, 1s n Ñ r0, 1s n be the value mapping of the one-day game defined in Section 4. For 0 ď k ď n, let Fix k pf q be the k-th nested fixed point of f , see Section 3.2. Then, for each reward vector r, for each initial state i P rns, the stopping priority ϕ rks r -game starting at i has value equal to Fix k i pf qprq.

Proof. For each ε ą 0 we construct ε-optimal strategies for both players.

The proof is carried out by induction on k. The case k " 0 is trivial since when all states are stopping then the value of each state is equal to its reward, i.e. the value of state i is Fix 0 i pf qprq " r i . Under the assumption that the theorem holds for k ´1, i.e. Fix k´1 i pf qprq is the value of the non-stopping state i P rk ´1s in the ϕ rk´1s r -game, we shall prove that Fix k i pf qprq is the value of the non-stopping state i P rks in the ϕ rks r -game. We will use the following notation:

w k :" Fix k k pf qprq " µ r k x k .f k pF k´1 1 px k ; rq, . . . , F k´1 k´1 px k ; rq, x k , r k`1 , . . . , r n q (14)
and

w i :" Fix k i pf qprq " F k´1 i pw k ; rq, i P rk ´1s, (15) 
where F k´1 i are defined as in [START_REF] Martin | The determinacy of Blackwell games[END_REF]. Thus our aim is to prove that pw 1 , . . . , w k´1 , w k q are the values of the states t1, . . . , k ´1, ku in the ϕ rks r -game. Since w k is a fixed point of (14) we have

w k " f k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q. ( 16 
)
Let T m be the random time of the m´th visit to state k of the stopping state process pS rks t q tě1 , i.e. (

) 17 
T m can be infinite if the number of visits of the stopping state process S rks t

to the state k is smaller than m and T 1 " 1 if the game starts at k. Since T m is defined w.r.t. the stopping state process S rks t , T m ă 8 implies that all states visited prior to the moment T m are ď k.

Recall that S t , t ě 1, is the stochastic process that gives the state visited at stage t. A t , t ě 1 and B t , t ě 1 are the stochastic processes that give the actions played by players Max and Min respectively at stage t.

Let T be any random time, i.e. a mapping from plays to t1, 2, . . .u Y t8u such that for each m P t1, 2, . . .u the event tT " mu belongs to the σ-algebra F m " σpS 1 , A 1 , B 1 , S 2 , . . . , S m q. In other words, F m is the σ algebra generated by the cylinders h m, where h m are histories of length m.

Intuitively that means that knowing the states and actions up to time m we can decide if T " m or not. Definition 12. For a random time T , θ T : H 8 Ñ H 8 will denote the shift mapping that maps plays to plays and is defined in the following way

θ T pS 1 , A 1 , B 1 , S 2 , . . .q " S T , A T , B T , S T `1, A T `1, B T `1, S T `2, A T `2, B T `2, . . . ,
where S t is the state process giving the state visited at stage t and A t , B t are action processes that give the actions played by players Max and Min at stage t.

Thus the shift θ T "forgets" all history prior to time T . Of course, θ T is well defined only on plays such that T ă 8.

Below we use the shift θ Tm`1 , where T m is the time of the mth visit to state k. This shift will be applied only to the plays with T m ă 8.

6.1 ε{2-optimal strategy σ ‹ for player Max when r k ă w k and k is the starting state.

We assume that

r k ă w k (18)
and the aim is to construct a strategy σ ‹ satisfying

E σ‹,τ k pϕ rks r q ě w k ´ε{2 (19) 
for each strategy τ of Min. Let η P pw k ´ε{2, w k q and define ξ i " F k´1 i pη; rq, @i P rk ´1s.

By the induction hypothesis, ξ i is the value of the ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq -game starting at the state i.

