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Asymptotic Behavior of the
Scharfetter–Gummel Scheme for the
Drift-Diffusion Model

Marianne CHATARD

Abstract The aim of this work is to study the large-time behavior of theScharfetter–
Gummel scheme for the drift-diffusion model for semiconductors. We prove the
convergence of the numerical solutions to an approximationof the thermal equilib-
rium. We also present numerical experiments which underline the preservation of
long-time behavior.
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1 Introduction

In the modeling of semiconductor devices, the drift-diffusion system is widely used
as it simplifies computations while giving an accurate description of the device
physics.
Let Ω ⊂R

d (d≥ 1) be an open and bounded domain describing the geometry of the
semiconductor device. The isothermal drift-diffusion system consists of two conti-
nuity equations for the electron densityN(x, t) and the hole densityP(x, t), and a
Poisson equation for the electrostatic potentialV(x, t):







∂tN−div(∇N−N∇V) = 0 on Ω × (0,T),
∂tP−div(∇P+P∇V) = 0 on Ω × (0,T),
λ 2∆V = N−P−C on Ω × (0,T),

(1)

whereC(x) is the doping profile, which is assumed to be a given datum, andλ is the
Debye length arising from the scaling of the physical model.We supplement these
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2 Marianne CHATARD

equations with initial conditionsN0(x) andP0(x) and physically motivated bound-
ary conditions: Dirichlet boundary conditionsN, P andV on ohmic contactsΓ D and
homogeneous Neumann boundary conditions on insulating boundary segmentsΓ N.
There is an extensive literature on numerical schemes for the drift-diffusion equa-
tions: finite difference methods, finite elements methods, mixed exponential fitting
finite elements methods, finite volume methods (see [1]). TheScharfetter–Gummel
scheme is widely used to approximate the drift-diffusion equations in the linear
case. It has been proposed and studied in [7] and [10]. It preserves steady-state, and
is second order accurate in space (see [9]).
The purpose of this paper is to study the large time behavior of the numerical solu-
tion given by the Scharfetter–Gummel scheme for the transient linear drift-diffusion
model (1). Indeed, it has been proved by H. Gajewski and K. Gärtner in [5] that
the solution to the transient system (1) converges to the thermal equilibrium state as
t → ∞ if the boundary conditions are in thermal equilibrium. A. J¨ungel extends this
result to a degenerate model with nonlinear diffusivities in [8].
The thermal equilibrium is a particular steady-state for which electron and hole cur-
rents, namely∇N−N∇V and∇P+P∇V, vanish.
If the Dirichlet boundary conditions satisfyN,P> 0 and

log(N)−V = αN and log(P)+V = αP onΓ D, (2)

the thermal equilibrium is defined by
{

∆Veq= exp(αN +Veq)−exp(αP−Veq)−C onΩ ,
Neq= exp(αN +Veq) , Peq= exp(αP−Veq) onΩ ,

(3)

with the same boundary conditions as (1).
Our aim is to prove that the solution of the Scharfetter–Gummel scheme converges
to an approximation of the thermal equilibrium ast → +∞. Long-time behavior of
solutions to discretized drift-diffusion systems have been studied in [5], [2] and [6],
using estimates of the energy.
In the sequel, we will suppose that the following hypothesesare fulfilled:

(H1) N, P are traces onΓ D× (0,T) of functions, also denotedN andP, such that
N, P∈ H1(Ω × (0,T))∩L∞(Ω × (0,T)) andN, P≥ 0 a.e.,

(H2) N0, P0 ∈ L∞(Ω) andN0, P0 ≥ 0 a.e.,
(H3) there exist 0< m≤ M such that:m≤ N,N0,P,P0 ≤ M,
(H4) N, P andV satisfy the compatibility condition (2).

