Yago: A Core of Semantic Knowledge Unifying WordNet and Wikipedia
Résumé
We present YAGO, a lightweight and extensible ontology with high coverage and quality. YAGO builds on entities and relations and currently contains more than 1 million entities and 5 million facts. This includes the Is-A hierarchy as well as non-taxonomic relations between entities (such as hasWonPrize). The facts have been automatically extracted from Wikipedia and unified with WordNet, using a carefully designed combination of rule-based and heuris-tic methods described in this paper. The resulting knowledge base is a major step beyond WordNet: in quality by adding knowledge about individuals like persons, organizations , products, etc. with their semantic relationships – and in quantity by increasing the number of facts by more than an order of magnitude. Our empirical evaluation of fact cor-rectness shows an accuracy of about 95%. YAGO is based on a logically clean model, which is decidable, extensible, and compatible with RDFS. Finally, we show how YAGO can be further extended by state-of-the-art information extraction techniques.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|
Loading...