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Asymptotic Behavior of the
Scharfetter—Gummel Scheme for the
Drift-Diffusion Model

Marianne CHATARD

Abstract The aim of this work is to study the large-time behavior of Subarfetter—
Gummel scheme for the drift-diffusion model for semiconus. We prove the
convergence of the numerical solutions to an approximatfdahe thermal equilib-
rium. We also present numerical experiments which undetlie preservation of
long-time behavior.

Key words: Drift-diffusion system, finite volume scheme, thermal éitpaium.
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1 Introduction

In the modeling of semiconductor devices, the drift-diffussystem is widely used
as it simplifies computations while giving an accurate dpson of the device
physics.

Let Q c RY (d > 1) be an open and bounded domain describing the geometrg of th
semiconductor device. The isothermal drift-diffusiontsys consists of two conti-
nuity equations for the electron denshi(x,t) and the hole densitp(x,t), and a
Poisson equation for the electrostatic potentigt,t):

N —div(ON—NOV) =0 on Q x (0,T),
6P —div(OP+POV)=0 on Qx(0,T), 1)
A2AV =N-P-C on Qx (0,T),
whereC(x) is the doping profile, which is assumed to be a given datumAandhe
Debye length arising from the scaling of the physical modéd.supplement these
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equations with initial conditionly(x) andPy(x) and physically motivated bound-
ary conditions: Dirichlet boundary conditiohs P andV on ohmic contacts P and
homogeneous Neumann boundary conditions on insulatingdzary segmentsN.
There is an extensive literature on numerical schemes @&dttit-diffusion equa-
tions: finite difference methods, finite elements methodgethexponential fitting
finite elements methods, finite volume methods (see [1]). Sdtearfetter—-Gummel
scheme is widely used to approximate the drift-diffusiomagéns in the linear
case. It has been proposed and studied in [7] and [10]. lepres steady-state, and
is second order accurate in space (see [9]).

The purpose of this paper is to study the large time behavittreonumerical solu-
tion given by the Scharfetter—Gummel scheme for the tranieear drift-diffusion
model (1). Indeed, it has been proved by H. Gajewski and Ktr@ain [5] that
the solution to the transient system (1) converges to threntaleequilibrium state as
t — oo if the boundary conditions are in thermal equilibrium. Andél extends this
result to a degenerate model with nonlinear diffusivitief.

The thermal equilibrium is a particular steady-state forohtelectron and hole cur-
rents, namelyIN — NV andOP + POV, vanish.

If the Dirichlet boundary conditions satisiy,P > 0 and

log(N) —V = ay and logP) +V = ap on TP, (2)

the thermal equilibrium is defined by

{ AV®I = exp(an +V©9) —exp(ap — V&) —C onQ, 3)
Ne€d=exp(an +Ve9), Pe9=exp(ap — V&%) onQ,

with the same boundary conditions as (1).

Our aim is to prove that the solution of the Scharfetter—G@frsoheme converges
to an approximation of the thermal equilibriumtas; +o. Long-time behavior of
solutions to discretized drift-diffusion systems haverbstidied in [5], [2] and [6],
using estimates of the energy.

In the sequel, we will suppose that the following hypothesedulfilled:

(H1) N, Paretraces ofi® x (0,T) of functions, also denoted andP, such that
N, Pec HY(Q x (0,T))NL*(Q x (0,T)) andN, P>0a.e,

(H2) N, PyeL*(Q) andNp, Py > 0a.e,

(H3) there exist &< m < M such thatm < N,Ng,P,Py < M,

(H4) N, P andV satisfy the compatibility condition (2).

2 Numerical schemes

In this section, we present the finite volume schemes forithe évolution drift-
diffusion system (1) and for the thermal equilibrium (3).
An admissible mesh of2 is given by a family.7 of control volumes (open and
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convex polygons in 2-D, polyhedra in 3-D), a famify of edges in 2-D (faces in
3-D) and a family of point§xk )xc.# which satisfy Definition 5.1 in [4]. It implies
that the straight line between two neighboring centers it$ ¢&¢, %) is orthogonal
to the edges = K|L.