2 Numerical schemes

In this section, we present the finite volume schemes for the time evolution drift-
diffusion system (1) and for the thermal equilibrium (3).
An admissible mesh ofΩ is given by a familyT of control volumes (open and
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convex polygons in 2-D, polyhedra in 3-D), a familyE of edges in 2-D (faces in
3-D) and a family of points(xK)K∈T which satisfy Definition 5.1 in [4]. It implies
that the straight line between two neighboring centers of cells (xK ,xL) is orthogonal
to the edgeσ = K|L.
In the set of edgesE , we distinguish the interior edgesσ ∈ Eint and the boundary
edgesσ ∈ Eext. We splitEext into Eext = E D

ext∪E N
ext whereE D

ext is the set of Dirichlet
boundary edges andE N

ext is the set of Neumann boundary edges. For a control vol-
umeK ∈ T , we denote byEK the set of its edges,Eint,K the set of its interior edges,
E D

ext,K the set of edges ofK included inΓ D andE N
ext,K the set of edges ofK included

in Γ N.
The size of the mesh is defined by∆x= max

K∈T
(diam(K)).

We denote by d the distance inRd and m the measure inRd orRd−1.
We also need some assumption on the mesh:

∃ξ > 0 s. t. d(xK ,σ)≥ ξ d(xK ,xL) for K ∈ T , for σ = K|L ∈ Eint,K .

For all σ ∈ E , we define the transmissibility coefficientτσ =
m(σ)

dσ
, where

dσ = d(xK ,xL) for σ = K|L ∈ Eint anddσ = d(xK ,σ) for σ ∈ Eext.
Let (T ,E ,(xK)K∈T ) be an admissible discretization ofΩ and let us define the time
step∆ t, NT = E(T/∆ t) and the increasing sequence(tn)0≤n≤NT , wheretn = n∆ t, in
order to get a space-time discretizationD of Ω × (0,T). The size of the space-time
discretizationD is defined byδ = max(∆x,∆ t).
First of all, the initial conditions and the doping profile are approximated by
(

N0
K ,P

0
K ,CK

)

K∈T
by taking the mean values ofN0, P0 andC on each cellK. The

numerical boundary conditions
(

Nn+1
σ ,Pn+1

σ ,Vn+1
σ

)

n≥0,σ∈E D
ext

are also given by the

mean values of(N,P,V) on σ × [tn, tn+1[.

2.1 The scheme for the thermal equilibrium

We compute an approximation(Neq
K ,Peq

K ,Veq
K )K∈T of the thermal equilibrium(Neq,

Peq,Veq) defined by (3) with the finite volume scheme proposed by C. Chainais-
Hillairet and F. Filbet in [2]:






λ 2 ∑
σ∈EK

τσ DVeq
K,σ = m(K)

(

exp(αN +Veq
K )−exp(αP−Veq

K )−CK
)

∀K ∈ T ,

Neq
K = exp(αN +Veq

K ), Peq
K = exp(αP−Veq

K ) ∀K ∈ T ,

(4)
where for a given functionf and(UK)K∈T , D f (U)K,σ is defined by:

D f (U)K,σ =







f (UL)− f (UK) if σ = K|L ∈ Eint,K ,
f (Uσ )− f (UK) if σ ∈ E D

ext,K ,

0 if σ ∈ E N
ext,K .



4 Marianne CHATARD

Assuming that the boundary conditions satisfy hypotheses (H1)–(H4), the scheme
(4) admits a unique solution (see [2]).

2.2 The scheme for the transient model

The Scharfetter–Gummel scheme for the system (1) is defined by:


































m(K)
Nn+1

K −Nn
K

∆ t
+ ∑

σ∈EK

F
n+1
K,σ = 0, ∀K ∈ T ,∀n≥ 0,

m(K)
Pn+1

K −Pn
K

∆ t
+ ∑

σ∈EK

G
n+1
K,σ = 0, ∀K ∈ T ,∀n≥ 0,

λ 2 ∑
σ∈EK

τσ DVn
K,σ = m(K)(Nn

K −Pn
K −CK) , ∀K ∈ T ,∀n≥ 0,

(5)

with for all σ ∈ EK

F
n+1
K,σ = τσ

(

B
(

−DVn+1
K,σ

)

Nn+1
K −B

(

DVn+1
K,σ

)

Nn+1
σ

)

, (6)

G
n+1
K,σ = τσ

(

B
(

DVn+1
K,σ

)

Pn+1
K −B

(

−DVn+1
K,σ

)