Let us consider the one-day game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q played at state k. Then η ‹ :" f k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q (21)

is the value of this game. By the properties of monotone non-expansive mappings, (18) implies that w k is in fact the least fixed point of the mapping

x k Þ Ñ f k pF k´1 1 px k ; rq, . . . , F k´1 k´1 px k ; rq, x k , r k`1 , . . . , r n q.
Thus η ă w k implies that

η ă f k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q " η ‹ ď w k . ( 22 
) Fix δ such that 0 ă δ ă η ‹ ´η. (23) 
We define the strategy σ ‹ of player Max in the following way:

' during the m-th visit to the state k, which takes place at time T m , c.f. (17), player Max selects actions according to his optimal strategy in the one-day game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q.

' during all stages j such that T m ă j ă T m`1 , i.e. between the mth and pm 1qth visit to k, player Max plays according to his δ-optimal strategy for the ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq -game. When he applies this strategy then we tacitly assume that after each visit to k player Max "forgets" all preceding history and he plays as if the game started afresh at the first state visited after the last visit to k.

From the optimality of σ ‹ in the one-day game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q, we have

ÿ iăk ξ i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q `η ¨Pσ‹,τ k pS Tm`1 " k | T m ă 8q `ÿ iąk r i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q ě η ‹ . (24) 
Indeed, when player Max plays according to the strategy σ ‹ at the moment T m then the current state is k and he plays using his optimal strategy in the one-day game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q. Now it suffices to notice that the left-hand side of ( 24) is nothing else but the payoff that player Max obtains in the one-day game M k pξ 1 , . . . , ξ k´1 , η, r k`1 , . . . , r n q (because S Tm`1 is the state visited at the next time moment T m `1). Since η ‹ is the value of this one-day game the inequality follows.

In the sequel we will note 1 A the indicator of the event A, i.e. the mapping that is equal to 1 on A and to 0 on the complement of A.

Let us note the following equality:

ÿ iąk r i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q " E σ‹,τ k pϕ rks r ¨1tS Tm`1 ąku | T m ă 8q. (25) 
Indeed, if a play belongs to the event tS Tm`1 " i, T m ă 8u for i ą k then T m ă 8 means that at the moment T m this play visits k and prior to T m it never visited states ą k cf. ( 17), and at the next time moment T m `1 such a play visits the stopping state i ą k. But for such plays the payoff ϕ rks r is equal to r i . Consider now the event tS Tm`1 " i, T m ă 8u, for i ă k, see Figure 1. This event consists of the plays such that • the stopping state process S rks i visits k for the mth time at time T m (this is guaranteed by T m ă 8, cf.( 17)) and

• at the next time moment T m `1 the play visits the state i ă k.

From the definition of σ ‹ it follows that starting from the time T m `1 player Max plays using his δ-optimal strategy in the ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq -game. Since, by the inductive hypothesis (20), the value of such a game for state i is ξ i , we have

k T m + 1 i ∈ [k -1] {T m+1 < ∞, S Tm+1 = i, T m+1 = ∞} {T m+1 < ∞, S Tm+1 = i, T m+1 < ∞} T m+1 T m t = 0 k k θ Tm+1 ⇓ t = 0 i ∈ [k -1] {T m+1 < ∞, S Tm+1 = i, T m+1 = ∞} {T m+1 < ∞, S Tm+1 = i, T m+1 < ∞} T m+1 k Figure 1:
The upper figure : The event tS Tm`1 " i, T m ă 8u consists of the plays that at time T m visit state k for the mth time without ever visiting the states ą k before, and at time T m `1 they visit state i, where i ă k. These plays are partitioned into two sets. The set tT m`1 ă 8, S Tm`1 " i, T m ă 8u of plays that will visit k for the pm `1qth time and the set tT m`1 " 8, S Tm`1 " i, T m ă 8u of the plays for which the mth visit in k was the last one. The lower figure : The shift mapping θ Tm`1 "forgets" all history prior to the time T m `1.