In the set of edgeg’, we distinguish the interior edges< &, and the boundary
edgesu € Sext. We Splitéex into Eext = £2,U &N, where&l, is the set of Dirichlet
boundary edges and), is the set of Neumann boundary edges. For a control vol-
umeK € .7, we denote byk the set of its edgesin k the set of its interior edges,
Eaxx the set of edges of included in/™® and&;  the set of edges df included
inrN.

The size of the mesh is defined Ax = }r(neagx(dian‘(K)).

We denote by d the distancetf and m the measure iR9 or R4-1.
We also need some assumption on the mesh:

3¢ >0s.t.dx,0) > &d(xc,x ) forK € 7, for 0 =KJL € &nt k.
m(o)

For all o € &, we define the transmissibility coefficierg = T where

ds = d(xk,x_) for 0 =K|L € &t andds = d(xk,0) for o € é"ex(:.

Let(7,&,(x )ke7) be an admissible discretization @fand let us define the time
stepAt, Nr = E(T /At) and the increasing sequent®)o<n<n,, Wheret" = nAt, in
order to get a space-time discretizati@rof Q x (0,T). The size of the space-time
discretizationZ is defined byd = max(Ax, At).

First of all, the initial conditions and the doping profileeaapproximated by
(NQ,P,?,CK)KEy by taking the mean values &, Py andC on each celK. The
numerical boundary condition@Ng 2, Po+1, v i+1) n20,0c4D, @€ also given by the

mean values ofN,P,V) ono x [t",t"1],

2.1 The scheme for the thermal equilibrium

We compute an approximati@hle, Pe% Vi D ke » of the thermal equilibriuniN®d,
Pedved) defined by (3) with the finite volume scheme proposed by C. i
Hillairet and F. Filbet in [2]:

{ A2 ; oDV = m(K) (exp(an + V! —explap — Vi) —Ck) VK e .7,
geoK

NS = explan + V%),  PSI=explap — VY VK € 7,
(4)

where for a given functiorfi and(Uk )ke.7, Df (U )k o is defined by:

f(UL)—f(UK) if G=K|L€<D@int,K;
0 it ey
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Assuming that the boundary conditions satisfy hypotheldd3-{(H4), the scheme
(4) admits a unique solution (see [2]).

2.2 The scheme for the transient model

The Scharfetter—Gummel scheme for the system (1) is defiyred b

NQJrl_ NIQ n+1
mK)———"+ 5 FG =0, VK € 7,¥n> 0,
At oesk
n+1 n
m(K) K& —K ; gMl—_o, VK € 7,¥Yn>0, (5)
A2 % r(,DvKU_ m(K) (N —P{ —Ck), VK € .7,¥n>0,
gEbK

with for all o € &k
7R3 = 1o (B(-DWH NE - B (DVEH) NG, 6)
G = 14 (B (Dv,'gj,l) Pl B (—Dv,g‘fal) Pg“) , @)
whereB is the Bernoulli function defined by:

B(x) =

x 1forx;éO B(0) =1. (8)

We consider a fully implicit discretization in time to avadike restrictive stability
conditionAt < A2/M.
Using a fixed point theorem, we can prove the following result

Theorem 1.Let us assume (H1)—(H4) and € 0. Then there exists a solution
{(Ng, P, W), K € 7,0 <n < Ny +1} to the scheme (5)-(6)—(7), and moreover
we have

0<m<Ng, P{<M, VKeZ, vn>0. 9)

3 Asymptotic behavior of the Scharfetter—Gummel scheme

We may now state our main result.

Theorem 2.Let us assume (H1)—(H4) and=€0. Then solutior(Ns, Ps,Vs) given
by the scheme (5)—(6)—(7) satisfies for each K~

(NR PR VK) — (NP VKY) as n oo,
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where (&%, PELVET)
equation (3) given by (4).

is an approximation to the solution of the steady-state

The proof is based, as in the continuous case (see [5] andoj8fan energy esti-
mate and a control of its dissipation, given in Propositiontich is valid even if

C #£0. Nevertheless to prove rigorously the convergence tdibgum, we need the
uniform lower bound (9) omN andP which holds under the restrictive assumption
c=0.