Pn+1
σ

)

, (7)

whereB is the Bernoulli function defined by:

B(x) =
x

ex−1
for x 6= 0, B(0) = 1. (8)

We consider a fully implicit discretization in time to avoidthe restrictive stability
condition∆ t ≤ λ 2/M.
Using a fixed point theorem, we can prove the following result:

Theorem 1.Let us assume (H1)–(H4) and C= 0. Then there exists a solution
{(Nn

K ,P
n
K ,V

n
K),K ∈ T ,0 ≤ n ≤ NT + 1} to the scheme (5)–(6)–(7), and moreover

we have
0< m≤ Nn

K , Pn
K ≤ M, ∀K ∈ T , ∀n≥ 0. (9)

3 Asymptotic behavior of the Scharfetter–Gummel scheme

We may now state our main result.

Theorem 2.Let us assume (H1)–(H4) and C= 0. Then solution(Nδ ,Pδ ,Vδ ) given
by the scheme (5)–(6)–(7) satisfies for each K∈ T

(Nn
K ,P

n
K ,V

n
K)−→

(

Neq
K ,Peq

K ,Veq
K

)

as n→+∞,
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where
(

Neq
K ,Peq

K ,Veq
K

)

K∈T
is an approximation to the solution of the steady-state

equation (3) given by (4).

The proof is based, as in the continuous case (see [5] and [8]), on an energy esti-
mate and a control of its dissipation, given in Proposition 1which is valid even if
C 6= 0. Nevertheless to prove rigorously the convergence to equilibrium, we need the
uniform lower bound (9) onN andP which holds under the restrictive assumption
C= 0.
In the last section, we perform some numerical experiments and observe a conver-
gence to steady-state even when this condition is not satisfied.

3.1 Notations and definitions

ForU = (UK)K∈T , we define theH1-seminorm as follows:

|U |21,Ω = ∑
σ∈Eint
σ=K|L

τσ |DUK,σ |
2+ ∑

K∈T

∑
σ∈Eext,K

τσ |DUK,σ |
2

Since the study of the large time behavior of the scheme (5)–(6)–(7) is based on
an energy estimate with the control of its dissipation, let us introduce the discrete
version of the deviation of the total energy from the thermalequilibrium:

E
n = ∑

K∈T

m(K)
(

H(Nn
K)−H(Neq

K )− log(Neq
K )

(

Nn
K −Neq

K

))

+ ∑
K∈T

m(K)
(

H(Pn
K)−H(Peq

K )− log(Peq
K )(Pn

K −Peq
K )

)

+
λ 2

2
|Vn−Veq|21,Ω .

Sinces 7→ H(s) =
∫ s

1
log(τ)dτ is defined and convex onR+, we haveE n ≥ 0 for

all n≥ 0. We also introduce the discrete version of the energy dissipation:

I
n = ∑

σ∈Eint
σ=K|L

τσ min(Nn
K ,N

n
L)

[

D(log(Nn)−Vn)K,σ

]2

+ ∑
K∈T

∑
σ∈Eext,K

τσ min(Nn
K ,N

n
σ )

[

D(log(Nn)−Vn)K,σ

]2

+ ∑
σ∈Eint
σ=K|L

τσ min(Pn
K ,P

n
L )

[

D(log(Pn)+Vn)K,σ

]2

+ ∑
K∈T

∑
σ∈Eext,K

τσ min(Pn
K,P

n
σ )

[

D(log(Pn)+Vn)K,σ

]2
.
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3.2 Energy estimate

The following Proposition gives the control of energy and dissipation. With this
result, Theorem 2 can be proved in the same way as Theorem 2.2 in [2].

Proposition 1. Under hypotheses (H1)–(H4), we have for all n≥ 0:

0≤ E
n+1+∆ tI n+1 ≤ E

n.