E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 | S Tm`1 " i, T m ă 8q ě ξ i ´δ, for all i ă k, (26) where θ Tm`1 is the shift mapping that deletes all history prior to the time T m `1.

Using the fact that for all events A and B and each integrable mapping f we have Epf | A, Bq ¨P pAq " Epf ¨1tAu | Bq we can rewrite (26) in the following form

E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu | T m ă 8q ě pξ i ´δq ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q, for i ă k. ( 27 
)
We shall prove that for i ă k,

E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu | T m ă 8q " η¨P σ‹,τ k pT m`1 ă 8, S Tm`1 " i | T m ă 8q`E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 "iu | T m ă 8q. (28) 
Indeed the left-hand side of ( 28) is the sum of E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu ¨1tT m`1 "8u | T m ă 8q (29) and E σ‹,τ k pϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq ˝θTm`1 ¨1tS Tm`1 "iu ¨1tT m`1 ă8u | T m ă 8q.

Consider first (30). For plays h belonging to the event tT m`1 ă 8, S Tm`1 " iu, i ă k, the shift θ Tm`1 removes all prefix history up to the time T m `1, see Figure 1. Since T m`1 ă 8 in the remaining suffix play θ Tm`1 phq all visited states up to the next visit to k are ă k. But for the plays that visit k at some moment and for which all states prior to this first visit to k are ă k the payoff ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq is constant and equal to the reward η associated with k. Thus (30) is equal to

η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 " i | T m ă 8q.
Let us examine now (29). The plays h belonging to the event tS Tm`1 " i, T m`1 " 8, T m ă 8u have the following properties:

• at time T m they visit k and all states visited prior to T m are ď k,

• at time T m `1, just after the mth visit to k, they visit the state i,

• since T m`1 " 8 the suffix play θ Tm`1 phq does not contain any occurrence of k (k is never visited for the pm `1qth time).

These properties assure that for such plays ϕ rks r phq " ϕ rks r pθ Tm`1 phqq. However, θ Tm`1 phq has no occurrence of k, which implies for the resulting payoff it is irrelevant if k is stopping or not and what is the reward of k. Thus ϕ rks r pθ Tm`1 phqq " ϕ rk´1s pr 1 ,...,r k´1 ,η,r k`1 ,...,rnq pθ Tm`1 phqq. This terminates the proof that (29) is equal to E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 "iu | T m ă 8q. This concludes also the proof of (28).

From ( 27) and (28) we obtain

η¨P σ‹,τ k pT m`1 ă 8, S Tm`1 " i | T m ă 8q`E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 "iu | T m ă 8q ě pξ i ´δq ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q.
Summing both sides of this inequality for i ă k and rearranging the terms we obtain which allows to regroup the first and the fourth summand of right-hand side of (31). Indeed, tT m`1 ă 8, T m ă 8u is the union of three disjoint events, depending on whether the state visited at the next time moment T m `1 is ă k, " k, or ą k. But for the second of these events we have tT m`1 ă 8, T m ă 8, S rks Tm`1 " ku " tT m ă 8, S rks Tm`1 " ku since S rks Tm`1 " k implies that T m`1 " T m `1 ă 8.

ÿ iăk ξ i ¨Pσ‹,τ k pS Tm`1 " i | T m ă 8q ď η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 ăku | T m ă 8q `δ ¨Pσ‹,τ k pS Tm`1 ă k | T m ă 8q ď η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 ăku | T m ă 8q `δ.
And finally the third event tT m`1 ă 8, T m ă 8, S rks Tm`1 ą ku is empty since S rks Tm`1 ą k means that at time T m `1 the game hits a stopping state thus the stopping state process will never return to k, therefore T m`1 " 8. This terminates the proof of (32).

We can regroup also the second and the last summands of (31) since We obtain this again by presenting the event tT m`1 " 8, T m ă 8u as the union of three disjoint events depending on the value of S Tm`1 . However, S Tm`1 " k contradicts T m`1 " 8 and S Tm`1 ą k implies T m`1 " 8.