In the last section, we perform some numerical experimemdsodserve a conver-
gence to steady-state even when this condition is not satisfi

3.1 Notations and definitions

ForU = (Uk)ke 7, we define thed1-seminorm as follows:

|U|%,Q: % To—lDUK,a|2+ Z ; T(,—|DUK,0—|2
g&lint Sextk

Ke7 oe
o=K|L

Since the study of the large time behavior of the scheme §»+{) is based on
an energy estimate with the control of its dissipation, introduce the discrete
version of the deviation of the total energy from the therewlilibrium:

57 = 3 M) (HIND) ~HINEY) —10g(NE) (NG )

+ 3 i) (H(FE) — HOREY —og(PEY (R — FEY)

)‘2 n eq|2
+7|V -V q|m.

S
Sinces— H(s) = / log(7)dr is defined and convex dR., we haves" > 0 for
all n > 0. We also introduce the discrete version of the energyhisisin:

2
S"= 3 Tomin(NEND) [D(log(N) = V™) o]
OESint

o=K|L

2
£y Y Tomin(NgN) [D(log(N") V), ]
KE.T 0€8exik

2
+ Y Tomin(PLRY) [D(og(P) + V) |
]
2
+5 S temin(RR,PY) [D(Iog(P”HV”)K,a} :

KE.T 0€8extk
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3.2 Energy estimate

The following Proposition gives the control of energy andsgation. With this
result, Theorem 2 can be proved in the same way as Theorem 2R i

Proposition 1. Under hypotheses (H1)—(H4), we have for attrd:

OS gn+l+Atfn+l < gn.

Proof. Firstly, using the convexity dfl and (4), we get

5n+17£>n < Z ( )(Iog (NnJrl) an 7\/;(1) (Nn+1 NIQ)

Ke7
+ Y m(K) (log (FE™) —ap+ V%) (P~ RX)
KeT7
2 2
_’_/\? ’Vn+1 _Veq‘ig _ % v _VeqliQ ,

and then, by adding?"* — Vg™ in the two first sums, we have
EM—EN<Ti 4T+ T,
where
Ti— S miK) (log (NE*) — an V™) (NG Ng).
KeT
T, = Z m(K) (log (Fg™) — ap+ V™) (PET—RR),
Ta= 5 m(K) (V& =V (NG —NR — PP+ )
Ke7
)\2 +1 2 AZ 2
+= Vi Vel — — VT =VEL,.

Using the scheme (5) and an integration by parts, we gefithatO and

=4t Y oA +ALY ED To g
0E&int KeT geés,

o=KL extK

where foro = K|L,
a7t = (Dlog (N™1), -~ DVih) (B(—DV i NE B (DVZ 5 IND ).
We now prove that

2
Ay < S = —min(Ng™ N (Dlog (N”*l)Kyaf DV}QfGl) .
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Indeed, applying the properB(—x) — B(x) = x, we obtain

G~ A5 = (Dlog(N™), -~ DWRHH)

[(B(-DWe5t) ~B(~Dlog (N™4), ) ) (NE" — min (NF*L N*L))

~ (B(oWest) ~B(Dlog (N™4), ) ) (N~ min (NZ*2,NT2))

B (—Dlog (NHH)K,U) N B (Dlog (Nn+l)K,a) NCH} :

Now, sinceB is non-increasing oiR, the two first terms are non positive, and by
using the definition (8) oB, the third term is equal to zero. Then we can conclude
that
T, < At oSG +ot S ED To. /05
=R ol

and we obtain in the same way a similar estimateroTo sum up, we have
EM_ < T+ T < —Atg™

which completes the proof. ad

4 Numerical experiments

We present here a test case for a geometry correspondingisj@netion in 1D.

The doping profile is piecewise constant, equal to +1 in theden]0.5,1] and -1

in the P-regiorj0,0.5[. The Debye length ia = 102,

In Figure 1 we compare the relative energf and its dissipation#" obtained

with the the Scharfetter—-Gummel scheme (5) and with thersehgudied by C.
Chainais-Hillairet, J. G. Liu and Y. J. Peng in [3], where thi#usion terms are
discretized classically and the convection terms are eligerd with upwind fluxes.
With the Scharfetter—Gummel scheme, we observe éfaand .#" converge to
zero whem — oo, which is in keeping with Theorem 2. On the contrary, the uymlvi
scheme, which does not preserve thermal equilibrium, is/apt satisfying to re-
flect the long time behavior of the solution.
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Fig. 1 Evolution of the relative energy™ and its dissipations/™ in log-scale.
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