Proof. Firstly, using the convexity ofH and (4), we get

E
n+1−E

n ≤ ∑
K∈T

m(K)
(

log
(

Nn+1
K

)

−αN −Veq
K

)(

Nn+1
K −Nn

K

)

+ ∑
K∈T

m(K)
(

log
(

Pn+1
K

)

−αP+Veq
K

)(

Pn+1
K −Pn

K

)

+
λ 2

2

∣

∣Vn+1−Veq
∣

∣

2
1,Ω −

λ 2

2
|Vn−Veq|21,Ω ,

and then, by addingVn+1
K −Vn+1

K in the two first sums, we have

E
n+1−E

n ≤ T1+T2+T3,

where

T1 = ∑
K∈T

m(K)
(

log
(

Nn+1
K

)

−αN −Vn+1
K

)(

Nn+1
K −Nn

K

)

,

T2 = ∑
K∈T

m(K)
(

log
(

Pn+1
K

)

−αP+Vn+1
K

)(

Pn+1
K −Pn

K

)

,

T3 = ∑
K∈T

m(K)
(

Vn+1
K −Veq

K

)(

Nn+1
K −Nn

K −Pn+1
K +Pn

K

)

+
λ 2

2

∣

∣Vn+1−Veq
∣

∣

2
1,Ω −

λ 2

2
|Vn−Veq|21,Ω .

Using the scheme (5) and an integration by parts, we get thatT3 ≤ 0 and

T1 = ∆ t ∑
σ∈Eint
σ=K|L

τσ R
n+1
K,σ +∆ t ∑

K∈T

∑
σ∈E D

ext,K

τσ R
n+1
K,σ ,

where forσ = K|L,

R
n+1
K,σ =

(

D log
(

Nn+1)

K,σ−DVn+1
K,σ

)(

B
(

−DVn+1
K,σ

)

Nn+1
K −B

(

DVn+1
K,σ

)

Nn+1
L

)

.

We now prove that

R
n+1
K,σ ≤ S

n+1
K,σ :=−min

(

Nn+1
K ,Nn+1

L

)

(

D log
(

Nn+1)

K,σ−DVn+1
K,σ

)2
.
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Indeed, applying the propertyB(−x)−B(x) = x, we obtain

R
n+1
K,σ −S

n+1
K,σ =

(

D log
(

Nn+1)

K,σ−DVn+1
K,σ

)

×
[(

B
(

−DVn+1
K,σ

)

−B
(

−D log
(

Nn+1)

K,σ

))

(

Nn+1
K −min

(

Nn+1
K ,Nn+1

L

))

−
(

B
(

DVn+1
K,σ

)

−B
(

D log
(

Nn+1)

K,σ

))

(

Nn+1
L −min

(

Nn+1
K ,Nn+1

L

))

+ B
(

−D log
(

Nn+1)

K,σ

)

Nn+1
K −B

(

D log
(

Nn+1)

K,σ

)

Nn+1
L

]

.

Now, sinceB is non-increasing onR, the two first terms are non positive, and by
using the definition (8) ofB, the third term is equal to zero. Then we can conclude
that

T1 ≤ ∆ t ∑
σ∈Eint
σ=K|L

τσ S
n+1
K,σ +∆ t ∑

K∈T

∑
σ∈E D

ext,K

τσ S
n+1
K,σ ,

and we obtain in the same way a similar estimate forT2. To sum up, we have

E
n+1−E

n ≤ T1+T2 ≤−∆ tI n+1,

which completes the proof. ⊓⊔

4 Numerical experiments

We present here a test case for a geometry corresponding to a PN-junction in 1D.
The doping profile is piecewise constant, equal to +1 in the N-region]0.5,1[ and -1
in the P-region]0,0.5[. The Debye length isλ = 10−2.
In Figure 1 we compare the relative energyE n and its dissipationI n obtained
with the the Scharfetter–Gummel scheme (5) and with the scheme studied by C.
Chainais-Hillairet, J. G. Liu and Y. J. Peng in [3], where thediffusion terms are
discretized classically and the convection terms are discretized with upwind fluxes.
With the Scharfetter–Gummel scheme, we observe thatE n and I n converge to
zero whenn→ ∞, which is in keeping with Theorem 2. On the contrary, the upwind
scheme, which does not preserve thermal equilibrium, is notvery satisfying to re-
flect the long time behavior of the solution.
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Fig. 1 Evolution of the relative energyE n and its dissipationI n in log-scale.
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