Using these observations we deduce from (31) that 

η ‹ ď η ¨Pσ‹,τ k pT m`1 ă 8 | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u | T m ă 8q `δ.
P σ‹,τ k pT q`1 ă 8 | T q ă 8q ď lim mÑ8 ˆ1 ´η‹ `δ 1 ´η ˙m´1 " 0, (34) 
i.e. if player Max uses the strategy σ ‹ then with probability 1 the state k is visited only finitely many times.

Multiplying both sides of (33) by P σ‹,τ k pT m ă 8q, taking into account that 0 ă δ ă η ‹ ´η and rearranging we get

E σ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tTmă8u q ą η ¨Pσ‹,τ k pT m ă 8q ´η ¨Pσ‹,τ k pT m`1 ă 8, T m ă 8q " η ¨Pσ‹,τ k pT m`1 " 8, T m ă 8q. (35) 
Since the events tT m`1 " 8, T m ă 8u mě0 and t@m, T m ă 8u form a partition of the sets of plays but the last event has probability 0, summing up both sides of (35) for all m ě 1 we obtain E σ‹,τ k pϕ rks r q ą η ą w k ´ε 2 which terminates the proof of the right-hand side inequality in (??).

6.2 ε{2-optimal strategy τ ‹ for player Min when w k ě r k and k is the starting state.

We assume that w k ě r k and ε ą 0. The aim of this section is to construct a strategy τ ‹ for player Min such that E σ,τ‹ k pϕ rks r q ď w k `ε{2

for each strategy σ of Max. The strategy τ ‹ of player Min is constructed in the following way.

(i) If the current state is k then player Min selects actions with probability given by his optimal strategy in the one-day game M k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q.

Thus the strategy of player Min at k is "locally memoryless", the probability used to select actions to execute at k does not depend on the previous history.

(ii) During all stages j such that T m ă j ă T m`1 (between the mth and pm `1qth visit to state k) player Min plays using his ε m :" ε{2 m`1 -optimal strategy in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game 6 . In general the strategy played by Min between two visits to state k is not memoryless because ε m changes at each visit to k.

where f ˝g denotes the composition of mapping f and g. Now let us note that (37) closely resembles (24) while (39) resembles (26). What is different but symmetric is that the first two formulas concern strategies pσ ‹ , τ q and the last two pσ, τ ‹ q. Moreover, the inequalities are reversed. The following table resumes the correspondence between constants appearing in the formulas: Eq. ( 24), (26) Eq. ( 37), (39)

η w k η ‹ w k ξ i w i δ ´εm
Thus exactly in the same way as we deduced (33) from ( 26) and ( 24) we can deduce from (37) and (39) the following formula analogous to (33) (just reverse the inequality and replace the constants as indicated above):

w k ¨Pσ,τ‹ k pT m`1 ă 8 | T m ă 8q `Eσ,τ‹ k pϕ rks r ¨1tT m`1 "8u | T m ă 8q ´εm ď w k .
Rearranging the terms and multiplying by P σ,τ‹ k pT m ă 8q we obtain from this inequality that

E σ,τ‹ k pϕ rks r ¨1tT m`1 "8u ¨1tTmă8u q ď w k ¨Pσ,τ‹ k pT m`1 " 8, T m ă 8q `ε 2 m`1 ¨Pσ,τ‹ k pT m ă 8q ď w k ¨Pσ,τ‹ k pT m`1 " 8, T m ă 8q `ε 2 m`1 .
The events tT m`1 " 8, T m ă 8u are pairwise disjoint and their union is equal to tDm, T m " 8u thus summing over m ě 1 both sides of the inequality we obtain E σ,τ‹ k pϕ rks r ¨1tDm,Tm"8u q ď w k ¨Pσ,τ‹ k pDm, T m " 8q `ε{2.

On the other hand, for all plays in t@m, T m ă 8u the state k is visited infinitely often thus ϕ rks r is equal to r k . Thus E σ,τ‹ k pϕ rks r q " E σ,τ‹ k pϕ rks r ¨1tDm,Tm"8u q `Eσ,τ‹ k pϕ rks r ¨1t@m,Tm"8u q " E σ,τ‹ k pϕ rks r ¨1tDm,Tm"8u q `rk ¨Pσ,τ‹ k p@m, T m ă 8q ď w k ¨Pσ,τ‹ k pDm, T m " 8q `rk ¨Pσ,τ‹ k p@m, T m ă 8q `ε{2 ď w k `ε{2.

6.3 ε{2-optimal strategies for the other cases when the starting state is k

In Sections 6.1 and 6.2 we have constructed ε{2-optimal strategies for player Max when w k ą r k and for player Min when w k ě r k under the condition that Fix k´1 pf qprq is the value vector of the ϕ rk´1s r -game. But passing to the dual game, the last condition implies that Fix k´1 pf qprq is the value vector in the dual stopping game with payoff ϕ rk´1s r . Therefore, proceeding exactly as in Section 6.1, we can construct a strategy τ ‹ for player Max in the dual game with payoff ϕ rks r such that

E τ ‹ ,σ k pϕ rks r q ě w k ´ε{2 (40) 
for all strategies σ of player Min if

w k ą r k . (41) 
By duality of games and fixed points, E τ ‹ ,σ k pϕ rks r q " 1 ´Eσ,τ ‹ k pϕ rks r q, w k " 1 ´wk and r k " 1 ´rk . Thus (40) is equivalent to E σ,τ ‹ k pϕ rks r q ď w k `ε{2 and (41) is equivalent to w k ă r k , i.e. we get a ε{2-optimal strategy of player Min in the ϕ rks r -game if w k ă r k . In the similar way, applying the construction of Section 6.2 to the dual game and coming back to the original game we get a strategy σ ‹ for player Max such that E σ ‹ ,τ k pϕ rks r q ě w k ´ε{2 if w k ď r k .

6.4 ε-optimal strategies for the ϕ rks r -game starting at states ă k.

It remains to prove that

Fix k i pf qprq :" F k´1 i pw k ; rq is the value of the ϕ rks r -game starting in the state i ă k. To this end we must construct strategies σ 7 and τ 7 for player Max and Min, respectively, such that E σ,τ 7 i pϕ rks r q ď Fix k i pf qprq `ε and E σ 7 ,τ i pϕ rks r q ě Fix k i pf qprq ´ε

for all strategies σ, τ . We define only the strategy τ 7 for player Min and prove the first equation of (42). The definition of σ 7 and the proof of the right-hand side of (42) are symmetrical and are left to the reader. Recall that T 1 was defined as the (random) time of the first visit of the stopped state process S rks t to the state k, cf. (17). Let τ ‹ be the strategy of player Min defined at page 26 that satisfies (36), i.e τ ‹ is an ε{2-optimal for player Min in the ϕ rks r -game starting at the state k.

By the induction hypothesis, there exists an ε{2-optimal strategy α for player Min in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game. We define the strategy τ 7 for player Min by composing strategies α and τ ‹ as follows:

τ 7 pS 1 , A 1 , B 1 , ¨¨¨, S m q " # αpS 1 , A 1 , B 1 , ¨¨¨, S m q if T 1 ą m, τ ‹ pS T 1 , A T 1 , B T 1 , ¨¨¨, S m q if T 1 ď m.
Intuitively, τ 7 is the strategy such that player Min plays according to α until the first visit to k and starting from the moment of the first visit to k he switches to τ ‹ . Moreover, when he switches to τ ‹ then he "forgets" all history prior to the moment T 1 and behaves as if the game have started afresh at k.

First we want to show that, for each strategy σ of player Max and for each state

i ă k, E σ,τ 7 i pϕ rks r | T 1 ă 8q " E σ,τ 7 i pϕ rks r ˝θT 1 | T 1 ă 8q ď w k `ε{2
where θ T 1 is the shift operation, cf. Definition 12, and w k " Fix k k pf qprq is the value of k.

To justify the first equality let us notice that the plays with T 1 ă 8 do not visit the stopping states, i.e. the states ą k, prior to T 1 . Therefore the payoff ϕ rks r for such plays is not modified if we shift them by T 1 .

The second inequality follows from the definition of τ 7 . When the game hits state k at time T 1 player Min switches to strategy τ ‹ and forgets the history prior to T 1 . Since τ ‹ is ε{2-optimal for player Min in the ϕ rks r -game for plays starting at k, using this strategy limits the payoff to at most w k `ε{2. Now we examine the expected payoff for plays with T 1 " 8. Such plays never visit k, therefore it is irrelevant for them if k is stopping or not like it is irrelevant what is the reward associated with k. Moreover, for such plays player Min plays according to strategy τ ‹ . For these reasons we have E σ,τ 7 i pϕ rks r | T 1 " 8q " E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q.

From (43) we obtain E σ,τ 7 i pϕ rks r q " E σ,τ 7 i pϕ rks r | T 1 ă 8q ¨Pσ,τ 7 i pT 1 ă 8q `Eσ,τ 7 i pϕ rks r | T 1 " 8q ¨Pσ,τ 7 i pT 1 " 8q ď pw k `ε{2q ¨Pσ,τ 7 i pT 1 ă 8q `Eσ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ 7 i pT 1 " 8q.

(44)

Since τ ‹ is ε{2-optimal for player Min in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game we have F k´1 i pw k ; rq `ε{2 ě E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq q " E σ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 ă 8q ¨Pσ,τ‹ i pT 1 ă 8q `Eσ,τ‹ i pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ‹ i pT 1 " 8q.
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Notice that plays with T 1 ă 8 have payoff w k in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game because k is stopping in this game and the reward of k is equal to w k . Hence we can rewrite (45) as which terminates the proof of the ε-optimality of τ 7 .

Discussion

Parity games form a special subclass of priority games where the winning regions (in the deterministic case [START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF]) or the values (for stochastic parity games [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF]) can be expressed by means of µ-calculus formulas. The µ-calculus is a fixed point calculus over a complete lattice using the greatest and the least fixed points. From this point of view Theorem 11 is just an extension of the known result of de Alfaro and Majumdar [START_REF] Alfaro | Quantitative solution to omega-regular games[END_REF] to a wider framework of priority games. However, there is one ingredient of Theorem 11 that seems to be new. It is notoriously difficult to grasp the meaning of a µ-calculus formula alternating several greatest and least fixed point.

Theorem 11 provides a natural interpretation in the term of games of a formula where only some fixed points are applied and other variables remain free.

Let pξ 1 , . . . , ξ k q " pFix k´1 1 prq, . . . , Fix k´1 k´1 prqq be the values of the states 1, . . . , k ´1 in the ϕ rk´1s r -game. This game differs from the original priority game with the payoff ϕ r in that the states k, k `1, k `2, . . . , n are stopping. Now when we add another fixed point to obtain pξ 1 1 , . . . , ξ 1 k´1 , ξ 1 k q " pFix k 1 prq, . . . , Fix k k´1 prq, Fix k k prqq then this corresponds to the operation that transforms the state k from stopping in the ϕ rk´1s r

-game into a non-stopping state in the ϕ rks r -game. In the game SKIRMISH, adapted by de Alfaro and Henzinger [START_REF] Alfaro | Concurrent omega-regular games[END_REF] from [START_REF] Kumar | Existence of value and randomized strategies in zero-sum discrete-time stochastic dynamic games[END_REF] (Figure 2) the players do not have optimal strategies and for one of the players a ε-optimal strategy cannot be memoryless. SKIRMISH has three states S " t1, 2, 3u: state 1 is absorbing, state 3 has only one outgoing transition moving to state 2 independently of the actions played at 3, in state 2 each player has two actions: Ap2q " trun, hideu, Bp2q " tfire, waitu.

The reward vector is r " p0, 0, 1q. Thus player Max obtains payoff 1 if and only if the play visits infinitely often the state 3. Moreover since 1 is absorbing this state should never be visited.

The transitions are deterministic and given by pp1|2, run, fireq " pp2|2, hide, waitq " pp3|2, hide, fireq " pp3|2, run, waitq " 1.

Assume that the game starts at state 2.

If player Max plays a memoryless strategy σ ε such that σ ε p2qphideq " 1 ´ε and σ ε p2qprunq " ε, ε ą 0, then player Min playing always action run at 2 will ensure that with probability 1 the game hits state 1 giving the payoff 0.

If player Max always plays action hide at 2 then player Min can play always action wait at 2 and the game will remain forever in 2 giving again payoff 0.

Nevertheless it turns out that the value of states 2 and 3 is 1. The ε-optimal strategy of player Max decreases the probability to play action run after each visit to state 3 and is defined as follows:

σphqprunq " 1 ´p1 ´εq 1{2 m`1 and σphqphideq " p1 ´εq 1{2 m`1 , where h is a history ending at 2 and m is the number of occurrences of state 3 in h. Then for each strategy of Min the probability to visit state 3 infinitely often is at least ś 8 m"0 p1 ´εq 1{2 m`1 " 1 ´ε. 

T 1 "

 1 mintt | S rks t " ku, T m " mintt | t ą T m´1 and S rks t " ku for m ą 1.

ă 8 ,

 8 The last inequality, (24) and (25) yieldη ‹ ď η ¨Pσ‹,τ k pT m`1 ă 8, S Tm`1 ă k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tT m`1 "8u ¨1tS Tm`1 ăku | T m ă 8q `δ `η ¨Pσ‹,τ k pS Tm`1 " k | T m ă 8q `Eσ‹,τ k pϕ rks r ¨1tS Tm`1 ąku | T m ă 8q. S Tm`1 ă k | T m ă 8q `Pσ‹,τ k pS Tm`1 " k | T m ă 8q " P σ‹,τ k pT m`1 ă 8 | T m ă 8q (32)

P σ‹,τ k pT m` 1 " 8 ,

 18 S Tm`1 ă k | T m ă 8q `Pσ‹,τ k pS Tm`1 ą k | T m ă 8q " P σ‹,τ k pT m`1 " 8 | T m ă 8q

ď 1 ,

 1 from (33) we obtain thatη ¨Pσ‹,τ k pT m`1 ă 8 | T m ă 8q `Pσ‹,τ k pT m`1 " 8 | T m ă 8q ě η ‹ ´δ. But P σ‹,τ k pT m`1 " 8 | T m ă 8q `Pσ‹,τ k pT m`1 ă 8 | T m ă8q " 1 thus the last inequality yields P σ‹,τ k pT m`1 ă 8 | T m ă 8q ď 1

pr 1 1

 11 ,...,r k´1 ,w k ,r k`1 ,...,rnq | T 1 " 8q ¨Pσ,τ‹ i ,...,r k´1 ,w k ,r k`1 ,.
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 2 Figure 2: Game SKIRMISH [3].

  r n q ´f pw 1 , . . . , w k´1 , w i k , w k`1 , . . . , w n q| ď maxtmax

	j‰k	|r j ´wj |, |r i k	´wi k |u ď
		maxtmax

j‰k |r j ´wj |, r ´w 8 u " r ´w 8 . Taking the limit i Õ 8 we obtain |r 8 k ´w8 k | ď r ´w 8 . This proves that (8) is nonexpansive.

  Thus if all previously visited states belong to t1, . . . , ku then S

				rks t	is equal to the
	state visited at the current epoch t. However, if at some previous epoch a state ą k was
	visited then S t rks	is the first such state. In other words, S	rks t	behaves as if the states ą k
	were absorbing, if S		

rks t ą k then S rks q " S rks t

  ..,rnq | T 1 " 8q ¨Pσ,τ‹

						i	pT 1 " 8q
					ď F k´1 i	pw k ; rq `ε{2 ´wk	¨Pσ,τ‹ i	pT 1 ă 8q. (45)
	From (44) and (45) and since P σ,τ 7 i pT 1 ă 8q " P σ,τ‹ i	pT 1 ă 8q we get
	E	σ,τ 7 i pϕ rks r q ď pw k `ε{2q	¨Pσ,τ 7 i pT 1 ă 8q `F k´1 i	pw k ; rq `ε{2 ´wk	¨Pσ,τ‹ i	pT 1 ă 8q
		" F k´1 i	pw k ; rq `ε{2 `pε{2q	¨Pσ,τ 7 i pT 1 ă 8q
		ď F k´1 i	pw k rq	`ε	
		" Fix k i pf qprq	`ε	

The payoff of the parity game is usually formulated in a bit different way, however it is easy to see that the definition given here is equivalent to the usual one.

In computer science papers the one-day game is often not mentioned explicitly, but the value function f of the one-day game is used in the µ-calculus approach to parity games, where it is sometimes called the predecessor operator.

The traditional presentation of this result is a bit different. Roughly speaking the variables are regrouped in blocks, each block consists of consecutive variables to which the same fixed point is applied. The each fixed point is applied to a group of variables rather than to separate variables. This allows to decreases the number of fixed points and the resulting formula alternates the least and the greatest fixed points. This is, however, only a technical detail which has no bearing on the result. For our purposes it is more convenient to apply fixed points to variables rather than to groups of variables.

This remark concerns also deterministic parity games[START_REF] Walukiewicz | Monadic second-order logic on tree-like structures[END_REF].

Recall that a state i is absorbing if it is impossible to leave i, i.e. for all possible actions executed in i with probability 1 the game remains in i.

This strategy exists by the induction hypothesis.

When player Min applies this strategy during all stages j, T m ă j ă T m`1 , in the ϕ rks r -game then we assume tacitly that starting from stage T m `1 player Min "forgets" all history preceding this stage and he plays this strategy as if the game started afresh at stage T m `1.

From the optimality of τ ‹ in the one-day game M k pw 1 , . Indeed, at the time T m the current visited state is k and player Min selects actions according to his optimal strategy in the one-day game M k pw 1 , . . . , w k´1 , w k , r k`1 , . . . , r n q and, by ( 16), the left-hand side of (37) gives the payoff in this one-day game while the right-hand side is the value of this game. Since he plays optimally the payoff cannot be greater than the value.

Let us consider the event tT m ă 8, S Tm`1 " iu, where i ă k.

This event, presented on the upper side of Figure 1, consists of plays h satisfying the following conditions:

(i) h visits k at least m times and prior to the m-th visit to k (which takes place at time T m ) the stopping states tk `1, . . . , nu were not visited, i.e. S t P rks for all t ă T m , (ii) at time T m the game moves from k to i, i.e. S Tm`1 " i.

The definition of τ ‹ says that starting from time T m `1, if the current state S Tm`1 is ă k and until the next visit to state k, player Min plays according to ε{2 m`1 -optimal strategy in the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq -game. By (15), the value of the ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnqgame starting at state i P rk ´1s is w i .

Thus if we consider the game that, in some sense, restarts afresh at state i at time T m `1 and we apply to such residual game the payoff ϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq and we assume that player Min plays τ ‹ then the expected payoff will not be greater than w i `ε{2 m`1 , i.e. E σ,τ‹ k pϕ rk´1s pr 1 ,...,r k´1 ,w k ,r k`1 ,...,rnq ˝θTm`1 | S Tm`1 " i, T m ă 8q ď w i `ε{2 m`1 .

(39)